WO2023286267A1 - System and method for managing connection information among optical nodes - Google Patents

System and method for managing connection information among optical nodes Download PDF

Info

Publication number
WO2023286267A1
WO2023286267A1 PCT/JP2021/026748 JP2021026748W WO2023286267A1 WO 2023286267 A1 WO2023286267 A1 WO 2023286267A1 JP 2021026748 W JP2021026748 W JP 2021026748W WO 2023286267 A1 WO2023286267 A1 WO 2023286267A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
node
connection information
function unit
management function
Prior art date
Application number
PCT/JP2021/026748
Other languages
French (fr)
Japanese (ja)
Inventor
ひろし 渡邉
良 小山
友裕 川野
達也 藤本
和英 中江
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023534566A priority Critical patent/JPWO2023286267A1/ja
Priority to PCT/JP2021/026748 priority patent/WO2023286267A1/en
Publication of WO2023286267A1 publication Critical patent/WO2023286267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Definitions

  • the present disclosure mainly relates to a system of a connection state management method and confirmation method between optical line switching nodes, and a connection state management method and confirmation method between optical line switching nodes in an optical fiber network.
  • optical fiber cores can be connected to arbitrary routes in order to efficiently use the equipment during the opening and maintenance of the network.
  • Optical line switching such as changing the route and changing the route is performed at a certain frequency. Normally, such work involves going to the site and physically switching connections, but a technology has been proposed in which switching is performed by remotely operating an optical cross-connect switch (see, for example, Non-Patent Document 1). .).
  • An optical port monitoring function unit is installed in the optical line switching node, and has a structure capable of reading the intensity of the optical signal incident from the port. Also, the optical line switching node has a structure that converts the optical power supply light into electricity, stores the electricity, and drives the optical port monitoring function unit and the optical cross-connect switch with the stored electricity.
  • the optical line switching node is structured to be driven by optical power supply light, but it is assumed that it may not always be in a state where it is sufficiently stored. It is desirable to suppress the use of such as.
  • An object of the present disclosure is to enable management and confirmation of the connection state of each port of an optical line switching node even when an optical line is switched in a network configured with optical line switching nodes.
  • the systems and methods of the present disclosure include: A system for managing connection information between optical nodes in an optical fiber network in which a plurality of optical nodes are connected, storing the connection state data of the port inside a single optical node and the connection time in the intra-node connection information management function unit; storing data on the connection state of ports between adjacent optical nodes in an adjacent node connection information management function unit; Data relating to the connection state of adjacent optical nodes on the optical fiber network, which is stored in the inter-node connection information management function unit, is generated from the intra-node connection information management function unit and the adjacent inter-node connection information management function unit. It is characterized by
  • FIG. 1 shows a system configuration example of the present disclosure.
  • the system of the present disclosure is an optical fiber network in which ports of optical line switching nodes (hereinafter referred to as optical nodes) 91 are directly connected via optical fibers 92 .
  • optical nodes 91#0 to 91#3 are connected in a loop
  • FIG. 2 each of the optical nodes 91#1 to 91#3 is provided with an optical port monitoring function unit 11, and has a structure capable of reading the intensity of the optical signal entering from the port.
  • the optical node 91#0 is installed in an environment where power can be supplied, and an optical test device 95 and an optical power meter 85, which will be described later, are arranged. As shown in FIG. 2, the optical nodes 91#1 to 91#3 convert the optical power supply light into electricity and store it, and the stored power is used to drive the optical port monitoring function unit 11 and the optical cross-connect switch 12. A processor 13 is provided.
  • FIG. 3 shows an example of the configuration of each management function that manages the optical node 91 connected to the optical fiber network and the connection state between the nodes.
  • the system of the present disclosure includes an intra-node connection information management function unit 21, an adjacent node connection information management function unit 22, and inter-node connection information via an optical node 91#0 installed in a communication building and a network 96.
  • a management function unit 23 is installed.
  • optical nodes 91 are arranged on the network. For example, in the case of FIG. 3, it is possible to grasp that optical nodes 91 numbered 0, 1, 2, 3, and 0 are arranged in a loop and connected. Also, the 0th optical node 91#0 is the optical node 0, the 1st optical node 91#1 is the optical node 1, the second optical node 91#2 is the optical node 2, and the 3rd optical node 91 #3 may be referred to as optical node #3.
  • the intra-node connection information management function unit 21 stores data on the connection status of the ports inside a single optical node and the connection time.
  • FIG. 4 shows an example of information stored in the intra-node connection information management function 21.
  • the intra-node connection information management function unit 21 instructs the optical node 91 which port number and which number are connected by the internal optical cross-connect switch 12 and the time at which the connection instruction is given to the optical node 91. to store
  • the intra-node connection information management function unit 21 assumes that port 1 and port 101 are connected in optical node No. 1, and the time at which these were connected is 22:01:59 on January 01, 2021. store something.
  • the adjacent node connection information management function unit 22 stores data on the connection state of ports between adjacent optical nodes 91 .
  • FIG. 5 shows an example of information stored in the adjacent node connection information management function unit 23.
  • the adjacent node connection information management function unit 22 stores information as to which port number and which port number are physically connected between the adjacent optical nodes 91 by an optical cable or the like. For example, the adjacent node connection information management function unit 22 stores that the port 101 of the optical node number 1 and the port 1 of the node number 2 are connected.
  • the adjacent node connection information management function unit 22 performs the following operations on optical nodes No. 0 and No. 1, optical nodes No. 1 and No. 2, and optical nodes No. 3 and No. 0. Stores connection information between adjacent nodes. It should be noted that this adjacent node connection information is based on the premise that the adjacent optical nodes 91 are fixedly connected via an optical cable, and there is no connection change other than manual switching. Therefore, a table is created and stored when the adjacent optical nodes 91 are connected.
  • the inter-node connection information management function unit 23 stores information regarding the connection status of adjacent optical nodes 91 on the optical fiber network.
  • FIG. 6 shows an example of information stored in the node connection information management function 23.
  • the inter-node connection information management function unit 23 generates connection information about the connection state of each port of each optical node 91 and the connection state when a plurality of optical nodes are interconnected to form an optical fiber network. Stores time information. For this information, a table is created from the intra-node connection information management function unit 21 and the inter-adjacent node connection information management function unit 22 and stored. Further, when the connection information is confirmed by an optical method or the like, which will be described later, information related to the connection information may also be stored in this table.
  • connection information between adjacent optical nodes 91 in addition to connection information between adjacent optical nodes 91, cable information connected between the optical nodes 91 is also stored in the adjacent node connection information management function unit 22 as shown in FIG. Store. 8, the node-to-node connection information management function unit 23 includes identification information such as the numbers to which the cable cores between the optical nodes 91 are connected.
  • a table is created from the intra-node connection information management function unit 21 and the inter-adjacent node connection information management function unit 22 to store the stored information.
  • FIG. 9 shows a system configuration example of this embodiment.
  • the optical node 91#0 is connected through an optical coupler 93 and a fiber selector 94 to an optical testing device 95 that emits test light.
  • a third embodiment for implementing the present disclosure will be described in detail below.
  • this is a method for sequentially generating information stored in the intra-node connection information management function unit 21 .
  • test light is inserted into port 1 of optical node 0 shown in FIG.
  • the optical port monitoring function unit 11 measures the optical power and confirms whether or not there is a change in the optical power, thereby confirming communication. to check the actual connection state at the optical node No. 1.
  • the test light is inserted using an optical test device 95, a fiber selector 94, and an optical coupler 93 as shown in FIG.
  • the optical port monitoring function unit 11 of optical node 2 if the port on the output side is a loop (hereinafter referred to as an upper loop) in which optical nodes 0 to 3 of numbers 101 to 150 are connected, the optical port monitoring function unit 11 of optical node 2 Similarly, the presence or absence of optical power is measured for all ports by the optical port monitoring function unit 11 to confirm communication and to confirm connection information within the optical node 91 . This is advanced to the optical node 3, further to the optical node 0, and to the optical node 91 connected to the upper loop, the presence or absence of the optical power is measured by receiving the test light, and the communication is confirmed. .
  • the cross-connect switches 12 of the optical nodes 91#0 to 91#2 are switched to establish routes SR1 and SR2 between the optical nodes 91. , SR3, SR4, and SR5 are sequentially connected, and the connection state thereof is confirmed.
  • Step S31 As for the route SR1, since the ports of the optical nodes No. 0 and No. 1 are fixedly connected, the optical port monitoring function unit 11 on the side of the route SR1 of the optical node No. 1 confirms communication. Communication confirmation is performed by connecting the optical test equipment 95 to the optical port connected to the optical route SR1 using the optical coupler 93 and the fiber selector 94, and transmitting the test light ( CW light, etc.) is inserted. Then, it is confirmed based on whether the optical port monitoring function unit 11 of the optical node No. 1 changes the optical power due to the presence or absence of the test light.
  • Step S32 Next, switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the route SR1, route SR2, and route SR3, and connect the route SR1, route SR2, and route SR3.
  • the connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated in the connection information management function unit 21 .
  • Step S33 Next, the optical port monitoring function units 11 of the optical nodes No. 1 and No. 2 connected to the route SR2 each confirm communication in the same manner as described above.
  • Step S34 Next, switch the cross-connect switches 12 from the optical node No. 0 to the optical node No. 2, give an instruction to switch the connection to the route SR4, connect the route SR3, the route SR4, and the route SR5, and The connection information of the two ports of the optical node No. 2 to which the route SR4 is connected is updated in the connection information management function unit 21 .
  • Step S35 Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR5 confirms communication in the same manner as described above. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
  • the inter-node connection confirmation method of the third embodiment is a reliable confirmation method because the connections between the optical nodes 91 are confirmed one by one.
  • Step S41 Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and the intra-node connection information management function unit 21, the connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated.
  • Step S42 Next, switch the cross-connect switches 12 from optical node No. 0 to optical node No. 2, issue an instruction to switch connection to route SR4, connect routes SR3, SR4, and SR5, and connect intra-node connection information.
  • the connection information of the two ports of the optical node No. 2 to which the route SR4 is connected to the management function unit 21 is updated.
  • Step S43 Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR5 confirms communication in the same manner as in the third embodiment. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
  • the inter-node connection confirmation method of the fourth embodiment has the advantage that it does not take much time and consumes less power in the optical node 91 because the connection confirmation is performed only at the end. However, if communication cannot be confirmed, the abnormal portion may be isolated.
  • FIG. 11 shows a system configuration example of this embodiment.
  • the optical node 91 # 0 is connected to the optical power meter 85 through the optical coupler 83 and the fiber selector 84 .
  • a fifth embodiment for implementing the present disclosure will be described in detail below.
  • the cross-connect switches 12 of the optical nodes 91 are switched to connect the routes SR1, SR2, SR3, SR4, and SR5 between the optical nodes 91 in order, and the connections A method for checking the status will be explained.
  • Step S51 Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and the intra-node connection information management function unit 21, the connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated.
  • Step S52 Next, the cross-connect switches 12 of the optical nodes No. 0 to No. 3 are switched as routes dedicated to the test light, and an instruction to switch the connection to the test light route TR2 is given, and the test light routes TR1, TR2, In addition to connecting TR3, the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 3 to which the test optical route TR2 is connected.
  • Step S53 Next, the cross-connect switches 12 of optical node No. 0 to optical node No. 2 are switched, and an instruction to switch the connection to the test optical route TR4 is given, and the route SR3, the test optical route TR4, and the test optical route TR3 are switched.
  • the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 2 to which the test optical route TR4 is connected.
  • Step S54 Next, test light (CW light, etc.) is inserted from the optical test equipment 95 using the optical coupler 93 and the fiber selector 94 to the optical port connected to the test light route TR1. At this time, the optical coupler 83 and the fiber selector 84 are used to connect the optical power meter 85 to the optical port connected to the optical route SR1. Then, communication is confirmed by checking whether the optical power is changed by the optical power meter 85 depending on the presence or absence of the test light. Incidentally, each connection to the optical test device 95 and the optical power meter 85 may be reversed.
  • Step S55 Next, switch the cross-connect switches 12 from optical node No. 0 to optical node No. 2, issue an instruction to switch connection to route SR4, connect routes SR3, SR4, and SR5, and connect intra-node connection information.
  • the connection information of the two ports of the optical node No. 2 to which the route SR4 is connected to the management function unit 21 is updated.
  • Step S56 Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR5 confirms communication in the same manner as described above. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
  • the inter-node connection confirmation method of the fifth embodiment is a more detailed confirmation method than the fourth embodiment because it confirms the connectivity of a part of the route. Since the connection state between the optical nodes 91 can be confirmed without using the unit 11, this method can suppress the energy consumption of the optical nodes 91. FIG. It can also serve as an alternative means when the optical port monitoring function unit 11 of the optical node 91 cannot be used due to failure or the like.
  • Step S61 Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and the intra-node connection information management function unit. 21, the connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated.
  • Step S62 Next, the cross-connect switches 12 of the optical nodes No. 0 to No. 3 are switched as routes dedicated to the test light, and an instruction to switch the connection to the test light route TR2 is given, and the test light routes TR1, TR2, In addition to connecting TR3, the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 3 to which the test optical route TR2 is connected. It is assumed that each test optical route uses a port with a specific number, eg, the oldest number.
  • Step S63 Next, the cross-connect switches 12 of optical node No. 0 to optical node No. 2 are switched, an instruction to switch the connection to the test optical route TR4 is given, and the route SR3, the test optical route TR4, and the test optical route TR3 are switched.
  • the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 2 to which the test optical route TR4 is connected.
  • Step S64 Next, test light (CW light, etc.) is inserted from the optical test equipment 95 using the optical coupler 93 and the fiber selector 94 to the optical port connected to the test light route TR1.
  • An optical power meter 85 using an optical coupler 83 and a fiber selector 84 for the optical port connected to the optical route SR1 checks whether or not there is a change in optical power depending on the presence or absence of the test light. Incidentally, each connection to the optical test device 95 and the optical power meter 85 may be reversed.
  • Step S65 Next, switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 2, give an instruction to switch the connection to the route SR4, connect SR3 and SR4, and connect the intra-node connection information management function unit. 21, the connection information of the two ports of the optical node No. 2 connected to the route SR4 is updated.
  • Step S66 Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR4 confirms communication in the same manner as described above. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
  • the inter-node connection confirmation method of the sixth embodiment is a method in which routes and core wires for test light are secured, compared to the confirmation method of the fifth embodiment.
  • the fifth embodiment may not be implemented if, for example, all core wires between the optical nodes 91 are used, but the sixth embodiment can be implemented without fail.
  • test light route is connected in advance in a loop from optical nodes 0 to 1, 2, 3, and 0. It is assumed that each test optical route uses a port with a specific number, eg, the oldest number.
  • Step S71 Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, issue an instruction to switch the connection to the test optical route TR6, and connect the test optical route TR7, the test optical route TR6, and the route SR3. , update the connection information of the two ports of the optical node No. 1 to which the test optical route TR6 is connected to the intra-node connection information management function unit 21 .
  • Step S72 Next, switch the cross-connect switches 12 of the optical nodes No. 0 to No. 2, instruct to switch the connection to the test optical route TR4, route SR3, test optical route TR4, test optical route TR3, and test.
  • the connection information of the two ports of the optical node No. 2 to which the test optical route TR4 is connected to the intra-node connection information management function unit 21 is updated.
  • Step S73 Next, for the optical port connected to the test light route TR1, depending on whether or not the test light (such as CW light) is inserted from the optical test equipment 95, the optical port connected to the test light route TR7 is Then, the optical power meter 85 checks whether the optical power changes or not. Incidentally, each connection to the optical test device 95 and the optical power meter 85 may be reversed. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
  • the test light such as CW light
  • Step S74 Next, switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and connect the intra-node connection information.
  • the connection information of the two ports of the optical node No. 1 to which the SR2 is connected to the management function unit 21 is updated.
  • Step S75 Next, switch the cross-connect switches 12 from optical node No. 0 to optical node No. 2, issue an instruction to switch connection to route SR4, connect routes SR3, SR4, and SR5, and connect intra-node connection information.
  • the connection information of the two ports of the optical node No. 2 to which the route SR4 is connected to the management function unit 21 is updated.
  • the inter-node connection confirmation method of the seventh embodiment can be a means for confirming route connectivity without going through optical node 0. Also, since the port numbers for inputting and outputting the test light are fixed, the optical coupler 93 and the fiber selector 94 required in the third to sixth embodiments are unnecessary.
  • FIG. 14 shows a flow for determining whether the communication confirmation can be performed normally or whether the process cannot be performed normally and ends abnormally.
  • the procedures described in the third embodiment are sequentially performed (S11 and S12), and when communication is confirmed in all the communication confirmation procedures (S12), connection status confirmation is terminated (S14). If confirmation cannot be performed normally in the communication confirmation procedure in step S12 (S12), it is determined that there is an abnormality at that location (S15).
  • FIG. 15 shows a flow for determining whether communication confirmation can be performed normally or whether abnormal termination occurs because communication cannot be performed normally.
  • the procedures described in the fourth to seventh embodiments are sequentially performed (S21 and S22), and if communication is confirmed in all the communication confirmation procedures (S22), the connection status confirmation ends (normal end) (S24). .
  • step S22 if confirmation cannot be performed normally in the communication confirmation procedure, the process proceeds to the confirmation method of the third embodiment (S23).
  • the procedure described in the third embodiment is sequentially performed (S23), and the flow determines that there is an abnormality at a location where normal confirmation cannot be performed in the communication confirmation procedure (S25).
  • the optical node of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • This disclosure can be applied to the information and communications industry.
  • optical port monitoring function unit 12 optical cross-connect switch 13: microprocessor 21: intra-node connection information management function unit 22: adjacent node connection information management function unit 23: inter-node connection information management function unit 91: optical node 92 : Optical fibers 83, 93: Optical couplers 84, 94: Fiber selector 85: Optical power meter 95: Optical test equipment 96: Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

The purpose of the present disclosure is to enable, in a network made up of optical line switching nodes, managing and confirmation of connection states of each of ports of the optical line switching nodes even in a case in which an optical line is switched. The present disclosure is a system for managing, in an optical fiber network in which a plurality of optical nodes are connected, connection information among the optical nodes. The system is characterized in that data of a connection state of an internal port of a single optical node and connection time thereof are stored in an in-node connection information managing function unit, data of a connection state with a port of an adjacent optical node is stored in an inter-adjacent-node connection information managing function unit, and data relating to a connection state with the optical node that is adjacent on the optical fiber network, that is stored in an inter-node connection information management function unit from the in-node connection information managing function unit and the inter-adjacent-node connection information managing function unit, is created.

Description

光ノード間の接続情報を管理するシステム及び方法System and method for managing connection information between optical nodes
 本開示は、主に光ファイバネットワークにおいて、光線路切替ノード間の接続状態の管理方式と確認方式、及び光線路切替ノード間の接続状態の管理方式と確認方式のシステムに関する。 The present disclosure mainly relates to a system of a connection state management method and confirmation method between optical line switching nodes, and a connection state management method and confirmation method between optical line switching nodes in an optical fiber network.
 光ファイバネットワーク、特に通信ビルに設置された通信装置とユーザ側の通信端末を結ぶアクセスネットワークでは、その開通や保守において効率的に設備を使用するために光ファイバ心線を任意のルートに接続を行うことや、ルートを変更するといった光線路切替が一定の頻度で行われている。通常このような作業は現地に赴いて物理的に接続切替えを行うのに対し、遠隔から光クロスコネクトスイッチを遠隔で操作して切替を行う技術が提案されている(例えば、非特許文献1参照。)。 In an optical fiber network, especially an access network that connects communication equipment installed in a telecommunication building and communication terminals on the user side, optical fiber cores can be connected to arbitrary routes in order to efficiently use the equipment during the opening and maintenance of the network. Optical line switching such as changing the route and changing the route is performed at a certain frequency. Normally, such work involves going to the site and physically switching connections, but a technology has been proposed in which switching is performed by remotely operating an optical cross-connect switch (see, for example, Non-Patent Document 1). .).
 多段ループ構成と複数の光線路切替ノードで構成されるネットワークでは、光線路切替ノードが各々のポート同士が光ファイバを介して、直接接続される形態が想定される。また光線路切替ノードには、光ポート監視機能部が設置され、ポートから入光する光信号の強度を読取可能な構造になっている。また、光線路切替ノードは、光給電光を電気に変換して蓄電し、蓄えた電力により光ポート監視機能部や光クロスコネクトスイッチを駆動する構造である。 In a network consisting of a multistage loop configuration and multiple optical line switching nodes, it is assumed that the ports of the optical line switching nodes are directly connected to each other via optical fibers. An optical port monitoring function unit is installed in the optical line switching node, and has a structure capable of reading the intensity of the optical signal incident from the port. Also, the optical line switching node has a structure that converts the optical power supply light into electricity, stores the electricity, and drives the optical port monitoring function unit and the optical cross-connect switch with the stored electricity.
 ここで、上記の光線路切替ノードで構成されるネットワークでは、光線路切替ノードの各ポートの接続状態を随時管理することや、接続状態を確認することが必要であるが、その具体的な方法は存在しない。また光線路切替ノードは、光給電光で駆動する構造であるが、常に十分に蓄電されている状況でない場合も想定されるため、接続状態の管理や確認する場合には、光ポート監視機能部などの利用を抑制する方法が望ましい。 Here, in a network composed of the above optical line switching nodes, it is necessary to manage the connection state of each port of the optical line switching node as needed and to check the connection state. does not exist. In addition, the optical line switching node is structured to be driven by optical power supply light, but it is assumed that it may not always be in a state where it is sufficiently stored. It is desirable to suppress the use of such as.
 本開示は、光線路切替ノードで構成されるネットワークにおいて、光線路の切替が行われた場合であっても、光線路切替ノードの各ポートの接続状態の管理及び確認を可能にすることを目的とする。 An object of the present disclosure is to enable management and confirmation of the connection state of each port of an optical line switching node even when an optical line is switched in a network configured with optical line switching nodes. and
 本開示のシステム及び方法は、
 複数の光ノードが接続されている光ファイバネットワークにおいて、前記光ノード間の接続情報を管理するシステムであって、
 単一の光ノード内部のポートの接続状態のデータとその接続された時刻を、ノード内接続情報管理機能部に格納し、
 隣り合う光ノード間のポートの接続状態のデータを、隣接ノード間接続情報管理機能部に格納し、
 前記ノード内接続情報管理機能部及び前記隣接ノード間接続情報管理機能部から、ノード間繋がり情報管理機能部に格納される、前記光ファイバネットワーク上の隣接する光ノードの接続状態に関するデータを生成することを特徴とする。
The systems and methods of the present disclosure include:
A system for managing connection information between optical nodes in an optical fiber network in which a plurality of optical nodes are connected,
storing the connection state data of the port inside a single optical node and the connection time in the intra-node connection information management function unit;
storing data on the connection state of ports between adjacent optical nodes in an adjacent node connection information management function unit;
Data relating to the connection state of adjacent optical nodes on the optical fiber network, which is stored in the inter-node connection information management function unit, is generated from the intra-node connection information management function unit and the adjacent inter-node connection information management function unit. It is characterized by
 本開示によれば、光線路切替ノードで構成されるネットワークにおいて、光線路の切替が行われた場合であっても、光線路切替ノードの各ポートの接続状態の管理及び確認を可能にすることができる。 According to the present disclosure, in a network composed of optical line switching nodes, it is possible to manage and check the connection state of each port of the optical line switching node even when the optical line is switched. can be done.
光ノードによるネットワークの構成例である。It is a configuration example of a network with optical nodes. 光線路切替ノードの構造例である。It is a structural example of an optical line switching node. ノード間接続状態を管理する各管理機能の構成例である。It is a configuration example of each management function that manages the connection state between nodes. ノード内接続情報管理機能の格納情報例(光ノード1番の場合)である。It is an example of information stored in the intra-node connection information management function (in the case of optical node No. 1). 隣接ノード間接続情報管理機能の格納情報例(光ノード1番と2番の間の場合)である。This is an example of information stored in the adjacent node connection information management function (for optical nodes No. 1 and No. 2). ノード間繋がり情報管理機能での格納情報例である。It is an example of information stored in the node connection information management function. 隣接ノード間接続情報管理機能の格納情報例(ノード間のケーブル情報の格納情報例)である。It is an example of storage information (an example of storage information of cable information between nodes) of the connection information management function between adjacent nodes. ケーブル情報を含むノード間繋がり情報管理機能での格納情報例である。It is an example of information stored in the inter-node connection information management function, including cable information. 逐次確認システムの一例である。It is an example of a sequential confirmation system. 一括確認システムの一例である。It is an example of a collective confirmation system. ループ活用確認システムの一例である。It is an example of a loop utilization confirmation system. ループ活用確認システムの一例である。It is an example of a loop utilization confirmation system. ループ活用確認システムの一例である。It is an example of a loop utilization confirmation system. 正常時/異常時の疎通確認のフローの一例である。It is an example of the communication confirmation flow in normal/abnormal conditions. 正常時/異常時の疎通確認のフローの一例である。It is an example of the communication confirmation flow in normal/abnormal conditions.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(本開示のシステム構成)
 図1に、本開示のシステム構成例を示す。本開示のシステムは、光線路切替ノード(以下、光ノードと称する。)91の各々のポート同士が光ファイバ92を介して、直接接続されている光ファイバネットワークである。本開示では、光ファイバネットワークの一例として、光ノード91#0~91#3がループ状に接続されている例を示す。光ノード91#1~91#3は、図2に示すように、光ポート監視機能部11が設置され、ポートから入光する光信号の強度を読取可能な構造になっている。
(System configuration of the present disclosure)
FIG. 1 shows a system configuration example of the present disclosure. The system of the present disclosure is an optical fiber network in which ports of optical line switching nodes (hereinafter referred to as optical nodes) 91 are directly connected via optical fibers 92 . In the present disclosure, an example in which optical nodes 91#0 to 91#3 are connected in a loop is shown as an example of an optical fiber network. As shown in FIG. 2, each of the optical nodes 91#1 to 91#3 is provided with an optical port monitoring function unit 11, and has a structure capable of reading the intensity of the optical signal entering from the port.
 光ノード91#0は、給電可能な環境に設置され、後述する光試験装置95及び光パワーメータ85が配置される。光ノード91#1~91#3は、図2に示すように、光給電光を電気に変換して蓄電し、蓄えた電力により光ポート監視機能部11や光クロスコネクトスイッチ12を駆動するマイクロプロセッサ13を備える。 The optical node 91#0 is installed in an environment where power can be supplied, and an optical test device 95 and an optical power meter 85, which will be described later, are arranged. As shown in FIG. 2, the optical nodes 91#1 to 91#3 convert the optical power supply light into electricity and store it, and the stored power is used to drive the optical port monitoring function unit 11 and the optical cross-connect switch 12. A processor 13 is provided.
(第1の実施形態)
 本開示を実施するための第1の実施形態を詳細に説明する。
 図3に光ファイバネットワークに接続された光ノード91とノード間接続状態を管理する各管理機能の構成の一例を示す。本開示のシステムは、通信ビル内に設置された光ノード91#0とネットワーク96を介して、ノード内接続情報管理機能部21と、隣接ノード間接続情報管理機能部22と、ノード間繋がり情報管理機能部23が設置される。
(First embodiment)
A first embodiment for carrying out the present disclosure will be described in detail.
FIG. 3 shows an example of the configuration of each management function that manages the optical node 91 connected to the optical fiber network and the connection state between the nodes. The system of the present disclosure includes an intra-node connection information management function unit 21, an adjacent node connection information management function unit 22, and inter-node connection information via an optical node 91#0 installed in a communication building and a network 96. A management function unit 23 is installed.
 尚、各光ノード91がネットワーク上にどのように配置されているかは、事前に把握されている前提とする。例えば、図3の場合は、0番、1番、2番、3番、0番の光ノード91がループ状に配置され、接続されていることは把握可能とする。また、0番目の光ノード91#0を光ノード0番、1番目の光ノード91#1を光ノード1番、2番目の光ノード91#2を光ノード2番、3番目の光ノード91#3を光ノード3番と称する場合がある。 It is assumed that how the optical nodes 91 are arranged on the network is known in advance. For example, in the case of FIG. 3, it is possible to grasp that optical nodes 91 numbered 0, 1, 2, 3, and 0 are arranged in a loop and connected. Also, the 0th optical node 91#0 is the optical node 0, the 1st optical node 91#1 is the optical node 1, the second optical node 91#2 is the optical node 2, and the 3rd optical node 91 #3 may be referred to as optical node #3.
 ノード内接続情報管理機能部21は、単一の光ノード内部のポートの接続状態のデータとその接続された時刻を格納する。図4に、ノード内接続情報管理機能21の格納情報例を示す。ノード内接続情報管理機能部21は、光ノード91毎に、内部の光クロスコネクトスイッチ12により、ポートの何番と何番が接続されているかとその接続の指示が光ノード91にされた時刻を格納する。例えば、ノード内接続情報管理機能部21は、光ノード1番において、ポート1とポート101が接続されており、これらが接続された時刻が2021年01月01日の22時01分59秒であることを格納する。 The intra-node connection information management function unit 21 stores data on the connection status of the ports inside a single optical node and the connection time. FIG. 4 shows an example of information stored in the intra-node connection information management function 21. As shown in FIG. For each optical node 91, the intra-node connection information management function unit 21 instructs the optical node 91 which port number and which number are connected by the internal optical cross-connect switch 12 and the time at which the connection instruction is given to the optical node 91. to store For example, the intra-node connection information management function unit 21 assumes that port 1 and port 101 are connected in optical node No. 1, and the time at which these were connected is 22:01:59 on January 01, 2021. store something.
 隣接ノード間接続情報管理機能部22は、隣り合う光ノード91間のポートの接続状態のデータを格納する。図5に、隣接ノード間接続情報管理機能部23の格納情報例を示す。隣接ノード間接続情報管理機能部22は、隣接する光ノード91間でポートの何番とポートの何番が光ケーブル等で物理的に接続されているかの情報を格納する。例えば、隣接ノード間接続情報管理機能部22は光ノード1番のポート101とノード2番のポート1とが接続されていることを格納する。 The adjacent node connection information management function unit 22 stores data on the connection state of ports between adjacent optical nodes 91 . FIG. 5 shows an example of information stored in the adjacent node connection information management function unit 23. As shown in FIG. The adjacent node connection information management function unit 22 stores information as to which port number and which port number are physically connected between the adjacent optical nodes 91 by an optical cable or the like. For example, the adjacent node connection information management function unit 22 stores that the port 101 of the optical node number 1 and the port 1 of the node number 2 are connected.
 図3の場合であれば、隣接ノード間接続情報管理機能部22は、光ノード0番と光ノード1番、光ノード1番と光ノード2番、光ノード3番と光ノード0番、の各々の隣接ノード間接続情報を格納する。尚、この隣接ノード間接続情報は、光ケーブルを介して、隣接する光ノード91を固定的に接続し、人手で切替る以外は接続変更が無い前提である。このため、隣接する光ノード91を接続した際にテーブルを作成し格納する。 In the case of FIG. 3, the adjacent node connection information management function unit 22 performs the following operations on optical nodes No. 0 and No. 1, optical nodes No. 1 and No. 2, and optical nodes No. 3 and No. 0. Stores connection information between adjacent nodes. It should be noted that this adjacent node connection information is based on the premise that the adjacent optical nodes 91 are fixedly connected via an optical cable, and there is no connection change other than manual switching. Therefore, a table is created and stored when the adjacent optical nodes 91 are connected.
 ノード間繋がり情報管理機能部23は、光ファイバネットワーク上の隣接する光ノード91の接続状態に関する情報を格納する。図6に、ノード間繋がり情報管理機能23での格納情報例を示す。ノード間繋がり情報管理機能部23は、複数の光ノードが相互に接続して光ファイバネットワークを構成する際に、各光ノード91の各ポートの接続状態に関する繋がり情報とその接続状態が生成された時刻の情報を格納する。この情報は、ノード内接続情報管理機能部21と隣接ノード間接続情報管理機能部22からテーブルを作成し格納する。また後述する光学的手法等で繋がり情報の確認がとれた際にこのテーブル内に繋がり情報に関する情報も格納してもよい。 The inter-node connection information management function unit 23 stores information regarding the connection status of adjacent optical nodes 91 on the optical fiber network. FIG. 6 shows an example of information stored in the node connection information management function 23. As shown in FIG. The inter-node connection information management function unit 23 generates connection information about the connection state of each port of each optical node 91 and the connection state when a plurality of optical nodes are interconnected to form an optical fiber network. Stores time information. For this information, a table is created from the intra-node connection information management function unit 21 and the inter-adjacent node connection information management function unit 22 and stored. Further, when the connection information is confirmed by an optical method or the like, which will be described later, information related to the connection information may also be stored in this table.
(第2実施形態)
 本開示を実施するための第2の実施形態を詳細に説明する。
 第1の実施形態において、隣接ノード間接続情報管理機能部22に、図7に示すように、隣接する光ノード91間の接続情報に加え、光ノード91間に接続されたケーブル情報も併せて格納する。またノード間繋がり情報管理機能部23では、図8に示すように、光ノード91間のケーブル心線の接続されている番号等の識別情報を含んだ、ノード間繋がり情報管理機能部23での格納情報を、ノード内接続情報管理機能部21と隣接ノード間接続情報管理機能部22からテーブルを作成し格納する。
(Second embodiment)
A second embodiment for carrying out the present disclosure will be described in detail.
In the first embodiment, in addition to connection information between adjacent optical nodes 91, cable information connected between the optical nodes 91 is also stored in the adjacent node connection information management function unit 22 as shown in FIG. Store. 8, the node-to-node connection information management function unit 23 includes identification information such as the numbers to which the cable cores between the optical nodes 91 are connected. A table is created from the intra-node connection information management function unit 21 and the inter-adjacent node connection information management function unit 22 to store the stored information.
 この第2の実施形態は、第1の実施形態と比較して、光ノード91間の心線に関する情報も把握することが可能となる。 In this second embodiment, it is possible to grasp information on core wires between optical nodes 91 as compared with the first embodiment.
(第3の実施形態)
 図9に、本実施形態のシステム構成例を示す。光ノード91#0は、光カプラ93及びファイバセレクタ94を通して、試験光を出射する光試験装置95と接続されている。以下、本開示を実施するための第3の実施形態を詳細に説明する。
(Third Embodiment)
FIG. 9 shows a system configuration example of this embodiment. The optical node 91#0 is connected through an optical coupler 93 and a fiber selector 94 to an optical testing device 95 that emits test light. A third embodiment for implementing the present disclosure will be described in detail below.
 1点目として、光ノード91間の繋がり情報を網羅的に確認する方法を説明する。第1、第2の実施形態において、ノード内接続情報管理機能部21の格納情報を順次生成する方法である。 As the first point, a method for comprehensively confirming connection information between optical nodes 91 will be described. In the first and second embodiments, this is a method for sequentially generating information stored in the intra-node connection information management function unit 21 .
 例えば、図1記載の光ノード0番のポート1番に試験光の挿入し、その試験光の有無により、対向する光ノード1番の入射側のポート1番、更には、光ノード1番の出射側として、ポート番号が101~150番、201~220番、251~270番の光ポート監視機能部11で光パワーを測定して、光パワーの変化の有無を確認することで疎通確認を行い、実際の光ノード1番での接続状態を確認する。具体的な試験光の挿入には、図9記載のような光試験装置95、ファイバセレクタ94、光カプラ93を用いて実施する。 For example, test light is inserted into port 1 of optical node 0 shown in FIG. On the output side, the optical port monitoring function unit 11 with port numbers 101 to 150, 201 to 220, and 251 to 270 measures the optical power and confirms whether or not there is a change in the optical power, thereby confirming communication. to check the actual connection state at the optical node No. 1. Specifically, the test light is inserted using an optical test device 95, a fiber selector 94, and an optical coupler 93 as shown in FIG.
 次に、出射側のポートが101~150番の光ノード0番~光ノード3番が接続されたループ(以下、上位ループ)で有れば、光ノード2番の光ポート監視機能部11で同様に、ポート全てを光ポート監視機能部11で、光パワーの有無を測定して、疎通確認を行い、光ノード91内での繋がり情報を確認する。これを光ノード3番、更には光ノード0番まで、上位ループに接続された光ノード91に対して、試験光を受光して光パワーの有無を測定して、疎通確認を行うところまで進める。 Next, if the port on the output side is a loop (hereinafter referred to as an upper loop) in which optical nodes 0 to 3 of numbers 101 to 150 are connected, the optical port monitoring function unit 11 of optical node 2 Similarly, the presence or absence of optical power is measured for all ports by the optical port monitoring function unit 11 to confirm communication and to confirm connection information within the optical node 91 . This is advanced to the optical node 3, further to the optical node 0, and to the optical node 91 connected to the upper loop, the presence or absence of the optical power is measured by receiving the test light, and the communication is confirmed. .
 以上の疎通確認を、光ノード0番の全てのポートに対して実施する。図1で有れば、ポート1番から50番、及び101番から150番である。これにより、試験光を用いた疎通確認により、図4に示すような各光ノード91の内の接続状態が確認でき、図6に示すようなノード間繋がり情報を網羅的に確認し格納可能となる。  Perform the above communication confirmation for all ports of optical node 0. In FIG. 1, ports 1 to 50 and 101 to 150 are used. This makes it possible to confirm the connection state in each optical node 91 as shown in FIG. 4 by confirming communication using the test light, and to exhaustively confirm and store the inter-node connection information as shown in FIG. Become.
 2点目として、第1、第2の実施形態において、図9に示すように、光ノード91#0~91#2のクロスコネクトスイッチ12を切替えて、光ノード91の間のルートSR1、SR2、SR3、SR4、SR5を順に接続し、その接続状態を確認する方式を説明する。 As a second point, in the first and second embodiments, as shown in FIG. 9, the cross-connect switches 12 of the optical nodes 91#0 to 91#2 are switched to establish routes SR1 and SR2 between the optical nodes 91. , SR3, SR4, and SR5 are sequentially connected, and the connection state thereof is confirmed.
 ステップS31:ルートSR1は、光ノード0番と光ノード1番で固定的にポートが接続されているため、光ノード1番のルートSR1側の光ポート監視機能部11で疎通確認を行う。疎通確認は、光カプラ93及びファイバセレクタ94を用いて光試験装置95を光ルートSR1に接続された光ポートに接続し、ルートSR1に接続されるポートに対して光試験装置95より試験光(CW光等)を挿入する。そして、試験光の有無により、光ノード1番の光ポート監視機能部11で光パワーに変化が生じるかに基づいて、確認する。 Step S31: As for the route SR1, since the ports of the optical nodes No. 0 and No. 1 are fixedly connected, the optical port monitoring function unit 11 on the side of the route SR1 of the optical node No. 1 confirms communication. Communication confirmation is performed by connecting the optical test equipment 95 to the optical port connected to the optical route SR1 using the optical coupler 93 and the fiber selector 94, and transmitting the test light ( CW light, etc.) is inserted. Then, it is confirmed based on whether the optical port monitoring function unit 11 of the optical node No. 1 changes the optical power due to the presence or absence of the test light.
 ステップS32:次に、光ノード0番から光ノード1番のクロスコネクトスイッチ12を切替えて、ルートSR2への接続切替の指示を行い、ルートSR1、ルートSR2、ルートSR3を接続するとともに、ノード内接続情報管理機能部21にルートSR2の接続した、光ノード1番の2つのポートの接続の情報の更新を行う。 Step S32: Next, switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the route SR1, route SR2, and route SR3, and connect the route SR1, route SR2, and route SR3. The connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated in the connection information management function unit 21 .
 ステップS33:次に、ルートSR2に接続している光ノード1番と光ノード2番の光ポート監視機能部11で各々、前記と同様に疎通確認を行う。 Step S33: Next, the optical port monitoring function units 11 of the optical nodes No. 1 and No. 2 connected to the route SR2 each confirm communication in the same manner as described above.
 ステップS34:次に、光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、ルートSR4への接続切替の指示を行い、ルートSR3、ルートSR4、ルートSR5を接続するとともに、ノード内接続情報管理機能部21にルートSR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S34: Next, switch the cross-connect switches 12 from the optical node No. 0 to the optical node No. 2, give an instruction to switch the connection to the route SR4, connect the route SR3, the route SR4, and the route SR5, and The connection information of the two ports of the optical node No. 2 to which the route SR4 is connected is updated in the connection information management function unit 21 .
 ステップS35:最後にルートSR5に接続している光ノード2番の光ポート監視機能部11で、前記と同様に疎通確認を行う。また、第1及び第2の実施形態に記載のノード間繋がり情報管理機能部23で、繋がり情報確認への反映を行う。 Step S35: Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR5 confirms communication in the same manner as described above. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
 この第3の実施形態のノード間接続の確認方式は、光ノード91間の接続を1接続ずつ確認していくため、確実な確認方法である。 The inter-node connection confirmation method of the third embodiment is a reliable confirmation method because the connections between the optical nodes 91 are confirmed one by one.
(第4の実施形態)
 本開示を実施するための第4の実施形態を詳細に説明する。
 第1、第2の実施形態において、図10に示すように、光ノード91のクロスコネクトスイッチ12を切替えて、光ノード91間のルートSR1、SR2、SR3、SR4、SR5を順に接続し、その接続状態を確認する方式を説明する。
(Fourth embodiment)
A fourth embodiment for carrying out the present disclosure will be described in detail.
In the first and second embodiments, as shown in FIG. 10, the cross-connect switches 12 of the optical nodes 91 are switched to connect the routes SR1, SR2, SR3, SR4, and SR5 between the optical nodes 91 in order. A method for checking the connection status will be explained.
 ステップS41:光ノード0番から光ノード1番のクロスコネクトスイッチ12を切替えて、ルートSR2への接続切替の指示を行い、ルートSR1、SR2、SR3を接続するとともに、ノード内接続情報管理機能部21にルートSR2の接続した、光ノード1番の2つのポートの接続の情報の更新を行う。 Step S41: Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and the intra-node connection information management function unit 21, the connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated.
 ステップS42:次に、光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、ルートSR4への接続切替の指示を行い、ルートSR3、SR4、SR5を接続するとともに、ノード内接続情報管理機能部21にルートSR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S42: Next, switch the cross-connect switches 12 from optical node No. 0 to optical node No. 2, issue an instruction to switch connection to route SR4, connect routes SR3, SR4, and SR5, and connect intra-node connection information. The connection information of the two ports of the optical node No. 2 to which the route SR4 is connected to the management function unit 21 is updated.
 ステップS43:最後に、ルートSR5に接続している光ノード2番の光ポート監視機能部11で、第3の実施形態と同様に疎通確認を行う。また、第1及び第2の実施形態に記載のノード間繋がり情報管理機能部23で、繋がり情報確認への反映を行う。 Step S43: Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR5 confirms communication in the same manner as in the third embodiment. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
 この第4の実施形態のノード間接続の確認方式は、疎通確認を最後しか実施しないため、時間もかからず、光ノード91の蓄電量の消費も少ない利点がある。但し、もし疎通確認ができない場合、異常個所の切り分けを行ってもよい。 The inter-node connection confirmation method of the fourth embodiment has the advantage that it does not take much time and consumes less power in the optical node 91 because the connection confirmation is performed only at the end. However, if communication cannot be confirmed, the abnormal portion may be isolated.
(第5実施形態)
 図11に、本実施形態のシステム構成例を示す。光ノード91#0は、光カプラ83及びファイバセレクタ84を通して、光パワーメータ85と接続されている。以下、本開示を実施するための第5の実施形態を詳細に説明する。
 第1及び第2の実施形態において、図11に示すように光ノード91のクロスコネクトスイッチ12を切替えて、光ノード91間のルートSR1、SR2、SR3、SR4、SR5を順に接続し、その接続状態を確認する方式を説明する。
(Fifth embodiment)
FIG. 11 shows a system configuration example of this embodiment. The optical node 91 # 0 is connected to the optical power meter 85 through the optical coupler 83 and the fiber selector 84 . A fifth embodiment for implementing the present disclosure will be described in detail below.
In the first and second embodiments, as shown in FIG. 11, the cross-connect switches 12 of the optical nodes 91 are switched to connect the routes SR1, SR2, SR3, SR4, and SR5 between the optical nodes 91 in order, and the connections A method for checking the status will be explained.
 ステップS51:光ノード0番から光ノード1番のクロスコネクトスイッチ12を切替えて、ルートSR2への接続切替の指示を行い、ルートSR1、SR2、SR3を接続するとともに、ノード内接続情報管理機能部21にルートSR2の接続した、光ノード1番の2つのポートの接続の情報の更新を行う。 Step S51: Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and the intra-node connection information management function unit 21, the connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated.
 ステップS52:次に試験光専用のルートとして、光ノード0番から光ノード3番のクロスコネクトスイッチ12を切替えて、試験光ルートTR2への接続切替の指示を行い、試験光ルートTR1、TR2、TR3を接続するとともに、ノード内接続情報管理機能部21に試験光ルートTR2の接続した、光ノード3番の2つのポートの接続の情報の更新を行う。 Step S52: Next, the cross-connect switches 12 of the optical nodes No. 0 to No. 3 are switched as routes dedicated to the test light, and an instruction to switch the connection to the test light route TR2 is given, and the test light routes TR1, TR2, In addition to connecting TR3, the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 3 to which the test optical route TR2 is connected.
 ステップS53:次に、光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、試験光ルートTR4への接続切替の指示を行い、ルートSR3、試験光ルートTR4、試験光ルートTR3を接続するとともに、ノード内接続情報管理機能部21に試験光ルートTR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S53: Next, the cross-connect switches 12 of optical node No. 0 to optical node No. 2 are switched, and an instruction to switch the connection to the test optical route TR4 is given, and the route SR3, the test optical route TR4, and the test optical route TR3 are switched. Along with the connection, the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 2 to which the test optical route TR4 is connected.
 ステップS54:次に、試験光ルートTR1に接続される光ポートに対して、光カプラ93とファイバセレクタ94を用いた、光試験装置95より試験光(CW光等)を挿入する。このとき、光カプラ83及びファイバセレクタ84を用いて、光パワーメータ85を光ルートSR1に接続された光ポートに接続する。そして、試験光の有無によって光パワーメータ85で光パワーに変化が生じるかで疎通確認を行う。尚、光試験装置95と光パワーメータ85に各々の接続は逆に接続してもよい。 Step S54: Next, test light (CW light, etc.) is inserted from the optical test equipment 95 using the optical coupler 93 and the fiber selector 94 to the optical port connected to the test light route TR1. At this time, the optical coupler 83 and the fiber selector 84 are used to connect the optical power meter 85 to the optical port connected to the optical route SR1. Then, communication is confirmed by checking whether the optical power is changed by the optical power meter 85 depending on the presence or absence of the test light. Incidentally, each connection to the optical test device 95 and the optical power meter 85 may be reversed.
 ステップS55:次に、光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、ルートSR4への接続切替の指示を行い、ルートSR3、SR4、SR5を接続するとともに、ノード内接続情報管理機能部21にルートSR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S55: Next, switch the cross-connect switches 12 from optical node No. 0 to optical node No. 2, issue an instruction to switch connection to route SR4, connect routes SR3, SR4, and SR5, and connect intra-node connection information. The connection information of the two ports of the optical node No. 2 to which the route SR4 is connected to the management function unit 21 is updated.
 ステップS56:最後にルートSR5に接続している光ノード2番の光ポート監視機能部11で、前記と同様に疎通確認を行う。また、第1及び第2の実施形態に記載のノード間繋がり情報管理機能部23で、繋がり情報確認への反映を行う。 Step S56: Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR5 confirms communication in the same manner as described above. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
 第5の実施形態のノード間接続の確認方式は、ルートの一部の疎通確認を行うため、第4の形態よりも詳細な確認方式であり、またその際に光ノード91の光ポート監視機能部11を使わずに光ノード91間の接続状態を確認できるため、光ノード91のエネルギの消費を抑制できる方式である。また光ノード91の光ポート監視機能部11が故障等で利用できない場合の代替手段となりうる。 The inter-node connection confirmation method of the fifth embodiment is a more detailed confirmation method than the fourth embodiment because it confirms the connectivity of a part of the route. Since the connection state between the optical nodes 91 can be confirmed without using the unit 11, this method can suppress the energy consumption of the optical nodes 91. FIG. It can also serve as an alternative means when the optical port monitoring function unit 11 of the optical node 91 cannot be used due to failure or the like.
(第6の実施形態)
 本開示を実施するための第6の実施形態を詳細に説明する。
 第1及び第2の実施形態において、図12に示すように光ノード91のクロスコネクトスイッチ12を切替えて、光ノード91間のルートSR1、SR2、SR3、SR4を順に接続し、その接続状態を確認する方式を説明する。
(Sixth embodiment)
A sixth embodiment for implementing the present disclosure will be described in detail.
In the first and second embodiments, the cross-connect switches 12 of the optical nodes 91 are switched as shown in FIG. Explain how to check.
 ステップS61:光ノード0番から光ノード1番のクロスコネクトスイッチ12を切替えて、ルートSR2への接続切替の指示を行い、ルートSR1、SR2、SR3を接続するとともに、ノード内接続情報管理機能部21にルートSR2の接続した、光ノード1番の2つのポートの接続の情報の更新を行う。 Step S61: Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and the intra-node connection information management function unit. 21, the connection information of the two ports of the optical node No. 1 to which the route SR2 is connected is updated.
 ステップS62:次に試験光専用のルートとして、光ノード0番から光ノード3番のクロスコネクトスイッチ12を切替えて、試験光ルートTR2への接続切替の指示を行い、試験光ルートTR1、TR2、TR3を接続するとともに、ノード内接続情報管理機能部21に試験光ルートTR2の接続した、光ノード3番の2つのポートの接続の情報の更新を行う。尚、各試験光ルートは、例えば、最老番の番号など、特定の番号のポートを使うものとする。 Step S62: Next, the cross-connect switches 12 of the optical nodes No. 0 to No. 3 are switched as routes dedicated to the test light, and an instruction to switch the connection to the test light route TR2 is given, and the test light routes TR1, TR2, In addition to connecting TR3, the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 3 to which the test optical route TR2 is connected. It is assumed that each test optical route uses a port with a specific number, eg, the oldest number.
 ステップS63:次に、光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、試験光ルートTR4への接続切替の指示を行い、ルートSR3、試験光ルートTR4、試験光ルートTR3を接続するとともに、ノード内接続情報管理機能部21に試験光ルートTR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S63: Next, the cross-connect switches 12 of optical node No. 0 to optical node No. 2 are switched, an instruction to switch the connection to the test optical route TR4 is given, and the route SR3, the test optical route TR4, and the test optical route TR3 are switched. Along with the connection, the intra-node connection information management function unit 21 updates the connection information of the two ports of the optical node No. 2 to which the test optical route TR4 is connected.
 ステップS64:次に、試験光ルートTR1に接続される光ポートに対して、光カプラ93とファイバセレクタ94を用いた、光試験装置95より試験光(CW光等)を挿入する。そして、試験光の有無で、光ルートSR1に接続された光ポートに対して、光カプラ83とファイバセレクタ84を用いた、光パワーメータ85で光パワーに変化が生じるかで疎通確認を行う。尚、光試験装置95と光パワーメータ85に各々の接続は逆に接続してもよい。 Step S64: Next, test light (CW light, etc.) is inserted from the optical test equipment 95 using the optical coupler 93 and the fiber selector 94 to the optical port connected to the test light route TR1. An optical power meter 85 using an optical coupler 83 and a fiber selector 84 for the optical port connected to the optical route SR1 checks whether or not there is a change in optical power depending on the presence or absence of the test light. Incidentally, each connection to the optical test device 95 and the optical power meter 85 may be reversed.
 ステップS65:次に、光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、ルートSR4への接続切替の指示を行い、SR3、SR4を接続するとともに、ノード内接続情報管理機能部21にルートSR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S65: Next, switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 2, give an instruction to switch the connection to the route SR4, connect SR3 and SR4, and connect the intra-node connection information management function unit. 21, the connection information of the two ports of the optical node No. 2 connected to the route SR4 is updated.
 ステップS66:最後にルートSR4に接続している光ノード2番の光ポート監視機能部11で、前記と同様に疎通確認を行う。また、第1及び第2の実施形態に記載のノード間繋がり情報管理機能部23で、繋がり情報確認への反映を行う。 Step S66: Finally, the optical port monitoring function unit 11 of the optical node No. 2 connected to the route SR4 confirms communication in the same manner as described above. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
 第6の実施形態のノード間接続の確認方式は、第5の実施形態の確認方式と比較して、試験光用のルート・心線が確保されている方式である。第5の実施形態は、例えば、光ノード91間の心線が全て使われていれば、実施できない場合もある形態であるが、第6の実施形態は必ず実施できる形態である。 The inter-node connection confirmation method of the sixth embodiment is a method in which routes and core wires for test light are secured, compared to the confirmation method of the fifth embodiment. The fifth embodiment may not be implemented if, for example, all core wires between the optical nodes 91 are used, but the sixth embodiment can be implemented without fail.
(第7の実施形態)
 本開示を実施するための第7の実施形態を詳細に説明する。
 第1、第2の実施形態において、図13に示すように光ノード91のクロスコネクトスイッチ12を切替えて、光ノード91間のルートSR1、SR2、SR3、SR4、SR5を順に接続し、その接続状態を確認する方式を説明する。
(Seventh embodiment)
A seventh embodiment for implementing the present disclosure will be described in detail.
In the first and second embodiments, as shown in FIG. 13, the cross-connect switches 12 of the optical nodes 91 are switched to sequentially connect the routes SR1, SR2, SR3, SR4, and SR5 between the optical nodes 91, and the connections A method for checking the status will be explained.
 本形態では、試験光専用のルートとして、光ノード0番から1番、2番、3番、0番とループ状に試験光ルートを予め接続しておく。尚、各試験光ルートは、例えば、最老番の番号など、特定の番号のポートを使うものとする。 In this embodiment, as a route dedicated to test light, a test light route is connected in advance in a loop from optical nodes 0 to 1, 2, 3, and 0. It is assumed that each test optical route uses a port with a specific number, eg, the oldest number.
 ステップS71:光ノード0番から光ノード1番のクロスコネクトスイッチ12を切替えて、試験光ルートTR6への接続切替の指示を行い、試験光ルートTR7、試験光ルートTR6、ルートSR3を接続するとともに、ノード内接続情報管理機能部21に試験光ルートTR6の接続した、光ノード1番の2つのポートの接続の情報の更新を行う。 Step S71: Switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, issue an instruction to switch the connection to the test optical route TR6, and connect the test optical route TR7, the test optical route TR6, and the route SR3. , update the connection information of the two ports of the optical node No. 1 to which the test optical route TR6 is connected to the intra-node connection information management function unit 21 .
 ステップS72:次に光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、試験光ルートTR4への接続切替の指示を行い、ルートSR3、試験光ルートTR4、試験光ルートTR3、試験光ルートTR2、試験光ルートTR1を接続するとともに、ノード内接続情報管理機能部21に試験光ルートTR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S72: Next, switch the cross-connect switches 12 of the optical nodes No. 0 to No. 2, instruct to switch the connection to the test optical route TR4, route SR3, test optical route TR4, test optical route TR3, and test. In addition to connecting the optical route TR2 and the test optical route TR1, the connection information of the two ports of the optical node No. 2 to which the test optical route TR4 is connected to the intra-node connection information management function unit 21 is updated.
 ステップS73:次に、試験光ルートTR1に接続される光ポートに対して、光試験装置95より試験光(CW光等)を挿入の有無で、試験光ルートTR7に接続された光ポートに対して、光パワーメータ85で光パワーに変化が生じるかで疎通確認を行う。尚、光試験装置95と光パワーメータ85に各々の接続は逆に接続してもよい。また、第1及び第2の実施形態に記載のノード間繋がり情報管理機能部23で、繋がり情報確認への反映を行う。 Step S73: Next, for the optical port connected to the test light route TR1, depending on whether or not the test light (such as CW light) is inserted from the optical test equipment 95, the optical port connected to the test light route TR7 is Then, the optical power meter 85 checks whether the optical power changes or not. Incidentally, each connection to the optical test device 95 and the optical power meter 85 may be reversed. Further, the node connection information management function unit 23 described in the first and second embodiments reflects the connection information confirmation.
 ステップS74:次に、光ノード0番から光ノード1番のクロスコネクトスイッチ12を切替えて、ルートSR2への接続切替の指示を行い、ルートSR1、SR2、SR3を接続するとともに、ノード内接続情報管理機能部21にSR2の接続した、光ノード1番の2つのポートの接続の情報の更新を行う。 Step S74: Next, switch the cross-connect switch 12 from the optical node No. 0 to the optical node No. 1, give an instruction to switch the connection to the route SR2, connect the routes SR1, SR2, and SR3, and connect the intra-node connection information. The connection information of the two ports of the optical node No. 1 to which the SR2 is connected to the management function unit 21 is updated.
 ステップS75:次に、光ノード0番から光ノード2番のクロスコネクトスイッチ12を切替えて、ルートSR4への接続切替の指示を行い、ルートSR3、SR4、SR5を接続するとともに、ノード内接続情報管理機能部21にルートSR4の接続した、光ノード2番の2つのポートの接続の情報の更新を行う。 Step S75: Next, switch the cross-connect switches 12 from optical node No. 0 to optical node No. 2, issue an instruction to switch connection to route SR4, connect routes SR3, SR4, and SR5, and connect intra-node connection information. The connection information of the two ports of the optical node No. 2 to which the route SR4 is connected to the management function unit 21 is updated.
 第7の実施形態のノード間接続の確認方式は、光ノード0番を介さない、ルートの疎通確認手段になり得る。また試験光を入出力するポート番号が固定であるため、第3~6の実施形態で必要である光カプラ93とファイバセレクタ94が不要な形態である。 The inter-node connection confirmation method of the seventh embodiment can be a means for confirming route connectivity without going through optical node 0. Also, since the port numbers for inputting and outputting the test light are fixed, the optical coupler 93 and the fiber selector 94 required in the third to sixth embodiments are unnecessary.
(第8の実施形態)
 本開示を実施するための第8の実施形態を詳細に説明する。
 第3の実施形態において、疎通確認が正常に行えるか、正常に行えないで異常終了するかを判定するフローを図14に示す。第3の実施形態に記載の手順を順次おこない(S11及びS12)、全ての疎通確認手順で疎通が確認された場合(S12)、接続状態確認を終了する(S14)。ステップS12における疎通確認の手順で正常に確認が行えなかった場合(S12)、箇所で異常と判定する(S15)。
(Eighth embodiment)
An eighth embodiment for carrying out the present disclosure will be described in detail.
In the third embodiment, FIG. 14 shows a flow for determining whether the communication confirmation can be performed normally or whether the process cannot be performed normally and ends abnormally. The procedures described in the third embodiment are sequentially performed (S11 and S12), and when communication is confirmed in all the communication confirmation procedures (S12), connection status confirmation is terminated (S14). If confirmation cannot be performed normally in the communication confirmation procedure in step S12 (S12), it is determined that there is an abnormality at that location (S15).
(第9の実施形態)
 本開示を実施するための第9の実施形態を詳細に説明する。
 第4~第7の実施形態において、疎通確認が正常に行えるか、正常に行えないで異常終了するかを判定するフローを図15に示す。第4~第7の実施形態に記載の手順を順次おこない(S21及びS22)、全ての疎通確認手順で疎通が確認された場合(S22)、接続状態確認を終了する(正常終了)(S24)。ステップS22において、疎通確認の手順で正常に確認が行えなかった場合、第3の実施形態の確認方式に移行する(S23)。第3の実施形態に記載の手順を順次おこない(S23)、疎通確認の手順で正常に確認が行えなかった箇所で異常と判定するフローとなる(S25)。
(Ninth embodiment)
A ninth embodiment for implementing the present disclosure will be described in detail.
In the fourth to seventh embodiments, FIG. 15 shows a flow for determining whether communication confirmation can be performed normally or whether abnormal termination occurs because communication cannot be performed normally. The procedures described in the fourth to seventh embodiments are sequentially performed (S21 and S22), and if communication is confirmed in all the communication confirmation procedures (S22), the connection status confirmation ends (normal end) (S24). . In step S22, if confirmation cannot be performed normally in the communication confirmation procedure, the process proceeds to the confirmation method of the third embodiment (S23). The procedure described in the third embodiment is sequentially performed (S23), and the flow determines that there is an abnormality at a location where normal confirmation cannot be performed in the communication confirmation procedure (S25).
 なお、本開示の光ノードはコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。 The optical node of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communications industry.
11:光ポート監視機能部
12:光クロスコネクトスイッチ
13:マイクロプロセッサ
21:ノード内接続情報管理機能部
22:隣接ノード間接続情報管理機能部
23:ノード間繋がり情報管理機能部
91:光ノード
92:光ファイバ
83、93:光カプラ
84、94:ファイバセレクタ
85:光パワーメータ
95:光試験装置
96:ネットワーク
11: optical port monitoring function unit 12: optical cross-connect switch 13: microprocessor 21: intra-node connection information management function unit 22: adjacent node connection information management function unit 23: inter-node connection information management function unit 91: optical node 92 : Optical fibers 83, 93: Optical couplers 84, 94: Fiber selector 85: Optical power meter 95: Optical test equipment 96: Network

Claims (10)

  1.  複数の光ノードが接続されている光ファイバネットワークにおいて、前記光ノード間の接続情報を管理するシステムであって、
     単一の光ノード内部のポートの接続状態のデータとその接続された時刻を、ノード内接続情報管理機能部に格納し、
     隣り合う光ノード間のポートの接続状態のデータを、隣接ノード間接続情報管理機能部に格納し、
     前記ノード内接続情報管理機能部及び前記隣接ノード間接続情報管理機能部から、ノード間繋がり情報管理機能部に格納される、前記光ファイバネットワーク上の隣接する光ノードの接続状態に関するデータを生成することを特徴とする、
     システム。
    A system for managing connection information between optical nodes in an optical fiber network in which a plurality of optical nodes are connected,
    storing the connection state data of the port inside a single optical node and the connection time in the intra-node connection information management function unit;
    storing data on the connection state of ports between adjacent optical nodes in an adjacent node connection information management function unit;
    Data relating to the connection state of adjacent optical nodes on the optical fiber network, which is stored in the inter-node connection information management function unit, is generated from the intra-node connection information management function unit and the adjacent inter-node connection information management function unit. characterized by
    system.
  2.  前記隣接ノード間接続情報管理機能部は、光ノード間に接続されたケーブルの心線番号を管理するケーブル情報管理機能をさらに備え、
     前記ノード内接続情報管理機能部及び前記隣接ノード間接続情報管理機能部のデータから、前記ノード間繋がり情報管理機能部に格納される、隣接する光ノードの接続状態に関するデータを生成することを特徴とする、
     請求項1に記載のシステム。
    The adjacent node connection information management function unit further includes a cable information management function for managing core numbers of cables connected between optical nodes,
    Data relating to the connection state of adjacent optical nodes, which is stored in the inter-node connection information management function unit, is generated from the data in the intra-node connection information management function unit and the inter-node connection information management function unit. to be
    The system of claim 1.
  3.  前記複数の光ノードのうちの少なくとも一つの特定の光ノードは、試験光を出射する光試験装置と接続され、
     前記光ファイバネットワークに接続されている前記特定の光ノードを除く少なくともいずれかの光ノードのポート監視機能を用いて、前記光試験装置からの前記試験光による光パワーの変化の有無を確認することで、光ノードの接続状態を確認する機能を備えることを特徴とする、
     請求項1又は2に記載のシステム。
    at least one specific optical node among the plurality of optical nodes is connected to an optical test device that emits test light;
    Using a port monitoring function of at least one of the optical nodes other than the specific optical node connected to the optical fiber network, confirming whether or not there is a change in optical power due to the test light from the optical test equipment. characterized by having a function to check the connection state of the optical node,
    3. A system according to claim 1 or 2.
  4.  前記光ファイバネットワークに接続されている少なくとも1台の光ノードの光クロスコネクトを切替後、切替を行った少なくともいずれかの光ノードに、前記光試験装置からの試験光を通光させ、
     前記光試験装置からの試験光を通光させた光ノードに備わるポート監視機能を用いて、前記光試験装置からの試験光による光パワーの変化を確認することで、切替後の光ノードと光ノードの接続状態を確認することを特徴とする、
     請求項3に記載のシステム。
    After switching the optical cross-connect of at least one optical node connected to the optical fiber network, passing test light from the optical test equipment through at least one of the switched optical nodes;
    Using the port monitoring function provided in the optical node through which the test light from the optical test equipment is passed, the change in the optical power due to the test light from the optical test equipment is confirmed, and the optical node and the optical node after switching are checked. characterized by checking the connection state of the node,
    4. The system of claim 3.
  5.  前記光ファイバネットワークに接続されている少なくとも1台の光ノードの光クロスコネクトを切替後、切替によって接続されたルートに、前記光試験装置からの試験光を通光させ、
     前記特定の光ノードに備わる光パワーメータを用いて、前記光試験装置からの試験光による光パワーの変化を確認することで、切替後の光ノードと光ノードの接続状態を確認することを特徴とする、
     請求項3に記載のシステム。
    After switching the optical cross-connect of at least one optical node connected to the optical fiber network, passing the test light from the optical test equipment through the route connected by the switching,
    A connection state between the optical nodes after switching is confirmed by confirming a change in optical power due to the test light from the optical test equipment using an optical power meter provided in the specific optical node. to be
    4. The system of claim 3.
  6.  前記光試験装置からの試験光による光パワーの変化を確認できない場合、
     切替を行った各光ノードに、前記光試験装置からの試験光を通光させ、
     前記光試験装置からの試験光を通光させた光ノードに備わるポート監視機能を用いて、前記光試験装置からの試験光による光パワーの変化を確認することで、切替後の光ノードと光ノードの接続状態を確認することを特徴とする、
     請求項5に記載のシステム。
    If the change in optical power due to the test light from the optical test equipment cannot be confirmed,
    Passing the test light from the optical test equipment through each optical node that has switched,
    Using the port monitoring function provided in the optical node through which the test light from the optical test equipment is passed, the change in the optical power due to the test light from the optical test equipment is confirmed, and the optical node and the optical node after switching are checked. characterized by checking the connection state of the node,
    6. The system of claim 5.
  7.  前記光パワーメータは、前記特定の光ノードの前記特定のポートに接続され、
     前記光試験装置からの試験光による光パワーの変化を確認する際、前記光試験装置からの試験光を通光させるポートを、前記特定のポートに接続することを特徴とする、
     請求項3から6のいずれかに記載のシステム。
    the optical power meter is connected to the specific port of the specific optical node;
    When confirming a change in optical power due to the test light from the optical test equipment, a port through which the test light from the optical test equipment passes is connected to the specific port,
    A system according to any of claims 3-6.
  8.  前記光試験装置は、前記特定の光ノードの特定のポートに接続され、
     前記光試験装置からの試験光による光パワーの変化を確認する際、前記光試験装置からの試験光を通光させるポートを、前記特定のポートに接続することを特徴とする、
     請求項3から7のいずれかに記載のシステム。
    the optical test equipment is connected to a specific port of the specific optical node;
    When confirming a change in optical power due to the test light from the optical test equipment, a port through which the test light from the optical test equipment passes is connected to the specific port,
    A system according to any of claims 3-7.
  9.  前記ポート監視機能を用いた、前記光試験装置からの試験光による光パワーの変化を確認できない場合、前記光試験装置からの試験光を通光させた経路に異常があると判定することを特徴とする、
     請求項3から8のいずれかに記載のシステム。
    It is determined that there is an abnormality in the path through which the test light from the optical test equipment passes when the change in optical power due to the test light from the optical test equipment cannot be confirmed using the port monitoring function. to be
    A system according to any of claims 3-8.
  10.  複数の光ノードが接続されている光ファイバネットワークにおいて、前記光ノード間の接続情報を管理する方法であって、
     単一の光ノード内部のポートの接続状態のデータとその接続された時刻をノード内接続情報管理機能部に格納し、
     隣り合う光ノード間のポートの接続状態のデータを隣接ノード間接続情報管理機能部に格納し、
     前記ノード内接続情報管理機能部及び前記隣接ノード間接続情報管理機能部から、ノード間繋がり情報管理機能部に格納される、前記光ファイバネットワーク上の隣接する光ノードの接続状態に関するデータを生成することを特徴とする、
     方法。
    A method for managing connection information between optical nodes in an optical fiber network in which a plurality of optical nodes are connected, comprising:
    storing the connection state data of the port inside a single optical node and the connection time in the intra-node connection information management function unit;
    storing data on the connection state of ports between adjacent optical nodes in an adjacent node connection information management function unit;
    Data relating to the connection state of adjacent optical nodes on the optical fiber network, which is stored in the inter-node connection information management function unit, is generated from the intra-node connection information management function unit and the adjacent inter-node connection information management function unit. characterized by
    Method.
PCT/JP2021/026748 2021-07-16 2021-07-16 System and method for managing connection information among optical nodes WO2023286267A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023534566A JPWO2023286267A1 (en) 2021-07-16 2021-07-16
PCT/JP2021/026748 WO2023286267A1 (en) 2021-07-16 2021-07-16 System and method for managing connection information among optical nodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026748 WO2023286267A1 (en) 2021-07-16 2021-07-16 System and method for managing connection information among optical nodes

Publications (1)

Publication Number Publication Date
WO2023286267A1 true WO2023286267A1 (en) 2023-01-19

Family

ID=84918826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026748 WO2023286267A1 (en) 2021-07-16 2021-07-16 System and method for managing connection information among optical nodes

Country Status (2)

Country Link
JP (1) JPWO2023286267A1 (en)
WO (1) WO2023286267A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318840A (en) * 2002-03-27 2003-11-07 Fujitsu Ltd Flexible ring optical network and method
JP2005292447A (en) * 2004-03-31 2005-10-20 Central Res Inst Of Electric Power Ind Active light closure, active optical distributing board, and optical communication system
JP2019009714A (en) * 2017-06-28 2019-01-17 日本電信電話株式会社 System and method for network monitoring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318840A (en) * 2002-03-27 2003-11-07 Fujitsu Ltd Flexible ring optical network and method
JP2005292447A (en) * 2004-03-31 2005-10-20 Central Res Inst Of Electric Power Ind Active light closure, active optical distributing board, and optical communication system
JP2019009714A (en) * 2017-06-28 2019-01-17 日本電信電話株式会社 System and method for network monitoring

Also Published As

Publication number Publication date
JPWO2023286267A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US9210487B1 (en) Implementation of a large-scale multi-stage non-blocking optical circuit switch
EP1230822A1 (en) Fiber otpic circuit and module with switch
CN111699637B (en) Method and apparatus for fiber optic line fault determination
EP1048134A1 (en) System and method for increasing the robustness of an optical ring network
WO2023286267A1 (en) System and method for managing connection information among optical nodes
WO2023214466A1 (en) Remote control device, remote operation system, abnormality detection method, and program for causing computer to function as remote control device
JP4656639B2 (en) Communication network for distribution network monitoring and control
WO2023286266A1 (en) Optical node and method for switching optical line path
CN115021805A (en) Information sampling analysis method, optical splitter, fused fiber disc, local side sampling equipment and platform
CN211321557U (en) Intelligent street lamp system
JP2005292447A (en) Active light closure, active optical distributing board, and optical communication system
JPH09196810A (en) Optical fiber line monitoring device
JPH05110670A (en) Optical line changeover connection device
JP4669795B2 (en) Optical fiber cable laying method
CN113078952B (en) Network system and networking method for intelligent mine
WO2023248383A1 (en) Remote optical path switching node and monitoring method therefor
KR102724493B1 (en) Optical line monitoring system using collective optical switching apparatus
KR102699380B1 (en) Collective optical switching apparatus and optical line monitoring system using the same
WO2024075219A1 (en) Optical cross connect unit, optical cross connect device, and node
WO2023281744A1 (en) Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method
KR100283377B1 (en) Overhead Storage of Watch Channel
WO2023166593A1 (en) Optical path switching node, optical fiber network, and test method for optical fiber network
JPH0365838A (en) Ring type optical network
JP7476986B2 (en) Optical Cross-Connect Equipment
WO2024154263A1 (en) Management device, route candidate generation method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534566

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950204

Country of ref document: EP

Kind code of ref document: A1