WO2023286266A1 - Optical node and method for switching optical line path - Google Patents

Optical node and method for switching optical line path Download PDF

Info

Publication number
WO2023286266A1
WO2023286266A1 PCT/JP2021/026747 JP2021026747W WO2023286266A1 WO 2023286266 A1 WO2023286266 A1 WO 2023286266A1 JP 2021026747 W JP2021026747 W JP 2021026747W WO 2023286266 A1 WO2023286266 A1 WO 2023286266A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
node
port
unit
control unit
Prior art date
Application number
PCT/JP2021/026747
Other languages
French (fr)
Japanese (ja)
Inventor
ひろし 渡邉
良 小山
友裕 川野
和英 中江
達也 藤本
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/026747 priority Critical patent/WO2023286266A1/en
Priority to JP2023534565A priority patent/JPWO2023286266A1/ja
Publication of WO2023286266A1 publication Critical patent/WO2023286266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present disclosure mainly relates to the configuration of an optical node that performs remote optical line switching and is installed in-house in an optical fiber network.
  • optical fiber cores can be connected to arbitrary routes in order to efficiently use the equipment during the opening and maintenance of the network.
  • Optical line switching such as changing the route and changing the route is performed at a certain frequency. Normally, such work is performed by going to the site and physically switching the connection, but a technique for performing this work remotely using an optical switch has been proposed.
  • Non-Patent Document 1 a system consisting of a supervisory control device installed in a power supply environment such as a facility and one or more optical line switching nodes remotely placed, optical power supply and inclusion in the node with a single laser
  • a system has been proposed that can simultaneously realize the function of controlling a plurality of optical switches in a network and provide an economical optical line switching node system (see, for example, Non-Patent Document 1).
  • An object of the present disclosure is to make it possible to confirm the ports to which the on-site node and the off-site node are connected in a plurality of optical nodes connected to an optical network.
  • the optical node of the present disclosure includes: The optical node provided in an optical fiber network in which a plurality of optical nodes are connected, an optical cross-connect unit connected to an optical node other than the own device among the plurality of optical nodes and switching a port connected to the other optical node by an optical fiber core; an optical cross-connect control unit that controls the optical cross-connect unit; an inter-node connection management unit that stores the mutual connection state of each port of the device and the other optical node; Control for connecting to the other optical node by an optical fiber core wire different from the optical cross-connect unit, optically supplying power to the other optical node, and switching the port connected to the own device by the optical fiber core wire a light source that transmits signal light to the other optical node; an optical receiver that receives information on the optical power value measured at the port after switching in the other optical node; a controller that controls the light source and the optical receiver; In-house node total control for controlling the controller and the optical cross-connect control unit to switch the port connecting the own device and the
  • the method of the present disclosure comprises: A method performed by an optical node in an optical fiber network to which a plurality of optical nodes are connected, comprising:
  • the in-house node integrated control unit provides an optical cross-connect unit connected to an optical node other than the own device among the plurality of optical nodes, and provides a port connected to the other optical node by an optical fiber core line. let me switch
  • the in-house node integrated control unit instructs the light source to optically supply power to the other optical node and to transmit control signal light to the other optical node to switch the port connected to the device by the optical fiber core line.
  • An optical receiver receives an optical power value measured at a switched port in the other optical node; the in-house node integrated control unit acquires information on the optical power value received by the optical receiver, thereby confirming the port connected to the other optical node; The mutual connection state of each port of the own device and the other optical node is stored in the inter-node connection management unit.
  • the present disclosure can make it possible to confirm the ports to which the on-site node and the off-site node are connected in a plurality of optical nodes connected to the optical network.
  • FIG. 1 is a configuration example of an optical fiber network with optical nodes; It is an example of the configuration of an optical node arranged in a facility. It is an example of the connection information table of an internode connection management part, and its update. It is an example of the configuration of an optical node arranged in a facility. This is an example of the operation of an off-site optical node. (a) shows a state in which route A (ports 1 and 61) is connected, and (b) shows a state in which route A (ports 1 and 61) is connected to route B (ports 31 and 71), and (c) shows the state in which route B (ports 31 and 71) is connected. It is an operation example of an optical node in a normal state.
  • connection information table of the in-house wiring management unit It is an example of the optical power information of the port of the external node stored in the optical output value management unit.
  • 1 is a configuration example of an optical fiber network with optical nodes; It is an example of the configuration of an optical node arranged in a facility. It is an example of operation of the optical node at the time of abnormality. It is an example of data stored in an inter-node core line usage status management unit. It is an example of the configuration of an optical node arranged in a facility. It is an example of data stored in an inter-node core line usage status management unit (extended version). It is an example of the configuration of an optical node arranged in a facility.
  • FIG. 1 shows an example of an optical line switching node (hereinafter referred to as an optical node) installed inside and outside the station.
  • An optical node 91 is placed inside the site, and one optical node 92 is placed outside the site.
  • the optical node 91 in the facility is installed in an environment where power can be supplied.
  • the optical node 92 outside the site is in an environment where commercial power cannot be used, and is driven by power supply light from within the site.
  • an optical node arranged inside the station will be called an "inside node”
  • an optical node arranged outside the station will be called an “external node”.
  • the in-house node 91 and the off-site node 92 are connected by an optical fiber network.
  • the optical fiber network can be of any form, the figure shows an example of a looped network configuration.
  • the port 1 of the in-house node 91 and the port 1 of the out-of-site node 92 are connected by a route RA, and the port 31 of the in-house node 91 and the port 31 of the out-of-site node 92 are connected by a route RB different from the route RA. Transmission of communication light, transmission and reception of control signals, and power supply using optical signals are performed using the route RA or RB.
  • the present disclosure provides an optical network in which a plurality of optical nodes for switching optical lines are connected,
  • the multiple optical nodes are an in-house node 91 installed in an environment capable of supplying power; an offsite node 92 driven by light fed from an onsite node; with
  • An in-house node 91 has a function group related to an optical cross-connect and a function group for remotely controlling an outside node, and switches the port of the in-house node 91 and the port of the outside node 92 by remote control.
  • the on-site node 91 transmits the test light from the on-site node 91 or the termination box 93 connected to the on-site node to the off-site node, thereby connecting the port to which the on-site node 91 and the off-site node 92 are connected. It has a function to confirm. Accordingly, the present disclosure enables confirmation of the ports to which the in-house node 91 and the out-of-site node 92 are connected.
  • Fig. 2 shows a configuration example of the in-house node 91.
  • numbers in frames indicate port numbers.
  • These functional groups comprise light source 21 , optical circulator 22 , optical receiver 24 and controller 25 .
  • a laser beam emitted from the light source 21 passes through the optical circulator 22 and is input to an on-site termination rack (eg, IDM: Integrated Distribution Module) 93 through an optical fiber cable 82 functioning as an inter-rack cable.
  • the termination rack 93 is connected to an offsite node 92 through an offsite optical fiber network via an optical fiber cable 83 that functions as a termination cable.
  • the termination rack 93 may have the function of an optical coupler.
  • the light source 21 supplies optical power to the off-site node 92 . As a result, each function of the offsite node 92 can be driven.
  • the light source 21 also transmits a control signal to the offsite node 92 . Thereby, remote control of the off-site node 92 is performed.
  • a control signal is transmitted from the off-site node 92 , it is input from the optical circulator 22 to the optical receiver 24 and received by the optical receiver 24 .
  • the control signal transmitted from the off-site node 92 may include the optical power value measured by the optical port monitoring function unit provided in the off-site node 92 .
  • the controller 25 has the function of controlling the light source 21 and the optical receiver 24 .
  • This functional group comprises an optical cross-connect section 11 having a cross-connect function of N input ports and M output ports, and an optical cross-connect control section 12 for controlling the optical cross-connect section 11 .
  • the input ports and output ports of the optical cross-connect unit 11 can be identified by assigning numbers, for example.
  • the upper side of the optical cross-connect section 11 is connected to various transmission devices through optical fiber cables 81 and 82 .
  • the lower side is connected to an off-site node 92 via an on-site termination rack 93 having an optical coupler function via an optical fiber cable 82 and an optical fiber network including an off-site optical fiber cable 83. .
  • the in-house node 91 is provided with the in-house node integrated control unit 13 and the inter-node connection management unit 14 .
  • the in-house node integrated control section 13 is connected to the controller 25 , the optical cross-connect section control section 12 and the node connection management section 14 .
  • the node-to-node connection management unit 14 stores connection information between the on-site node 91 and the off-site node 92 .
  • This connection information includes connection information with the external node 92 to which the device is connected, and may also include connection information with other internal nodes 91 .
  • the optical cross-connect control unit 12 switches the lower side of the optical cross-connect unit 11 in FIG.
  • the out-of-house node 91 switches from the ports 1 and 61 to the ports 31 and 71 based on the signal from the controller 25 of the in-house node 91 node.
  • FIG. 3 shows an example of the connection information table of the inter-node connection management unit 14 and its update.
  • the on-premises node 91 has an on-premises wiring that holds mutual connection information between each port of the optical cross-connect section 11 and each port of the termination rack 93 .
  • a management unit 15 is provided.
  • an optical output value management unit 16 that holds the optical power value of each port of the external node 92 in chronological order.
  • the in-house wiring management unit 15 and the optical output value management unit 16 operate by being connected to the in-house node integrated control unit 13 described in the first embodiment.
  • the test light and the like are combined into the optically terminated port connected to the optical fiber cable 83 connected to the outside and the optical fiber of the above-mentioned optical fiber cable 83.
  • a fiber selector 32 that is connected to a plurality of optical couplers 31 and enables optical connection by switching light to a specific optical coupler; an optical test device 33 that emits test light; A device 33 and an optical test function controller 34 that controls the fiber selector 32 may be provided.
  • the in-house node integrated control unit 13 operates the optical test equipment 33 and the fiber selector 32 through the optical test function control device 34, and emits light from the optical test equipment 33 through all the optical couplers 31 to which the fiber selectors 32 are connected. It takes a form in which test light can be inserted.
  • FIG. 7 shows an example of connection information stored in the in-house wiring management unit 15. As shown in FIG. The ports 1 and 2 to 60 on the outside of the optical cross-connect section 11 shown in FIG. connection information.
  • FIG. 8 is an example of the optical power value of the port of the external node 92 stored in the optical output value management unit 16.
  • FIG. Stores the optical power value for each port measured at the external node 92 together with the measurement time of the optical power value.
  • Step S11 Assume that the port 1 of the on-site node 91 and the port 1 of the off-site node 92 are connected, and the port 1 and port 61 of the off-site node 92 are connected (state of the route RA in FIG. 1).
  • the ports 101 and 1 of the optical cross-connect section 11 and the ports 11 and 1 of the termination rack 93 of FIG. 4 are connected. Focusing on the inside of the external node 92, the port 1 and the port 61 are connected through the optical cross-connect section 211 as shown in FIG. 5(a).
  • Step S12 The controller 25 of the in-house node 91 transmits a control signal to measure the optical power values of all ports according to the signal from the in-house node general control unit 13 .
  • the optical port monitoring function unit 212 of the offsite node 92 measures the optical power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the in-house node general control unit 13 records the optical power value returned through the controller 25 in the optical output value management unit 16 together with the reception time of the optical power value. As a result, the optical power values received by all the ports of the off-site node 92 are stored in the optical output value management unit 16 together with the measurement time of the optical power values.
  • Step S13 Refer to the information of the on-site wiring management unit 15 by the signal of the on-site node integrated control unit 13 (as shown in FIG. 7, the port of the termination rack 93 connected to the port 1 of the on-site node 91 is 11), the optical test function controller 34 connects the fiber selector 32 to the optical coupler 31 of the port 1 on the off-site node 92 side of the termination rack 93, and sends the test light to the optical coupler 31. insert The optical port monitoring function unit 212 of the offsite node 92 measures the optical power values of all the ports of the offsite node 92 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
  • FIG. 8 shows an example of the optical power value of the port of the external node 92 stored in the optical output value management unit 16.
  • FIG. 8 the measurement data of all the ports before and after the insertion of this test light are compared. Confirm that the optical power value has increased from before the insertion of This makes it possible to confirm that the port 1 of the in-house node 91 and the ports 1 and 61 of the out-of-house node 92 are connected.
  • Step S14 After referring to the information in the inter-node connection management section 14 by means of a signal from the in-house node total control section 13, the optical cross-connect control section 12 causes the in-house node 91 to control the lower portion of the optical cross-connect section 11 in FIG. side from port 1 to port 31. As a result, the ports 101 and 31 of the optical cross-connect section 11 and the ports 41 and 31 of the termination rack 93 shown in FIG. 4 are connected.
  • Step S15 The controller 25 of the in-house node 91 transmits a control signal for port switching according to the signal from the in-house node integrated control unit 13 .
  • the optical cross-connect unit 211 of the external node 92 switches from ports 1 and 61 to ports 31 and 71 according to the control signal received by the microprocessor 225, as shown in FIG. 5(b).
  • the ports 31 and 71 are connected through the optical cross-connect section 211, and the route RB in FIG. 1 is connected.
  • Step S16 The controller 25 of the in-house node 91 transmits a control signal for measuring the optical power values of all ports according to the signal from the in-house node general control unit 13 .
  • the optical port monitoring function unit 212 of the offsite node 92 measures the power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
  • Step S17 The optical test function control device 34 refers to the information of the on-site wiring management unit 15 according to the signal from the on-site node integrated control unit 13, and connects the fiber selector 32 to the optical coupler 31 of the port 41 of the termination rack 93. Then, the test light is inserted into the optical coupler 31 to which the port 31 of the in-house node 91 is connected.
  • the optical port monitoring function unit 212 of the offsite node 92 measures all the optical ports of the offsite node 92 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
  • the on-site node integrated control unit 13 compares the measurement data of all ports before and after the test light is inserted, and the optical power values of the ports 31 and 71 of the off-site optical node are compared with the light power values before the test light is inserted. Confirm that it is increasing from the power value. As a result, it can be confirmed that the port 31 of the in-house node 91 and the port 31 and port 71 of the out-of-house node 92 are connected.
  • connection state between the ports can be confirmed by confirming the optical output value using the test light before and after the switching. can be realized.
  • FIGS. 9-12 A fourth embodiment of the present disclosure will now be described with reference to FIGS. 9-12. As shown in FIG. 9, it is assumed that a failure occurs in the path of the route RA and an optical signal is interrupted.
  • the function of the in-house node 91 is provided with the inter-node core line usage status management unit 17 and the abnormality detection unit 18 .
  • the inter-node core line usage status management unit 17 indicates whether or not the service of each core line connecting the optical nodes is used.
  • the abnormality detection unit 18 cooperates with the in-house node integrated control unit 13 and has a function of detecting the occurrence of a failure. The operating procedure is shown along FIG.
  • Step S21 Assume that the port 1 of the on-site node 91 and the port 1 of the off-site node 92 are connected, and the port 1 and port 61 of the off-site node 92 are connected (state of the route RA in FIG. 9).
  • the port 101 and the port 1 of the optical cross-connect section 11 of FIG. 10 and the port 11 and the port 1 of the termination rack 93 are connected.
  • Step S22 The controller 25 of the in-house node 91 transmits a control signal to measure the optical power values of all ports according to the signal from the in-house node integrated control unit 13 .
  • the optical port monitoring function unit 212 of the offsite node 92 measures the optical power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
  • Step S23 By means of a signal from the on-site node integrated control section 13, the optical test function control device 34 refers to the information on the on-site wiring management section 15, and connects the fiber selector 32 to the optical coupler 31 of the port 1 of the termination rack 93. Then, test light is inserted into the optical coupler 31 .
  • the optical port monitoring function unit 212 of the offsite node 92 measures the optical power values of all the ports of the offsite node 92 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
  • the measured data of all ports before and after the test light insertion were compared, and the test light was inserted, but the optical power values of the ports 1 and 61 of the external node 92 were the same as the optical power values before the test light was inserted.
  • the connection between the port 1 of the on-site node 91 and the ports 1 and 61 of the off-site node 92 cannot be confirmed, and it is assumed that there is some kind of failure on the route RA.
  • Step S24 The abnormality detection unit 18 refers to the inter-node core line usage status management unit 17 and searches for optical fiber core lines that are not used for services.
  • the port 31 of the in-house node 91 and the out-of-house node 92 of the item number 1031 corresponds to the case where there is a corresponding result. This result is transmitted to the in-house node integrated control unit 13 . If there is a corresponding port, the process proceeds to step S25. If there is no corresponding port, the process proceeds to step S29.
  • Step S25 With reference to the information in the inter-node connection management section 14, the optical cross-connect control section 12 causes the lower side of the optical cross-connect section 11 shown in FIG. Switch to port 31. As a result, the ports 101 and 31 of the optical cross-connect section 11 and the ports 41 and 31 of the termination rack 93 shown in FIG. 10 are connected.
  • Step S26 The controller 25 of the in-house node 91 transmits a control signal for port switching according to the signal from the in-house node integrated control unit 13 .
  • the optical cross-connect unit 211 of the external node 92 switches from ports 1 and 61 to ports 31 and 61 in response to a control signal from the microprocessor 225 .
  • Step S27 The controller 25 of the in-house node 91 transmits a control signal to measure the optical power values of all ports according to the signal from the in-house node general control unit 13 .
  • the optical port monitor 212 of the offsite node 92 measures the optical power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
  • Step S28 By means of a signal from the on-site node integrated control unit 13, after referring to the information on the on-site wiring management unit 15, the optical test function control device 34 connects the fiber selector 32 to the optical coupler 31 of the port 41 of the termination rack 93. Then, the test light is inserted into the optical coupler 31 to which the port 31 of the in-house node 91 is connected.
  • the optical port monitoring function unit 212 of the offsite node 92 measures all the optical ports of the offsite node 92 .
  • the microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 .
  • the returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
  • the on-premises node integrated control unit 13 compares the measurement data of all ports before and after the test light is inserted, and the optical power values of the ports 31 and 61 of the off-premises node 92 are equal to the optical powers before the test light is inserted. Check for variation by comparing values. If it has increased, it can be confirmed that the port 31 of the in-house node 91 and the port 31 and port 71 of the out-of-house node 92 are connected. If the number does not increase, the process returns to step S24 to search for another optical fiber cable that is not used for service.
  • Step S29 If there is no optical fiber that is not used for service, or if it is confirmed that the optical power value of all the optical fibers that are not used for service does not increase even when the test light is inserted in step S28, The abnormality detection unit 18 notifies the in-house node integrated control unit 13 of a message notifying that the abnormality such as route change impossibility and route repair is required.
  • the in-house node 91 is provided with the inter-node fiber usage status management unit 17 and the fiber distribution function unit 19 .
  • the inter-node core line usage status management unit 17 in addition to the information example stored in the inter-node core line usage status management part 17 described in the fourth mode, includes the direction of the loop network configuration. As a property, either the right rotation direction or the left rotation direction is stored. Assuming that the optical fiber cable connected between the nodes is a loop network such as the optical network between the on-site node 91 and the off-site node 92 shown in FIG. Since there is a two-way route of the root RB of the RB, it is information for clarifying it.
  • a core line to be switched is selected from among them and notified to the in-house node integrated control unit 13 .
  • the in-house node integrated control unit 13 changes the port in which the abnormality is detected by the abnormality detection unit 18 to the port to which the core wire selected by the core distribution function unit 19 is connected.
  • the selection of the fiber distribution function unit 19 is based on, for example, the number of clockwise and counterclockwise fiber cores between optical nodes, the number of each service used or not used, or the ratio of both. Based on, for example, the number of optical fibers used for clockwise rotation and the number of optical fibers used for counterclockwise rotation are determined by a policy such as determining the core number to be used so that the number of optical fibers used is not biased (e.g. In-house node #1 port 60, out-of-site node #1 port 60), and notify the in-house node integrated control unit 13 of the number.
  • a policy such as determining the core number to be used so that the number of optical fibers used is not biased (e.g. In-house node #1 port 60, out-of-site node #1 port 60), and notify the in-house node integrated control unit 13 of the number.
  • the ratio of the optical fibers used is not biased toward the clockwise or counterclockwise rotation.
  • an optical test function control section 134 functioning as the optical test function control device 34
  • an optical test function section 133 functioning as the optical test function device 33
  • a fiber selector section 132 functioning as the fiber selector 32.
  • a fiber selector unit 132 connected to a plurality of optical couplers 31 and capable of switching and connecting light to the specific optical coupler 31, and a test light
  • An optical test function unit 133 that emits light and an optical test function control unit 134 that controls the optical test function unit 133 and the fiber selector unit 132 are added to the in-house node 91 .
  • the in-house node integrated control unit 13 controls the optical test function unit 133 and the fiber selector unit 132 through the optical test function control unit 134, and inserts the optical test light through all the optical couplers 31 to which the fiber selector unit 132 is connected.
  • FIG. 15 shows a configuration added to FIG. 10 .
  • the optical coupler section 131 and the termination function section 193 are added to the functions of the in-house node 91 . That is, compared with FIG. 15, a termination function unit 193 for connecting to the optical fiber cable 83 connected to the off-site node 92, and an optical coupler unit 131 for multiplexing the test light and the like to the optical fiber cable 83 are provided. , are added to the functions of the in-house node 91 .
  • a fiber selector unit 132 connected to a plurality of optical coupler units 131 and capable of switching and connecting light to a specific optical coupler unit 131, an optical test function unit 133 for emitting test light, and an optical test function control unit 134 that controls the optical test function unit 133 and the fiber selector unit 132 .
  • the optical coupler section 131 is normally connected to each port of the optical termination function section 193 .
  • each port of the optical termination function unit 193 can be identified by being given an individual number, for example.
  • the upper port of the optical termination function section 193 is connected to the port of the optical cross-connect section 11 through the optical fiber cable 182 .
  • the port on the lower side is connected to an off-site optical fiber network through an optical fiber cable 83 and further connected to an off-site node 92 .
  • the in-house node integrated control unit 13 controls the optical test function unit 133 and the fiber selector unit 132 through the optical test function control unit 134, and transmits the optical test light through all the optical coupler units 131 to which the fiber selector unit 132 is connected. It takes a form that can be inserted.
  • FIG. 17 shows a configuration in which an optical selector 23 is added to the configuration of FIG.
  • optical fiber cables 82-1 and 82-2 connected to the optical selector 23 are connected to optical fiber cables 83-1 and 83-2, respectively.
  • the optical fiber cable 83-1 is connected to the offsite node 92#1
  • the optical fiber cable 83-2 is connected to the offsite node 92#2.
  • the controller 25 has a function of controlling the optical selector 23, and can change the port of the termination function section 193 to which the laser light from the light source 21 is input by the optical selector 23. It becomes possible to transmit laser light from a single light source 21 to a plurality of offsite nodes 92 through the core line.
  • the in-house node 91 includes the in-house node integrated control unit 13, the inter-node connection management unit 14, the in-house wiring management unit 15, the optical output value management unit 16, the inter-node core line usage status It is assumed that the configuration is composed only of the management unit 17 and the abnormality detection unit 18 .
  • the fiber distribution function section 19 may be provided instead of the abnormality detection section 18, or together with the abnormality detection section 18.
  • a group of remote control functions such as the controller 25, a group of optical cross-connect functions such as the optical cross-connect control unit 12, and a group of optical test functions such as the test function control unit 134 are configured in separate housings in the in-house node integrated control unit 13. is characterized by operating in cooperation with the controller 25, the optical cross-connect control unit 12, and the test function control unit .
  • the inter-node connection management unit 14, the in-house wiring management unit 15, the optical output value management unit 16, and the inter-node core line usage status management unit 17 are housed in the same housing as the in-house node 91. It takes the form of exchanging information in a state where it is not configured and is stored in another device such as another server through a network.
  • FIG. 19 shows the case of the embodiment applied to FIG.
  • inter-node connection management unit 14 may not be stored in the same housing as the optical cross-connect unit 11, but may be stored in another housing through the network.
  • the optical node of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the on-site node 91 and the off-site node 92 are connected by transmitting test light from the on-site node 91 installed inside the site to the off-site node 92 installed outside the site. After confirming the port that is being controlled, the port of the in-house node 91 is switched, the port of the out-of-site node 92 is switched to remote control, and after changing the route of the light, the test light is transmitted again. It is possible to confirm the port to which the external node 92 is connected.
  • This disclosure can be applied to the information and communications industry.
  • Optical cross-connect unit 111 Optical port monitoring function unit 12: Optical cross-connect control unit 13: In-house node integrated control unit 14: Inter-node connection management unit 15: In-house wiring management unit 16: Optical output value management unit 17: Node Core line usage status management unit 18: Abnormality detection unit 19: Core line distribution function unit 21: Light source 22: Optical circulator 23: Optical selector 24: Optical receiver 25: Controller 31: Optical coupler 32: Fiber selector 33: Light Test function device 34: Optical test function controllers 81, 82, 83, 182: Optical fiber cable 91: On-site node 92: Off-site node 93: Termination box 132: Fiber selector unit 131: Optical coupler unit 133: Optical test function Unit 134: Optical test function control unit 211: Optical cross connect unit 212: Optical port monitoring function unit 225: Microprocessor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

The purpose of the present disclosure is to make it possible to verify a port connecting an in-location node and an out-of-location node within a plurality of optical nodes connected in an optical network. The present disclosure relates to a plurality of optical nodes provided to an optical fiber network in which the optical nodes are connected, each of the optical nodes comprising: an optical cross-connect unit; an optical cross-connect control unit; a light source for optically supplying electric power to the other optical nodes and transmitting, to the other optical nodes, a control signal for switching a port connected to a host device by an optical fiber core line; an optical receiver for receiving information pertaining to an optical power value measured at a post-switching port in the other optical nodes; a controller for controlling the light source and the optical receiver; and an in-location node integrated control unit for controlling the controller and the optical cross-connect control unit so as to switch the port connecting the host device and the other optical nodes, and acquiring the information pertaining to the optical power value that was received by the optical receiver.

Description

光線路を切り替える光ノード及び方法Optical node and method for switching optical lines
 本開示は、主に光ファイバネットワークにおいて所内に設置する、遠隔光線路切替を行う光ノードの構成に関する。 The present disclosure mainly relates to the configuration of an optical node that performs remote optical line switching and is installed in-house in an optical fiber network.
 光ファイバネットワーク、特に通信ビルに設置された通信装置とユーザ側の通信端末を結ぶアクセスネットワークでは、その開通や保守において効率的に設備を使用するために光ファイバ心線を任意のルートに接続を行うことや、ルートを変更するといった光線路切替が一定の頻度で行われている。通常このような作業は現地に赴いて物理的に接続切替えを行うのに対し、遠隔から光スイッチを用いて行う技術が提案されている。 In an optical fiber network, especially an access network that connects communication equipment installed in a telecommunication building and communication terminals on the user side, optical fiber cores can be connected to arbitrary routes in order to efficiently use the equipment during the opening and maintenance of the network. Optical line switching such as changing the route and changing the route is performed at a certain frequency. Normally, such work is performed by going to the site and physically switching the connection, but a technique for performing this work remotely using an optical switch has been proposed.
 具体的には、所内等の電源環境に設置された監視制御装置と、遠隔に配置された単数あるいは複数の光線路切替ノードから構成されるシステムにおいて、単数のレーザで光給電およびノードに内包される複数の光スイッチの制御の機能を同時に実現でき、経済的な光線路切替ノードシステムを提供することができる方式が提案されている(例えば、非特許文献1参照。)。 Specifically, in a system consisting of a supervisory control device installed in a power supply environment such as a facility and one or more optical line switching nodes remotely placed, optical power supply and inclusion in the node with a single laser A system has been proposed that can simultaneously realize the function of controlling a plurality of optical switches in a network and provide an economical optical line switching node system (see, for example, Non-Patent Document 1).
 しかしながら、このようなシステムの場合、様々な形態の光ファイバネットワークにおいて、所外側の光ノードのルート切替と連動して所内側でもルートを切替えが必要となる場合も想定されるが、所内側での明確な手法は存在しない。また、所外に設置された光ノードの光ポート監視部において、試験光を受信して正常性を確認する場合、所外に設置された光ノードと連動して、所内側から何らかの方法で試験光を送信することが必要となるが、所内側での明確な手法は存在しない。 However, in the case of such a system, in various forms of optical fiber networks, it is conceivable that it may be necessary to switch the route inside the station in conjunction with the route switching of the optical node outside the station. There is no clear method for In addition, when the optical port monitoring unit of an optical node installed outside the site receives test light and checks the normality, it is possible to interlock with the optical node installed outside the site and test it from the inside of the site in some way. It would be necessary to transmit light, but there is no clear method inside the station.
 本開示は、光ネットワークの接続された複数の光ノードにおいて、所内ノードと所外ノードの接続されているポートの確認を可能とすることを目的とする。 An object of the present disclosure is to make it possible to confirm the ports to which the on-site node and the off-site node are connected in a plurality of optical nodes connected to an optical network.
 本開示の光ノードは、
 複数の光ノードが接続されている光ファイバネットワークに備わる前記光ノードであって、
 前記複数の光ノードのうちの自装置を除く他の光ノードに接続され、前記他の光ノードと光ファイバ心線で接続されるポートを切り替える光クロスコネクト部と、
 前記光クロスコネクト部を制御する光クロスコネクト制御部と、
 自装置及び前記他の光ノードの各ポートの相互の接続状態を格納するノード間接続管理部と、
 前記光クロスコネクト部とは異なる光ファイバ心線で前記他の光ノードと接続され、前記他の光ノードへ光給電を行い、自装置と光ファイバ心線で接続されるポートを切り替える旨の制御信号光を前記他の光ノードに送信する光源と、
 前記他の光ノードにおける切り替え後のポートで測定された光パワー値の情報を受信する光受信器と、
 前記光源及び前記光受信器を制御するコントローラと、
 自装置と前記他の光ノードとを接続するポートを切替えるように、前記コントローラ及び前記光クロスコネクト制御部を制御し、前記光受信器の受信した光パワー値の情報を取得する所内ノード総合制御部と、
 を備えることを特徴とする。
The optical node of the present disclosure includes:
The optical node provided in an optical fiber network in which a plurality of optical nodes are connected,
an optical cross-connect unit connected to an optical node other than the own device among the plurality of optical nodes and switching a port connected to the other optical node by an optical fiber core;
an optical cross-connect control unit that controls the optical cross-connect unit;
an inter-node connection management unit that stores the mutual connection state of each port of the device and the other optical node;
Control for connecting to the other optical node by an optical fiber core wire different from the optical cross-connect unit, optically supplying power to the other optical node, and switching the port connected to the own device by the optical fiber core wire a light source that transmits signal light to the other optical node;
an optical receiver that receives information on the optical power value measured at the port after switching in the other optical node;
a controller that controls the light source and the optical receiver;
In-house node total control for controlling the controller and the optical cross-connect control unit to switch the port connecting the own device and the other optical node, and acquiring the information of the optical power value received by the optical receiver Department and
characterized by comprising
 本開示の方法は、
 複数の光ノードが接続されている光ファイバネットワークに備わる前記光ノードが実行する方法であって、
 所内ノード総合制御部が、前記複数の光ノードのうちの自装置を除く他の光ノードに接続されている光クロスコネクト部に、前記他の光ノードと光ファイバ心線で接続されるポートを切り替えさせ、
 所内ノード総合制御部が、光源に、前記他の光ノードへの光給電、及び自装置と光ファイバ心線で接続されるポートを切り替える旨の制御信号光の前記他の光ノードへの送信を、行わせ、
 光受信器が、前記他の光ノードにおける切り替え後のポートで測定された光パワー値を受信し、
 所内ノード総合制御部が、前記光受信器の受信した光パワー値の情報を取得することで、前記他の光ノードと接続されているポートの確認を行い、
 ノード間接続管理部に、自装置及び前記他の光ノードの各ポートの相互の接続状態を格納する。
The method of the present disclosure comprises:
A method performed by an optical node in an optical fiber network to which a plurality of optical nodes are connected, comprising:
The in-house node integrated control unit provides an optical cross-connect unit connected to an optical node other than the own device among the plurality of optical nodes, and provides a port connected to the other optical node by an optical fiber core line. let me switch
The in-house node integrated control unit instructs the light source to optically supply power to the other optical node and to transmit control signal light to the other optical node to switch the port connected to the device by the optical fiber core line. , let it go,
An optical receiver receives an optical power value measured at a switched port in the other optical node;
the in-house node integrated control unit acquires information on the optical power value received by the optical receiver, thereby confirming the port connected to the other optical node;
The mutual connection state of each port of the own device and the other optical node is stored in the inter-node connection management unit.
 本開示は、光ネットワークの接続された複数の光ノードにおいて、所内ノードと所外ノードの接続されているポートの確認を可能とすることができる。 The present disclosure can make it possible to confirm the ports to which the on-site node and the off-site node are connected in a plurality of optical nodes connected to the optical network.
光ノードによる光ファイバネットワークの構成例である。1 is a configuration example of an optical fiber network with optical nodes; 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. ノード間接続管理部の接続情報表とその更新の例である。It is an example of the connection information table of an internode connection management part, and its update. 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. 所外の光ノードの動作例であり、(a)はルートA(ポート1,61)が繋がっている状態を示し、(b)はルートA(ポート1,61)からルートB(ポート31,71)への切り替えている状態を示し、(c)はルートB(ポート31,71)が繋がっている状態を示す。This is an example of the operation of an off-site optical node. (a) shows a state in which route A (ports 1 and 61) is connected, and (b) shows a state in which route A (ports 1 and 61) is connected to route B (ports 31 and 71), and (c) shows the state in which route B (ports 31 and 71) is connected. 正常時の光ノードの動作例である。It is an operation example of an optical node in a normal state. 所内配線管理部の接続情報表の例である。It is an example of a connection information table of the in-house wiring management unit. 光出力値管理部に格納された所外ノードのポートの光パワー情報の例である。It is an example of the optical power information of the port of the external node stored in the optical output value management unit. 光ノードによる光ファイバネットワークの構成例である。1 is a configuration example of an optical fiber network with optical nodes; 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. 異常時の光ノードの動作例である。It is an example of operation of the optical node at the time of abnormality. ノード間心線利用状況管理部の格納データ例である。It is an example of data stored in an inter-node core line usage status management unit. 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. ノード間心線利用状況管理部(拡張版)の格納データ例である。It is an example of data stored in an inter-node core line usage status management unit (extended version). 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility. 所内配置の光ノードの構成例である。It is an example of the configuration of an optical node arranged in a facility.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(第1の実施形態)
 本開示の第1の実施形態を詳細に説明する。
 図1に所内・所外に設置する光線路切替ノード(以下、光ノード)の一例を示す。所内に1台の光ノード91を配置して、所外に1台の光ノード92を配置する。尚、所内及び所外の光ノードは光ファイバネットワーク上にそれぞれが複数台設置される構成もある。また所内の光ノード91は、電源を提供可能な環境に設置される。所外の光ノード92は商用電源が使用できない環境であり、所内からの給電光により駆動する。以下、所内に配置される光ノードを「所内ノード」と称し、所外に配置される光ノードを「所外ノード」と称する。
(First embodiment)
A first embodiment of the present disclosure will be described in detail.
FIG. 1 shows an example of an optical line switching node (hereinafter referred to as an optical node) installed inside and outside the station. One optical node 91 is placed inside the site, and one optical node 92 is placed outside the site. There is also a configuration in which a plurality of each of the on-site and off-site optical nodes are installed on the optical fiber network. Also, the optical node 91 in the facility is installed in an environment where power can be supplied. The optical node 92 outside the site is in an environment where commercial power cannot be used, and is driven by power supply light from within the site. Hereinafter, an optical node arranged inside the station will be called an "inside node", and an optical node arranged outside the station will be called an "external node".
 所内ノード91及び所外ノード92は光ファイバネットワークで接続されている。光ファイバネットワークは任意の形態でありうるが、図ではループ状のネットワーク構成例を示す。所内ノード91のポート1と所外ノード92のポート1がルートRAで接続され、所内ノード91のポート31と所外ノード92のポート31がルートRAとは異なるルートRBで接続されている。ルートRA又はRBを用いて、通信光の伝送、制御信号の送受信、及び光信号を用いた給電が行われる。 The in-house node 91 and the off-site node 92 are connected by an optical fiber network. Although the optical fiber network can be of any form, the figure shows an example of a looped network configuration. The port 1 of the in-house node 91 and the port 1 of the out-of-site node 92 are connected by a route RA, and the port 31 of the in-house node 91 and the port 31 of the out-of-site node 92 are connected by a route RB different from the route RA. Transmission of communication light, transmission and reception of control signals, and power supply using optical signals are performed using the route RA or RB.
 本開示は、光線路を切り替える複数の光ノードが接続されている光ネットワークにおいて、
 複数の光ノードは、
 電源を提供可能な環境に設置される所内ノード91と、
 所内ノードからの給電光により駆動する所外ノード92と、
 を備え、
 所内ノード91が、光クロスコネクトに関する機能群と、所外ノードの遠隔制御する機能群を備え、所内ノード91のポートを切替え、所外ノード92のポートを遠隔制御で切り替える。
 また、所内ノード91は、所内ノード91又は所内ノードに接続されている成端架93から所外ノードへ試験光を送信することで、所内ノード91と所外ノード92の接続されているポートを確認する機能を備える。
 これにより、本開示は、所内ノード91と所外ノード92の接続されているポートの確認を可能とする。
The present disclosure provides an optical network in which a plurality of optical nodes for switching optical lines are connected,
The multiple optical nodes are
an in-house node 91 installed in an environment capable of supplying power;
an offsite node 92 driven by light fed from an onsite node;
with
An in-house node 91 has a function group related to an optical cross-connect and a function group for remotely controlling an outside node, and switches the port of the in-house node 91 and the port of the outside node 92 by remote control.
Further, the on-site node 91 transmits the test light from the on-site node 91 or the termination box 93 connected to the on-site node to the off-site node, thereby connecting the port to which the on-site node 91 and the off-site node 92 are connected. It has a function to confirm.
Accordingly, the present disclosure enables confirmation of the ports to which the in-house node 91 and the out-of-site node 92 are connected.
 図2に、所内ノード91の構成例を示す。図中において、枠内の数字はポート番号を示す。まず、所外ノード92を遠隔制御する機能群を説明する。これらの機能群は光源21、光サーキュレータ22、光受信器24、コントローラ25を備える。光源21から発光したレーザ光は、光サーキュレータ22を通過して、架間ケーブルとして機能する光ファイバケーブル82を通して所内の成端架(例:IDM:Integrated Distribution Module)93に入力される。成端架93は、成端ケーブルとして機能する光ファイバケーブル83を経由し、所外の光ファイバネットワークを通して、所外ノード92に繋がる。尚、前記成端架93は、光カプラの機能を有する場合もある。  Fig. 2 shows a configuration example of the in-house node 91. In the figure, numbers in frames indicate port numbers. First, the function group for remotely controlling the offsite node 92 will be described. These functional groups comprise light source 21 , optical circulator 22 , optical receiver 24 and controller 25 . A laser beam emitted from the light source 21 passes through the optical circulator 22 and is input to an on-site termination rack (eg, IDM: Integrated Distribution Module) 93 through an optical fiber cable 82 functioning as an inter-rack cable. The termination rack 93 is connected to an offsite node 92 through an offsite optical fiber network via an optical fiber cable 83 that functions as a termination cable. Incidentally, the termination rack 93 may have the function of an optical coupler.
 光源21は、所外ノード92へ光給電を行う。これにより、所外ノード92の各機能が駆動可能になる。また光源21は、所外ノード92へ、制御信号の送信を行う。これにより、所外ノード92の遠隔制御を行う。一方、所外ノード92から制御信号が送信されると、光サーキュレータ22から光受信器24に入力され、光受信器24で受信される。所外ノード92から制御信号が送信される制御信号は、所外ノード92に備わる光ポート監視機能部で測定された光パワー値を含んでいてもよい。コントローラ25は、光源21、光受信器24、を制御する機能を有する。 The light source 21 supplies optical power to the off-site node 92 . As a result, each function of the offsite node 92 can be driven. The light source 21 also transmits a control signal to the offsite node 92 . Thereby, remote control of the off-site node 92 is performed. On the other hand, when a control signal is transmitted from the off-site node 92 , it is input from the optical circulator 22 to the optical receiver 24 and received by the optical receiver 24 . The control signal transmitted from the off-site node 92 may include the optical power value measured by the optical port monitoring function unit provided in the off-site node 92 . The controller 25 has the function of controlling the light source 21 and the optical receiver 24 .
 次に、所内ノード91の光クロスコネクトに関する機能群を説明する。この機能群はN個の入力ポートとM個の出力ポートのクロスコネクト機能をもつ光クロスコネクト部11と、その光クロスコネクト部11を制御する光クロスコネクト制御部12を備える。光クロスコネクト部11の入力ポートと出力ポートは、例えば番号が付与され識別できる。光クロスコネクト部11の上部側は、光ファイバケーブル81及び82を通して、様々な伝送装置と接続される。また、下部側は、光ファイバケーブル82を介して、光カプラの機能を有する所内の成端架93を経由し、所外の光ファイバケーブル83を含む光ファイバネットワークを通して、所外ノード92に繋がる。 Next, the function group related to the optical cross-connect of the in-house node 91 will be explained. This functional group comprises an optical cross-connect section 11 having a cross-connect function of N input ports and M output ports, and an optical cross-connect control section 12 for controlling the optical cross-connect section 11 . The input ports and output ports of the optical cross-connect unit 11 can be identified by assigning numbers, for example. The upper side of the optical cross-connect section 11 is connected to various transmission devices through optical fiber cables 81 and 82 . In addition, the lower side is connected to an off-site node 92 via an on-site termination rack 93 having an optical coupler function via an optical fiber cable 82 and an optical fiber network including an off-site optical fiber cable 83. .
 更に、本開示では、所内ノード91には、所内ノード総合制御部13、ノード間接続管理部14が具備される。この前記所内ノード総合制御部13は、コントローラ25、光クロスコネクト部制御部12、ノード間接続管理部14と接続されている。ノード間接続管理部14は、所内ノード91と所外ノード92との間の接続情報を格納する。この接続情報には、自装置が接続される所外ノード92との間の接続情報を含み、他の所内ノード91の接続情報を含んでいてもよい。 Furthermore, in the present disclosure, the in-house node 91 is provided with the in-house node integrated control unit 13 and the inter-node connection management unit 14 . The in-house node integrated control section 13 is connected to the controller 25 , the optical cross-connect section control section 12 and the node connection management section 14 . The node-to-node connection management unit 14 stores connection information between the on-site node 91 and the off-site node 92 . This connection information includes connection information with the external node 92 to which the device is connected, and may also include connection information with other internal nodes 91 .
 所内ノード91と所外ノード92が、図1に示すルートRAからルートRBに切替える場合、ルートRAでは、所内ノード91のポート1、所外ノード92のポート1、ポート31が繋がっているとする。
 次に、所内ノード総合制御部13の信号によって、ノード間接続管理部14の情報を参照の上(所内ノード#1 out ポート31、所外ノード#1 in ポート31の接続を確認して)、光クロスコネクト制御部12が、所内ノード91で、図2の光クロスコネクト部11の下部側をポート1からポート31に切替える。
 次に、所内ノード総合制御部13の信号によって、所内ノー91ドのコントローラ25からの信号に基づき、所外ノード91で、ポート1、61からポート31、71に切替える。また切替後に所内ノード総合制御部13の信号によりノード間接続管理部14の情報を更新する。図3にノード間接続管理部14の接続情報表とその更新の実例を示す。
 以上より、所外ノード92と連携して、所内ノード91と所外ノード92の経路の切替えを実現できる。
When the on-premises node 91 and the off-premises node 92 switch from the route RA to the root RB shown in FIG. .
Next, referring to the information of the inter-node connection management unit 14 by means of a signal from the in-house node integrated control unit 13 (checking the connection of the in-house node #1 out port 31 and the out-of-site node #1 in port 31), The optical cross-connect control unit 12 switches the lower side of the optical cross-connect unit 11 in FIG.
Next, according to a signal from the in-house node integrated control unit 13, the out-of-house node 91 switches from the ports 1 and 61 to the ports 31 and 71 based on the signal from the controller 25 of the in-house node 91 node. After the switching, the information in the inter-node connection management section 14 is updated by the signal from the in-house node integrated control section 13 . FIG. 3 shows an example of the connection information table of the inter-node connection management unit 14 and its update.
As described above, in cooperation with the out-of-site node 92, switching of the route between the in-house node 91 and the out-of-site node 92 can be realized.
(第2の実施形態)
 図4を参照しながら、本開示の第2の実施形態を詳細に説明する。
 第1の実施形態において述べた所内ノード91の構成に加えて、所内ノード91には、光クロスコネクト部11の各ポートと成端架93の各ポートとの相互の接続情報を保持する所内配線管理部15、が具備される。また、所外ノード92の各ポートの光パワー値を時系列で保持する光出力値管理部16、が具備される。前記所内配線管理部15と前記光出力値管理部16は、第1の実施形態に記載の所内ノード総合制御部13と接続して動作する。
(Second embodiment)
A second embodiment of the present disclosure will be described in detail with reference to FIG.
In addition to the configuration of the on-premises node 91 described in the first embodiment, the on-premises node 91 has an on-premises wiring that holds mutual connection information between each port of the optical cross-connect section 11 and each port of the termination rack 93 . A management unit 15 is provided. Also provided is an optical output value management unit 16 that holds the optical power value of each port of the external node 92 in chronological order. The in-house wiring management unit 15 and the optical output value management unit 16 operate by being connected to the in-house node integrated control unit 13 described in the first embodiment.
 既存のIDM架のような所内の成端架93では、所外へ繋がる光ファイバケーブル83と接続する光成端されるポートと、上記の光ファイバケーブル83の光ファイバへ試験光等を合波するための光カプラ31と、複数の光カプラ31に接続されて、特定の光カプラに光を切替て光接続可能とするファイバセレクタ32と、試験光を発光する光試験装置33、及び光試験装置33とファイバセレクタ32を制御する光試験機能制御装置34と、を備える場合がある。所内ノード総合制御部13は、光試験機能制御装置34を通して、光試験装置33とファイバセレクタ32を操作し、ファイバセレクタ32が接続された全ての光カプラ31を通して、光試験装置33から発光される試験光を挿入できる形態をとる。 In the on-site termination rack 93 such as the existing IDM rack, the test light and the like are combined into the optically terminated port connected to the optical fiber cable 83 connected to the outside and the optical fiber of the above-mentioned optical fiber cable 83. a fiber selector 32 that is connected to a plurality of optical couplers 31 and enables optical connection by switching light to a specific optical coupler; an optical test device 33 that emits test light; A device 33 and an optical test function controller 34 that controls the fiber selector 32 may be provided. The in-house node integrated control unit 13 operates the optical test equipment 33 and the fiber selector 32 through the optical test function control device 34, and emits light from the optical test equipment 33 through all the optical couplers 31 to which the fiber selectors 32 are connected. It takes a form in which test light can be inserted.
(第3の実施形態)
 本開示の第3の実施形態を詳細に説明する。
 第2の実施形態において、図1に示すように所内ノード91と所外ノード92が、ルートRAからルートRBに切替え、その過程で図5に示すように、所外ノード92の動作例に沿った、所内及び所外の光ノード全体の動作手順を図6に沿って説明する。また図7は、所内配線管理部15に格納されている接続情報の例である。図4に示した、光クロスコネクト部11の所外側のポート1、ポート2~ポート60が、成端架93の所内側のポート11、ポート12~ポート70と各々1対1に結線されている接続情報となる。
(Third Embodiment)
A third embodiment of the present disclosure will be described in detail.
In the second embodiment, as shown in FIG. 1, the on-site node 91 and the off-site node 92 switch from the route RA to the route RB, and in the process, as shown in FIG. Also, the operation procedure of the entire optical node inside and outside the station will be described with reference to FIG. 7 shows an example of connection information stored in the in-house wiring management unit 15. As shown in FIG. The ports 1 and 2 to 60 on the outside of the optical cross-connect section 11 shown in FIG. connection information.
 図8は、光出力値管理部16に格納された所外ノード92のポートの光パワー値の例である。所外ノード92で測定されたポート毎の光パワー値を、光パワー値の測定時間と共に格納する FIG. 8 is an example of the optical power value of the port of the external node 92 stored in the optical output value management unit 16. FIG. Stores the optical power value for each port measured at the external node 92 together with the measurement time of the optical power value.
 手順S11:所内ノード91のポート1と所外ノード92のポート1が接続され、所外ノード92のポート1とポート61が接続されている状態とする(図1のルートRAの状態)。所内ノード91では、図4の光クロスコネクト部11のポート101とポート1、及び成端架93のポート11とポート1が接続されている状態である。また所外ノード92の内部に着目すると、図5(a)のようにポート1とポート61が、光クロスコネクト部211を通して接続されている状態である。 Step S11: Assume that the port 1 of the on-site node 91 and the port 1 of the off-site node 92 are connected, and the port 1 and port 61 of the off-site node 92 are connected (state of the route RA in FIG. 1). In the in-house node 91, the ports 101 and 1 of the optical cross-connect section 11 and the ports 11 and 1 of the termination rack 93 of FIG. 4 are connected. Focusing on the inside of the external node 92, the port 1 and the port 61 are connected through the optical cross-connect section 211 as shown in FIG. 5(a).
 手順S12:所内ノード総合制御部13の信号によって、所内ノード91のコントローラ25が、全ポートの光パワー値を測定する旨の制御信号を送信する。所外ノード92の光ポート監視機能部212は、マイクロプロセッサ225の受信した制御信号に従い、所外ノード92の全ポートで受光された光パワー値を測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。所内ノード総合制御部13は、コントローラ25を通して返信された光パワー値を、光パワー値の受信時刻と共に光出力値管理部16に記録する。これにより、所外ノード92の全ポートで受光された光パワー値が、光パワー値の測定時間とともに光出力値管理部16に格納される。 Step S12: The controller 25 of the in-house node 91 transmits a control signal to measure the optical power values of all ports according to the signal from the in-house node general control unit 13 . The optical port monitoring function unit 212 of the offsite node 92 measures the optical power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The in-house node general control unit 13 records the optical power value returned through the controller 25 in the optical output value management unit 16 together with the reception time of the optical power value. As a result, the optical power values received by all the ports of the off-site node 92 are stored in the optical output value management unit 16 together with the measurement time of the optical power values.
 手順S13:所内ノード総合制御部13の信号によって、所内配線管理部15の情報を参照の上(図7に示すように、所内ノード91のポート1と接続されている成端架93のポートは「11」であることを確認)、光試験機能制御装置34が、ファイバセレクタ32を成端架93の所外ノード92側のポート1の光カプラ31に接続して、光カプラ31に試験光を挿入する。所外ノード92の光ポート監視機能部212は、所外ノード92の全ポートの光パワー値を測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。返信された光パワー値は、所内ノード総合制御部13を通して、光パワー値の測定時間と共に光出力値管理部16に格納される。 Step S13: Refer to the information of the on-site wiring management unit 15 by the signal of the on-site node integrated control unit 13 (as shown in FIG. 7, the port of the termination rack 93 connected to the port 1 of the on-site node 91 is 11), the optical test function controller 34 connects the fiber selector 32 to the optical coupler 31 of the port 1 on the off-site node 92 side of the termination rack 93, and sends the test light to the optical coupler 31. insert The optical port monitoring function unit 212 of the offsite node 92 measures the optical power values of all the ports of the offsite node 92 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
 図8に光出力値管理部16に格納された所外ノード92のポートの光パワー値の例を示す。図8に示すように、この試験光を挿入する前後の全ポートの測定データを比較し、試験光を挿入したことで、所外ノード92のポート1及びポート61の光パワー値が、試験光を挿入する前の光パワー値より増加していることを確認する。これにより、所内ノード91のポート1、と所外ノード92のポート1及びポート61が繋がっていることを確認できる。 FIG. 8 shows an example of the optical power value of the port of the external node 92 stored in the optical output value management unit 16. FIG. As shown in FIG. 8, the measurement data of all the ports before and after the insertion of this test light are compared. Confirm that the optical power value has increased from before the insertion of This makes it possible to confirm that the port 1 of the in-house node 91 and the ports 1 and 61 of the out-of-house node 92 are connected.
 手順S14:所内ノード総合制御部13の信号によって、前記ノード間接続管理部14の情報を参照の上、光クロスコネクト制御部12が、所内ノード91で、図4の光クロスコネクト部11の下部側をポート1からポート31に切替える。この結果、図4の光クロスコネクト部11のポート101とポート31、成端架93のポート41とポート31が接続された状態となる。 Step S14: After referring to the information in the inter-node connection management section 14 by means of a signal from the in-house node total control section 13, the optical cross-connect control section 12 causes the in-house node 91 to control the lower portion of the optical cross-connect section 11 in FIG. side from port 1 to port 31. As a result, the ports 101 and 31 of the optical cross-connect section 11 and the ports 41 and 31 of the termination rack 93 shown in FIG. 4 are connected.
 手順S15:所内ノード総合制御部13の信号によって、所内ノード91のコントローラ25が、ポートを切り替える旨の制御信号を送信する。所外ノード92の光クロスコネクト部211は、図5(b)に示すように、マイクロプロセッサ225の受信した制御信号により、ポート1、61からポート31、71に切替える。この結果、図5(c)のように、ポート31、ポート71が、光クロスコネクト部211を通して接続されている状態になり、図1のルートRBが接続された状態になる。 Step S15: The controller 25 of the in-house node 91 transmits a control signal for port switching according to the signal from the in-house node integrated control unit 13 . The optical cross-connect unit 211 of the external node 92 switches from ports 1 and 61 to ports 31 and 71 according to the control signal received by the microprocessor 225, as shown in FIG. 5(b). As a result, as shown in FIG. 5C, the ports 31 and 71 are connected through the optical cross-connect section 211, and the route RB in FIG. 1 is connected.
 手順S16:所内ノード総合制御部13の信号によって、所内ノード91のコントローラ25が、全ポートの光パワー値を測定する旨の制御信号を送信する。所外ノード92の光ポート監視機能部212は、マイクロプロセッサ225の受信した制御信号に従い、所外ノード92の全ポートで受光されたパワー値を測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。返信された光パワー値は、所内ノード総合制御部13を通して、光パワー値の測定時間と共に光出力値管理部16に格納される。 Step S16: The controller 25 of the in-house node 91 transmits a control signal for measuring the optical power values of all ports according to the signal from the in-house node general control unit 13 . The optical port monitoring function unit 212 of the offsite node 92 measures the power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
 手順S17:所内ノード総合制御部13の信号によって、所内配線管理部15の情報を参照の上、光試験機能制御装置34が、ファイバセレクタ32を成端架93のポート41の光カプラ31に接続して、所内ノード91のポート31が接続されている光カプラ31に試験光を挿入する。所外ノード92の光ポート監視機能部212は、所外ノード92の光ポートの全ポートを測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。返信された光パワー値は、所内ノード総合制御部13を通して、光パワー値の測定時間と共に光出力値管理部16に格納される。 Step S17: The optical test function control device 34 refers to the information of the on-site wiring management unit 15 according to the signal from the on-site node integrated control unit 13, and connects the fiber selector 32 to the optical coupler 31 of the port 41 of the termination rack 93. Then, the test light is inserted into the optical coupler 31 to which the port 31 of the in-house node 91 is connected. The optical port monitoring function unit 212 of the offsite node 92 measures all the optical ports of the offsite node 92 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
 所内ノード総合制御部13は、この試験光を挿入する前後の全ポートの測定データを比較し、所外の光ノードのポート31、ポート71の光パワー値が、試験光を挿入する前の光パワー値より増加していることを確認する。これにより、所内ノード91のポート31、と所外ノード92のポート31、ポート71が繋がっていることが確認できる。 The on-site node integrated control unit 13 compares the measurement data of all ports before and after the test light is inserted, and the optical power values of the ports 31 and 71 of the off-site optical node are compared with the light power values before the test light is inserted. Confirm that it is increasing from the power value. As a result, it can be confirmed that the port 31 of the in-house node 91 and the port 31 and port 71 of the out-of-house node 92 are connected.
 以上のように、所外ノード92と所内ノード91を連携してルート切替えを実現だけでなく、切替の前後で試験光を用いた光出力の値を確認することでポート間の繋がり状態の確認を実現できる。 As described above, in addition to realizing route switching by linking the external node 92 and the internal node 91, the connection state between the ports can be confirmed by confirming the optical output value using the test light before and after the switching. can be realized.
(第4の実施形態)
 本開示の第4の実施形態について、以下、図9~図12を参照して説明する。図9に示すように、ルートRAの経路で障害が発生し、光信号が途絶する状況が生じた場合を想定する。
(Fourth embodiment)
A fourth embodiment of the present disclosure will now be described with reference to FIGS. 9-12. As shown in FIG. 9, it is assumed that a failure occurs in the path of the route RA and an optical signal is interrupted.
 第3の実施形態において、所内ノード91の機能に図10に示すように、ノード間心線利用状況管理部17と異常検知部18が具備される。ノード間心線利用状況管理部17は、図12に示すように、光ノードと光ノードを繋ぐ各心線のサービスの利用の有無を示す。また、異常検知部18は所内ノード総合制御部13と連携し、障害の発生を検知する機能を有する。動作手順を図11に沿って示す。 In the third embodiment, as shown in FIG. 10, the function of the in-house node 91 is provided with the inter-node core line usage status management unit 17 and the abnormality detection unit 18 . As shown in FIG. 12, the inter-node core line usage status management unit 17 indicates whether or not the service of each core line connecting the optical nodes is used. In addition, the abnormality detection unit 18 cooperates with the in-house node integrated control unit 13 and has a function of detecting the occurrence of a failure. The operating procedure is shown along FIG.
 手順S21:所内ノード91のポート1と所外ノード92のポート1が接続され、所外ノード92のポート1とポート61が接続されている状態とする(図9のルートRAの状態)。所内ノード91では、図10の光クロスコネクト部11のポート101とポート1、及び成端架93のポート11とポート1が接続されている状態である。 Step S21: Assume that the port 1 of the on-site node 91 and the port 1 of the off-site node 92 are connected, and the port 1 and port 61 of the off-site node 92 are connected (state of the route RA in FIG. 9). In the in-house node 91, the port 101 and the port 1 of the optical cross-connect section 11 of FIG. 10 and the port 11 and the port 1 of the termination rack 93 are connected.
 手順S22:所内ノード総合制御部13の信号によって、所内ノード91のコントローラ25が、全ポートの光パワー値を測定する旨の制御信号を送信する。所外ノード92の光ポート監視機能部212は、マイクロプロセッサ225の受信した制御信号に従い、所外ノード92の全ポートで受光された光パワー値を測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。返信された光パワー値は、所内ノード総合制御部13を通して、光パワー値の測定時間と共に光出力値管理部16に格納される。 Step S22: The controller 25 of the in-house node 91 transmits a control signal to measure the optical power values of all ports according to the signal from the in-house node integrated control unit 13 . The optical port monitoring function unit 212 of the offsite node 92 measures the optical power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
 手順S23:所内ノード総合制御部13の信号によって、所内配線管理部15の情報を参照の上、光試験機能制御装置34が、ファイバセレクタ32を成端架93のポート1の光カプラ31に接続して、光カプラ31に試験光を挿入する。所外ノード92の光ポート監視機能部212は、所外ノード92の全ポートの光パワー値を測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。返信された光パワー値は、所内ノード総合制御部13を通して、光パワー値の測定時間と共に光出力値管理部16に格納される。 Step S23: By means of a signal from the on-site node integrated control section 13, the optical test function control device 34 refers to the information on the on-site wiring management section 15, and connects the fiber selector 32 to the optical coupler 31 of the port 1 of the termination rack 93. Then, test light is inserted into the optical coupler 31 . The optical port monitoring function unit 212 of the offsite node 92 measures the optical power values of all the ports of the offsite node 92 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
 この試験光挿入前後の全ポートの測定データを比較し、試験光を挿入したが、所外ノード92のポート1及びポート61の光パワー値が、試験光を挿入する前の光パワー値と同一であるとする。この場合、所内ノード91のポート1、と所外ノード92のポート1、ポート61の繋がりが確認できず、ルートRA上になんらかの障害があることが想定される。 The measured data of all ports before and after the test light insertion were compared, and the test light was inserted, but the optical power values of the ports 1 and 61 of the external node 92 were the same as the optical power values before the test light was inserted. Suppose that In this case, the connection between the port 1 of the on-site node 91 and the ports 1 and 61 of the off-site node 92 cannot be confirmed, and it is assumed that there is some kind of failure on the route RA.
 手順S24:異常検知部18は、ノード間心線利用状況管理部17を参照し、サービスに利用されていない光ファイバ心線を探索する。該当する結果がある場合として、図12に例示するように、項番1031の所内ノード91及び所外ノード92のポート31が該当する。この結果を、所内ノード総合制御部13に伝達する。尚、該当するポートがある場合は手順S25に遷移する。もし該当するポートが無い場合は、手順S29に遷移する。 Step S24: The abnormality detection unit 18 refers to the inter-node core line usage status management unit 17 and searches for optical fiber core lines that are not used for services. As shown in FIG. 12, the port 31 of the in-house node 91 and the out-of-house node 92 of the item number 1031 corresponds to the case where there is a corresponding result. This result is transmitted to the in-house node integrated control unit 13 . If there is a corresponding port, the process proceeds to step S25. If there is no corresponding port, the process proceeds to step S29.
 手順S25:所内ノード総合制御部13の信号によって、前記ノード間接続管理部14の情報を参照の上、光クロスコネクト制御部12が、図10の光クロスコネクト部11の下部側をポート1からポート31に切替える。この結果、図10の光クロスコネクト部11のポート101とポート31、成端架93のポート41とポート31が接続された状態となる。 Step S25: With reference to the information in the inter-node connection management section 14, the optical cross-connect control section 12 causes the lower side of the optical cross-connect section 11 shown in FIG. Switch to port 31. As a result, the ports 101 and 31 of the optical cross-connect section 11 and the ports 41 and 31 of the termination rack 93 shown in FIG. 10 are connected.
 手順S26:所内ノード総合制御部13の信号によって、所内ノード91のコントローラ25が、ポートを切り替える旨の制御信号を送信する。所外ノード92の光クロスコネクト部211は、マイクロプロセッサ225からの制御信号により、ポート1、61からポート31、61に切替える。 Step S26: The controller 25 of the in-house node 91 transmits a control signal for port switching according to the signal from the in-house node integrated control unit 13 . The optical cross-connect unit 211 of the external node 92 switches from ports 1 and 61 to ports 31 and 61 in response to a control signal from the microprocessor 225 .
 手順S27:所内ノード総合制御部13の信号によって、所内ノード91のコントローラ25が、全ポートの光パワー値を測定する旨の制御信号を送信する。所外ノード92の光ポート監視部212は、マイクロプロセッサ225の受信した制御信号に従い、所外ノード92の全ポートで受光された光パワー値を測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。返信された光パワー値は、所内ノード総合制御部13を通して、光パワー値の測定時間と共に光出力値管理部16に格納される。 Step S27: The controller 25 of the in-house node 91 transmits a control signal to measure the optical power values of all ports according to the signal from the in-house node general control unit 13 . The optical port monitor 212 of the offsite node 92 measures the optical power values received at all the ports of the offsite node 92 according to the control signal received by the microprocessor 225 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
 手順S28:所内ノード総合制御部13の信号によって、所内配線管理部15の情報を参照の上、光試験機能制御装置34が、ファイバセレクタ32を成端架93のポート41の光カプラ31に接続して、所内ノード91のポート31が接続されている光カプラ31に試験光を挿入する。所外ノード92の光ポート監視機能部212は、所外ノード92の光ポートの全ポートを測定する。所外ノード92のマイクロプロセッサ225は、光パワー値の測定結果を所内ノード91のコントローラ25に返信する。返信された光パワー値は、所内ノード総合制御部13を通して、光パワー値の測定時間と共に光出力値管理部16に格納される。 Step S28: By means of a signal from the on-site node integrated control unit 13, after referring to the information on the on-site wiring management unit 15, the optical test function control device 34 connects the fiber selector 32 to the optical coupler 31 of the port 41 of the termination rack 93. Then, the test light is inserted into the optical coupler 31 to which the port 31 of the in-house node 91 is connected. The optical port monitoring function unit 212 of the offsite node 92 measures all the optical ports of the offsite node 92 . The microprocessor 225 of the out-of-home node 92 returns the measurement result of the optical power value to the controller 25 of the in-home node 91 . The returned optical power value is stored in the optical output value management unit 16 together with the measurement time of the optical power value through the in-house node general control unit 13 .
 所内ノード総合制御部13は、この試験光を挿入する前後の全ポートの測定データを比較し、所外ノード92のポート31、ポート61の光パワー値が、試験光を挿入する前の光パワー値と比較して変動を確認する。増加している場合は、所内ノード91のポート31、と所外ノード92のポート31、ポート71が繋がっていることが確認できる。尚、増加しない場合は、手順S24に戻り、サービスに利用されていない他の光ファイバ心線の検索を行う。 The on-premises node integrated control unit 13 compares the measurement data of all ports before and after the test light is inserted, and the optical power values of the ports 31 and 61 of the off-premises node 92 are equal to the optical powers before the test light is inserted. Check for variation by comparing values. If it has increased, it can be confirmed that the port 31 of the in-house node 91 and the port 31 and port 71 of the out-of-house node 92 are connected. If the number does not increase, the process returns to step S24 to search for another optical fiber cable that is not used for service.
 手順S29:サービスに利用されていない心線が無い場合、もしくはサービスに利用されていないすべての心線が手順S28での試験光の挿入によっても光パワー値が増加しないことが確認された場合、異常検知部18は、経路変更不能、及び経路修理必要といった異常未解消であることを通知するメッセージを所内ノード総合制御部13へ通知する。 Step S29: If there is no optical fiber that is not used for service, or if it is confirmed that the optical power value of all the optical fibers that are not used for service does not increase even when the test light is inserted in step S28, The abnormality detection unit 18 notifies the in-house node integrated control unit 13 of a message notifying that the abnormality such as route change impossibility and route repair is required.
 以上のように、経路障害が発生した場合に、サービスに利用されていない経路で、かつ障害の発生していない経路に切替えるか、サービスに利用されていない経路が無い、もしくは障害の発生していない経路が無い場合には、異常を検知することが可能となる。 As described above, when a route fault occurs, it is possible to switch to a route that is not used for services and that is not faulty, If there is no route that does not exist, it is possible to detect an abnormality.
(第5の実施形態)
 第5の実施形態は、図13、図14に沿って説明する。第3の実施形態において、所内ノード91にノード間心線利用状況管理部17、心線振分機能部19が具備されている形態となる。ノード間心線利用状況管理部17は、図14に例を示すように、第4形態記載の前記ノード間心線利用状況管理部17に格納された情報例に加えて、ループ網構成の方向性として、右回転方向又は左回転方向のいずれの状態かを格納する。これはノード間に接続された光ファイバ心線が、図1に示した所内ノード91と所外ノード92の間の光ネットワークのようなループ網を想定した場合、右回りのルートRAと左回りのルートRBの2方向のルートが存在するため、それを明示するための情報となる。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIGS. 13 and 14. FIG. In the third embodiment, the in-house node 91 is provided with the inter-node fiber usage status management unit 17 and the fiber distribution function unit 19 . As shown in FIG. 14, the inter-node core line usage status management unit 17, in addition to the information example stored in the inter-node core line usage status management part 17 described in the fourth mode, includes the direction of the loop network configuration. As a property, either the right rotation direction or the left rotation direction is stored. Assuming that the optical fiber cable connected between the nodes is a loop network such as the optical network between the on-site node 91 and the off-site node 92 shown in FIG. Since there is a two-way route of the root RB of the RB, it is information for clarifying it.
 図1に示すような、所内ノード91と所外ノード92の間に新たにルートを開設することが必要な場合、心線振分機能部19が、サービスに利用されていない光ファイバ心線の中から切替える心線を選択し、所内ノード総合制御部13に通知する。所内ノード総合制御部13は、異常検知部18で異常の検知されたポートを、心線振分け機能部19で選択された心線の接続されているポートに変更する。 When it is necessary to establish a new route between the on-site node 91 and the off-site node 92 as shown in FIG. A core line to be switched is selected from among them and notified to the in-house node integrated control unit 13 . The in-house node integrated control unit 13 changes the port in which the abnormality is detected by the abnormality detection unit 18 to the port to which the core wire selected by the core distribution function unit 19 is connected.
 ここで、心線振分機能部19の選択は、例えば、光ノード間の右回り及び左回りの各々の心線数、更にそれぞれのサービスの利用有り、もしくは利用無しの数、もしくは両者の割合に基づいて、例えば、右回りの利用有りの光ファイバ心線数と左回りの利用有りの光ファイバ心線数とが偏らないように使用する心線番号を決定するなどのポリシーにより(例:所内ノード#1 ポート60、所外ノード#1 ポート60)、その番号を所内ノード総合制御部13に通知する。 Here, the selection of the fiber distribution function unit 19 is based on, for example, the number of clockwise and counterclockwise fiber cores between optical nodes, the number of each service used or not used, or the ratio of both. Based on, for example, the number of optical fibers used for clockwise rotation and the number of optical fibers used for counterclockwise rotation are determined by a policy such as determining the core number to be used so that the number of optical fibers used is not biased (e.g. In-house node #1 port 60, out-of-site node #1 port 60), and notify the in-house node integrated control unit 13 of the number.
 以上のように、ループ配線において、利用する光ファイバ心線の割合が右回り・左回りが偏らず、例えば、両回りのサービスに利用されていない光ファイバ心線が同一心線を残しながら、あるいは両回りの光ファイバ心線のサービスに利用されていない心線数の割合が一定になるように使用することが可能となる。 As described above, in the loop wiring, the ratio of the optical fibers used is not biased toward the clockwise or counterclockwise rotation. Alternatively, it is possible to use so that the ratio of the number of optical fibers that are not used for service of the optical fiber core wires in both directions is constant.
(第6の実施形態)
 第6の実施形態は、図15に沿って説明する。第2~第5の実施形態において、光試験機能制御装置34として機能する光試験機能制御部134、光試験機能装置33として機能する光試験機能部133、ファイバセレクタ32として機能するファイバセレクタ部132が、所内の光ノードの機能に追加される構成である。即ち、図4、又は図10、又は図13と比較して、複数の光カプラ31に接続されて、その特定の光カプラ31に光を切替て接続可能なファイバセレクタ部132と、試験光を発光する光試験機能部133、及び光試験機能部133とファイバセレクタ部132を制御する光試験機能制御部134が所内ノード91に追加される構成となる。所内ノード総合制御部13は、光試験機能制御部134を通して、光試験機能部133とファイバセレクタ部132を制御し、ファイバセレクタ部132が接続された全ての光カプラ31を通して、光試験光を挿入できる形態をとる。尚、図15は、図10に追加された構成で記載している。
(Sixth embodiment)
A sixth embodiment will be described along FIG. In the second to fifth embodiments, an optical test function control section 134 functioning as the optical test function control device 34, an optical test function section 133 functioning as the optical test function device 33, and a fiber selector section 132 functioning as the fiber selector 32. is a configuration added to the function of the optical node in the station. That is, in comparison with FIG. 4, FIG. 10, or FIG. 13, a fiber selector unit 132 connected to a plurality of optical couplers 31 and capable of switching and connecting light to the specific optical coupler 31, and a test light An optical test function unit 133 that emits light and an optical test function control unit 134 that controls the optical test function unit 133 and the fiber selector unit 132 are added to the in-house node 91 . The in-house node integrated control unit 13 controls the optical test function unit 133 and the fiber selector unit 132 through the optical test function control unit 134, and inserts the optical test light through all the optical couplers 31 to which the fiber selector unit 132 is connected. take any form possible. Note that FIG. 15 shows a configuration added to FIG. 10 .
(第7の実施形態)
 第7の実施形態は、図16に沿って説明する。第6の実施形態において、光カプラ部131、及び成端機能部193が、所内ノード91の機能に追加される構成である。即ち、図15と比較して、所外ノード92へ繋がる光ファイバケーブル83と接続する成端機能部193と、上記の光ファイバケーブル83へ試験光等を合波するための光カプラ部131と、が所内ノード91の機能に追加される構成である。
(Seventh embodiment)
A seventh embodiment will be described along FIG. In the sixth embodiment, the optical coupler section 131 and the termination function section 193 are added to the functions of the in-house node 91 . That is, compared with FIG. 15, a termination function unit 193 for connecting to the optical fiber cable 83 connected to the off-site node 92, and an optical coupler unit 131 for multiplexing the test light and the like to the optical fiber cable 83 are provided. , are added to the functions of the in-house node 91 .
 図16に示すように、複数の光カプラ部131に接続されて、その特定の光カプラ部131に光を切替て接続可能なファイバセレクタ部132と、試験光を発光する光試験機能部133、及び光試験機能部133とファイバセレクタ部132を制御する光試験機能制御部134を備える。また通常、光カプラ部131は光成端機能部193のポート毎に接続されている。また光成端機能部193の各ポートは、例えば個別の番号が付与されて、識別できる。光成端機能部193の上部側のポートは、光ファイバケーブル182を通して、光クロスコネクト部11のポートに繋がっている。下部側のポートは、光ファイバケーブル83を通して所外の光ファイバネットワークに接続され、更には所外ノード92へ繋がっている。所内ノード総合制御部13は、光試験機能制御部134を通して、光試験機能部133とファイバセレクタ部132を制御し、ファイバセレクタ部132が接続された全ての光カプラ部131を通して、光試験光を挿入できる形態をとる。 As shown in FIG. 16, a fiber selector unit 132 connected to a plurality of optical coupler units 131 and capable of switching and connecting light to a specific optical coupler unit 131, an optical test function unit 133 for emitting test light, and an optical test function control unit 134 that controls the optical test function unit 133 and the fiber selector unit 132 . Also, the optical coupler section 131 is normally connected to each port of the optical termination function section 193 . Also, each port of the optical termination function unit 193 can be identified by being given an individual number, for example. The upper port of the optical termination function section 193 is connected to the port of the optical cross-connect section 11 through the optical fiber cable 182 . The port on the lower side is connected to an off-site optical fiber network through an optical fiber cable 83 and further connected to an off-site node 92 . The in-house node integrated control unit 13 controls the optical test function unit 133 and the fiber selector unit 132 through the optical test function control unit 134, and transmits the optical test light through all the optical coupler units 131 to which the fiber selector unit 132 is connected. It takes a form that can be inserted.
(第8の実施形態)
 第8の実施形態は、図17に沿って説明する。第1~第7の実施形態において、所内ノード91において、光セレクタ23が追加される形態である。尚、図17は図16の形態に、光セレクタ23が追加された場合の形態である。
(Eighth embodiment)
An eighth embodiment will be described along FIG. In the first to seventh embodiments, the optical selector 23 is added to the local node 91 . 17 shows a configuration in which an optical selector 23 is added to the configuration of FIG.
 光セレクタ23に接続されている光ファイバケーブル82-1及び82-2は、それぞれ光ファイバケーブル83-1及び83-2に接続されている。光ファイバケーブル83-1は所外ノード92#1に接続され、光ファイバケーブル83-2は所外ノード92#2に接続されている。 The optical fiber cables 82-1 and 82-2 connected to the optical selector 23 are connected to optical fiber cables 83-1 and 83-2, respectively. The optical fiber cable 83-1 is connected to the offsite node 92#1, and the optical fiber cable 83-2 is connected to the offsite node 92#2.
 コントローラ25は、光セレクタ23を制御する機能を保持し、この光セレクタ23により光源21からのレーザ光が入力される成端機能部193のポートを変更することが可能であり、複数の光ファイバ心線を通して複数の所外ノード92に対して、単一の光源21からレーザ光を送信することが可能となる。 The controller 25 has a function of controlling the optical selector 23, and can change the port of the termination function section 193 to which the laser light from the light source 21 is input by the optical selector 23. It becomes possible to transmit laser light from a single light source 21 to a plurality of offsite nodes 92 through the core line.
(第9の実施形態)
 第9の実施形態は、図18に沿って説明する。第1~第8の実施形態において、所内ノード91は、所内ノード総合制御部13と、ノード間接続管理部14、更に所内配線管理部15、光出力値管理部16、ノード間心線利用状況管理部17、及び、異常検知部18のみで構成される形態とする。ここで、異常検知部18に代えて、又は異常検知部18と共に心線振分機能部19が備わっていてもよい。
(Ninth embodiment)
A ninth embodiment will be described along FIG. In the first to eighth embodiments, the in-house node 91 includes the in-house node integrated control unit 13, the inter-node connection management unit 14, the in-house wiring management unit 15, the optical output value management unit 16, the inter-node core line usage status It is assumed that the configuration is composed only of the management unit 17 and the abnormality detection unit 18 . Here, instead of the abnormality detection section 18, or together with the abnormality detection section 18, the fiber distribution function section 19 may be provided.
 コントローラ25等の遠隔制御機能群、光クロスコネクト制御部12等の光クロスコネクト機能群、試験機能制御部134等の光試験機能群は、別の筐体の構成として、所内ノード総合制御部13は、コントローラ25、光クロスコネクト制御部12、試験機能制御部34と連携して動作することを特徴とする。 A group of remote control functions such as the controller 25, a group of optical cross-connect functions such as the optical cross-connect control unit 12, and a group of optical test functions such as the test function control unit 134 are configured in separate housings in the in-house node integrated control unit 13. is characterized by operating in cooperation with the controller 25, the optical cross-connect control unit 12, and the test function control unit .
 このように、光源21及びコントローラ25と、光クロスコネクト部11及び光クロスコネクト制御部12と、所内ノード総合制御部13及びノード間接続管理部14と、の全て又は一部が、単一の筐体に格納されずに、別の筐体に格納されていてもよい。 In this way, all or part of the light source 21 and controller 25, the optical cross-connect section 11 and optical cross-connect control section 12, the in-house node integrated control section 13 and the inter-node connection management section 14 are integrated into a single It may be stored in another housing without being stored in the housing.
(第10の実施形態)
 第10の実施形態は、図19に沿って説明する。第1~第9の実施形態において、ノード間接続管理部14、更に所内配線管理部15、光出力値管理部16、ノード間心線利用状況管理部17、が所内ノード91と同一筐体内に構成されず、ネットワークを通して他のサーバ等の別の装置に格納された状態で、情報をやり取りする形態をとる。図19は図18に適用した実施例の場合となる。
(Tenth embodiment)
A tenth embodiment will be described along FIG. In the first to ninth embodiments, the inter-node connection management unit 14, the in-house wiring management unit 15, the optical output value management unit 16, and the inter-node core line usage status management unit 17 are housed in the same housing as the in-house node 91. It takes the form of exchanging information in a state where it is not configured and is stored in another device such as another server through a network. FIG. 19 shows the case of the embodiment applied to FIG.
 このように、ノード間接続管理部14の全て又は一部が、光クロスコネクト部11と同一の筐体に格納されず、ネットワークを通して別の筐体に格納されていてもよい。 In this way, all or part of the inter-node connection management unit 14 may not be stored in the same housing as the optical cross-connect unit 11, but may be stored in another housing through the network.
 なお、本開示の光ノードはコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。 The optical node of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
(本開示の効果)
 光ネットワークの接続された複数の光ノードにおいて、所内に設置した所内ノード91の側から所外に設置した所外ノード92へ、試験光を送信することで所内ノード91と所外ノード92の接続されているポートの確認の上、所内ノード91のポートを切替え、所外ノード92のポートを遠隔制御に切替えて、光のルートを変更した後、再び試験光を送信することで所内ノード91と所外ノード92の接続されているポートの確認が可能となる。
(Effect of the present disclosure)
In a plurality of optical nodes connected to an optical network, the on-site node 91 and the off-site node 92 are connected by transmitting test light from the on-site node 91 installed inside the site to the off-site node 92 installed outside the site. After confirming the port that is being controlled, the port of the in-house node 91 is switched, the port of the out-of-site node 92 is switched to remote control, and after changing the route of the light, the test light is transmitted again. It is possible to confirm the port to which the external node 92 is connected.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communications industry.
11:光クロスコネクト部
111:光ポート監視機能部
12:光クロスコネクト制御部
13:所内ノード総合制御部
14:ノード間接続管理部
15:所内配線管理部
16:光出力値管理部
17:ノード間心線利用状況管理部
18:異常検知部
19:心線振分機能部
21:光源
22:光サーキュレータ
23:光セレクタ
24:光受信器
25:コントローラ
31:光カプラ
32:ファイバセレクタ
33:光試験機能装置
34:光試験機能制御装置
81、82、83、182:光ファイバケーブル
91:所内ノード
92:所外ノード
93:成端架
132:ファイバセレクタ部
131:光カプラ部
133:光試験機能部
134:光試験機能制御部
211:光クロスコネクト部
212:光ポート監視機能部
225:マイクロプロセッサ
11: Optical cross-connect unit 111: Optical port monitoring function unit 12: Optical cross-connect control unit 13: In-house node integrated control unit 14: Inter-node connection management unit 15: In-house wiring management unit 16: Optical output value management unit 17: Node Core line usage status management unit 18: Abnormality detection unit 19: Core line distribution function unit 21: Light source 22: Optical circulator 23: Optical selector 24: Optical receiver 25: Controller 31: Optical coupler 32: Fiber selector 33: Light Test function device 34: Optical test function controllers 81, 82, 83, 182: Optical fiber cable 91: On-site node 92: Off-site node 93: Termination box 132: Fiber selector unit 131: Optical coupler unit 133: Optical test function Unit 134: Optical test function control unit 211: Optical cross connect unit 212: Optical port monitoring function unit 225: Microprocessor

Claims (11)

  1.  複数の光ノードが接続されている光ファイバネットワークに備わる前記光ノードであって、
     前記複数の光ノードのうちの自装置を除く他の光ノードに接続され、前記他の光ノードと光ファイバ心線で接続されるポートを切り替える光クロスコネクト部と、
     前記光クロスコネクト部を制御する光クロスコネクト制御部と、
     自装置及び前記他の光ノードの各ポートの相互の接続状態を格納するノード間接続管理部と、
     前記光クロスコネクト部とは異なる光ファイバ心線で前記他の光ノードと接続され、前記他の光ノードへ光給電を行い、自装置と光ファイバ心線で接続されるポートを切り替える旨の制御信号光を前記他の光ノードに送信する光源と、
     前記他の光ノードにおける切り替え後のポートで測定された光パワー値の情報を受信する光受信器と、
     前記光源及び前記光受信器を制御するコントローラと、
     自装置と前記他の光ノードとを接続するポートを切替えるように、前記コントローラ及び前記光クロスコネクト制御部を制御し、前記光受信器の受信した光パワー値の情報を取得する所内ノード総合制御部と、
     を備えることを特徴とする光ノード。
    The optical node provided in an optical fiber network in which a plurality of optical nodes are connected,
    an optical cross-connect unit connected to an optical node other than the own device among the plurality of optical nodes and switching a port connected to the other optical node by an optical fiber core;
    an optical cross-connect control unit that controls the optical cross-connect unit;
    an inter-node connection management unit that stores the mutual connection state of each port of the device and the other optical node;
    Control for connecting to the other optical node by an optical fiber core wire different from the optical cross-connect unit, optically supplying power to the other optical node, and switching the port connected to the own device by the optical fiber core wire a light source that transmits signal light to the other optical node;
    an optical receiver that receives information on the optical power value measured at the port after switching in the other optical node;
    a controller that controls the light source and the optical receiver;
    In-house node total control for controlling the controller and the optical cross-connect control unit to switch the port connecting the own device and the other optical node, and acquiring the information of the optical power value received by the optical receiver Department and
    An optical node comprising:
  2.  前記光受信器で受信した光パワー値を、前記他の光ノードのポート及び測定時間に紐づけて格納する光出力値管理部を備え、
     前記所内ノード総合制御部は、前記光出力値管理部に格納されている光パワー値の変化を判定することによって、前記他の光ノードのポートの接続状態の確認を行うことを特徴とする、
     請求項1に記載の光ノード。
    an optical output value management unit that stores the optical power value received by the optical receiver in association with the port of the other optical node and the measurement time;
    The in-house node integrated control unit checks the connection state of the port of the other optical node by determining a change in the optical power value stored in the optical output value management unit,
    The optical node according to claim 1.
  3.  自装置と前記他の光ノードの間を繋ぐ光ファイバ心線のサービスの利用の有無を格納するノード間心線利用状況管理部と、
     前記所内ノード総合制御部における光パワー値の変化の判定結果に基づいて、前記他の光ノードのポートの異常を検知する異常検知部と、を備え、
     前記異常検知部は、異常を検知した場合、前記ノード間心線利用状況管理部に格納された情報に基づいて、前記他の光ノードのポートのなかからサービスに利用されていない光ファイバ心線のポートを選択し、
     前記所内ノード総合制御部は、
     前記異常検知部で異常の検知されたポートを、前記異常検知部で選択されたポートに変更し、
     変更後のポートでの光パワー値の変化を判定することによって、前記異常検知部で選択された光ファイバ心線のポートの接続状態の確認を行い、
     前記異常検知部は、ポートの変更によっても異常が解消しない場合、前記所内ノード総合制御部へ異常未解消であることを通知することを特徴とする、
     請求項2に記載の光ノード。
    an inter-node core line usage status management unit that stores whether or not an optical fiber core line service connecting between the device itself and the other optical node is used;
    an anomaly detection unit that detects an anomaly in the port of the other optical node based on the determination result of the optical power value change in the on-site node integrated control unit;
    When an abnormality is detected, the abnormality detection unit detects an optical fiber core line not used for service from among the ports of the other optical node based on the information stored in the inter-node core line usage status management unit. select the port of the
    The in-house node integrated control unit
    changing the port in which the abnormality is detected by the abnormality detection unit to the port selected by the abnormality detection unit;
    confirming the connection state of the port of the optical fiber core wire selected by the abnormality detection unit by determining the change in the optical power value at the port after the change;
    The abnormality detection unit notifies the in-house node integrated control unit that the abnormality has not been resolved when the abnormality is not resolved even by changing the port,
    3. An optical node according to claim 2.
  4.  前記所内ノード総合制御部と相互に信号を交換して動作する心線振分機能部を具備し、
     前記ノード間心線利用状況管理部は、前記光ファイバ心線がループ網構成の右回転方向又は左回転方向のいずれの状態かをさらに格納し、
     前記心線振分機能部が、
     (i)前記ノード間心線利用状況管理部に格納された各回転方向の光ファイバ心線数、
     (ii)サービスに利用されている光ファイバ心線数、
     (iii)サービスに利用されていない光ファイバ心線数、
     (iv)各回転方向でのサービスの利用有りの割合、
     の少なくともいずれかに基づいて、サービスに利用されていない光ファイバ心線の中から切替える光ファイバ心線を選択し、
     前記所内ノード総合制御部が、前記異常検知部で異常の検知されたポートを、前記心線振分機能部で選択された光ファイバ心線の接続されているポートに変更することを特徴とする、
     請求項3に記載の光ノード。
    a fiber distribution function unit that operates by mutually exchanging signals with the in-house node integrated control unit;
    The inter-node core line usage status management unit further stores whether the optical fiber core line is in the clockwise or counterclockwise rotation direction of the loop network configuration,
    The fiber sorting function unit
    (i) the number of optical fibers in each rotational direction stored in the inter-node core line usage status management unit;
    (ii) the number of optical fiber cores used for service;
    (iii) the number of optical fiber cores not used for service;
    (iv) percentage of service usage in each direction of rotation;
    Selecting an optical fiber core wire to be switched from optical fiber core wires not used for service based on at least one of
    The in-house node integrated control unit changes the port in which the abnormality is detected by the abnormality detection unit to the port connected to the optical fiber core wire selected by the fiber distribution function unit. ,
    4. An optical node according to claim 3.
  5.  前記光クロスコネクト部は、前記光ファイバネットワークに含まれる光ファイバケーブルが接続される成端架を通して、前記光ファイバネットワークと接続され、
     前記光クロスコネクト部のポートと前記成端架のポートの相互の接続情報を格納する所内配線管理部を具備し、
     前記所内ノード総合制御部は、光試験装置から試験光を入射する前記成端架のポートを制御し、
     前記光試験装置からの試験光による前記光出力値管理部における光パワー値の変化を判定することによって、切り替え後のポートの接続状態の確認を行うことを特徴とする、
     請求項2から4のいずれかに記載の光ノード。
    The optical cross-connect unit is connected to the optical fiber network through a termination rack to which optical fiber cables included in the optical fiber network are connected,
    an on-premises wiring management unit that stores mutual connection information between the ports of the optical cross-connect unit and the ports of the termination rack;
    The in-house node integrated control unit controls the port of the termination rack through which the test light is incident from the optical test equipment,
    The connection state of the port after switching is confirmed by determining a change in the optical power value in the optical output value management unit due to the test light from the optical test device,
    5. An optical node according to any one of claims 2 to 4.
  6.  試験光を発光する光試験機能部と、
     前記他の光ノードに接続されている光ファイバ心線のいずれかを前記光試験機能部に接続するファイバセレクタ部と、
     前記ファイバセレクタ部と前記光試験機能部を制御する光試験機能制御部と、
     を具備し、
     前記所内ノード総合制御部が、
     前記光試験機能制御部を通して、前記光試験機能部と前記ファイバセレクタ部を制御し、
     前記ファイバセレクタ部で接続された任意の光ファイバに、光試験光を挿入し、
     前記光試験機能部からの試験光による前記光出力値管理部における光パワー値の変化を判定することによって、切り替え後のポートの接続状態の確認を行うことを特徴とする、
     請求項2から4のいずれかに記載の光ノード。
    an optical test function unit that emits test light;
    a fiber selector unit that connects one of the optical fiber core wires connected to the other optical node to the optical test function unit;
    an optical test function control unit that controls the fiber selector unit and the optical test function unit;
    and
    The in-house node integrated control unit,
    controlling the optical test function unit and the fiber selector unit through the optical test function control unit;
    inserting an optical test light into an arbitrary optical fiber connected by the fiber selector;
    The connection state of the port after switching is confirmed by determining a change in the optical power value in the optical output value management unit due to the test light from the optical test function unit,
    5. An optical node according to any one of claims 2 to 4.
  7.  前記光ファイバネットワークに含まれる光ファイバケーブルが接続される成端機能部と、
     前記光ファイバケーブルに含まれるいずれかの光ファイバ心線に、前記光試験機能部からの試験光を合波する光カプラ部と、
     を具備することを特徴とする、
     請求項6に記載の光ノード。
    a termination function section to which optical fiber cables included in the optical fiber network are connected;
    an optical coupler section for multiplexing the test light from the optical test function section to any one of the optical fiber core wires included in the optical fiber cable;
    characterized by comprising
    7. An optical node according to claim 6.
  8.  前記光源から前記他の光ノードへの光経路を切替える光セレクタを具備することを特徴とする、
     請求項1から7のいずれかに記載の光ノード。
    characterized by comprising an optical selector that switches an optical path from the light source to the other optical node,
    An optical node according to any one of claims 1 to 7.
  9.  前記光源及び前記コントローラと、
     前記光クロスコネクト部及び前記光クロスコネクト制御部と、
     前記所内ノード総合制御部と、
     前記ノード間接続管理部と、
     の全て又は一部が、単一の筐体に格納されずに、別の筐体に格納されていることを特徴とする、
     請求項1から8のいずれかに記載の光ノード。
    the light source and the controller;
    the optical cross-connect unit and the optical cross-connect control unit;
    the in-house node integrated control unit;
    the inter-node connection management unit;
    All or part of is stored in another housing without being stored in a single housing,
    9. An optical node according to any one of claims 1-8.
  10.  前記ノード間接続管理部、の全て又は一部が、光ノードと同一の筐体に格納されず、ネットワークを介して別の筐体に格納されて機能することを特徴とする、
     請求項1から9のいずれかに記載の光ノード。
    All or part of the inter-node connection management unit is not stored in the same housing as the optical node, but is stored in a separate housing via a network and functions,
    10. An optical node according to any one of claims 1-9.
  11.  複数の光ノードが接続されている光ファイバネットワークに備わる前記光ノードが実行する方法であって、
     所内ノード総合制御部が、前記複数の光ノードのうちの自装置を除く他の光ノードに接続されている光クロスコネクト部に、前記他の光ノードと光ファイバ心線で接続されるポートを切り替えさせ、
     所内ノード総合制御部が、光源に、前記他の光ノードへの光給電、及び自装置と光ファイバ心線で接続されるポートを切り替える旨の制御信号光の前記他の光ノードへの送信を、行わせ、
     光受信器が、前記他の光ノードにおける切り替え後のポートで測定された光パワー値を受信し、
     所内ノード総合制御部が、前記光受信器の受信した光パワー値の情報を取得することで、前記他の光ノードと接続されているポートの確認を行い、
     ノード間接続管理部に、自装置及び前記他の光ノードの各ポートの相互の接続状態を格納する、
     方法。
    A method performed by an optical node in an optical fiber network to which a plurality of optical nodes are connected, comprising:
    The in-house node integrated control unit provides an optical cross-connect unit connected to an optical node other than the own device among the plurality of optical nodes, and provides a port connected to the other optical node by an optical fiber core line. let me switch
    The in-house node integrated control unit instructs the light source to optically supply power to the other optical node and to transmit control signal light to the other optical node to switch the port connected to the device by the optical fiber core line. , let it go,
    An optical receiver receives an optical power value measured at a switched port in the other optical node;
    the in-house node integrated control unit acquires information on the optical power value received by the optical receiver, thereby confirming the port connected to the other optical node;
    Storing the mutual connection state of each port of the own device and the other optical node in the inter-node connection management unit;
    Method.
PCT/JP2021/026747 2021-07-16 2021-07-16 Optical node and method for switching optical line path WO2023286266A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026747 WO2023286266A1 (en) 2021-07-16 2021-07-16 Optical node and method for switching optical line path
JP2023534565A JPWO2023286266A1 (en) 2021-07-16 2021-07-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026747 WO2023286266A1 (en) 2021-07-16 2021-07-16 Optical node and method for switching optical line path

Publications (1)

Publication Number Publication Date
WO2023286266A1 true WO2023286266A1 (en) 2023-01-19

Family

ID=84926273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026747 WO2023286266A1 (en) 2021-07-16 2021-07-16 Optical node and method for switching optical line path

Country Status (2)

Country Link
JP (1) JPWO2023286266A1 (en)
WO (1) WO2023286266A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258746A (en) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp Optical path normality confirming method for optical network
JP2006191212A (en) * 2004-12-28 2006-07-20 Fujitsu Ltd Optical node and optical branching and inserting device
US20110255860A1 (en) * 2008-10-09 2011-10-20 Korea Advanced Institute Of Science And Technology Fault localization method and a fault localization apparatus in a passive optical network and a passive optical network having the same
JP2017009803A (en) * 2015-06-22 2017-01-12 日本電信電話株式会社 Optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258746A (en) * 2002-03-04 2003-09-12 Mitsubishi Electric Corp Optical path normality confirming method for optical network
JP2006191212A (en) * 2004-12-28 2006-07-20 Fujitsu Ltd Optical node and optical branching and inserting device
US20110255860A1 (en) * 2008-10-09 2011-10-20 Korea Advanced Institute Of Science And Technology Fault localization method and a fault localization apparatus in a passive optical network and a passive optical network having the same
JP2017009803A (en) * 2015-06-22 2017-01-12 日本電信電話株式会社 Optical switch

Also Published As

Publication number Publication date
JPWO2023286266A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP6873095B2 (en) Equipment and methods for matching fiber optic connections on the ROADM service side
EP2041902B1 (en) Network protection switching mechanisms and methods of network protection
US9660755B2 (en) Automated node level fibre audit
US9002196B2 (en) Self-healing repeater node
EP1048134A1 (en) System and method for increasing the robustness of an optical ring network
US20030026524A1 (en) Optical switching apparatus with optical reflection monitor and reflection monitoring system
US11290203B2 (en) Circuitry for remote optical communications devices and methods utilizing same
JP2005012421A (en) Signal repeater, switching device, method of detecting connection relation between these, and communication system
WO2023286266A1 (en) Optical node and method for switching optical line path
US20190261072A1 (en) Software defined optical network
US11876669B2 (en) Communication line detection method, system therefor, and network control system
US20080225277A1 (en) Method and apparatus for testing and monitoring data communications in the presence of a coupler in an optical communications network
JP2005292447A (en) Active light closure, active optical distributing board, and optical communication system
US9432752B2 (en) Optical transmission system
US11825247B2 (en) Wiring information generation system, and wiring information generation method
WO2023214466A1 (en) Remote control device, remote operation system, abnormality detection method, and program for causing computer to function as remote control device
WO2023286267A1 (en) System and method for managing connection information among optical nodes
WO2023214467A1 (en) Optical power supply system and method for detecting anomaly location
WO2023248383A1 (en) Remote optical path switching node and monitoring method therefor
US20030004687A1 (en) Probe apparatus
US6583898B1 (en) Optical transmission device and method for checking transmission in an optical transmission device
KR100890150B1 (en) Remote monitoring apparatus of expanded optical cable line
KR101944072B1 (en) Measure apparatus for inspecting condition of optical line
US20230388013A1 (en) Information sampling analysis method, optical splitter, fiber splice tray, local side sampling equipment, and platform
JP3042595B2 (en) Optical line maintenance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534565

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE