WO2023281744A1 - Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method - Google Patents

Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method Download PDF

Info

Publication number
WO2023281744A1
WO2023281744A1 PCT/JP2021/025991 JP2021025991W WO2023281744A1 WO 2023281744 A1 WO2023281744 A1 WO 2023281744A1 JP 2021025991 W JP2021025991 W JP 2021025991W WO 2023281744 A1 WO2023281744 A1 WO 2023281744A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical switch
switch
input
port
Prior art date
Application number
PCT/JP2021/025991
Other languages
French (fr)
Japanese (ja)
Inventor
友裕 川野
和典 片山
和英 中江
ひろし 渡邉
達也 藤本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/025991 priority Critical patent/WO2023281744A1/en
Priority to JP2023533025A priority patent/JPWO2023281744A1/ja
Publication of WO2023281744A1 publication Critical patent/WO2023281744A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means

Definitions

  • the present invention mainly relates to an optical node that has the function of driving optical switches and sensors with optical power supply in an optical fiber network.
  • an optical node as shown in Non-Patent Document 1 has been proposed as an optical node that remotely drives an optical switch by optical power supply.
  • an N ⁇ N switch is realized by arranging 2N 1 ⁇ N switches in multiple stages.
  • Non-Patent Document 2 an optical switch as shown in Non-Patent Document 2
  • an optical fiber type mechanical optical switch that controls the butting of optical fibers or optical connectors by a motor or the like is inferior to other methods in terms of slow switching speed, but has low loss and low wavelength dependence. It has many advantages over other methods in terms of flexibility, multi-port capability, and the provision of a self-holding function that maintains the switching state when the power is lost.
  • Non-Patent Document 1 there is no means for confirming whether the optical switch is connected with the minimum connection loss, so there is a risk of excessive loss occurring in the optical node.
  • Non-Patent Document 2 when the optical fiber connection is switched by the rotation of the motor, etc., the positions of the optical fiber cores facing each other in the optical switch are displaced due to disturbance such as rotational slip and vibration of the motor. In this case, there is a problem that there is no means for returning the optical fiber core position.
  • the present invention provides an optical node capable of compensating the rotation angle deviation of the optical fiber core of the ferrule rotary optical switch and reducing the connection loss caused in the optical switch, and the rotation angle deviation. It is an object of the present invention to provide a compensation system and method for compensating rotational angular misalignment.
  • the optical node, the rotation angle deviation compensation system, and the rotation angle deviation compensation method of the present disclosure input test light to a target port, switch an optical switch to a designated channel, and rotate the optical switch by a small angle. and the rotation angle at which the measured light intensity is maximized is stored as the set angle for the designated channel.
  • the optical node includes: an input-side optical port into which the optical test light is input; a first optical switch connected to the input side optical port and having a plurality of channels; a first rotating mechanism for rotating the first optical switch; a second optical switch connected to the first optical switch and having a plurality of channels; a second rotating mechanism for rotating the second optical switch; an output side port connected to the second optical switch and outputting the optical test light; an optical port monitoring unit that measures the optical intensity of the optical test light passing through the output port; connected to the first rotating mechanism, the second rotating mechanism, and the optical port monitoring unit, and rotating the optical switch at a small angle for the designated channel of the first optical switch and the designated channel of the second optical switch, respectively; After rotating, the optical port monitoring unit measures the light intensity, extracts the rotation angle of the optical switch at which the light intensity of the optical test light reaches the maximum value, and creates a database representing the rotation angle of each designated channel. an optical node control unit that compensates for rotational angle deviation to be updated; Prepare
  • an optical node For example, an optical node according to the present disclosure:
  • the first optical switch and the second optical switch are an input-side ferrule in which the centers of one or more optical fiber cores are arranged on the circumference of a circle centered at the center in a cross section perpendicular to the longitudinal direction; and an output ferrule in which the centers of one or more optical fiber cores are arranged on the circumference of the circle whose center is the center in the cross section perpendicular to the longitudinal direction, and butt together with the central axes in the longitudinal direction aligned. and At least one of the input side ferrule and the output side ferrule can be rotated to switch between a plurality of channels and can be rotated by a minute angle.
  • an optical node an input/output unit into which downstream light is input; a power supply unit that accumulates the downstream light input to the input/output unit as electric power,
  • the first rotating mechanism, the second rotating mechanism, the optical port monitoring unit, and the optical node control unit operate with electric power accumulated in the power supply unit.
  • the optical node controller performs the rotation angle deviation compensation when it detects vibration by itself or when it receives a notification from the outside.
  • the optical node controller performs the rotation angle deviation compensation each time the optical path is switched by the first optical switch or the second optical switch, or each time the optical path is switched a certain number of times.
  • the rotation angle deviation compensation system includes: the optical node; and a control device that supplies the downstream light to the power feeding portion of the optical node and inputs the optical test light.
  • the rotation angle deviation compensation system includes: The optical node is connected to an external network or has a sensor that detects vibration, and when the occurrence of a disaster is detected by the external network or when the sensor detects vibration, the occurrence of the disaster or the vibration is detected. to the optical node as the notification.
  • the rotation angle deviation compensation method includes: inputting the optical test light into the input side port; switching a first optical switch connected to the input port to a designated channel; switching a second optical switch connected to the designated channel of the first optical switch to the designated channel; measuring the optical intensity of the optical test light output to the output side port connected to the designated channel of the second optical switch; For each of the designated channel of the first optical switch and the designated channel of the second optical switch, the optical switch is rotated by a small angle to measure the optical intensity, and the optical test light has the maximum optical intensity. The rotation angle of the switch is extracted and a database representing said rotation angle for each designated channel is updated.
  • the optical node, the rotation angle deviation compensation system, and the rotation angle deviation compensation method of the present disclosure input test light to the target port, switch the optical switch to the designated channel, rotate the optical switch by a small angle, and measure the light intensity is stored as the set angle for the designated channel. Accordingly, an optical node, a rotation angle deviation compensation system, and a rotation angle deviation compensation method are provided, which can compensate for the rotation angle deviation of the optical fiber core of the ferrule rotary optical switch and reduce the connection loss that occurs in the optical switch. can provide.
  • an optical node, a rotation angle deviation compensation system, and a rotation angle deviation that can compensate for the rotation angle deviation of the optical fiber core of the ferrule rotary optical switch and reduce the connection loss that occurs in the optical switch Compensation methods can be provided.
  • FIG. 1 is an example of a configuration diagram of an optical node system of the present disclosure
  • FIG. 1 is an example of a configuration diagram of an optical node of the present disclosure
  • FIG. 1 is an example of a configuration diagram of an optical switch of the present disclosure
  • FIG. 2 is an example of a flow chart showing a method for compensating for rotational angle deviation of an optical switch according to the present disclosure
  • It is an example of the figure which shows an example of the light intensity measurement result in the rotation angle deviation compensation method of an optical switch.
  • FIG. 10 is an example of a diagram showing an example of updating a database when a minute angular deviation occurs in a method for compensating for rotational angular deviation of an optical switch;
  • FIG. 1 shows an example of the configuration of an optical node system according to an embodiment of the present invention.
  • the controller S1-1 shown in FIG. 1 is installed in an environment capable of supplying power, and includes a light source S1-2, an optical circulator S1-3, an optical receiver S1-4, a controller S1-5, and an optical test light source S1-. 20, an optical selector S1-21, an optical test light input coupler S1-22, an external network S1-30 for acquiring disaster information, and a vibration detection sensor S1-31.
  • a laser beam emitted from the light source S1-2 is input to the transmission line optical fiber S1-6 via the optical circulator S1-3.
  • the wavelength of laser light can be exemplified from 1480 nm to 1490 nm.
  • the power of the laser light output from the light source S1-2 may be about +10 to 17 dBm.
  • the laser light is used to optically power the optical node S1-7.
  • the optical node S1-7 is installed at an arbitrary location, such as a location without a power supply, and is connected to the control device S1-1 via the transmission line optical fiber S1-6.
  • the optical node S1-7 has a plurality of transmission line optical fibers other than the transmission line optical fiber (hereinafter referred to as input/output optical fibers S1-8 and S1-9 to distinguish from the transmission line optical fiber S1-6). It is connected.
  • the optical selector S1-21 has a plurality of ports and is connected to the optical node S1-7 via the optical test light input coupler S1-22 and the input/output optical fiber S1-8.
  • the optical selector S1-21 is connected to the optical test light source S1-20, and transmits an optical test light S2-200 (to be described later) from the optical test light source S1-20 from an arbitrary port of the optical selector S1-21 to an optical test light input coupler. It is input to the optical node S1-7 via S1-22 and input/output optical fiber S1-8.
  • the external network S1-30 for obtaining disaster information and the vibration detection sensor S1-31 are connected to the controller S1-5. It is used to quickly detect the impact and compensate for rotational angle deviation in the event of an accident involving a
  • the vibration detection sensor S1-31 may be, for example, a one-axis or two-axis acceleration sensor.
  • the controller S1-5 may have a function of analyzing an upstream frame included in the upstream light S1-11 from the optical node S1-7 received by the optical receiver S1-4.
  • the upstream frame may include an input instruction for the optical test light S2-200, which will be described later.
  • the controller S1-5 detects the occurrence of a disaster such as an earthquake, which has a high risk of causing a deviation in the rotation angle of the optical switch, or an accident involving impact, by means of the external network S1-30 and the vibration detection sensor S1-31.
  • the light source S1-2 may be caused to output a downward light S1-10 including an instruction to detect the occurrence of a disaster or vibration, or to perform rotation angle deviation compensation, which will be described later.
  • controller S1-5 causes the optical test light source S1-20 to input the optical test light S2-200, which will be described later, from the port selected by the optical selector S1-21 to the optical node S1-7 in the rotational angle deviation compensation. and the optical selector S1-21.
  • the controller S1-5 may then notify the optical node S1-7 of the port for inputting the optical test light S2-200 using the downstream light S1-10.
  • the optical node S1-7 is an input-side optical port (S1-80) into which optical test light is input; a first optical switch (S2-14(a)) connected to the input side optical port and having a plurality of channels; a first rotating mechanism (S3-1) for rotating the first optical switch; a second optical switch (S2-14(b)) connected to the first optical switch and having a plurality of channels; a second rotating mechanism (S3-1) for rotating the second optical switch; an output side port (S1-90) connected to the second optical switch and outputting the optical test light; an optical port monitoring unit (S2-20) for measuring the optical intensity of the optical test light passing through the output port; connected to the first rotating mechanism, the second rotating mechanism, and the optical port monitoring unit, and rotating the optical switch at a small angle for the designated channel of the first optical switch and the designated channel of the second optical switch, respectively; After rotating, the optical port monitoring unit measures the light intensity,
  • the optical node S1-7 shown in FIG. 2 receives the downstream light S1-10 including the modulated period and the non-modulated period, and functions as an input/output unit for outputting the upstream light S1-11 containing information.
  • -1 and an input gate optical switch S2-2 that transmits the downstream light S1-10 input to the optical branching unit S2-1 for an arbitrary period and supplies the downstream light S1-10 to the power supply unit S2-22; an optical receiver S2-7 for constantly receiving the downstream light S1-10 input to the optical splitter S2-1;
  • the downstream light S1-10 in the non-modulation period is reflected and non-reflected based on information to generate the upstream light S1-11.
  • an optical switch S2-8 may be provided.
  • optical node S1-7 since the optical node S1-7 has the function of optical line switching, the optical node S1-7 operates with the electric power accumulated in the power supply section S2-22, and optical path switching for arbitrarily switching a plurality of optical paths.
  • a section S2-30 may be further provided, and the information may be the state of the optical path and the input indication of the optical test light.
  • the optical path switching unit S2-30 a plurality of optical ports (S1-80, S1-90) to which a plurality of communication optical fibers (S1-8, S1-9) are respectively connected; Operates on power stored in the power supply unit S2-22, and outputs optical signals input to optical ports (S1-80, S1-90) to arbitrary optical ports (S1-80, S1-90).
  • an optical path changeover switch cross connect section S2-16) that switches the optical path;
  • an optical port monitoring unit S2-20 that monitors the optical signals passing through the optical ports (S1-80, S1-90) and monitors the state of the
  • the optical node S1-7 shown in FIG. 2 sends the downstream light S1-10 from the transmission line optical fiber S1-6 to the optical branching section S2-1, the input gate optical switch S2-2, the photoelectric conversion element S2-3, and the photoelectric conversion element S2-3. It is characterized by supplying drive power S2-5 for all the active elements contained in the optical node S1-7 via the secondary battery S2-4.
  • the photoelectric conversion element S2-3 and the secondary battery S2-4 are the "power feeding section S2-22", and the input gate optical switch S2-2, the reflection switch S2-8, the cross-connect section S2-16, the optical The port monitor S2-20 and the optical node controller S2-9 are included in the active elements.
  • the optical splitter S2-1 is a split ratio coupler, and guides the optical power to the input gate optical switch S2-2.
  • the input gate optical switch S2-2 plays the role of a gate switch that can select whether or not to transmit the downstream light S1-10 that has passed through the optical splitter S2-1 to another path.
  • a plurality of optical nodes S1-7 can be controlled by connecting the optical nodes S1-7.
  • the input gate optical switch S2-2 serves as a gate switch that can select whether or not to transmit the downstream light S1-10 that has passed through the optical splitter S2-1 to the photoelectric conversion element S2-3. It may be used to prevent overcharging of the secondary battery S2-4. Since the input gate optical switch S2-2 operates frequently, it is desirable to operate at a low voltage and with very low power consumption of several nW or less. For example, as the input gate optical switch S2-2, it is possible to use an electrostatically driven MEMS optical switch that requires less driving power and is generally available.
  • the photoelectric conversion element S2-3, one capable of receiving the wavelength of the laser light emitted from the light source S1-2 is used.
  • an easily available element suitable for the long wavelength band of 1300 nm to 1600 nm for communication such as an element composed of indium gallium arsenide, an open circuit voltage of 5 V or less, and a conversion efficiency of about 30% is used.
  • the photoelectric conversion element S2-3 is an optical feeding converter (https://www.kyosemi.co.jp/resources/ja/products/sensor/nir_photodiode/kpc8_t/kpc8_t_spec.pdf).
  • the power of the laser light transmitted through the transmission path optical fiber S1-6 is, for example, about 2 mW, it can be used for optical power supply. Note that the power varies depending on the device used for optical power supply.
  • the secondary battery S2-4 is used to store electric power energy converted by the photoelectric conversion element S2-3, and for example, an electric double layer capacitor or the like is used.
  • an electric double layer capacitor or the like is used.
  • voltage supply to each active element it is assumed that the voltage boosted by a DC/DC converter or the like can be appropriately adjusted.
  • the other side of the optical branching section S2-1 is guided to another optical branching section S2-6 and inputted to the optical receiver S2-7 and the reflection optical switch S2-8.
  • the optical receiver S2-7 is arranged to always receive the downstream light S1-10 regardless of the path state of the input gate optical switch S2-2, and accepts control signals from the controller S1-1.
  • the reflected light switch S2-8 is an optical switch capable of ON/OFF control of whether or not part of the downward light S1-10 is totally reflected.
  • the reflected light switch S2-8 utilizes the downstream light S1-10 to modulate upstream light toward the control device S1-1. It is desirable that the reflective optical switch S2-8 operates at a low voltage and with very small power consumption of several nW or less.
  • an electrostatically driven MEMS optical switch that requires less driving power and is generally available can be used.
  • the optical cross connect section S2-16 comprises a plurality of optical switches S2-14.
  • the optical cross-connect unit S2-16 arranges a plurality of optical switches S2-14(a) having 1 input and N outputs on the optical port S1-80 side, and a plurality of optical switches S2-14(a) having N inputs and 1 output on the optical port S1-90 side.
  • optical switches S2-14(b) are arranged, and the optical waveguide wiring S2-15 is cross-wired between them.
  • the optical cross-connect unit S2-16 constitutes an N ⁇ N port optical cross-connect.
  • the wiring of the optical waveguide wiring S2-15 is free depending on the application. Wiring is also possible.
  • the number of input/output ports of the optical cross-connect section S2-16 does not have to be symmetrical, and an asymmetric configuration such as M.times.N can also be implemented.
  • the optical cross-connect section S2-16 is characterized by being composed of a plurality of optical switches S2-14 as in this embodiment.
  • the standby power consumption of the optical cross-connect unit S2-16 greatly affects the power management of the entire system.
  • the optical switch S2-14 is preferably a self-holding optical switch that does not require power during standby and that maintains the switching state even when power is lost.
  • optical cross-connect section S2-16 has a configuration in which a plurality of optical switches S2-14 are arranged on both sides of the optical ports (S1-80, S1-90) is as follows.
  • a self-holding optical switch having a plurality of output ports has a phenomenon in which light is output to an unintended port during a switching operation, which may lead to a communication accident.
  • Providing a plurality of optical switches on both the input side and the output side requires switching of at least two optical switches to switch one optical path. Even if one optical switch outputs light to an unintended port, the light can be blocked by the other optical switch, thereby preventing communication accidents caused by unintended light output.
  • the optical line switching unit S2-30 also has an optical port monitoring unit S2-20 that monitors the connection information of the optical cross connect S2-16.
  • the optical port monitoring section S2-20 is arranged on the optical port S1-80 side and the optical port S1-90 side of the optical cross-connect section S2-16, and monitors communication light or test light input from the input/output optical fiber S1-8.
  • the ports of the plurality of optical switches S2-14 in the optical cross connect section S2-16 are monitored by optically branching and receiving the communication light or test light output from the input/output optical fiber S1-9.
  • As means for optically branching the communication light or test light by the optical port monitor S2-20 there is, for example, a commonly available 99:1 optical coupler.
  • An optical receiver for reading optically branched light includes, for example, a photodiode that is generally available.
  • the optical port monitoring unit S2-20 monitors an optical fiber connected to each channel on the input side of the optical switch S2-14 and each channel on the output side of the optical switch S2-14, for example, the input side optical fiber S2 described later. -100 and output optical fiber S2-101, a portion of the optical signal may be sampled and the optical intensity measured.
  • the optical port monitoring unit S2-20 confirms the optical port to be switched before switching the optical cross-connect unit S2-16, and checks whether the optical port has been correctly switched after switching the optical cross-connect unit S2-16. can be identified and these can be referred to as "lightpath states".
  • the optical loss with the optical port monitoring unit S2-20 of the plurality of optical nodes S1-7, it is possible to prevent disconnection of the optical transmission line composed of the input/output optical fibers (S1-8 and S1-9).
  • an error it is possible to identify between which nodes the error occurred. In this way, the location where an abnormality detected by the optical port monitoring units S2-20 of the plurality of optical nodes S1-7 has occurred can also be set as the "state of the optical path".
  • the optical node S1-7 has an optical node controller S2-9 for control.
  • the optical node controller S2-9 A power control function that monitors the amount of electricity stored in the power supply unit S2-22; a downstream frame analysis function for analyzing a modulated signal included in the downstream light in the modulation period; a switching operation control function for instructing switching of the input gate optical switch S2-2 based on the amount of charge and instructing switching of the optical path switching unit S2-30 based on the analysis result of the modulated signal; an optical port monitoring function that uses the "state of the optical path" as the information; an upstream signal generating function for driving the reflected light switch S2-8 based on the information; may have These five functions (1) to (5) will be explained.
  • the downlink frame analysis function is a function to analyze the downlink frame included in the downlink light S1-10 from the control device S1-1 received by the optical receiver S2-7.
  • the light source S1-2 of the controller S1-1 modulates the intensity of the output laser light based on the signal from the controller S1-5, and converts it into an informationized downstream frame such as TTL (Time to live) or CMOS signal. do.
  • the frame includes a request for node information, an execution instruction for switching switches (input gate optical switch S2-2 and optical switch S2-14), and the like.
  • the downstream frame may include a notification of the occurrence of a disaster detected by the external network S1-30 or the vibration detection sensor S1-31, a notification of the detection of vibration, or an instruction to perform rotation angle deviation compensation, which will be described later.
  • Uplink signal generation function works in conjunction with the downlink frame analysis function, uses the "state of the optical path" and the input instruction of the optical test light as the information, modulates the reflected optical switch S2-8, and performs the uplink signal. This is the function of generating the signal light S1-11.
  • the switching operation control function works in conjunction with the downstream frame analysis function to perform the input gate optical switch S2-2 to be switched or any optical switch S2 provided in the optical cross-connect section S2-16. -14 is specified to command switching to an arbitrary port.
  • a drive circuit attached to each optical switch can be arbitrarily controlled by bus communication (for example, I2C, etc.) using the optical node controller S2-9 as a master.
  • bus communication for example, I2C, etc.
  • the optical node controller S2-9 as a master.
  • the power monitoring function is a function for monitoring the amount of energy stored in the secondary battery S2-4.
  • the optical node control unit S2-9 constantly grasps the amount of stored energy in the secondary battery S2-4 via a voltage monitor or the like, and based on the set threshold value, the control device S1-1 via the upstream signal generation function. to notify.
  • the optical port monitoring function is a function of monitoring the optical port information of the optical port monitoring section S2-20.
  • the optical node control unit S2-9 grasps the optical port information via the voltage monitor of the optical receiver provided in the optical port monitoring unit S2-20. , to the controller S1-1 via the upstream signal generation function.
  • the optical node control unit S2-9 allows the optical node S1-7 itself to manage the amount of stored energy and to perform upstream communication with the control device S1-1 by linking the above five functions. and downlink communication for receiving an execution instruction from the control device S1-1.
  • FIG. 1 ⁇ N optical switch S2-14 An example of the structure of the 1 ⁇ N optical switch S2-14 that constitutes the optical cross connect S2-16 will be described with reference to FIG.
  • a structure of the 1 ⁇ N optical switch S2-14 As a structure of the 1 ⁇ N optical switch S2-14, as shown in FIG.
  • the installed output side ferrule S3-3 is positioned by the sleeve S3-4 and butted against each other.
  • the output-side ferrule S3-3 may have a structure in which the centers of the N output-side optical fibers S2-101 are on the same circumference around the center of the output-side ferrule S3-3 in the cross section of the ferrule.
  • the input ferrule S3-2 in the cross section of the input ferrule, has the same circumference as the output side optical fiber S2-101 of the output ferrule S3-3 with the center of the input ferrule S3-2 as the center.
  • a structure in which the center of the input side optical fiber S2-100 is located on the circumference may be used.
  • the sleeve S3-4 positions the input ferrule S3-2 and the output ferrule S3-3 such that the longitudinal central axes of the input ferrule S3-2 and the output ferrule S3-3 are aligned.
  • the input side optical fiber S2-100 is an optical fiber into which the optical test light S2-200 described later is incident among the input/output optical fibers S1-8.
  • the sleeve S3-4 is fixed by a fixing jig S3-7.
  • a flange is attached to each ferrule (S3-2, S3-3) (S3-5, S3-6).
  • the input side ferrule S3-2 is rotated by attaching a ferrule rotating actuator S3-1 as a rotating mechanism to the input side flange S3-5 of the optical switch S2-14. Rotate to achieve switching.
  • the ferrule rotating actuator S3-1 is supplied with drive power S2-5 from the optical node S1-7, and receives a rotation control signal from the optical node controller S2-9, and can rotate at an arbitrary rotation angle. It becomes possible.
  • the N ⁇ 1 optical switch which is the optical switch S2-14(b), may be provided with a ferrule rotating actuator S3-1 as a rotating mechanism in the same manner as the 1 ⁇ N optical switch.
  • optical node S1-7 is also provided with a vibration detection sensor S2-31 connected to the optical node control unit S2-9 so that vibration caused by disturbance can be detected.
  • the rotation angle deviation of the optical fiber core of the optical switch S2-14 occurs due to the disturbance such as the slip or impact of the ferrule rotation actuator S3-1 itself.
  • a rotation angle deviation compensation method will be described with reference to FIG. Note that the optical node controller S2-9 may perform rotation angle deviation compensation each time the optical path is switched by the optical switch S2-14.
  • the target port is selected by the optical selector S1-21, and the optical test light S2-200 is input through the optical test light input coupler S1-22 (step S01).
  • the optical switch S2-14(a) on the input side (previous stage) is switched to the designated channel (step S02).
  • the optical switch S2-14(b) on the output side (latter stage) is switched to the designated channel (step S03).
  • the optical port monitoring unit S2-20 measures the optical intensity of the optical test light S2-200 output from the designated channel of the optical switch S2-14(b) (step S04).
  • the front-stage optical switch S2-14(a) is rotated by a minute angle, eg, 1 degree, in the positive and negative directions (step S05).
  • the optical intensity of the optical test light S2-200 output from the designated channel of the optical switch S2-14(b) is measured (step S06), and the maximum optical intensity (step S07).
  • step S07 for example, as shown in FIG.
  • the maximum value may be the peak value when the peak value is obtained at the middle angle of the three angles.
  • the rotation is further performed by a minute angle so as to obtain the maximum value, and the maximum value is obtained.
  • the maximum value could not be obtained at the rotation angles of -1 deg, 0 deg, and 1 deg
  • the light intensity measurement described above was further performed with the rotation angle of 2 deg, and the results are shown.
  • attention is paid to the light intensity of 0 deg, 1 deg, and 2 deg, and since the peak value is obtained at 1 deg, which is the middle angle, it can be judged that the maximum value has been obtained.
  • FIG. 7 shows a database representing each channel and the rotation angle corresponding to the channel for the optical switch S14-2 having 10 channels. If the maximum value of light intensity can be acquired, the database is updated as shown in FIG. 7 (step S08). Note that the database may be updated only when the rotation angle for which the maximum value was acquired is different from the preset rotation angle.
  • FIG. 7 shows an example of updating the database for channels 1, 5 and 8, but is not limited to this. By updating the database, the data can be used next time.
  • the rear-stage optical switch S2-14(b) is similarly rotated by a minute angle (step S09).
  • the optical intensity of the optical test light S2-200 output from the designated channel of the optical switch S2-14(b) is similarly measured (step S10).
  • Steps S09 and S10 are performed until the maximum value of the optical test light S2-200 is obtained (step S11). If the maximum value of the light intensity can be acquired, the database is updated (step S12), and the process of the rotation angle deviation compensation method is completed.
  • the optical node controller S2-9 provided in the optical node S1-7 of the present invention can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • Emodiment 2 The optical node, rotational angle deviation compensation method, and rotational angle deviation compensation system according to the present embodiment will be described below.
  • the present embodiment differs from the first embodiment only in the timing of performing rotation angle deviation compensation.
  • the optimum optical connection state can be realized for each switching, but the frequency of use is reduced accordingly. can be high and consume extra power (sequential compensation mode).
  • the detection of impact may be performed, for example, by the vibration detection sensor S2-31 provided in the optical node S1-7, or may be performed by the vibration detection sensor S1-31 provided in the control device S1-1. .
  • the impact detection may be performed by the control device S1-1 connecting to the external network S1-30 and acquiring information.
  • optical node, rotational angle deviation compensation system, and rotational angle deviation compensation method according to the present disclosure can be applied to the information and communication industry.
  • S1-1 control device S1-2: light source S1-3: optical circulator S1-4: optical receiver S1-5: controller S1-6: transmission line optical fiber S1-7: optical node S1-8: input/output light Fiber S1-9: input/output optical fiber S1-10: downstream light S1-11: upstream light S1-20: optical test light source S1-21: optical selector S1-22: optical test light input coupler S1-30: external Network S1-31: Vibration detection sensor S1-80, S1-90: Optical port S2-1: Optical splitter S2-2: Input gate optical switch S2-3: Photoelectric conversion element S2-4: Secondary battery S2-5 : Drive power S2-6: Optical coupler S2-7: Optical receiver S2-8: Reflected optical switch S2-9: Optical node controller S2-14: Optical switch S2-15: Optical waveguide wiring S2-16: Light Cross-connecting section S2-20: Optical port monitoring section S2-22: Power feeding section S2-30: Optical path switching section

Abstract

This optical node comprises: an input-side optical port (S1-8) to which optical testing light is inputted; a first optical switch (S2-14(a)) that is connected to the input-side optical port and has a plurality of channels; a first rotation mechanism for rotating the first optical switch; a second optical switch (S2-14(b)) that is connected to the first optical switch and has a plurality of channels; a second rotation mechanism for rotating the second optical switch; an output-side port (S1-90) connected to the second optical switch and from which the optical test light is outputted; an optical port monitoring unit (S2-20) for measuring the light intensity of the optical testing light that passes through the output-side port; and an optical node control unit (S2-9) connected to the first rotation mechanism, the second rotation mechanism, and the optical port monitoring unit, the optical node control unit (S2-9) performing rotation angle deviation compensation in which, for each of a designated channel of the first optical switch and a designated channel of the second optical switch, the optical switches are caused to rotate by a minute angle and then the optical port monitoring unit is caused to measure the light intensity, the rotation angle of each optical switch at which the light intensity of the optical testing light is at maximum is extracted, and a database indicating the rotation angle for each designated channel is updated.

Description

光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法Optical node, rotation angle deviation compensation system and rotation angle deviation compensation method
 本発明は、主に光ファイバネットワークにおいて光給電で光スイッチやセンサを駆動する機能をもつ光ノードに関する。 The present invention mainly relates to an optical node that has the function of driving optical switches and sensors with optical power supply in an optical fiber network.
 ファイバネットワークにおいて、遠隔から光給電で光スイッチを駆動する光ノードには、例えば、非特許文献1に示すような光ノードが提案されている。非特許文献1によれば、光給電で動作する光ノードには、1×Nスイッチを2N個多段に組むことで、N×Nのスイッチを実現している。 In a fiber network, an optical node as shown in Non-Patent Document 1, for example, has been proposed as an optical node that remotely drives an optical switch by optical power supply. According to Non-Patent Document 1, in an optical node that operates by optical power feeding, an N×N switch is realized by arranging 2N 1×N switches in multiple stages.
 また、光を光のまま経路切替を行う全光スイッチには、例えば、非特許文献2に示すような光スイッチが提案されている。非特許文献2によれば、光ファイバあるいは光コネクタ同士の突合せをモータ等で制御する光ファイバ型機械式光スイッチは、切替速度が遅いという点では他方式に劣るものの、低損失、低波長依存性、多ポート性、電源消失時に切替状態を保持する自己保持機能の具備などの点で他方式よりも優れている点を多く有している。 In addition, as an all-optical switch that switches paths of light as it is, an optical switch as shown in Non-Patent Document 2, for example, has been proposed. According to Non-Patent Document 2, an optical fiber type mechanical optical switch that controls the butting of optical fibers or optical connectors by a motor or the like is inferior to other methods in terms of slow switching speed, but has low loss and low wavelength dependence. It has many advantages over other methods in terms of flexibility, multi-port capability, and the provision of a self-holding function that maintains the switching state when the power is lost.
 しかしながら、非特許文献1に記載の関連技術においては、光スイッチが最小の接続損失で接続されたかを確認する手段がないため、光ノードで過剰な損失が発生するリスクがある。また、非特許文献2においても、モータなどの回転によって光ファイバ接続を切り替える際に、モータのもつ回転のすべりや振動等の外乱により、光スイッチ内で対向する光ファイバコア位置がずれてしまった場合、光ファイバコア位置を復帰する手段がないという問題があった。 However, in the related technology described in Non-Patent Document 1, there is no means for confirming whether the optical switch is connected with the minimum connection loss, so there is a risk of excessive loss occurring in the optical node. Also, in Non-Patent Document 2, when the optical fiber connection is switched by the rotation of the motor, etc., the positions of the optical fiber cores facing each other in the optical switch are displaced due to disturbance such as rotational slip and vibration of the motor. In this case, there is a problem that there is no means for returning the optical fiber core position.
 前記課題を解決するために、本発明は、フェルール回転型光スイッチの光ファイバコアの回転角度ずれを補償することができ、光スイッチで生じる接続損失を低減することができる光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法を提供することを目的とする。 In order to solve the above-mentioned problems, the present invention provides an optical node capable of compensating the rotation angle deviation of the optical fiber core of the ferrule rotary optical switch and reducing the connection loss caused in the optical switch, and the rotation angle deviation. It is an object of the present invention to provide a compensation system and method for compensating rotational angular misalignment.
 上記目的を達成するため、本開示の光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法は、対象ポートに試験光を入力し、光スイッチを指定チャネルに切り替え、光スイッチを微小角度ずつ回転させ、測定される光強度が最大となる回転角度を当該指定チャネルにおける設定角度として記憶することとする。 In order to achieve the above object, the optical node, the rotation angle deviation compensation system, and the rotation angle deviation compensation method of the present disclosure input test light to a target port, switch an optical switch to a designated channel, and rotate the optical switch by a small angle. and the rotation angle at which the measured light intensity is maximized is stored as the set angle for the designated channel.
 具体的には、本開示に係る光ノードは、
 光試験光が入力される入力側光ポートと、
 前記入力側光ポートに接続され、複数のチャネルを有する第1の光スイッチと、
 前記第1の光スイッチを回転させる第1の回転機構と、
 前記第1の光スイッチに接続され、複数のチャネルを有する第2の光スイッチと、
 前記第2の光スイッチを回転させる第2の回転機構と、
 前記第2の光スイッチに接続され、前記光試験光が出力される出力側ポートと、
 前記出力側ポートを通過する前記光試験光の光強度測定を行う光ポート監視部と、
 前記第1の回転機構、前記第2の回転機構及び前記光ポート監視部に接続され、前記第1の光スイッチの指定チャネル及び前記第2の光スイッチの指定チャネルについてそれぞれ、光スイッチを微小角度回転させてから前記光ポート監視部に前記光強度測定を行わせ、前記光試験光の光強度が最大値となる光スイッチの回転角度を抽出し、各指定チャネルの前記回転角度を表すデータベースを更新する回転角度ずれ補償を行う光ノード用制御部と、
を備える。
Specifically, the optical node according to the present disclosure includes:
an input-side optical port into which the optical test light is input;
a first optical switch connected to the input side optical port and having a plurality of channels;
a first rotating mechanism for rotating the first optical switch;
a second optical switch connected to the first optical switch and having a plurality of channels;
a second rotating mechanism for rotating the second optical switch;
an output side port connected to the second optical switch and outputting the optical test light;
an optical port monitoring unit that measures the optical intensity of the optical test light passing through the output port;
connected to the first rotating mechanism, the second rotating mechanism, and the optical port monitoring unit, and rotating the optical switch at a small angle for the designated channel of the first optical switch and the designated channel of the second optical switch, respectively; After rotating, the optical port monitoring unit measures the light intensity, extracts the rotation angle of the optical switch at which the light intensity of the optical test light reaches the maximum value, and creates a database representing the rotation angle of each designated channel. an optical node control unit that compensates for rotational angle deviation to be updated;
Prepare.
 例えば、本開示に係る光ノードは、
 前記第1の光スイッチ及び前記第2の光スイッチは、
 長軸方向に垂直な断面における中心を中心とする円の円周上に一又は複数の光ファイバコアの中心が配置された入力側フェルールと、
 長軸方向に垂直な断面における中心を中心とする前記円の円周上に一又は複数の光ファイバコアの中心が配置された出力側フェルールと、を長軸方向の中心軸を合わせて突き合せた構成であり、
 前記入力側フェルール及び前記出力側フェルールの少なくともいずれか一方が、回転することにより複数チャネルを切り替え、かつ、微小角度で回転が可能である。
For example, an optical node according to the present disclosure:
The first optical switch and the second optical switch are
an input-side ferrule in which the centers of one or more optical fiber cores are arranged on the circumference of a circle centered at the center in a cross section perpendicular to the longitudinal direction;
and an output ferrule in which the centers of one or more optical fiber cores are arranged on the circumference of the circle whose center is the center in the cross section perpendicular to the longitudinal direction, and butt together with the central axes in the longitudinal direction aligned. and
At least one of the input side ferrule and the output side ferrule can be rotated to switch between a plurality of channels and can be rotated by a minute angle.
 例えば、本開示に係る光ノードは、
 下り光が入力される入出力部と、
 前記入出力部に入力された前記下り光を電力として蓄積する給電部と、をさらに備え、
 前記第1の回転機構、前記第2の回転機構、前記光ポート監視部及び前記光ノード用制御部は、前記給電部に蓄積された電力で動作する。
For example, an optical node according to the present disclosure:
an input/output unit into which downstream light is input;
a power supply unit that accumulates the downstream light input to the input/output unit as electric power,
The first rotating mechanism, the second rotating mechanism, the optical port monitoring unit, and the optical node control unit operate with electric power accumulated in the power supply unit.
 例えば、本開示に係る光ノードにおいては、
 前記光ノード用制御部は、自身で振動を検知した時に、又は外部から通知を受信した時に、前記回転角度ずれ補償を行う。
For example, in the optical node according to the present disclosure,
The optical node controller performs the rotation angle deviation compensation when it detects vibration by itself or when it receives a notification from the outside.
 例えば、本開示に係る光ノードにおいては、
 前記光ノード用制御部は、前記第1の光スイッチ又は前記第2の光スイッチによる光経路切替毎に、又は一定回数の前記光経路切替毎に前記回転角度ずれ補償を行う。
For example, in the optical node according to the present disclosure,
The optical node controller performs the rotation angle deviation compensation each time the optical path is switched by the first optical switch or the second optical switch, or each time the optical path is switched a certain number of times.
 具体的には、本開示に係る回転角度ずれ補償システムは、
 前記光ノードと、前記光ノードの前記給電部に前記下り光を供給し、かつ、前記光試験光を入力する制御装置と、を備える
Specifically, the rotation angle deviation compensation system according to the present disclosure includes:
the optical node; and a control device that supplies the downstream light to the power feeding portion of the optical node and inputs the optical test light.
 具体的には、本開示に係る回転角度ずれ補償システムは、
 前記光ノードと、外部ネットワークに接続され、又は振動を検知するセンサを備え、前記外部ネットワークにより災害の発生を検知した時又は前記センサにより振動を検知した時に、前記災害の発生又前記振動の検知を前記光ノードに前記通知として送信する制御装置と、を備える。
Specifically, the rotation angle deviation compensation system according to the present disclosure includes:
The optical node is connected to an external network or has a sensor that detects vibration, and when the occurrence of a disaster is detected by the external network or when the sensor detects vibration, the occurrence of the disaster or the vibration is detected. to the optical node as the notification.
 具体的には、本開示に係る回転角度ずれ補償方法は、
 光試験光を入力側ポートに入力すること、
 前記入力側ポートに接続される第1の光スイッチを指定チャネルに切り替えること、
 前記第1の光スイッチの指定チャネルと接続される第2の光スイッチを指定チャネルに切り替えること、
 前記第2の光スイッチの指定チャネルと接続される出力側ポートに出力される前記光試験光の光強度測定を行うこと、
 前記第1の光スイッチの指定チャネル及び前記第2の光スイッチの指定チャネルについてそれぞれ、光スイッチを微小角度回転させて前記光強度測定を行い、前記光試験光の光強度が最大値となる光スイッチの回転角度を抽出し、各指定チャネルの前記回転角度を表すデータベースを更新する。
Specifically, the rotation angle deviation compensation method according to the present disclosure includes:
inputting the optical test light into the input side port;
switching a first optical switch connected to the input port to a designated channel;
switching a second optical switch connected to the designated channel of the first optical switch to the designated channel;
measuring the optical intensity of the optical test light output to the output side port connected to the designated channel of the second optical switch;
For each of the designated channel of the first optical switch and the designated channel of the second optical switch, the optical switch is rotated by a small angle to measure the optical intensity, and the optical test light has the maximum optical intensity. The rotation angle of the switch is extracted and a database representing said rotation angle for each designated channel is updated.
 本開示の光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法は、対象ポートに試験光を入力し、光スイッチを指定チャネルに切り替え、光スイッチを微小角度ずつ回転させ、測定される光強度が最大となる回転角度を当該指定チャネルにおける設定角度として記憶することとする。これにより、フェルール回転型光スイッチの光ファイバコアの回転角度ずれを補償することができ、光スイッチで生じる接続損失を低減することができる光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法を提供することができる。 The optical node, the rotation angle deviation compensation system, and the rotation angle deviation compensation method of the present disclosure input test light to the target port, switch the optical switch to the designated channel, rotate the optical switch by a small angle, and measure the light intensity is stored as the set angle for the designated channel. Accordingly, an optical node, a rotation angle deviation compensation system, and a rotation angle deviation compensation method are provided, which can compensate for the rotation angle deviation of the optical fiber core of the ferrule rotary optical switch and reduce the connection loss that occurs in the optical switch. can provide.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本開示によれば、フェルール回転型光スイッチの光ファイバコアの回転角度ずれを補償することができ、光スイッチで生じる接続損失を低減することができる光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present disclosure, an optical node, a rotation angle deviation compensation system, and a rotation angle deviation that can compensate for the rotation angle deviation of the optical fiber core of the ferrule rotary optical switch and reduce the connection loss that occurs in the optical switch Compensation methods can be provided.
本開示の光ノードシステムの構成図の一例である。1 is an example of a configuration diagram of an optical node system of the present disclosure; FIG. 本開示の光ノードの構成図の一例である。1 is an example of a configuration diagram of an optical node of the present disclosure; FIG. 本開示の光スイッチの構成図の一例である。1 is an example of a configuration diagram of an optical switch of the present disclosure; FIG. 本開示の光スイッチの回転角度ずれ補償方法を表すフローチャート図の一例である。FIG. 2 is an example of a flow chart showing a method for compensating for rotational angle deviation of an optical switch according to the present disclosure; 光スイッチの回転角度ずれ補償方法における光強度測定結果の一例を示す図の一例である。It is an example of the figure which shows an example of the light intensity measurement result in the rotation angle deviation compensation method of an optical switch. 光スイッチの回転角度ずれ補償方法における光強度測定結果の一例を示す図の一例である。It is an example of the figure which shows an example of the light intensity measurement result in the rotation angle deviation compensation method of an optical switch. 光スイッチの回転角度ずれ補償方法における微小角度ずれが生じていた場合データベース更新の一例を示す図の一例である。FIG. 10 is an example of a diagram showing an example of updating a database when a minute angular deviation occurs in a method for compensating for rotational angular deviation of an optical switch;
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In addition, this invention is not limited to embodiment shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
(実施形態1)
 本発明の実施形態に係る光ノードシステムの構成の一例を図1に示す。図1に示す制御装置S1-1は、電源を提供可能な環境に設置され、光源S1-2、光サーキュレータS1-3、光受信器S1-4、コントローラS1-5、光試験用光源S1-20、光セレクタS1-21、光試験光入力用カプラS1-22、災害情報取得用の外部ネットワークS1-30、振動検知センサS1-31から構成されている。光源S1-2から発光したレーザ光は、光サーキュレータS1-3を介して伝送路光ファイバS1-6に入力される。例えば、レーザ光の波長は1480nmから1490nmが例示できる。また、光源S1-2から出力されるレーザ光のパワーは+10~17dBm程度であってもよい。レーザ光は、光ノードS1-7に光給電を行うために用いられる。
(Embodiment 1)
FIG. 1 shows an example of the configuration of an optical node system according to an embodiment of the present invention. The controller S1-1 shown in FIG. 1 is installed in an environment capable of supplying power, and includes a light source S1-2, an optical circulator S1-3, an optical receiver S1-4, a controller S1-5, and an optical test light source S1-. 20, an optical selector S1-21, an optical test light input coupler S1-22, an external network S1-30 for acquiring disaster information, and a vibration detection sensor S1-31. A laser beam emitted from the light source S1-2 is input to the transmission line optical fiber S1-6 via the optical circulator S1-3. For example, the wavelength of laser light can be exemplified from 1480 nm to 1490 nm. Also, the power of the laser light output from the light source S1-2 may be about +10 to 17 dBm. The laser light is used to optically power the optical node S1-7.
 光ノードS1-7は、任意の場所、例えば電源の無い場所などに設置され、伝送路光ファイバS1-6を介して制御装置S1-1と接続されている。光ノードS1-7には、伝送路光ファイバと別の複数の伝送路光ファイバ(伝送路光ファイバS1-6と区別するため、以降入出力光ファイバS1-8、S1-9と呼ぶ)が接続されている。 The optical node S1-7 is installed at an arbitrary location, such as a location without a power supply, and is connected to the control device S1-1 via the transmission line optical fiber S1-6. The optical node S1-7 has a plurality of transmission line optical fibers other than the transmission line optical fiber (hereinafter referred to as input/output optical fibers S1-8 and S1-9 to distinguish from the transmission line optical fiber S1-6). It is connected.
 光セレクタS1-21は、複数のポートを有し、光試験光入力用カプラS1-22及び入出力光ファイバS1-8を介して光ノードS1-7に接続される。また、光セレクタS1-21は、光試験用光源S1-20と接続され、光試験用光源S1-20からの後述する光試験光S2-200を自身の任意のポートから光試験光入力用カプラS1-22及び入出力光ファイバS1-8を介して光ノードS1-7に入力する。 The optical selector S1-21 has a plurality of ports and is connected to the optical node S1-7 via the optical test light input coupler S1-22 and the input/output optical fiber S1-8. The optical selector S1-21 is connected to the optical test light source S1-20, and transmits an optical test light S2-200 (to be described later) from the optical test light source S1-20 from an arbitrary port of the optical selector S1-21 to an optical test light input coupler. It is input to the optical node S1-7 via S1-22 and input/output optical fiber S1-8.
 災害情報取得用の外部ネットワークS1-30や振動検知センサS1-31は、コントローラS1-5に接続され、後述するように、光スイッチの回転角度ずれが発生するリスクが高い地震等の災害や衝撃を伴う事故が発生した場合に素早く当該衝撃を検知し、回転角度ずれを補償するために用いられる。振動検知センサS1-31は、例えば1軸や2軸の加速度センサを用いてよい。 The external network S1-30 for obtaining disaster information and the vibration detection sensor S1-31 are connected to the controller S1-5. It is used to quickly detect the impact and compensate for rotational angle deviation in the event of an accident involving a The vibration detection sensor S1-31 may be, for example, a one-axis or two-axis acceleration sensor.
 コントローラS1-5は、光受信器S1-4で受信した光ノードS1-7からの上り光S1-11に含まれる上りフレームを解析する機能を有してもよい。上りフレームには、後述する光試験光S2-200の入力指示等が含まれてもよい。 The controller S1-5 may have a function of analyzing an upstream frame included in the upstream light S1-11 from the optical node S1-7 received by the optical receiver S1-4. The upstream frame may include an input instruction for the optical test light S2-200, which will be described later.
 また、コントローラS1-5は、外部ネットワークS1-30や振動検知センサS1-31により、光スイッチの回転角度ずれが発生するリスクが高い地震等の災害や衝撃を伴う事故が発生したことを検知したときは、災害の発生若しくは振動の検知又は後述する回転角度ずれ補償の実施指示を含む下り光S1-10を光源S1-2に出力させてもよい。 In addition, the controller S1-5 detects the occurrence of a disaster such as an earthquake, which has a high risk of causing a deviation in the rotation angle of the optical switch, or an accident involving impact, by means of the external network S1-30 and the vibration detection sensor S1-31. In some cases, the light source S1-2 may be caused to output a downward light S1-10 including an instruction to detect the occurrence of a disaster or vibration, or to perform rotation angle deviation compensation, which will be described later.
 さらに、コントローラS1-5は、回転角度ずれ補償において、光セレクタS1-21の選択したポートから後述する光試験光S2-200を光ノードS1-7に入力するように光試験用光源S1-20及び光セレクタS1-21を制御してもよい。そして、コントローラS1-5は、光試験光S2-200を入力するポートを下り光S1-10を用いて光ノードS1-7に通知してもよい。 Further, the controller S1-5 causes the optical test light source S1-20 to input the optical test light S2-200, which will be described later, from the port selected by the optical selector S1-21 to the optical node S1-7 in the rotational angle deviation compensation. and the optical selector S1-21. The controller S1-5 may then notify the optical node S1-7 of the port for inputting the optical test light S2-200 using the downstream light S1-10.
 光ノードS1-7の内部構成の一例を図2に示す。
 本実施形態に係る光ノードS1-7は、
 光試験光が入力される入力側光ポート(S1-80)と、
 前記入力側光ポートに接続され、複数のチャネルを有する第1の光スイッチ(S2-14(a))と、
 前記第1の光スイッチを回転させる第1の回転機構(S3-1)と、
 前記第1の光スイッチに接続され、複数のチャネルを有する第2の光スイッチ(S2-14(b))と、
 前記第2の光スイッチを回転させる第2の回転機構(S3-1)と、
 前記第2の光スイッチに接続され、前記光試験光が出力される出力側ポート(S1-90)と、
 前記出力側ポートを通過する前記光試験光の光強度測定を行う光ポート監視部(S2-20)と、
 前記第1の回転機構、前記第2の回転機構及び前記光ポート監視部に接続され、前記第1の光スイッチの指定チャネル及び前記第2の光スイッチの指定チャネルについてそれぞれ、光スイッチを微小角度回転させてから前記光ポート監視部に前記光強度測定を行わせ、前記光試験光の光強度が最大値となる光スイッチの回転角度を抽出し、各指定チャネルの前記回転角度を表すデータベースを更新する回転角度ずれ補償を行う光ノード用制御部(S2-9)と、
を備える。
An example of the internal configuration of the optical node S1-7 is shown in FIG.
The optical node S1-7 according to this embodiment is
an input-side optical port (S1-80) into which optical test light is input;
a first optical switch (S2-14(a)) connected to the input side optical port and having a plurality of channels;
a first rotating mechanism (S3-1) for rotating the first optical switch;
a second optical switch (S2-14(b)) connected to the first optical switch and having a plurality of channels;
a second rotating mechanism (S3-1) for rotating the second optical switch;
an output side port (S1-90) connected to the second optical switch and outputting the optical test light;
an optical port monitoring unit (S2-20) for measuring the optical intensity of the optical test light passing through the output port;
connected to the first rotating mechanism, the second rotating mechanism, and the optical port monitoring unit, and rotating the optical switch at a small angle for the designated channel of the first optical switch and the designated channel of the second optical switch, respectively; After rotating, the optical port monitoring unit measures the light intensity, extracts the rotation angle of the optical switch at which the light intensity of the optical test light reaches the maximum value, and creates a database representing the rotation angle of each designated channel. an optical node control unit (S2-9) that performs rotation angle deviation compensation to be updated;
Prepare.
 図2に示す光ノードS1-7は、変調期間と無変調期間が含まれる下り光S1-10が入力され、情報を含む上り光S1-11を出力する入出力部として機能する光分岐部S2-1と、
 光分岐部S2-1に入力された下り光S1-10の任意の期間だけ透過させ、給電部S2-22に下り光S1-10を供給する入力ゲート光スイッチS2-2と、
 光分岐部S2-1に入力された下り光S1-10を常時受光する光受信器S2-7と、
 光分岐部S2-1に入力された下り光S1-10のうち、無変調期間の下り光S1-10に対し、情報に基づいて反射と非反射を行い、上り光S1-11を生成する反射光スイッチS2-8と、
を備えてもよい。
The optical node S1-7 shown in FIG. 2 receives the downstream light S1-10 including the modulated period and the non-modulated period, and functions as an input/output unit for outputting the upstream light S1-11 containing information. -1 and
an input gate optical switch S2-2 that transmits the downstream light S1-10 input to the optical branching unit S2-1 for an arbitrary period and supplies the downstream light S1-10 to the power supply unit S2-22;
an optical receiver S2-7 for constantly receiving the downstream light S1-10 input to the optical splitter S2-1;
Of the downstream light S1-10 input to the optical branching unit S2-1, the downstream light S1-10 in the non-modulation period is reflected and non-reflected based on information to generate the upstream light S1-11. an optical switch S2-8;
may be provided.
 また、光ノードS1-7が光線路切替の機能を持つために、光ノードS1-7は、給電部S2-22に蓄積された電力で動作し、複数の光経路を任意に切り替える光経路切替部S2-30をさらに備え、光経路の状態及び光試験光の入力指示を情報としてもよい。
 光経路切替部S2-30は、
 複数の通信用光ファイバ(S1-8、S1-9)がそれぞれ接続される複数の光ポート(S1-80、S1-90)と、
 給電部S2-22に蓄積された電力で動作し、光ポート(S1-80、S1-90)に入力された光信号を任意の光ポート(S1-80、S1-90)へ出力するように光経路を切り替える光経路切替スイッチ(クロスコネクト部S2-16)と、
 光ポート(S1-80、S1-90)を通過する前記光信号を監視し、前記光経路の状態を監視する光ポート監視部S2-20と、
をさらに備える。
In addition, since the optical node S1-7 has the function of optical line switching, the optical node S1-7 operates with the electric power accumulated in the power supply section S2-22, and optical path switching for arbitrarily switching a plurality of optical paths. A section S2-30 may be further provided, and the information may be the state of the optical path and the input indication of the optical test light.
The optical path switching unit S2-30
a plurality of optical ports (S1-80, S1-90) to which a plurality of communication optical fibers (S1-8, S1-9) are respectively connected;
Operates on power stored in the power supply unit S2-22, and outputs optical signals input to optical ports (S1-80, S1-90) to arbitrary optical ports (S1-80, S1-90). an optical path changeover switch (cross connect section S2-16) that switches the optical path;
an optical port monitoring unit S2-20 that monitors the optical signals passing through the optical ports (S1-80, S1-90) and monitors the state of the optical path;
further provide.
 図2に示す光ノードS1-7は、伝送路光ファイバS1-6からの下り光S1-10を、光分岐部S2-1、入力ゲート光スイッチS2-2、光電変換素子S2-3、及び二次電池S2-4を介して光ノードS1-7が内包する全てのアクティブ素子の駆動電力S2-5を供給することを特徴とする。なお、光電変換素子S2-3及び二次電池S2-4が“給電部S2-22”であり、後述する入力ゲート光スイッチS2-2、反射スイッチS2-8、クロスコネクト部S2-16、光ポート監視部S2-20、及び光ノード用制御部S2-9は前記アクティブ素子に含まれる。 The optical node S1-7 shown in FIG. 2 sends the downstream light S1-10 from the transmission line optical fiber S1-6 to the optical branching section S2-1, the input gate optical switch S2-2, the photoelectric conversion element S2-3, and the photoelectric conversion element S2-3. It is characterized by supplying drive power S2-5 for all the active elements contained in the optical node S1-7 via the secondary battery S2-4. Incidentally, the photoelectric conversion element S2-3 and the secondary battery S2-4 are the "power feeding section S2-22", and the input gate optical switch S2-2, the reflection switch S2-8, the cross-connect section S2-16, the optical The port monitor S2-20 and the optical node controller S2-9 are included in the active elements.
 光分岐部S2-1は、分岐比カプラであり、光パワーを入力ゲート光スイッチS2-2に誘導する。 The optical splitter S2-1 is a split ratio coupler, and guides the optical power to the input gate optical switch S2-2.
 入力ゲート光スイッチS2-2は、光分岐部S2-1を経由した下り光S1-10を別経路に透過させるか透過させないかを選択できるゲートスイッチの役割を担うことで、別経路に別の光ノードS1-7を接続すれば複数の光ノードS1-7を制御することが可能となる。また、入力ゲート光スイッチS2-2は、光分岐部S2-1を経由した下り光S1-10を光電変換素子S2-3へ透過させるか透過させないかを選択できるゲートスイッチの役割を担い、二次電池S2-4の過充電を防止するために用いられてもよい。入力ゲート光スイッチS2-2は、頻繁に動作するため、低電圧かつ、数nW以下の非常に小さな消費電力で動作するものが望ましい。例えば、入力ゲート光スイッチS2-2として、駆動電力が少なく、一般にも入手可能な、静電駆動型のMEMS光スイッチを用いることが可能である。 The input gate optical switch S2-2 plays the role of a gate switch that can select whether or not to transmit the downstream light S1-10 that has passed through the optical splitter S2-1 to another path. A plurality of optical nodes S1-7 can be controlled by connecting the optical nodes S1-7. Further, the input gate optical switch S2-2 serves as a gate switch that can select whether or not to transmit the downstream light S1-10 that has passed through the optical splitter S2-1 to the photoelectric conversion element S2-3. It may be used to prevent overcharging of the secondary battery S2-4. Since the input gate optical switch S2-2 operates frequently, it is desirable to operate at a low voltage and with very low power consumption of several nW or less. For example, as the input gate optical switch S2-2, it is possible to use an electrostatically driven MEMS optical switch that requires less driving power and is generally available.
 光電変換素子S2-3は、光源S1-2から発光したレーザ光の波長を受光可能なものが用いられる。光電変換素子S2-3として、容易に入手できる、通信用の長波長1300nm~1600nm帯に適した素子、例えばインジウムガリウムヒ素で構成され、開放電圧5V以下、変換効率約30%程度のものを利用できる。例えば、光電変換素子S2-3は、光給電コンバータ(https://www.kyosemi.co.jp/resources/ja/products/sensor/nir_photodiode/kpc8_t/kpc8_t_spec.pdf)である。また、伝送路光ファイバS1-6で伝送されたレーザ光のパワーが、例えば、2mW程度であれば、光給電として利用することができる。なお、当該パワーは光給電として利用するデバイスによって変化する。 For the photoelectric conversion element S2-3, one capable of receiving the wavelength of the laser light emitted from the light source S1-2 is used. As the photoelectric conversion element S2-3, an easily available element suitable for the long wavelength band of 1300 nm to 1600 nm for communication, such as an element composed of indium gallium arsenide, an open circuit voltage of 5 V or less, and a conversion efficiency of about 30% is used. can. For example, the photoelectric conversion element S2-3 is an optical feeding converter (https://www.kyosemi.co.jp/resources/ja/products/sensor/nir_photodiode/kpc8_t/kpc8_t_spec.pdf). Also, if the power of the laser light transmitted through the transmission path optical fiber S1-6 is, for example, about 2 mW, it can be used for optical power supply. Note that the power varies depending on the device used for optical power supply.
 二次電池S2-4は、光電変換素子S2-3で変換された電力エネルギーを蓄電するために用いられ、例えば電気二重層キャパシタ等が用いられる。なお、各アクティブ素子への電圧供給においては、適宜DC/DCコンバータ等で昇圧した電圧を調整できるものとする。 The secondary battery S2-4 is used to store electric power energy converted by the photoelectric conversion element S2-3, and for example, an electric double layer capacitor or the like is used. In addition, in voltage supply to each active element, it is assumed that the voltage boosted by a DC/DC converter or the like can be appropriately adjusted.
 光分岐部S2-1のもう一方は、別の光分岐部S2-6に誘導され、光受信器S2-7と反射光スイッチS2-8に入力される。光受信器S2-7は、入力ゲート光スイッチS2-2の経路状態に関わらず、常に下り光S1-10を受信するために配置され、制御装置S1-1からの制御信号を受け付ける。 The other side of the optical branching section S2-1 is guided to another optical branching section S2-6 and inputted to the optical receiver S2-7 and the reflection optical switch S2-8. The optical receiver S2-7 is arranged to always receive the downstream light S1-10 regardless of the path state of the input gate optical switch S2-2, and accepts control signals from the controller S1-1.
 反射光スイッチS2-8は、下り光S1-10の一部を全反射させるかさせないかのON/OFFを制御できる光スイッチである。反射光スイッチS2-8は、下り光S1-10を利用して制御装置S1-1に向けた上り光の変調を行う。反射光スイッチS2-8は、低電圧かつ、数nW以下の非常に小さな消費電力で動作するものが望ましい。例えば、反射光スイッチS2-8として、駆動電力が少なく、一般にも入手可能な、静電駆動型のMEMS光スイッチを用いることができる。 The reflected light switch S2-8 is an optical switch capable of ON/OFF control of whether or not part of the downward light S1-10 is totally reflected. The reflected light switch S2-8 utilizes the downstream light S1-10 to modulate upstream light toward the control device S1-1. It is desirable that the reflective optical switch S2-8 operates at a low voltage and with very small power consumption of several nW or less. For example, as the reflective optical switch S2-8, an electrostatically driven MEMS optical switch that requires less driving power and is generally available can be used.
 図2の例では、光クロスコネクト部S2-16は、複数の光スイッチS2-14を具備する。光クロスコネクト部S2-16は、光ポートS1-80側に1入力N出力を有する複数の光スイッチS2-14(a)を配列し、光ポートS1-90側にN入力1出力を有する複数の光スイッチS2-14(b)を配列し、その間を光導波路配線S2-15でクロス配線する。光クロスコネクト部S2-16は、N×Nポートの光クロスコネクトを構成する。なお、光導波路配線S2-15の配線は、適用アプリケーションにより自由であり、例えばNポートの任意の一部ポートを折り返して同じ側の他の光スイッチS2-14に接続することで折り返し配線等の配線も可能である。また光クロスコネクト部S2-16の入出力ポート数は対称である必要はなく、例えばM×Nといった非対称な構成でも実施可能である。このように、光クロスコネクト部S2-16は、本実施例のように複数の光スイッチS2-14で構成されていることを特徴とする。 In the example of FIG. 2, the optical cross connect section S2-16 comprises a plurality of optical switches S2-14. The optical cross-connect unit S2-16 arranges a plurality of optical switches S2-14(a) having 1 input and N outputs on the optical port S1-80 side, and a plurality of optical switches S2-14(a) having N inputs and 1 output on the optical port S1-90 side. optical switches S2-14(b) are arranged, and the optical waveguide wiring S2-15 is cross-wired between them. The optical cross-connect unit S2-16 constitutes an N×N port optical cross-connect. The wiring of the optical waveguide wiring S2-15 is free depending on the application. Wiring is also possible. Also, the number of input/output ports of the optical cross-connect section S2-16 does not have to be symmetrical, and an asymmetric configuration such as M.times.N can also be implemented. Thus, the optical cross-connect section S2-16 is characterized by being composed of a plurality of optical switches S2-14 as in this embodiment.
 ただし、光クロスコネクト部S2-16の待機時消費電力は、システム全体の電力マネジメントに大きく影響する。このため、光スイッチS2-14は、待機時に電力を必要とせず電力消失時にも切替状態が保持される特徴を持つ自己保持型光スイッチで構成されることが好ましい。 However, the standby power consumption of the optical cross-connect unit S2-16 greatly affects the power management of the entire system. For this reason, the optical switch S2-14 is preferably a self-holding optical switch that does not require power during standby and that maintains the switching state even when power is lost.
 なお、光クロスコネクト部S2-16が、光ポート(S1-80、S1-90)双方の側にそれぞれ複数の光スイッチS2-14を配列する構成である理由は次の通りである。通常、複数の出力ポートを有する自己保持型光スイッチは、切替動作の途中において意図しないポートに光が出力されてしまう現象があるため、通信事故につながる可能性がある。入力側と出力側の双方に複数の光スイッチを設けることは、一つの光経路を切り替えるのに少なくとも2つの光スイッチの切替が必要になる。一方の光スイッチが意図しないポートに光を出力しても、他方の光スイッチでその光を遮断できるため、意図しない光の出力で発生する通信事故を防止できる。 The reason why the optical cross-connect section S2-16 has a configuration in which a plurality of optical switches S2-14 are arranged on both sides of the optical ports (S1-80, S1-90) is as follows. Normally, a self-holding optical switch having a plurality of output ports has a phenomenon in which light is output to an unintended port during a switching operation, which may lead to a communication accident. Providing a plurality of optical switches on both the input side and the output side requires switching of at least two optical switches to switch one optical path. Even if one optical switch outputs light to an unintended port, the light can be blocked by the other optical switch, thereby preventing communication accidents caused by unintended light output.
 また、光線路切替部S2-30は、光クロスコネクトS2-16の接続情報を監視する光ポート監視部S2-20を有する。光ポート監視部S2-20は、光クロスコネクト部S2-16の光ポートS1-80側と光ポートS1-90側に配置され、入出力光ファイバS1-8から入力される通信光または試験光や入出力光ファイバS1-9から出力された通信光または試験光を光分岐して受信することで、光クロスコネクト部S2-16内の複数の光スイッチS2-14のポートを監視する。光ポート監視部S2-20が前記通信光または試験光を光分岐する手段としては、例えば、一般にも入手可能な99:1光カプラなどがある。また、光分岐された光を読み取る光受信器は、例えば、一般にも入手可能なフォトダイオードなどがある。 The optical line switching unit S2-30 also has an optical port monitoring unit S2-20 that monitors the connection information of the optical cross connect S2-16. The optical port monitoring section S2-20 is arranged on the optical port S1-80 side and the optical port S1-90 side of the optical cross-connect section S2-16, and monitors communication light or test light input from the input/output optical fiber S1-8. The ports of the plurality of optical switches S2-14 in the optical cross connect section S2-16 are monitored by optically branching and receiving the communication light or test light output from the input/output optical fiber S1-9. As means for optically branching the communication light or test light by the optical port monitor S2-20, there is, for example, a commonly available 99:1 optical coupler. An optical receiver for reading optically branched light includes, for example, a photodiode that is generally available.
 光ポート監視部S2-20は、各光スイッチS2-14について、光スイッチS2-14の入力側の各チャネル及び出力側の各チャネルに接続される光ファイバ、例えば、後述する入力側光ファイバS2-100及び出力側光ファイバS2-101、の中を通る光信号の一部を抽出し、光強度を測定してもよい。 For each optical switch S2-14, the optical port monitoring unit S2-20 monitors an optical fiber connected to each channel on the input side of the optical switch S2-14 and each channel on the output side of the optical switch S2-14, for example, the input side optical fiber S2 described later. -100 and output optical fiber S2-101, a portion of the optical signal may be sampled and the optical intensity measured.
 光ポート監視部S2-20は、光クロスコネクト部S2-16を切り替える前に、切替対象の光ポートを確認したり、光クロスコネクト部S2-16を切り替えた後に、正しく光ポートが切り替わったかを確認し、これらを「光経路の状態」とすることができる。また、複数の光ノードS1-7の光ポート監視部S2-20で光損失をモニタすることで、入出力光ファイバ(S1-8およびS1-9)で構成された光伝送路の断線などの異常が発生した場合、どのノード間で異常が発生したかを特定することができる。このように、複数の光ノードS1-7の光ポート監視部S2-20で検出した異常が発生した場所も「光経路の状態」とすることができる。 The optical port monitoring unit S2-20 confirms the optical port to be switched before switching the optical cross-connect unit S2-16, and checks whether the optical port has been correctly switched after switching the optical cross-connect unit S2-16. can be identified and these can be referred to as "lightpath states". In addition, by monitoring the optical loss with the optical port monitoring unit S2-20 of the plurality of optical nodes S1-7, it is possible to prevent disconnection of the optical transmission line composed of the input/output optical fibers (S1-8 and S1-9). When an error occurs, it is possible to identify between which nodes the error occurred. In this way, the location where an abnormality detected by the optical port monitoring units S2-20 of the plurality of optical nodes S1-7 has occurred can also be set as the "state of the optical path".
 光ノードS1-7は、制御用に光ノード用制御部S2-9を備える。光ノード用制御部S2-9は、
 給電部S2-22における蓄電量を監視する電力制御機能と、
 前記変調期間の前記下り光に含まれる変調信号を解析する下りフレーム解析機能と、
 前記蓄電量に基づいて入力ゲート光スイッチS2-2の切替指示を行い、前記変調信号の解析結果に基づいて光経路切替部S2-30の切替指示を行う切替動作制御機能と、
 前記「光経路の状態」を前記情報とする光ポート監視機能と、
 前記情報に基づいて反射光スイッチS2-8を駆動する上り信号生成機能と、
を有してもよい。
 これらの5つの機能(1)~(5)について説明する。
The optical node S1-7 has an optical node controller S2-9 for control. The optical node controller S2-9
A power control function that monitors the amount of electricity stored in the power supply unit S2-22;
a downstream frame analysis function for analyzing a modulated signal included in the downstream light in the modulation period;
a switching operation control function for instructing switching of the input gate optical switch S2-2 based on the amount of charge and instructing switching of the optical path switching unit S2-30 based on the analysis result of the modulated signal;
an optical port monitoring function that uses the "state of the optical path" as the information;
an upstream signal generating function for driving the reflected light switch S2-8 based on the information;
may have
These five functions (1) to (5) will be explained.
(1)下りフレーム解析機能
 下りフレーム解析機能は、光受信器S2-7で受信した前記制御装置S1-1からの下り光S1-10に含まれる下りフレームを解析する機能である。制御装置S1-1の光源S1-2は、コントローラS1-5からの信号に基づき、出力レーザ光に強度変調を加え、例えばTTL(Time to live)やCMOS信号のような情報化した下りフレームとする。前記フレームには、ノード情報の要求やスイッチ(入力ゲート光スイッチS2-2および光スイッチS2-14)切替に関する実行指示等が含まれる。また、下りフレームには、外部ネットワークS1-30や振動検知センサS1-31により検知した災害の発生の通知若しくは振動の検知の通知、又は後述する回転角度ずれ補償の実施指示を含んでもよい。
(1) Downlink Frame Analysis Function The downlink frame analysis function is a function to analyze the downlink frame included in the downlink light S1-10 from the control device S1-1 received by the optical receiver S2-7. The light source S1-2 of the controller S1-1 modulates the intensity of the output laser light based on the signal from the controller S1-5, and converts it into an informationized downstream frame such as TTL (Time to live) or CMOS signal. do. The frame includes a request for node information, an execution instruction for switching switches (input gate optical switch S2-2 and optical switch S2-14), and the like. The downstream frame may include a notification of the occurrence of a disaster detected by the external network S1-30 or the vibration detection sensor S1-31, a notification of the detection of vibration, or an instruction to perform rotation angle deviation compensation, which will be described later.
(2)上り信号生成機能
 上り信号生成機能は、下りフレーム解析機能と連携し、「光経路の状態」及び光試験光の入力指示を前記情報とし、反射光スイッチS2-8を変調させて上り信号光S1-11を生成する機能である。
(2) Uplink signal generation function The uplink signal generation function works in conjunction with the downlink frame analysis function, uses the "state of the optical path" and the input instruction of the optical test light as the information, modulates the reflected optical switch S2-8, and performs the uplink signal. This is the function of generating the signal light S1-11.
(3)切替動作制御機能
 切替動作制御機能は、下りフレーム解析機能と連携して、切替対象となる入力ゲート光スイッチS2-2あるいは光クロスコネクト部S2-16に具備される任意の光スイッチS2-14を指定し、任意のポートに対して切替を指令する。切替動作制御機能を実現する具体的な回路構成としては、各光スイッチ個々に付属する駆動回路に対して、光ノード用制御部S2-9をマスタとするバス通信(例えばI2C等)にて任意のアドレスを有する駆動回路に対して指示を送付し、任意の光スイッチS2-14の切替動作の制御を行う回路が例示できる。
(3) Switching Operation Control Function The switching operation control function works in conjunction with the downstream frame analysis function to perform the input gate optical switch S2-2 to be switched or any optical switch S2 provided in the optical cross-connect section S2-16. -14 is specified to command switching to an arbitrary port. As a specific circuit configuration for realizing the switching operation control function, a drive circuit attached to each optical switch can be arbitrarily controlled by bus communication (for example, I2C, etc.) using the optical node controller S2-9 as a master. can be exemplified by a circuit that sends an instruction to a drive circuit having an address of and controls the switching operation of an arbitrary optical switch S2-14.
(4)電力監視機能
 電力監視機能は、二次電池S2-4の蓄電エネルギー量を監視する機能である。光ノード用制御部S2-9は、常に二次電池S2-4における蓄電エネルギー量を電圧モニタ等を介して把握し、設定された閾値に基づいて上り信号生成機能を介して制御装置S1-1に通知を行う。
(4) Power Monitoring Function The power monitoring function is a function for monitoring the amount of energy stored in the secondary battery S2-4. The optical node control unit S2-9 constantly grasps the amount of stored energy in the secondary battery S2-4 via a voltage monitor or the like, and based on the set threshold value, the control device S1-1 via the upstream signal generation function. to notify.
(5)光ポート監視機能
 光ポート監視機能は、光ポート監視部S2-20の光ポート情報を監視する機能である。光ノード用制御部S2-9は、制御装置S1-1から問合せがあった場合に、光ポート情報を光ポート監視部S2-20に具備された光受信器の電圧モニタ等を介して把握し、上り信号生成機能を介して制御装置S1-1に通知を行う。
(5) Optical Port Monitoring Function The optical port monitoring function is a function of monitoring the optical port information of the optical port monitoring section S2-20. When receiving an inquiry from the control device S1-1, the optical node control unit S2-9 grasps the optical port information via the voltage monitor of the optical receiver provided in the optical port monitoring unit S2-20. , to the controller S1-1 via the upstream signal generation function.
 以上のように、光ノード用制御部S2-9は、上記5つの機能を互いに連携させることで、光ノードS1-7自身が蓄電エネルギー量を管理すること、制御装置S1-1と上り通信を行うこと、及び制御装置S1-1からの実行指示を受け付ける下り通信を行うことを実現できる。 As described above, the optical node control unit S2-9 allows the optical node S1-7 itself to manage the amount of stored energy and to perform upstream communication with the control device S1-1 by linking the above five functions. and downlink communication for receiving an execution instruction from the control device S1-1.
 光クロスコネクトS2-16を構成する1×Nの光スイッチS2-14の構造の一例を図3で説明する。1×Nの光スイッチS2-14の構造としては、図3に示す通り、入力側光ファイバS2-100が設置された入力側フェルールS3-2と、N本の出力側光ファイバS2-101が設置された出力側フェルールS3-3とがスリーブS3-4で位置決めされた状態で、突き合わされている。 An example of the structure of the 1×N optical switch S2-14 that constitutes the optical cross connect S2-16 will be described with reference to FIG. As a structure of the 1×N optical switch S2-14, as shown in FIG. The installed output side ferrule S3-3 is positioned by the sleeve S3-4 and butted against each other.
 例えば、出力側フェルールS3-3は、フェルール断面において、出力側フェルールS3-3の中心を中心とした同一円周上にN本の出力側光ファイバS2-101の中心があるような構造でもよい。例えば、入力側フェルールS3-2は、フェルール断面において、入力側フェルールS3-2の中心を中心として、出力側フェルールS3-3における出力側光ファイバS2-101が配置されている円周と同じ円周上に、入力側光ファイバS2-100の中心があるような構造でもよい。また、スリーブS3-4は、入力側フェルールS3-2と出力側フェルールS3-3との長軸方向の中心軸が合うように入力側フェルールS3-2と出力側フェルールS3-3との位置決めをしてもよい。なお、入力側光ファイバS2-100は、入出力光ファイバS1-8のうち、後述する光試験光S2-200が入射される光ファイバである。 For example, the output-side ferrule S3-3 may have a structure in which the centers of the N output-side optical fibers S2-101 are on the same circumference around the center of the output-side ferrule S3-3 in the cross section of the ferrule. . For example, the input ferrule S3-2, in the cross section of the input ferrule, has the same circumference as the output side optical fiber S2-101 of the output ferrule S3-3 with the center of the input ferrule S3-2 as the center. A structure in which the center of the input side optical fiber S2-100 is located on the circumference may be used. In addition, the sleeve S3-4 positions the input ferrule S3-2 and the output ferrule S3-3 such that the longitudinal central axes of the input ferrule S3-2 and the output ferrule S3-3 are aligned. You may Note that the input side optical fiber S2-100 is an optical fiber into which the optical test light S2-200 described later is incident among the input/output optical fibers S1-8.
 スリーブS3-4は、固定治具S3-7で固定されている。各フェルール(S3-2、S3-3)には、それぞれフランジが取り付けられる(S3-5、S3-6)。例えば、光クロスコネクトS2-16は、図3のように光スイッチS2-14の入力側フランジS3-5に回転機構としてフェルール回転用アクチュエータS3-1を取り付けることで、入力側フェルールS3-2を回転させてスイッチングを実現する。フェルール回転用アクチュエータS3-1は、光ノードS1-7から駆動電力S2-5が供給され、光ノード用制御部S2-9から回転の制御信号が送信され、任意の回転角度で回転することが可能となる。図2に示す光スイッチS2-14(a)は、図3の1×Nの光スイッチS2-14の構造と同様の構造であってもよく、図2に示す光スイッチS2-14(b)は、図3の1×Nの光スイッチS2-14の構造を左右反転させたN×1の光スイッチの構造としてもよい。光スイッチS2-14(b)であるN×1の光スイッチには、1×Nの光スイッチと同様に回転機構としてフェルール回転用アクチュエータS3-1が取り付けられてもよい。 The sleeve S3-4 is fixed by a fixing jig S3-7. A flange is attached to each ferrule (S3-2, S3-3) (S3-5, S3-6). For example, in the optical cross connect S2-16, as shown in FIG. 3, the input side ferrule S3-2 is rotated by attaching a ferrule rotating actuator S3-1 as a rotating mechanism to the input side flange S3-5 of the optical switch S2-14. Rotate to achieve switching. The ferrule rotating actuator S3-1 is supplied with drive power S2-5 from the optical node S1-7, and receives a rotation control signal from the optical node controller S2-9, and can rotate at an arbitrary rotation angle. It becomes possible. The optical switch S2-14(a) shown in FIG. 2 may have a structure similar to the structure of the 1×N optical switch S2-14 in FIG. 3, and the optical switch S2-14(b) shown in FIG. may have an N×1 optical switch structure obtained by horizontally reversing the structure of the 1×N optical switch S2-14 in FIG. The N×1 optical switch, which is the optical switch S2-14(b), may be provided with a ferrule rotating actuator S3-1 as a rotating mechanism in the same manner as the 1×N optical switch.
 また、光ノードS1-7にも、振動検知センサS2-31が光ノード用制御部S2-9に接続されて備えられ、外乱による振動を検知できるようになっている。 In addition, the optical node S1-7 is also provided with a vibration detection sensor S2-31 connected to the optical node control unit S2-9 so that vibration caused by disturbance can be detected.
 次に、光スイッチS2-14の切り替え時に、フェルール回転用アクチュエータS3-1の自身がもつすべりや衝撃などの外乱によって、光スイッチS2-14の光ファイバコアの回転角度ずれが生じた場合の、回転角度ずれ補償方法について図4で説明する。なお、光ノード用制御部S2-9は、光スイッチS2-14による光経路の切り替え毎に回転角度ずれ補償を行ってもよい。 Next, when the optical switch S2-14 is switched, the rotation angle deviation of the optical fiber core of the optical switch S2-14 occurs due to the disturbance such as the slip or impact of the ferrule rotation actuator S3-1 itself. A rotation angle deviation compensation method will be described with reference to FIG. Note that the optical node controller S2-9 may perform rotation angle deviation compensation each time the optical path is switched by the optical switch S2-14.
 まず、光セレクタS1-21で対象ポートを選定し、光試験光入力用カプラS1-22を介して光試験光S2-200を入力する(ステップS01)。次に、入力側(前段)の光スイッチS2-14(a)を指定チャネルに切り替える(ステップS02)。その後に、出力側(後段)の光スイッチS2-14(b)を指定チャネルに切り替える(ステップS03)。 First, the target port is selected by the optical selector S1-21, and the optical test light S2-200 is input through the optical test light input coupler S1-22 (step S01). Next, the optical switch S2-14(a) on the input side (previous stage) is switched to the designated channel (step S02). After that, the optical switch S2-14(b) on the output side (latter stage) is switched to the designated channel (step S03).
 光ポート監視部S2-20によって、光スイッチS2-14(b)の指定チャネルから出力される光試験光S2-200の光強度を測定する(ステップS04)。次に、前段の光スイッチS2-14(a)を微小角度、例えば1degだけ正負の方向に回転する(ステップS05)。光スイッチS2-14(a)が回転した後、光スイッチS2-14(b)の指定チャネルから出力される光試験光S2-200の光強度を測定し(ステップS06)、光強度の最大値を取得する(ステップS07)。ステップS07においては、例えば、図5に示すように、3つの角度(-1deg、0deg、1deg)で計測をした場合において、3つの角度のうち真ん中の角度(0deg)でピーク値が得られる場合に最大値を取得できたとして、次の工程ステップS08に進む。最大値は、3つの角度のうち真ん中の角度でピーク値が得られた場合のそのピーク値としてもよい。 The optical port monitoring unit S2-20 measures the optical intensity of the optical test light S2-200 output from the designated channel of the optical switch S2-14(b) (step S04). Next, the front-stage optical switch S2-14(a) is rotated by a minute angle, eg, 1 degree, in the positive and negative directions (step S05). After the optical switch S2-14(a) rotates, the optical intensity of the optical test light S2-200 output from the designated channel of the optical switch S2-14(b) is measured (step S06), and the maximum optical intensity (step S07). In step S07, for example, as shown in FIG. 5, when measuring at three angles (-1deg, 0deg, 1deg), when the peak value is obtained at the middle angle (0deg) among the three angles , the process proceeds to the next process step S08. The maximum value may be the peak value when the peak value is obtained at the middle angle of the three angles.
 仮に、図6のように、3つの角度(-1deg、0deg、1deg)で最大値が得られなかった場合、すなわち、3つの角度(-1deg、0deg、1deg)のうち真ん中の角度(0deg)でピーク値が得られなかった場合は、ステップS05に戻り、さらに微小角度分だけ最大値が得られるように回転させ、最大値を取得する。図6では、回転角度が-1deg、0deg及び1degでは最大値を取得することができなかったため、回転角度を2degとして前述した光強度測定をさらに行い、その結果を表している。図6では、0deg、1deg及び2degの光強度に注目し、真ん中の角度である1degでピーク値が得られたため、最大値が取得できたと判断できる。 If the maximum value is not obtained at three angles (-1deg, 0deg, 1deg) as in FIG. 6, that is, the middle angle (0deg) among the three angles (-1deg, 0deg, 1deg) If the peak value is not obtained in step S05, the rotation is further performed by a minute angle so as to obtain the maximum value, and the maximum value is obtained. In FIG. 6, since the maximum value could not be obtained at the rotation angles of -1 deg, 0 deg, and 1 deg, the light intensity measurement described above was further performed with the rotation angle of 2 deg, and the results are shown. In FIG. 6, attention is paid to the light intensity of 0 deg, 1 deg, and 2 deg, and since the peak value is obtained at 1 deg, which is the middle angle, it can be judged that the maximum value has been obtained.
 チャネルが10個である光スイッチS14-2について、各チャネルと、そのチャネルに対応する回転角度とを表すデータベースを図7に示す。光強度の最大値を取得できた場合は、図7に示すように、データベースを更新する(ステップS08)。なお、最大値を取得できた回転角度が予め設定した回転角度と異なる場合にのみデータベースを更新してもよい。図7では、チャネル1、5及び8についてデータベースを更新した例を示すが、これに限定されない。データベースを更新することで次回にデータを活用することが可能となる。 FIG. 7 shows a database representing each channel and the rotation angle corresponding to the channel for the optical switch S14-2 having 10 channels. If the maximum value of light intensity can be acquired, the database is updated as shown in FIG. 7 (step S08). Note that the database may be updated only when the rotation angle for which the maximum value was acquired is different from the preset rotation angle. FIG. 7 shows an example of updating the database for channels 1, 5 and 8, but is not limited to this. By updating the database, the data can be used next time.
 前段の光スイッチS2-14(a)の回転角度ずれ補償が完了したら、次は、同様に後段の光スイッチS2-14(b)を微小角度だけ回転する(ステップS09)。光スイッチS2-14(b)が回転した後、光スイッチS2-14(b)の指定チャネルから出力される光試験光S2-200の光強度を同様に測定する(ステップS10)。光試験光S2-200の最大値が取得できるまで、ステップS09及びステップS10を実施する(ステップS11)。光強度の最大値を取得できた場合は、データベースを更新し(ステップS12)、回転角度ずれ補償方法の工程は完了となる。 After compensating for the rotational angle deviation of the front-stage optical switch S2-14(a), the rear-stage optical switch S2-14(b) is similarly rotated by a minute angle (step S09). After the optical switch S2-14(b) rotates, the optical intensity of the optical test light S2-200 output from the designated channel of the optical switch S2-14(b) is similarly measured (step S10). Steps S09 and S10 are performed until the maximum value of the optical test light S2-200 is obtained (step S11). If the maximum value of the light intensity can be acquired, the database is updated (step S12), and the process of the rotation angle deviation compensation method is completed.
 本発明の光ノードS1-7が備える光ノード用制御部S2-9はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。 The optical node controller S2-9 provided in the optical node S1-7 of the present invention can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
(実施形態2)
 以下、本実施形態に係る光ノード、回転角度ずれ補償方法及び回転角度ずれ補償システムについて説明する。本実施形態では、回転角度ずれ補償を行うタイミングが実施形態1と異なるだけである。
(Embodiment 2)
The optical node, rotational angle deviation compensation method, and rotational angle deviation compensation system according to the present embodiment will be described below. The present embodiment differs from the first embodiment only in the timing of performing rotation angle deviation compensation.
 実施形態1で述べたように、光スイッチS2-14による光経路の切り替えのタイミング毎に、回転角度ずれ補償を実施すると、切替毎に最適な光接続状況を実現できるが、その分、利用頻度が高くなり余分な電力を消費してしまう場合がある(遂次補償モード)。 As described in the first embodiment, if rotational angle deviation compensation is performed at each timing of optical path switching by the optical switch S2-14, the optimum optical connection state can be realized for each switching, but the frequency of use is reduced accordingly. can be high and consume extra power (sequential compensation mode).
 したがって、運用の一例として、例えば光スイッチS2-14の一定の切替回数毎に回転角度ずれ補償を行うことで、遂次補償モードより消費電力を抑制することが可能となる(定期補償モード)。 Therefore, as an example of operation, it is possible to reduce power consumption more than in the sequential compensation mode (regular compensation mode) by compensating for rotational angle deviation at each constant number of switching times of the optical switch S2-14.
 また、光切替のタイミングではなく、地震等自然災害または事故によって、光ノードS1-7に強い衝撃が生じた場合は、これを直ぐに検知し、回転角度ずれ補償を実施する必要がある(緊急補償モード)。衝撃の検知については、例えば、光ノードS1-7に備えられた振動検知センサS2-31で行ってもよいし、制御装置S1-1に備えられた振動検知センサS1-31で行ってもよい。また、制御装置S1-1が外部ネットワークS1-30に接続し、情報を取得することで、衝撃検知を行ってもよい。 Also, if a strong impact occurs to the optical node S1-7 due to a natural disaster such as an earthquake or an accident instead of the timing of optical switching, it is necessary to detect this immediately and compensate for the rotation angle deviation (emergency compensation mode). The detection of impact may be performed, for example, by the vibration detection sensor S2-31 provided in the optical node S1-7, or may be performed by the vibration detection sensor S1-31 provided in the control device S1-1. . Alternatively, the impact detection may be performed by the control device S1-1 connecting to the external network S1-30 and acquiring information.
(本発明の効果)
 以上、2つの実施形態で説明したように、本発明の光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法を用いれば、光スイッチの光接続の損失が大きくなるリスクを大幅に低減できるため、信頼性の高い光ファイバネットワークシステムを提供することが可能となる。
(Effect of the present invention)
As described in the above two embodiments, by using the optical node, the rotation angle deviation compensation system, and the rotation angle deviation compensation method of the present invention, the risk of increasing the loss of the optical connection of the optical switch can be greatly reduced. , it becomes possible to provide a highly reliable optical fiber network system.
 なお、上記各発明は、可能な限り組み合わせることができる。 The above inventions can be combined as much as possible.
 本開示に係る光ノード、回転角度ずれ補償システム及び回転角度ずれ補償方法は、情報通信産業に適用することができる。 The optical node, rotational angle deviation compensation system, and rotational angle deviation compensation method according to the present disclosure can be applied to the information and communication industry.
S1-1:制御装置
S1-2:光源
S1-3:光サーキュレータ
S1-4:光受信器
S1-5:コントローラ
S1-6:伝送路光ファイバ
S1-7:光ノード
S1-8:入出力光ファイバ
S1-9:入出力光ファイバ
S1-10:下り光
S1-11:上り光
S1-20:光試験用光源
S1-21:光セレクタ
S1-22:光試験光入力用カプラ
S1-30:外部ネットワーク
S1-31:振動検知センサ
S1-80、S1-90:光ポート
S2-1:光分岐部
S2-2:入力ゲート光スイッチ
S2-3:光電変換素子
S2-4:二次電池
S2-5:駆動電力
S2-6:光カプラ
S2-7:光受信器
S2-8:反射光スイッチ
S2-9:光ノード用制御部
S2-14:光スイッチ
S2-15:光導波路配線
S2-16:光クロスコネクト部
S2-20:光ポート監視部
S2-22:給電部
S2-30:光経路切替部
S2-31:振動検知センサ
S2-100:入力側光ファイバ
S2-101:出力側光ファイバ
S2-200:光試験光
S3-1:フェルール回転用アクチュエータ
S3-2:入力側フェルール
S3-3:出力側フェルール
S3-4:スリーブ
S3-5:入力側フランジ
S3-6:出力側フランジ
S3-7:固定治具
S1-1: control device S1-2: light source S1-3: optical circulator S1-4: optical receiver S1-5: controller S1-6: transmission line optical fiber S1-7: optical node S1-8: input/output light Fiber S1-9: input/output optical fiber S1-10: downstream light S1-11: upstream light S1-20: optical test light source S1-21: optical selector S1-22: optical test light input coupler S1-30: external Network S1-31: Vibration detection sensor S1-80, S1-90: Optical port S2-1: Optical splitter S2-2: Input gate optical switch S2-3: Photoelectric conversion element S2-4: Secondary battery S2-5 : Drive power S2-6: Optical coupler S2-7: Optical receiver S2-8: Reflected optical switch S2-9: Optical node controller S2-14: Optical switch S2-15: Optical waveguide wiring S2-16: Light Cross-connecting section S2-20: Optical port monitoring section S2-22: Power feeding section S2-30: Optical path switching section S2-31: Vibration detection sensor S2-100: Input side optical fiber S2-101: Output side optical fiber S2- 200: Optical test light S3-1: Ferrule rotation actuator S3-2: Input side ferrule S3-3: Output side ferrule S3-4: Sleeve S3-5: Input side flange S3-6: Output side flange S3-7: fixing jig

Claims (8)

  1.  光試験光が入力される入力側光ポートと、
     前記入力側光ポートに接続され、複数のチャネルを有する第1の光スイッチと、
     前記第1の光スイッチを回転させる第1の回転機構と、
     前記第1の光スイッチに接続され、複数のチャネルを有する第2の光スイッチと、
     前記第2の光スイッチを回転させる第2の回転機構と、
     前記第2の光スイッチに接続され、前記光試験光が出力される出力側ポートと、
     前記出力側ポートを通過する前記光試験光の光強度測定を行う光ポート監視部と、
     前記第1の回転機構、前記第2の回転機構及び前記光ポート監視部に接続され、前記第1の光スイッチの指定チャネル及び前記第2の光スイッチの指定チャネルについてそれぞれ、光スイッチを微小角度回転させてから前記光ポート監視部に前記光強度測定を行わせ、前記光試験光の光強度が最大値となる光スイッチの回転角度を抽出し、各指定チャネルの前記回転角度を表すデータベースを更新する回転角度ずれ補償を行う光ノード用制御部と、
    を備える光ノード。
    an input-side optical port into which the optical test light is input;
    a first optical switch connected to the input side optical port and having a plurality of channels;
    a first rotating mechanism for rotating the first optical switch;
    a second optical switch connected to the first optical switch and having a plurality of channels;
    a second rotating mechanism for rotating the second optical switch;
    an output side port connected to the second optical switch and outputting the optical test light;
    an optical port monitoring unit that measures the optical intensity of the optical test light passing through the output port;
    connected to the first rotating mechanism, the second rotating mechanism, and the optical port monitoring unit, and rotating the optical switch at a small angle for the designated channel of the first optical switch and the designated channel of the second optical switch, respectively; After rotating, the optical port monitoring unit measures the light intensity, extracts the rotation angle of the optical switch at which the light intensity of the optical test light reaches the maximum value, and creates a database representing the rotation angle of each designated channel. an optical node control unit that compensates for rotational angle deviation to be updated;
    An optical node with
  2.  前記第1の光スイッチ及び前記第2の光スイッチは、
     長軸方向に垂直な断面における中心を中心とする円の円周上に一又は複数の光ファイバコアの中心が配置された入力側フェルールと、
     長軸方向に垂直な断面における中心を中心とする前記円の円周上に一又は複数の光ファイバコアの中心が配置された出力側フェルールと、を長軸方向の中心軸を合わせて突き合せた構成であり、
     前記入力側フェルール及び前記出力側フェルールの少なくともいずれか一方が、回転することにより複数チャネルを切り替え、かつ、微小角度で回転が可能である
    ことを特徴とする請求項1の光ノード。
    The first optical switch and the second optical switch are
    an input-side ferrule in which the centers of one or more optical fiber cores are arranged on the circumference of a circle centered at the center in a cross section perpendicular to the longitudinal direction;
    and an output ferrule in which the centers of one or more optical fiber cores are arranged on the circumference of the circle whose center is the center in the cross section perpendicular to the longitudinal direction, and butt together with the central axes in the longitudinal direction aligned. and
    2. The optical node according to claim 1, wherein at least one of said input side ferrule and said output side ferrule is capable of switching a plurality of channels by rotating and rotating at a minute angle.
  3.  下り光が入力される入出力部と、
     前記入出力部に入力された前記下り光を電力として蓄積する給電部と、をさらに備え、
     前記第1の回転機構、前記第2の回転機構、前記光ポート監視部及び前記光ノード用制御部は、前記給電部に蓄積された電力で動作する
    ことを特徴とする請求項1又2に記載の光ノード。
    an input/output unit into which downstream light is input;
    a power supply unit that accumulates the downstream light input to the input/output unit as electric power,
    3. The apparatus according to claim 1, wherein said first rotating mechanism, said second rotating mechanism, said optical port monitoring unit, and said optical node control unit operate with electric power accumulated in said power supply unit. Optical node as described.
  4.  前記光ノード用制御部は、自身で振動を検知した時に、又は外部から通知を受信した時に、前記回転角度ずれ補償を行う
    ことを特徴とする請求項1から3のいずれかに記載の光ノード。
    4. The optical node according to any one of claims 1 to 3, wherein the optical node controller performs the rotation angle deviation compensation when it detects vibration by itself or when it receives a notification from the outside. .
  5.  前記光ノード用制御部は、前記第1の光スイッチ又は前記第2の光スイッチによる光経路切替毎に、又は一定回数の前記光経路切替毎に前記回転角度ずれ補償を行う
    ことを特徴とする請求項1から3のいずれかに記載の光ノード。
    The optical node controller is characterized in that the rotational angle deviation compensation is performed each time the optical path is switched by the first optical switch or the second optical switch, or each time the optical path is switched a certain number of times. 4. An optical node according to any one of claims 1 to 3.
  6.  請求項3から5のいずれかに記載の光ノードと、前記光ノードの前記給電部に前記下り光を供給し、かつ、前記光試験光を入力する制御装置と、
    を備える回転角度ずれ補償システム。
    an optical node according to any one of claims 3 to 5; a control device that supplies the downstream light to the power supply unit of the optical node and inputs the optical test light;
    A rotational angular misalignment compensation system comprising:
  7.  請求項4に記載の光ノードと、外部ネットワークに接続され、又は振動を検知するセンサを備え、前記外部ネットワークにより災害の発生を検知した時又は前記センサにより振動を検知した時に、前記災害の発生又前記振動の検知を前記光ノードに前記通知として送信する制御装置と、
    を備える回転角度ずれ補償システム。
    5. The optical node according to claim 4, and a sensor connected to an external network or detecting vibration, wherein the disaster occurs when the external network detects the occurrence of a disaster or when the sensor detects the vibration. a control device that transmits detection of the vibration to the optical node as the notification;
    A rotational angular misalignment compensation system comprising:
  8.  光試験光を入力側ポートに入力すること、
     前記入力側ポートに接続される第1の光スイッチを指定チャネルに切り替えること、
     前記第1の光スイッチの指定チャネルと接続される第2の光スイッチを指定チャネルに切り替えること、
     前記第2の光スイッチの指定チャネルと接続される出力側ポートに出力される前記光試験光の光強度測定を行うこと、
     前記第1の光スイッチの指定チャネル及び前記第2の光スイッチの指定チャネルについてそれぞれ、光スイッチを微小角度回転させて前記光強度測定を行い、前記光試験光の光強度が最大値となる光スイッチの回転角度を抽出し、各指定チャネルの前記回転角度を表すデータベースを更新すること
    を行う回転角度ずれ補償方法。
    inputting the optical test light into the input side port;
    switching a first optical switch connected to the input port to a designated channel;
    switching a second optical switch connected to the designated channel of the first optical switch to the designated channel;
    measuring the optical intensity of the optical test light output to the output side port connected to the designated channel of the second optical switch;
    For each of the designated channel of the first optical switch and the designated channel of the second optical switch, the optical switch is rotated by a small angle to measure the optical intensity, and the optical test light has the maximum optical intensity. A rotation angle deviation compensation method for extracting a rotation angle of a switch and updating a database representing said rotation angle for each designated channel.
PCT/JP2021/025991 2021-07-09 2021-07-09 Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method WO2023281744A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/025991 WO2023281744A1 (en) 2021-07-09 2021-07-09 Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method
JP2023533025A JPWO2023281744A1 (en) 2021-07-09 2021-07-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025991 WO2023281744A1 (en) 2021-07-09 2021-07-09 Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method

Publications (1)

Publication Number Publication Date
WO2023281744A1 true WO2023281744A1 (en) 2023-01-12

Family

ID=84800529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025991 WO2023281744A1 (en) 2021-07-09 2021-07-09 Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method

Country Status (2)

Country Link
JP (1) JPWO2023281744A1 (en)
WO (1) WO2023281744A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111812A (en) * 1980-02-08 1981-09-03 Hitachi Ltd Rotary optical switch
JPS6249314A (en) * 1985-08-28 1987-03-04 Mitsubishi Electric Corp Optical switch
US4946247A (en) * 1988-09-29 1990-08-07 Fibercom, Inc. Fiber optic bypass switch
JPH09105875A (en) * 1995-06-07 1997-04-22 Tektronix Inc Optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111812A (en) * 1980-02-08 1981-09-03 Hitachi Ltd Rotary optical switch
JPS6249314A (en) * 1985-08-28 1987-03-04 Mitsubishi Electric Corp Optical switch
US4946247A (en) * 1988-09-29 1990-08-07 Fibercom, Inc. Fiber optic bypass switch
JPH09105875A (en) * 1995-06-07 1997-04-22 Tektronix Inc Optical switch

Also Published As

Publication number Publication date
JPWO2023281744A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US8692984B2 (en) Field tester for topologies utilizing array connectors and multi-wavelength field tester for topologies utilizing array connectors
CN104426603A (en) Optical network detection method, optical network detection device, optical network detection equipment, optical network detection system and optical splitter
WO2018130217A1 (en) Bearing status online monitoring system and method based on optical fiber vibration sensing
US20210381907A1 (en) Planar optical waveguide device, and temperature measurement system
CN111699637B (en) Method and apparatus for fiber optic line fault determination
WO2023281744A1 (en) Optical node, rotation angle deviation compensation system, and rotation angle deviation compensation method
CN111162835A (en) Optical time domain reflectometer
CN101299650B (en) Apparatus for converting double channel wavelength based on mode splitting silicon based micro-ring
WO2022199572A1 (en) Light-splitting apparatus, light-splitting system, passive optical network and optical fiber fault detection method
CN113285750B (en) Optical fiber communication equipment and power communication network fault diagnosis method
CN110138448A (en) A kind of fault monitoring system and method for the transmission of long range single channel optical fiber bidirectional
CN102893539B (en) A kind of optical-fiber network monitoring modular, optical communication system and optical-fiber network monitoring method
WO2020044661A1 (en) Optical time domain reflectometer, test method for optical transmission path, and test system for optical transmission path
WO2019169525A1 (en) Optical performance monitoring apparatus and method
JPH05172693A (en) Monitor devise of star bus type optical fiber line network
JP3042595B2 (en) Optical line maintenance system
Premadi et al. Application of PIC microcontroller for online monitoring and fiber fault identification
US20230008989A1 (en) Optical structure, optical coupling method, and photonic integrated circuit chip
WO2024001750A1 (en) Co-packaged optics (cpo) module
KR102402129B1 (en) Cloud-based intelligent optical fiber monitoring system
CN217546052U (en) System combining optical time domain reflectometer and optical fiber vibration sensor
US20220416885A1 (en) Optronic transceiver module with integrated protection
JPH1123417A (en) Monitoring system for optical fiber line
WO2022013931A1 (en) Optical fiber switch
CN210867700U (en) Optical time domain reflectometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949376

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533025

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE