WO2023286157A1 - 送信制御装置、無線通信システム、送信制御方法およびプログラム - Google Patents

送信制御装置、無線通信システム、送信制御方法およびプログラム Download PDF

Info

Publication number
WO2023286157A1
WO2023286157A1 PCT/JP2021/026304 JP2021026304W WO2023286157A1 WO 2023286157 A1 WO2023286157 A1 WO 2023286157A1 JP 2021026304 W JP2021026304 W JP 2021026304W WO 2023286157 A1 WO2023286157 A1 WO 2023286157A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
threshold
signal
control method
power
Prior art date
Application number
PCT/JP2021/026304
Other languages
English (en)
French (fr)
Inventor
斗煥 李
淳 増野
貴之 山田
裕文 笹木
康徳 八木
知哉 景山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/026304 priority Critical patent/WO2023286157A1/ja
Priority to JP2023534475A priority patent/JPWO2023286157A1/ja
Publication of WO2023286157A1 publication Critical patent/WO2023286157A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to technology for spatially multiplexing wireless signals using the orbital angular momentum (OAM) of electromagnetic waves.
  • OFAM orbital angular momentum
  • Non-Patent Document 1 An electromagnetic wave with OAM has an equiphase plane distributed spirally along the propagation direction centered on the propagation axis. Electromagnetic waves having different OAM modes and propagating in the same direction have orthogonal spatial phase distributions in the rotation axis direction. can be transmitted.
  • a plurality of antenna elements are arranged in a circle at equal intervals (hereinafter referred to as UCA (Uniform Circular Array)), and a plurality of OAM modes are generated.
  • UCA Uniform Circular Array
  • - Spatial multiplex transmission of different signal sequences can be realized by combining and transmitting (for example, Non-Patent Document 2).
  • a Butler circuit (Butler matrix circuit), for example, is used for signal generation and signal separation in a plurality of OAM modes.
  • a transmission device using a UCA and a Butler circuit enables large-capacity communication, but in the future, it is desired to support the use of high-frequency bands and longer transmission distances.
  • the disclosed technology aims to improve communication quality in high frequency band wireless communication.
  • the technology disclosed is a communication characteristic information acquisition unit that acquires communication characteristic information indicating communication characteristics, and a threshold value between a first threshold and a second threshold that are defined in advance based on the communication characteristic information.
  • Transmission control comprising: a power control method determination unit that determines a power control method for a transmission signal based on power up to a third threshold; and a signal processing control unit that generates a transmission signal using the determined power control method. It is a device.
  • FIG. 10 is a diagram showing an example of UCA phase setting for generating an OAM mode signal
  • FIG. 4 is a diagram showing an example of phase distribution and signal strength distribution of an OAM multiplexed signal
  • 1 is a configuration diagram of a communication system according to an embodiment of the present invention
  • FIG. FIG. 2 is a diagram for explaining a conventional power control method
  • FIG. 2 is a diagram for explaining a power control method according to an embodiment of the present invention
  • FIG. It is a figure which shows the structural example of a transmitter.
  • FIG. 3 is a diagram showing a connection configuration example between a Butler circuit and an antenna element in a transmission device
  • 3 is a diagram illustrating an example of functional configuration of a transmission control device;
  • FIG. 9 is a flowchart showing an example of the flow of transmission control processing; It is a figure which shows the structural example of a receiving apparatus.
  • FIG. 4 is a diagram showing a connection configuration example between a Butler circuit and an antenna element in a receiving device; 3 is a diagram illustrating an example of the functional configuration of a reception control device;
  • FIG. FIG. 2 is a diagram for explaining a conventional demodulation technique for nonlinear signals;
  • 9 is a flowchart showing an example of the flow of reception control processing;
  • FIG. 2 is a diagram for explaining a method of demodulating a received signal according to a conventional technique;
  • FIG. 2 is a diagram for explaining a method of demodulating a received signal according to an embodiment of the present invention;
  • FIG. It is a figure which shows the hardware configuration example of a computer.
  • FIG. 1 is a diagram showing an example of UCA phase setting for generating an OAM mode signal.
  • the UCA shown in FIG. 1 is a UCA consisting of eight antenna elements.
  • the signals of OAM modes 0, 1, 2, 3, are generated by setting the phase of the signal to be supplied to each antenna element so that the phase becomes n rotations (n ⁇ 360 degrees).
  • a signal in which the direction of phase rotation is opposite to that of the signal in OAM mode n is called OAM mode-n.
  • OAM mode-n A signal in which the direction of phase rotation is opposite to that of the signal in OAM mode n.
  • the direction of phase rotation of the signal in the positive OAM mode is assumed to be counterclockwise
  • the direction of phase rotation of the signal in the negative OAM mode is assumed to be clockwise.
  • signals to be transmitted in each OAM mode may be generated and combined in advance, and the combined signal for each OAM mode may be transmitted using a single UCA, or a plurality of UCAs may be used and different UCAs may be used for each OAM mode. Signals for each OAM mode may be transmitted.
  • the phase of each antenna element of the UCA on the receiving side should be set in the opposite direction to the phase of the antenna element on the transmitting side.
  • Interference between OAM modes means, for example, that a signal transmitted in OAM mode 1 from a transmitting device is output as a signal in OAM mode 2 on the receiving side.
  • FIG. 2 is a diagram showing an example of phase distribution and signal intensity distribution of OAM multiplexed signals.
  • the arrows represent the phase distributions of the OAM mode 1 and OAM mode 2 signals viewed from the transmission side on the end face (propagation orthogonal plane) orthogonal to the propagation direction.
  • the arrow starts at 0 degrees and the phase changes linearly and the arrow ends at 360 degrees. That is, the signal of OAM mode n propagates while rotating the phase by n (n ⁇ 360 degrees) on the propagation orthogonal plane.
  • the arrows of the phase distribution of the signals of OAM modes -1 and -2 are reversed.
  • the signal intensity distribution and the position where the signal intensity is maximized differ for each OAM mode.
  • the same OAM modes with different signs have the same intensity distribution.
  • the higher the order of the OAM mode the farther the position where the signal intensity is maximized from the propagation axis (Non-Patent Document 2).
  • the OAM mode with a larger value is called a higher-order mode.
  • the OAM mode 3 signal is a higher order mode than the OAM mode 0, OAM mode 1, and OAM mode 2 signals.
  • the position where the signal intensity is maximized for each OAM mode is indicated by a circular ring. Accordingly, the beam diameter of the OAM mode multiplexed signal expands, and the ring indicating the position where the signal intensity is maximized for each OAM mode becomes larger.
  • FIG. 3 is a configuration diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 3 , the radio communication system according to this embodiment has transmitting apparatus 100 and receiving apparatus 200 .
  • the transmitting device 100 and the receiving device 200 each have a UCA and a Butler circuit.
  • transmitting apparatus 100 multiplexes and transmits one or more OAM mode signals
  • receiving apparatus 200 receives the multiplexed signal of one or more OAM modes transmitted from transmitting apparatus 100. , separate the signals for each OAM mode.
  • the transmitting device 100 and the receiving device 200 are wireless communication devices that perform wireless communication.
  • transmitting apparatus 100 is a stationary base station and receiving apparatus 200 is a mobile terminal.
  • both transmitting device 100 and receiving device 200 may be stationary base stations, or both transmitting device 100 and receiving device 200 may be mobile terminals.
  • each wireless communication device may have the functions of the transmitting device 100 and the receiving device 200, which will be described later.
  • FIG. 4 is a diagram for explaining a conventional power control method.
  • P1 dB (1 dB compression point) or less.
  • the transmission apparatus 100 that transmits a signal in a high frequency band such as Sub-THz lacks power at P1 dB or less, and it is difficult to secure the reception SNR as the transmission distance increases.
  • FIG. 5 is a diagram for explaining the power control method according to the embodiment of the present invention.
  • the area from P1 dB to Psat is utilized to secure a margin in line design.
  • the transmitting apparatus 100 dynamically determines the degree of power exceeding P1 dB, for example, the maximum power value Pth, based on various parameters.
  • receiving apparatus 200 performs demodulation processing using CLUSTERING such as DBSCAN in order to cope with the nonlinearity caused by this. As a result, the reception SNR in receiving apparatus 200 is increased, so that communication quality in long-distance radio communication in a high frequency band can be improved.
  • FIG. 6 is a diagram illustrating a configuration example of a transmission device. As shown in FIG. 6, the transmission device 100 has a UCA 110, an OAM mode generation device 120, a signal processing device 130, and a transmission control device 140. FIG.
  • the signal processing device 130 generates a digital signal to be transmitted on a carrier wave from the input data, converts the digital signal into an analog signal (digital-analog conversion), converts the frequency of the analog signal into the frequency band of the carrier wave (e.g. : Sub-THz band).
  • the signal processing device 130 inputs the generated analog signal to the OAM mode generation device 120 (Butler circuit).
  • transmission control device 140 determines a power control method based on various parameters, and instructs signal processing device 130 to generate a signal using the determined power control method.
  • the signal processing device 130 when the signal processing device 130 receives an instruction to generate OAM mode 1 and OAM mode 2 signals from the transmission control device 140, the signal processing device 130 generates these signals, signal to be transmitted) is input to the input port corresponding to OAM mode 1 of the OAM mode generator 120 (butler circuit), and the signal of OAM mode 2 (signal to be transmitted by radio waves of OAM mode 2) is input to the OAM mode generator 120 (butler circuit). input to the input port corresponding to OAM mode 2 of 120 (Butler circuit).
  • the OAM mode generator 120 is a Butler circuit.
  • FIG. 7 is a diagram showing a connection configuration example between a Butler circuit and an antenna element in a transmission device.
  • the UCA 110 in the example shown in FIG. 7 is an antenna in which eight antenna elements #1 to #8 are arranged in a circular shape.
  • FIG. 7 shows that the Butler circuit has N input ports. Basically, the number of output ports is the maximum number of N, and the maximum number of N is 8 if there are 8 output ports, as in the example of FIG. A "port" may also be called a "terminal".
  • UCA 110 may have more or less than eight antenna elements.
  • FIG. 7 shows that a signal to be transmitted in OAM mode 1 is input to input port A, and a signal to be transmitted in OAM mode-1 is input to input port B.
  • input ports other than input port A and input port B correspond to OAM modes other than OAM modes 1 and -1.
  • each output port For the input from input port A, each output port outputs a signal with a phase difference of 45° (360°/8) counterclockwise, and for the input from input port B, each output A signal having a phase difference of ⁇ 45° counterclockwise is output from the port. That is, when there are inputs to both the input port A and the input port B, a signal obtained by combining (multiplexing) two signals having different phases is output from each output port.
  • each antenna element of the UCA 110 outputs a signal obtained by combining two signals having the following phases. be.
  • output port J of OAM mode generator 120 (Butler circuit) is connected to antenna element #1 of UCA 110, output port I is connected to antenna element #2 of UCA 110, and output port H is connected to antenna element #2 of UCA 110.
  • output port G is connected to antenna element #4 of UCA 110
  • output port F is connected to antenna element #5 of UCA 110
  • output port E is connected to antenna element #5 of UCA 110.
  • #6 output port D is connected to antenna element #7 of UCA 110, and output port C is connected to antenna element #8 of UCA 110.
  • the output port J is shown connected in FIG. A signal output from each output port is supplied to a connected antenna element, and output as a radio wave from the antenna element.
  • FIG. 8 is a diagram illustrating an example of the functional configuration of a transmission control device.
  • the transmission control device 140 includes a communication characteristic information acquisition section 141 , a power control method determination section 142 , a signal processing control section 143 and an OAM mode generation control section 144 .
  • the communication characteristic information acquisition unit 141 acquires communication characteristic information by receiving from the receiving device 200 or another device.
  • the communication characteristic information is information indicating characteristics of communication between the transmitting device 100 and the receiving device 200, and includes, for example, (1) transmission/reception distance, (2) desired multi-level modulation number, (3) signal peak to average power ratio (PAPR; Peak-to-Average Power Ratio), (4) Characteristics of the area from P1dB to Psat in communication devices such as UCA 110, (5) SNR of received signal (Signal-Noise Ratio), (6 ) is the error vector magnitude (EVM) of the received signal.
  • PPAPR Peak-to-Average Power Ratio
  • the transmission control device 140 may store in advance the set values and the characteristics of the transmission device 100, such as the characteristics of the range from P1 dB to Psat in the communication device.
  • SNR Signal-Noise Ratio
  • EVM Error Vector Magnitude
  • the transmission control device 140 may assume that (1) the transmission/reception distance is already known, or may receive information indicating the measurement result from a measuring instrument or the like (not shown).
  • the power control method determination unit 142 determines the power control method for transmission signals based on the communication characteristic information. Examples 1 to 3 of specific power control methods will be described below.
  • the transmission control device 140 stores in advance related information indicating the relationship between the SNR of the received signal and the number of multi-level modulation. Then, the power control method determination unit 142 (1) calculates the propagation attenuation, channel loss, etc. based on the transmission/reception distance, and (5) the SNR of the received signal is (2) desired even if the transmission power is P1 dB or less. Based on the above-described related information, it is determined whether or not the value is such that the multi-level modulation number can be achieved.
  • the power control method determining unit 142 controls the power of the transmission signal to be less than or equal to P1 dB (first threshold). If it is determined that the modulation number cannot be achieved, the power of the transmission signal is controlled to be equal to or lower than the threshold value Pth.
  • the threshold (Pth) is a threshold (third threshold) set in advance as a value equal to or greater than P1 dB (first threshold) and equal to or less than Psat (second threshold).
  • power control method determining section 142 stores in advance information indicating how much the nonlinearity of the received signal can be handled by clustering such as DBSCAN by receiving apparatus 200 described later, or feeds back information from receiving apparatus 200. , and the threshold value Pth may be determined based on the information.
  • Transmission control apparatus 140 stores in advance information indicating the possibility of performance improvement when the power of a transmission signal is controlled to P1 dB or less (conventional method) and when it is controlled to P1 dB or more (this embodiment).
  • the power control method determination unit 142 determines the power control method based on the information.
  • the power control method determination unit 142 determines whether (5) if the SNR of the received signal is increased by 2 dB power from P1 dB, (2) is the value sufficient for transmission of the desired multi-level modulation number? determine whether or not (2)
  • the desired multilevel modulation number is, for example, 16QAM (Quadrature Amplitude Modulation) by a quadrature phase shift keying (QPSK) system.
  • the power control method determination unit 142 controls the power of the transmission signal to be less than or equal to P1 dB (the first threshold) as in the conventional art, or controls the power of the transmission signal to reach the threshold Pth (the third threshold). (threshold value)).
  • the power control method determination unit 142 stores in advance information indicating how much the nonlinearity of the received signal can be handled by clustering such as DBSCAN by the receiving apparatus 200 described later, or The threshold value Pth may be determined based on the information fed back from the receiving apparatus 200 and accumulated.
  • the power control method determination unit 142 may (4) determine the power control method based on the characteristics of the range from P1 dB to Psat in the communication device such as the UCA 110 . It should be noted that the acquisition method of the information indicating this characteristic is not limited to the method described above, and other methods may be employed. For example, the power control method determination unit 142 determines the power control method based on the difference between P1dB (first threshold) and Psat (second threshold).
  • the power control method determining unit 142 performs control so that the proportion of communication that is 1 dB or more higher than P1 dB becomes 90% when performing power control below Pth, and the proportion of communication that is greater than P1 dB by 2 dB or more becomes 80%. to control. In this way, the power control method determination unit 142 determines a control method that gradually reduces the proportion of high-power communications based on stepwise thresholds. This allows communication devices such as the UCA 110 to be protected from excessive power.
  • the signal processing control unit 143 controls the signal processing device 130 to generate an analog transmission signal using the determined power control method.
  • the OAM mode generation control unit 144 controls the signal processing device 130 and the OAM mode generation device 120 to generate each OAM mode signal based on the generated transmission signal.
  • the transmission control device 140 executes transmission control processing in response to a user's operation or the like.
  • FIG. 9 is a flowchart showing an example of the flow of transmission control processing.
  • the communication characteristic information acquisition unit 141 acquires communication characteristic information (step S11).
  • the power control method determination unit 142 determines the power control method of the transmission signal using any one of the methods of Examples 1 to 3 described above, or a method combining them, based on the communication characteristic information. (Step S12).
  • the signal processing control unit 143 controls generation of transmission signals (step S13). Then, the OAM mode generation control unit 144 controls generation of each OAM mode signal (step S14).
  • FIG. 10 is a diagram illustrating a configuration example of a receiving device. As shown in FIG. 10 , receiver 200 has UCA 210 , OAM mode separator 220 , signal processor 230 and reception controller 240 .
  • the OAM mode separator 220 has a Butler circuit.
  • the OAM mode separation device 220 also includes a measurement section 221 that measures the SNR, error vector amplitude, etc. output from each output port of the Butler circuit.
  • FIG. 11 is a diagram showing a connection configuration example between the Butler circuit and the antenna element in the receiving device.
  • the UCA 210 in the example shown in FIG. 11 is an antenna in which eight antenna elements #1 to #8 are arranged in a circle.
  • the Butler circuit shown in FIG. 11 corresponds to the Butler circuit in the transmitting device 100 in which the input and output are reversed.
  • the Butler circuit has N output ports. As shown in FIG. 10, providing one UCA and one Butler circuit, eight antenna elements, and the like are examples. There may be multiple UCAs and Butler circuits each. UCA 210 may have more or less than eight antenna elements.
  • FIG. 11 shows, as an example, output port A outputs an OAM mode 1 signal, and output port B outputs an OAM mode-1 signal.
  • output ports other than output port A and output port B correspond to OAM modes other than OAM modes 1 and -1.
  • Each antenna element of the UCA 210 and each input port of the OAM mode separation device 220 (Butler circuit) are connected as shown (for convenience of illustration, only #7 has a connection line drawn).
  • the Butler circuit a phase conversion or the like is performed in a manner opposite to that of the Butler circuit on the transmission side, so that an OAM mode signal corresponding to the output port is output from each output port.
  • the signal processing device 230 shown in FIG. 10 converts the analog signal received from the OAM mode separation device 220 (Butler circuit) into a digital signal (analog-digital conversion), demodulates, generates data (bit string), Output. Further, the signal processing device 230 performs signal separation processing by digital signal processing. In addition, when signal separation is unnecessary, signal separation processing may not be performed.
  • the reception controller 240 instructs the signal processor 230 to receive from the corresponding output port of the OAM mode separator 220 (Butler circuit).
  • the signal processing device 230 performs demodulation processing and the like using the signal received from the output port.
  • FIG. 12 is a diagram illustrating a functional configuration example of a reception control device.
  • the reception control device 240 includes an OAM mode separation control section 241 , a signal processing control section 242 , a measurement information acquisition section 243 and a measurement information transmission section 244 .
  • the OAM mode separation control unit 241 instructs the OAM mode separation device 220 to separate the received signal into each OAM mode.
  • the signal processing control unit 242 instructs the signal processing device 230 to demodulate the separated OAM mode signals. Specifically, the signal processing control unit 242 controls demodulation of non-linear signals by clustering using a method such as DBSCAN or “k-means clustering”. As a result, even if nonlinearity occurs in the output level of a signal with power exceeding P1db, it is possible to avoid deterioration in accuracy of demodulation processing.
  • the conventional demodulation method makes decisions based on predetermined decision points, so although it is possible to discriminate groups of demodulated signals due to nonlinear effects, if the points deviate from the predetermined decision points, communication will fail. It is judged as not completed, that is, as a transmission/reception error. On the other hand, in clustering, determination is made for each cluster, so demodulation can be performed without error even in such cases.
  • FIG. 13 is a diagram for explaining a conventional demodulation technique for nonlinear signals. For example, since the portion marked with a circle 902 in FIG. 13 protrudes from the dotted line 901 indicating the range for determination, an error occurs in the conventional method, but clustering or the like enables error-free demodulation processing.
  • clustering is a data analysis method that classifies a large number of data groups into groups with similar characteristics.
  • 16QAM for example, by classifying data into 16 data groups, it is possible to demodulate a signal with an output level outside the specified range.
  • the measurement information acquisition unit 243 acquires measurement information indicating the SNR, error vector amplitude, etc. measured by the measurement unit 221 .
  • the measurement information transmission section 244 transmits the acquired measurement information to the transmission device 100 .
  • the transmitted measurement information functions as part or all of the communication characteristic information.
  • the reception control device 240 executes reception control processing according to reception of a signal from the transmission device 100 .
  • FIG. 14 is a flowchart showing an example of the flow of reception control processing.
  • the OAM mode separation control unit 241 controls separation of the received signal into each OAM mode (step S21).
  • the signal processing control unit 242 controls demodulation of signals in each OAM mode (step S22).
  • the measurement information acquisition unit 243 acquires measurement information (step S23).
  • the measurement information transmission section 244 transmits the measurement information to the transmission device 100 (step S24).
  • step S22 of the reception control process will be explained in comparison with the conventional method.
  • FIG. 15 is a diagram for explaining a received signal demodulation method according to the prior art.
  • the conventional demodulation method divides the amplitude of the in-phase carrier and the amplitude of the quadrature carrier into four ranges, as indicated by the dotted line 901. This is a method of demodulating for each range.
  • FIG. 16 is a diagram for explaining a received signal demodulation method according to the embodiment of the present invention.
  • the signal processing control unit 242 realizes demodulation of signals that may have nonlinearity by classifying data into data groups of a prescribed number of modulations by clustering.
  • transmitting apparatus 100 it is determined whether or not to transmit a signal with power of P1 dB or more based on communication characteristic information. This secures a margin in line design.
  • the transmitting apparatus 100 dynamically determines the degree of power exceeding P1 dB, for example, the maximum power value Pth, based on various parameters.
  • receiving apparatus 200 performs demodulation processing using clustering by a method such as DBSCAN or “k-means clustering” in order to cope with the nonlinearity caused by this. As described above, it is possible to improve communication quality in long-distance radio communication in a high frequency band.
  • the transmission control device 140 and the reception control device 240 according to this embodiment can be realized, for example, by causing a computer to execute a program describing the processing details described in this embodiment.
  • this "computer” may be a physical machine or a virtual machine on the cloud.
  • the "hardware” described here is virtual hardware.
  • the above program can be recorded on a computer-readable recording medium (portable memory, etc.), saved, or distributed. It is also possible to provide the above program through a network such as the Internet or e-mail.
  • FIG. 17 is a diagram showing a hardware configuration example of the computer.
  • the computer of FIG. 17 has a processor 1001, a memory 1002, a communication device 1003, etc., which are interconnected by a bus B, respectively.
  • a program that implements the processing in the computer is stored in the memory 1002, for example.
  • a processor 1001 implements functions related to the device according to a program stored in a memory 1002 .
  • a communication device 1003 transmits and receives information to and from other devices.
  • This specification describes at least a transmission control device, a wireless communication system, a transmission control method, and a program described in each of the following items.
  • (Section 1) a communication characteristic information acquisition unit that acquires communication characteristic information indicating communication characteristics; a power control method determination unit that determines, based on the communication characteristic information, a power control method for a transmission signal with power up to a third threshold that is between a predetermined first threshold and a second threshold; , a signal processing control unit that generates a transmission signal using the determined power control method; Transmission controller.
  • the communication characteristic information includes transmission/reception distance, desired multi-level modulation number, signal peak-to-average power ratio, characteristics of the area from the first threshold to the second threshold in the communication device, SNR of the received signal, reception containing any of the signal's error vector amplitudes, 2.
  • the transmission control device according to claim 1.
  • the power control method determination unit determines whether or not the SNR can achieve the desired multi-level modulation number even if the transmission power is equal to or lower than the first threshold by calculation based on the transmission/reception distance.
  • the power of the transmission signal becomes equal to or less than the first threshold.
  • the power of the transmission signal is controlled to be equal to or lower than the third threshold.
  • the transmission control device according to claim 2. (Section 4) The power control method determination unit determines a power control method based on characteristics of a region from the first threshold to the second threshold in the communication device. 3. The transmission control device according to claim 2. (Section 5) The power control method determination unit determines a control method in which the proportion of high-power communication gradually decreases based on stepwise thresholds. 5.
  • a wireless communication system comprising a transmission control device and a reception control device, The transmission control device, a communication characteristic information acquisition unit that acquires communication characteristic information indicating communication characteristics; a power control method determination unit that determines, based on the communication characteristic information, a power control method for a transmission signal with power up to a third threshold that is between a predetermined first threshold and a second threshold; , a signal processing control unit that generates a transmission signal using the determined power control method, The reception control device A signal processing control unit that demodulates the received signal by classifying it into data groups with a prescribed number of modulations by clustering, wireless communication system.
  • (Section 7) A transmission control method executed by a computer, a step of obtaining communication characteristic information indicating communication characteristics; determining, based on the communication characteristic information, a transmission signal power control method based on power up to a third threshold that is a threshold between a predetermined first threshold and a second threshold; and generating a transmission signal using the determined power control method.
  • Transmission control method. (Section 8) A program for causing a computer to function as each unit in the transmission control device according to any one of items 1 to 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信の特性を示す通信特性情報を取得する通信特性情報取得部と、前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定する電力制御方法決定部と、決定された前記電力制御方法を用いて、送信信号を生成する信号処理制御部と、を備える送信制御装置である。

Description

送信制御装置、無線通信システム、送信制御方法およびプログラム
 本発明は、電磁波の軌道角運動量(Orbital Angular Momentum:OAM)を用いて無線信号を空間多重伝送する技術に関連するものである。
 近年、伝送容量向上のため、OAMを用いた無線信号の空間多重伝送技術の検討が進められている。(例えば、非特許文献1)。OAMを持つ電磁波は、伝搬軸を中心に伝搬方向にそって等位相面がらせん状に分布する。異なるOAMモードを持ち、同一方向に伝搬する電磁波は、回転軸方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモードの信号を受信装置において分離することにより、信号を多重伝送することが可能である。
 このOAM多重技術を用いた無線通信システムでは、複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(以下、UCA(Uniform Circular Array)と称する。)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送を実現できる(例えば、非特許文献2)。複数のOAMモードの信号生成及び信号分離には、例えば、バトラー回路(バトラーマトリクス回路)が使用される。
J.Wang et al., "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol.6, pp.488-496, July 2012. Y.Yan et al., "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nature Commun., vol.5, p.4876, Sep. 2014.
 上記のように、UCAとバトラー回路を用いた送信装置により、大容量の通信が可能になるが、今後は、高周波数帯の利用と伝送距離の長延化への対応が望まれている。
 しかし、従来の無線伝送技術では、例えばSub-THz等の高周波数帯の信号を送信する通信機器は、マイクロ波等の周波数帯の信号を送信する通信機器よりも出力信号の電力低下が起こりやすいため、伝送距離が長くなると受信SNRの確保が難しくなり、通信品質が劣化するという問題がある。
 開示の技術は、高周波数帯の無線通信における通信品質を向上させることを目的とする。
 開示の技術は、通信の特性を示す通信特性情報を取得する通信特性情報取得部と、前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定する電力制御方法決定部と、決定された前記電力制御方法を用いて、送信信号を生成する信号処理制御部と、を備える送信制御装置である。
 高周波数帯の無線通信における通信品質を向上させることができる。
OAMモードの信号を生成するためのUCAの位相設定例を示す図である。 OAM多重信号の位相分布と信号強度分布の例を示す図である。 本発明の実施の形態における通信システムの構成図である。 従来技術に係る電力制御方法について説明するための図である。 本発明の実施の形態に係る電力制御方法について説明するための図である。 送信装置の構成例を示す図である。 送信装置におけるバトラー回路とアンテナ素子との接続構成例を示す図である。 送信制御装置の機能構成例を示す図である。 送信制御処理の流れの一例を示すフローチャートである。 受信装置の構成例を示す図である。 受信装置におけるバトラー回路とアンテナ素子との接続構成例を示す図である。 受信制御装置の機能構成例を示す図である。 非線形な信号の従来の復調手法について説明するための図である。 受信制御処理の流れの一例を示すフローチャートである。 従来技術に係る受信信号の復調方法について説明するための図である。 本発明の実施の形態に係る受信信号の復調方法について説明するための図である。 コンピュータのハードウェア構成例を示す図である。
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
 (基本的な動作例)
 まず、本実施の形態における送信装置及び受信装置において使用するUCAに係る基本的な設定・動作例について説明する。
 図1は、OAMモードの信号を生成するためのUCAの位相設定例を示す図である。図1に示すUCAは、8つのアンテナ素子からなるUCAである。
 図1において、送信側におけるOAMモード0,1,2,3,…の信号は、UCAの各アンテナ素子(●で示す)に供給される信号の位相差により生成される。すなわち、OAMモードnの信号は、位相がn回転(n×360度)になるように各アンテナ素子に供給する信号の位相を設定して生成する。例えば、図1に示すようにUCAがm=8個のアンテナ素子で構成される場合で、OAMモードn=2の信号を生成する場合は、図1(3)に示すように、位相が2回転するように、各アンテナ素子に反時計回りに360n/m=90度の位相差(0度,90度,180度,270度,0度,90度,180度,270度)を設定する。
 なお、OAMモードnの信号に対して位相の回転方向を逆にした信号をOAMモード-nとする。例えば、正のOAMモードの信号の位相の回転方向を反時計回りとし、負のOAMモードの信号の位相の回転方向を時計回りとする。
 異なる信号系列を異なるOAMモードの信号として生成し、生成した信号を同時に送信することで、空間多重による無線通信を行うことができる。送信側では、各OAMモードで伝送する信号を予め生成・合成し、単一UCAで各OAMモードの合成信号を送信してもよいし、複数のUCAを用いて、OAMモード毎に異なるUCAで各OAMモードの信号を送信してもよい。
 受信側でOAM多重信号を分離するためには、受信側のUCAの各アンテナ素子の位相を、送信側のアンテナ素子の位相と逆方向になるように設定すればよい。
 ただし、送信アンテナと受信アンテナとの間の軸ずれ等により、OAMモード間で干渉が生じた場合、チャネル等化処理や逐次干渉除去処理等のデジタル信号処理により、干渉で混ざったOAMモード間の信号を分離することが必要になる。なお、OAMモード間の干渉とは、例えば、送信装置からOAMモード1で送信した信号が、受信側でOAMモード2の信号として出力されるといったことである。
 図2は、OAM多重信号の位相分布と信号強度分布の例を示す図である。図2(1),(2)において、送信側から伝搬方向に直交する端面(伝搬直交平面)で見た、OAMモード1とOAMモード2の信号の位相分布を矢印で表す。矢印の始めは0度であり、位相が線形に変化して矢印の終わりは360度である。すなわち、OAMモードnの信号は、伝搬直交平面において、位相がn回転(n×360度)しながら伝搬する。なお、OAMモード-1,-2の信号の位相分布の矢印は逆向きになる。
 各OAMモードの信号は、OAMモード毎に信号強度分布と信号強度が最大になる位置が異なる。ただし、符号が異なる同じOAMモードの強度分布は同じである。具体的には、OAMモードが高次になるほど、信号強度が最大になる位置が伝搬軸から遠くなる(非特許文献2)。ここで、OAMモードの値が大きい方を高次モードと称する。例えば、OAMモード3の信号は、OAMモード0、OAMモード1、OAMモード2の信号より、高次モードである。
 図2(3)は、OAMモードごとに信号強度が最大になる位置を円環で示すが、OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなり、かつ伝搬距離に応じてOAMモード多重信号のビーム径が広がり、OAMモードごとに信号強度が最大になる位置を示す円環が大きくなる。
 以下、本実施の形態におけるシステム構成と動作例について詳細に説明する。
 (システム構成)
 図3は、本発明の実施の形態における通信システムの構成図である。図3に示すように、本実施の形態における無線通信システムは、送信装置100と受信装置200を有する。
 送信装置100と受信装置200は、それぞれUCAとバトラー回路を備えている。所望データの送受信において、送信装置100は、1以上のOAMモードの信号を多重して送信し、受信装置200は、送信装置100から送信された1以上のOAMモードが多重された信号を受信し、各OAMモードの信号を分離する。
 送信装置100および受信装置200は、無線通信を行う無線通信装置である。本実施の形態では、送信装置100は移動しない基地局であり、受信装置200は移動端末であることを想定している。ただし、このような想定は一例である。例えば、送信装置100と受信装置200が両方とも移動しない基地局であってもよいし、送信装置100と受信装置200が両方とも移動端末であってもよい。なお、複数の無線通信装置が双方向に通信するため、各無線通信装置が、後述する送信装置100および受信装置200の機能を併せ持っていても良い。
 次に、送信信号の電力制御方法について、従来との比較によって説明する。
 (従来の電力制御方法)
 図4は、従来技術に係る電力制御方法について説明するための図である。従来、送信装置100において送信信号の電力がP1dB(1dB圧縮ポイント)以下となるように、回線設計をすることが一般的である。しかし、Sub-THz等の高周波数帯の信号を送信する送信装置100は、P1dB以下の電力では電力が不足し、伝送距離が長くなると受信SNRの確保が難しい。
 (本実施の形態に係る電力制御方法)
 図5は、本発明の実施の形態に係る電力制御方法について説明するための図である。本実施の形態では、P1dBからPsatの領域を活用し、回線設計におけるマージンを確保する。また、送信装置100がP1dBを超える電力の程度、例えば電力の最大値Pthを各種パラメータに基づいて動的に決定する。さらに、受信装置200は、これにより生じた非線形性に対応するために、DBSCAN等のCLUSTERINGを用いた復調処理を行う。これにより、受信装置200における受信SNRが高くなるため、高周波数帯の長距離無線通信における通信品質を向上させることができる。
 (各装置の構成例)
 次に、送信装置100と受信装置200の装置構成例を説明する。
 (送信装置の構成例)
 まず、送信装置100について説明する。図6は、送信装置の構成例を示す図である。
図6に示すように、送信装置100は、UCA110、OAMモード生成装置120、信号処理装置130、送信制御装置140を有する。
 信号処理装置130は、入力されたデータから、搬送波に乗せて送信するデジタル信号を生成し、デジタル信号をアナログ信号に変換(デジタル-アナログ変換)し、アナログ信号の周波数を搬送波の周波数帯(例:Sub-THz帯)に変換する。信号処理装置130は、生成したアナログ信号をOAMモード生成装置120(バトラー回路)に入力する。
 本実施の形態では、送信制御装置140が、各種パラメータに基づいて電力制御方法を決定し、決定した電力制御方法で信号を生成するよう、信号処理装置130に指示する。
 また、信号処理装置130は、送信制御装置140からOAMモード1とOAMモード2の信号を生成するよう指示を受けると、それらの信号を生成し、OAMモード1の信号(OAMモード1の電波で伝送する信号)を、OAMモード生成装置120(バトラー回路)のOAMモード1に対応する入力ポートに入力し、OAMモード2の信号(OAMモード2の電波で伝送する信号)を、OAMモード生成装置120(バトラー回路)のOAMモード2に対応する入力ポートに入力する。
 上記のとおり、OAMモード生成装置120は、バトラー回路である。図7は、送信装置におけるバトラー回路とアンテナ素子との接続構成例を示す図である。図7に示す例でのUCA110は、8個のアンテナ素子#1~#8が円形状に配置されたアンテナである。
 また、図7は、バトラー回路が、N個の入力ポートを有していることを示している。基本的には、出力ポート数が、Nの最大数であり、図6の例のように、8個の出力ポートを有する場合、Nの最大数は8である。なお、「ポート」を「端子」と呼んでもよい。
 図7のように、UCAとバトラー回路をそれぞれ1つずつ備えることや、アンテナ素子数が8個であること等は一例である。UCAとバトラー回路はそれぞれ複数であってもよい。UCA110のアンテナ素子数は、8個よりも多くてもよいし、少なくてもよい。
 図7には、一例として、入力ポートAに、OAMモード1で送信しようとする信号が入力され、入力ポートBにOAMモード-1で送信しようとする信号が入力されることを示している。N個の入力ポートのうち、入力ポートAと入力ポートB以外の入力ポートは、OAMモード1と-1以外のOAMモードに対応している。
 入力ポートAからの入力に対して、各出力ポートから反時計回りに45°(360°/8)ずつの位相差を持った信号が出力され、入力ポートBからの入力に対して、各出力ポートから反時計回りに-45°ずつの位相差を持った信号が出力される。つまり、入力ポートAと入力ポートBの両方に入力がある場合、各出力ポートから異なる位相を持つ2つの信号が合波(多重)された信号が出力される。
 具体的には、UCA110において、便宜上、アンテナ素子#1を基準(位相0°)とすると、UCA110の各アンテナ素子からは、下記の位相を持った2つの信号が合波された信号が出力される。
 アンテナ素子#1=(0°,0°)、アンテナ素子#2=(45°,-45°)、アンテナ素子#3=(90°,-90°)、アンテナ素子#4=(135°,-135°)、アンテナ素子#5=(180°,-180°)、アンテナ素子#6=(225°,-225°)、アンテナ素子#7=(270°,-270°)、アンテナ素子#8=(315°,-315°)。
 図7の例では、OAMモード生成装置120(バトラー回路)の出力ポートJが、UCA110のアンテナ素子#1に接続され、出力ポートIが、UCA110のアンテナ素子#2に接続され、出力ポートHが、UCA110のアンテナ素子#3に接続され、出力ポートGが、UCA110のアンテナ素子#4に接続され、出力ポートFが、UCA110のアンテナ素子#5に接続され、出力ポートEが、UCA110のアンテナ素子#6に接続され、出力ポートDが、UCA110のアンテナ素子#7に接続され、出力ポートCが、UCA110のアンテナ素子#8に接続される。なお、図示の便宜上、図7では、出力ポートJのみの接続を示している。各出力ポートから出力された信号は、接続されるアンテナ素子に供給され、アンテナ素子から電波として出力される。
 (送信制御装置の機能構成例)
 図8は、送信制御装置の機能構成例を示す図である。送信制御装置140は、通信特性情報取得部141と、電力制御方法決定部142と、信号処理制御部143と、OAMモード生成制御部144と、を備える。
 通信特性情報取得部141は、受信装置200または他の装置等からの受信によって、通信特性情報を取得する。通信特性情報は、送信装置100と受信装置200との間の通信の特性を示す情報であって、例えば、(1)送受信距離、(2)所望の多値変調数、(3)信号のピーク対平均電力比(PAPR;Peak-to-Average Power Ratio)、(4)UCA110等の通信デバイスにおけるP1dBからPsatまでの領域の特性、(5)受信信号のSNR(Signal-Noise Ratio)、(6)受信信号のエラーベクトル振幅(EVM;Error Vector Magnitude)などである。
 これらのうち、例えば、(1)送受信距離、(2)所望の多値変調数、(3)信号のピーク対平均電力比(PAPR;Peak-to-Average Power Ratio)、(4)UCA110等の通信デバイスにおけるP1dBからPsatまでの領域の特性などのように、設定値や送信装置100の特性等については、送信制御装置140があらかじめ記憶していても良い。また、(5)受信信号のSNR(Signal-Noise Ratio)、(6)受信信号のエラーベクトル振幅(EVM;Error Vector Magnitude)などのように、受信装置200に関連する情報については、受信装置200から受信しても良い。
 なお、送信制御装置140は、(1)送受信距離については、既知の前提でも良いし、図示しない測定器等から測定結果を示す情報を受信しても良い。
 電力制御方法決定部142は、通信特性情報に基づいて送信信号の電力制御方法を決定する。具体的な電力制御方法について、以下、例1から例3までについて説明する。
  <例1>
 送信制御装置140は、受信信号のSNRと多値変調数の関連を示す関連情報を、あらかじめ記憶する。そして、電力制御方法決定部142は、(1)送受信距離に基づいて、伝搬減衰やチャネル損失などを計算し、送信電力をP1dB以下にしても(5)受信信号のSNRが(2)所望の多値変調数を達成できる値となるか否かを、上述した関連情報に基づいて判定する。
 続いて、電力制御方法決定部142は、所望の多値変調数を達成できる値となると判定すると、送信信号の電力がP1dB(第一の閾値)以下となるように制御し、所望の多値変調数を達成できる値とならないと判定すると、送信信号の電力が閾値Pth以下となるように制御する。閾値(Pth)は、P1dB(第一の閾値)以上Psat(第二の閾値)以下の値としてあらかじめ設定される閾値(第三の閾値)である。
 また、電力制御方法決定部142は、後述する受信装置200によるDBSCAN等のクラスタリング等により、受信信号の非線形性にどの程度対応できるかを示す情報をあらかじめ記憶するか、または受信装置200からフィードバックして蓄積しておき、当該情報に基づいて閾値Pthを決定しても良い。
  <例2>
 送信制御装置140は、送信信号の電力をP1dB以下に制御する場合(従来法)とP1dB以上に制御する場合(本実施の形態)の性能改善の可能性を示す情報を、あらかじめ記憶する。電力制御方法決定部142は、当該情報に基づいて電力制御方法を決定する。
 例えば、電力制御方法決定部142は、当該情報に基づいて、(5)受信信号のSNRが、P1dBより2dB電力を上げると、(2)所望の多値変調数の伝送に足りる値となるか否かを判定する。(2)所望の多値変調数とは、例えば、四相位相偏移変調方式(QPSK;Quadrature Phase Shift Keying)による16QAM(Quadrature Amplitude Modulation)である。
 電力制御方法決定部142は、判定の結果に応じて、従来のように送信信号の電力がP1dB(第一の閾値)以下となるように制御するか、送信信号の電力が閾値Pth(第三の閾値)以下となるように制御するかを決定する。
 また、例1と同様に、電力制御方法決定部142は、後述する受信装置200によるDBSCAN等のクラスタリング等により、受信信号の非線形性にどの程度対応できるかを示す情報をあらかじめ記憶するか、または受信装置200からフィードバックして蓄積しておき、当該情報に基づいて、閾値Pthを決定しても良い。
  <例3>
 電力制御方法決定部142は、(4)UCA110等の通信デバイスにおけるP1dBからPsatまでの領域の特性に基づいて、電力制御方法を決定しても良い。なお、この特性を示す情報の取得方法は、上述した方法に限られず、他の方法で取得してもよい。例えば、電力制御方法決定部142は、P1dB(第一の閾値)とPsat(第二の閾値)との差分に基づいて、電力制御方法を決定する。
 具体的には、P1dB(第一の閾値)とPsat(第二の閾値)との差分が10dBである場合について説明する。電力制御方法決定部142は、Pth以下の電力制御を行う場合に、P1dBより1dB以上大きい通信の割合が90%となるように制御し、2dB以上大きい通信の割合が80%の割合となるように制御する。このように、電力制御方法決定部142は、段階的な閾値に基づいて電力の大きい通信の割合が徐々に少なくなる制御方法を決定する。これによって、UCA110等の通信デバイスを過大な電力から保護することが可能となる。
 信号処理制御部143は、決定された電力制御方法を用いて、アナログの送信信号を生成するように信号処理装置130を制御する。
 OAMモード生成制御部144は、生成された送信信号に基づいて、各OAMモードの信号を生成するように信号処理装置130およびOAMモード生成装置120を制御する。
 (送信制御装置の動作)
 次に、送信制御装置140の動作について説明する。送信制御装置140は、ユーザの操作等を受けて、送信制御処理を実行する。
 図9は、送信制御処理の流れの一例を示すフローチャートである。通信特性情報取得部141は、通信特性情報を取得する(ステップS11)。次に、電力制御方法決定部142は、通信特性情報に基づいて、上述の例1から例3のいずれかの方法、またはそれを組み合わせた方法を用いて、送信信号の電力制御方法を決定する(ステップS12)。
 続いて、信号処理制御部143は、送信信号の生成を制御する(ステップS13)。そして、OAMモード生成制御部144は、各OAMモードの信号の生成を制御する(ステップS14)。
 (受信装置の構成例)
 次に、受信装置200について説明する。図10は、受信装置の構成例を示す図である。図10に示すように、受信装置200は、UCA210、OAMモード分離装置220、信号処理装置230、受信制御装置240を有する。
 OAMモード分離装置220は、バトラー回路を有する。また、OAMモード分離装置220は、バトラー回路の各出力ポートから出力されるSNR、エラーベクトル振幅等を測定する測定部221を含む。
 図11は、受信装置におけるバトラー回路とアンテナ素子との接続構成例を示す図である。図11に示す例でのUCA210は、8個のアンテナ素子#1~#8が円形状に配置されたアンテナである。
 また、図11に示すバトラー回路は、送信装置100におけるバトラー回路の入力と出力を逆にしたものに相当する。
 図11に示すように、当該バトラー回路はN個の出力ポートを有している。図10のように、UCAとバトラー回路をそれぞれ1つずつ備えることや、アンテナ素子数が8個であること等は一例である。UCAとバトラー回路はそれぞれ複数であってもよい。UCA210のアンテナ素子数は、8個よりも多くてもよいし、少なくてもよい。
 図11は、一例として、出力ポートAからOAMモード1の信号が出力され、出力ポートBからOAMモード-1の信号が出力されることを示している。N個の出力ポートのうち、出力ポートAと出力ポートB以外の出力ポートは、OAMモード1と-1以外のOAMモードに対応している。
 UCA210の各アンテナ素子とOAMモード分離装置220(バトラー回路)の各入力ポートは図示のように接続される(図示の便宜上、#7のみ接続線を描いている)。バトラー回路内では、送信側のバトラー回路とは逆の位相変換等が行われることで、各出力ポートから、その出力ポートに対応したOAMモードの信号が出力される。
 図10に示す信号処理装置230は、OAMモード分離装置220(バトラー回路)から受信したアナログ信号をデジタル信号に変換(アナログ-デジタル変換)し、復調を行って、データ(ビット列)を生成し、出力する。また、信号処理装置230はデジタル信号処理による信号分離処理を行う。なお、信号分離の必要はない場合には、信号分離処理を行わなくてもよい。
 受信制御装置240は、OAMモード分離装置220(バトラー回路)の対応する出力ポートから受信するよう信号処理装置230に指示する。信号処理装置230は、当該出力ポートから受信する信号を用いて、復調処理等を行う。
 (受信制御装置の機能構成例)
 図12は、受信制御装置の機能構成例を示す図である。受信制御装置240は、OAMモード分離制御部241と、信号処理制御部242と、測定情報取得部243と、測定情報送信部244と、を備える。
 OAMモード分離制御部241は、OAMモード分離装置220に、受信信号の各OAMモードへの分離を指示する。
 信号処理制御部242は、信号処理装置230に、分離された各OAMモードの信号の復調を指示する。具体的には、信号処理制御部242は、DBSCANまたは「k-means clustering」等の手法によるクラスタリング等によって、非線形性を有する信号の復調を制御する。これによって、P1dbを超える電力の信号の出力レベルに非線形性が生じても、復調処理の精度の低下を回避することができる。
 つまり、従来の復調手法は、あらかじめ決められた判定点に基づき判定を行うため、非線形効果により、復調信号のかたまりの区分はできるものの、あらかじめ決められた判定点からずれている場合は、通信ができていない、つまり、送受信エラーとして判定する。一方、クラスタリングは、そのかたまりごとに判定をするため、このような場合でもエラーなく復調ができるようになる。
 図13は、非線形な信号の従来の復調手法について説明するための図である。例えば、図13の丸印902の部分は、判定のための範囲を示す点線901からはみ出しているため、従来法ではエラーとなるが、クラスタリング等によればエラーなく復調処理ができるようになる。
 言い換えると、クラスタリングは、データ解析手法の一つで、多数のデータ群を似た特徴を持つ集団に分類することである。これによって、例えば16QAMの場合、16のデータ群に分類することによって、規定の範囲外の出力レベルの信号の復調が可能となる。
 測定情報取得部243は、測定部221によって測定されたSNR、エラーベクトル振幅等を示す測定情報を取得する。測定情報送信部244は、取得した測定情報を送信装置100に送信する。送信された測定情報は、通信特性情報の一部または全部として機能する。
 (受信制御装置の動作)
 次に、受信制御装置240の動作について説明する。受信制御装置240は、送信装置100からの信号の受信に応じて、受信制御処理を実行する。
 図14は、受信制御処理の流れの一例を示すフローチャートである。OAMモード分離制御部241は、受信信号の各OAMモードへの分離を制御する(ステップS21)。次に、信号処理制御部242は、各OAMモードの信号の復調を制御する(ステップS22)。続いて、測定情報取得部243は、測定情報を取得する(ステップS23)。そして、測定情報送信部244は、測定情報を送信装置100に送信する(ステップS24)。
 次に、受信制御処理のステップS22における復調方法について、従来と比較しながら説明する。
 図15は、従来技術に係る受信信号の復調方法について説明するための図である。従来の復調方法は、例えば16QAMの場合、点線901に示すように、同相搬送波(in-phase)の振幅と、直角位相搬送波(quadrature)の振幅とを、それぞれ4つの範囲に分割し、それぞれの範囲ごとに復調する方法である。
 図16は、本発明の実施の形態に係る受信信号の復調方法について説明するための図である。本実施の形態では、P1dbを超える電力の信号に非線形性が生じると、点線901に示すような規定の振幅の範囲に収まらない可能性がある。そこで、信号処理制御部242は、クラスタリングによって規定の変調数のデータ群に分類することによって、非線形性を有する可能性のある信号の復調を実現する。
 本実施の形態に係る送信装置100によれば、通信特性情報に基づいて、P1dB以上の電力による信号を送信するか否かを決定する。これによって、回線設計におけるマージンを確保する。また、送信装置100がP1dBを超える電力の程度、例えば電力の最大値Pthを各種パラメータに基づいて動的に決定する。また、受信装置200は、これにより生じた非線形性に対応するために、DBSCANまたは「k-means clustering」等の手法によるクラスタリングを用いた復調処理を行う。以上により、高周波数帯の長距離無線通信における通信品質を向上させることができる。
 本実施例に係る送信制御装置140および受信制御装置240は、例えば、コンピュータに、本実施の形態で説明する処理内容を記述したプログラムを実行させることにより実現可能である。なお、この「コンピュータ」は、物理マシンであってもよいし、クラウド上の仮想マシンであってもよい。仮想マシンを使用する場合、ここで説明する「ハードウェア」は仮想的なハードウェアである。
 上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。
 図17は、上記コンピュータのハードウェア構成例を示す図である。図17のコンピュータは、それぞれバスBで相互に接続されているプロセッサ1001、メモリ1002、通信装置1003等を有する。
 当該コンピュータでの処理を実現するプログラムは、例えば、メモリ1002に格納されている。プロセッサ1001は、メモリ1002に格納されたプログラムに従って、当該装置に係る機能を実現する。通信装置1003は、他の装置との情報の送受信を行う。
 (実施の形態のまとめ)
 本明細書には、少なくとも下記の各項に記載した送信制御装置、無線通信システム、送信制御方法およびプログラムが記載されている。
(第1項)
 通信の特性を示す通信特性情報を取得する通信特性情報取得部と、
 前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定する電力制御方法決定部と、
 決定された前記電力制御方法を用いて、送信信号を生成する信号処理制御部と、を備える、
 送信制御装置。
(第2項)
 前記通信特性情報は、送受信距離、所望の多値変調数、信号のピーク対平均電力比、通信デバイスにおける前記第一の閾値から前記第二の閾値までの領域の特性、受信信号のSNR、受信信号のエラーベクトル振幅のいずれかを含む、
 第1項に記載の送信制御装置。
(第3項)
 前記電力制御方法決定部は、前記送受信距離に基づく計算によって、送信電力を前記第一の閾値以下にしても前記SNRが前記所望の多値変調数を達成できる値となるか否かを、前記受信信号のSNRと多値変調数の関連を示す関連情報に基づいて判定し、前記所望の多値変調数を達成できる値となると判定すると、送信信号の電力が前記第一の閾値以下となるように制御し、前記所望の多値変調数を達成できる値とならないと判定すると、送信信号の電力が前記第三の閾値以下となるように制御する、
 第2項に記載の送信制御装置。
(第4項)
 前記電力制御方法決定部は、前記通信デバイスにおける前記第一の閾値から前記第二の閾値までの領域の特性に基づいて、電力制御方法を決定する、
 第2項に記載の送信制御装置。
(第5項)
 前記電力制御方法決定部は、段階的な閾値に基づいて電力の大きい通信の割合が徐々に少なくなる制御方法を決定する、
 第4項に記載の送信制御装置。
(第6項)
 送信制御装置と受信制御装置とを備える無線通信システムであって、
 前記送信制御装置は、
 通信の特性を示す通信特性情報を取得する通信特性情報取得部と、
 前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定する電力制御方法決定部と、
 決定された前記電力制御方法を用いて、送信信号を生成する信号処理制御部と、を備え、
 前記受信制御装置は、
 クラスタリングによって規定の変調数のデータ群に分類することによって、受信信号を復調する信号処理制御部を備える、
 無線通信システム。
(第7項)
 コンピュータが実行する送信制御方法であって、
 通信の特性を示す通信特性情報を取得するステップと、
 前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定するステップと、
 決定された前記電力制御方法を用いて、送信信号を生成するステップと、を備える、
 送信制御方法。
(第8項)
 コンピュータを第1項から第5項のいずれか1項に記載の送信制御装置における各部として機能させるためのプログラム。
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
100 送信装置
110 UCA
120 OAMモード生成装置
130 信号処理装置
140 送信制御装置
141 通信特性情報取得部
142 電力制御方法決定部
143 信号処理制御部
144 OAMモード生成制御部
200 受信装置
210 UCA
220 OAMモード分離装置
221 測定部
230 信号処理装置
240 受信制御装置
241 OAMモード分離制御部
242 信号処理制御部
243 測定情報取得部
244 測定情報送信部
1001 プロセッサ
1002 メモリ
1003 通信装置

Claims (8)

  1.  通信の特性を示す通信特性情報を取得する通信特性情報取得部と、
     前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定する電力制御方法決定部と、
     決定された前記電力制御方法を用いて、送信信号を生成する信号処理制御部と、を備える、
     送信制御装置。
  2.  前記通信特性情報は、送受信距離、所望の多値変調数、信号のピーク対平均電力比、通信デバイスにおける前記第一の閾値から前記第二の閾値までの領域の特性、受信信号のSNR、受信信号のエラーベクトル振幅のいずれかを含む、
     請求項1に記載の送信制御装置。
  3.  前記電力制御方法決定部は、前記送受信距離に基づく計算によって、送信電力を前記第一の閾値以下にしても前記SNRが前記所望の多値変調数を達成できる値となるか否かを、前記受信信号のSNRと多値変調数の関連を示す関連情報に基づいて判定し、前記所望の多値変調数を達成できる値となると判定すると、送信信号の電力が前記第一の閾値以下となるように制御し、前記所望の多値変調数を達成できる値とならないと判定すると、送信信号の電力が前記第三の閾値以下となるように制御する、
     請求項2に記載の送信制御装置。
  4.  前記電力制御方法決定部は、前記通信デバイスにおける前記第一の閾値から前記第二の閾値までの領域の特性に基づいて、電力制御方法を決定する、
     請求項2に記載の送信制御装置。
  5.  前記電力制御方法決定部は、段階的な閾値に基づいて電力の大きい通信の割合が徐々に少なくなる制御方法を決定する、
     請求項4に記載の送信制御装置。
  6.  送信制御装置と受信制御装置とを備える無線通信システムであって、
     前記送信制御装置は、
     通信の特性を示す通信特性情報を取得する通信特性情報取得部と、
     前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定する電力制御方法決定部と、
     決定された前記電力制御方法を用いて、送信信号を生成する信号処理制御部と、を備え、
     前記受信制御装置は、
     クラスタリングによって規定の変調数のデータ群に分類することによって、受信信号を復調する信号処理制御部を備える、
     無線通信システム。
  7.  コンピュータが実行する送信制御方法であって、
     通信の特性を示す通信特性情報を取得するステップと、
     前記通信特性情報に基づいて、あらかじめ規定された第一の閾値および第二の閾値の間の閾値である第三の閾値までの電力による送信信号の電力制御方法を決定するステップと、
     決定された前記電力制御方法を用いて、送信信号を生成するステップと、を備える、
     送信制御方法。
  8.  コンピュータを請求項1から5のいずれか1項に記載の送信制御装置における各部として機能させるためのプログラム。
PCT/JP2021/026304 2021-07-13 2021-07-13 送信制御装置、無線通信システム、送信制御方法およびプログラム WO2023286157A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026304 WO2023286157A1 (ja) 2021-07-13 2021-07-13 送信制御装置、無線通信システム、送信制御方法およびプログラム
JP2023534475A JPWO2023286157A1 (ja) 2021-07-13 2021-07-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026304 WO2023286157A1 (ja) 2021-07-13 2021-07-13 送信制御装置、無線通信システム、送信制御方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2023286157A1 true WO2023286157A1 (ja) 2023-01-19

Family

ID=84919132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026304 WO2023286157A1 (ja) 2021-07-13 2021-07-13 送信制御装置、無線通信システム、送信制御方法およびプログラム

Country Status (2)

Country Link
JP (1) JPWO2023286157A1 (ja)
WO (1) WO2023286157A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165090A (ja) * 2008-01-10 2009-07-23 Ricoh Co Ltd 通信装置、通信方法、プログラムおよびコンピュータ読み取り可能な記録媒体
JP2021044675A (ja) * 2019-09-10 2021-03-18 日本無線株式会社 移動端末装置及び無線ネットワークシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165090A (ja) * 2008-01-10 2009-07-23 Ricoh Co Ltd 通信装置、通信方法、プログラムおよびコンピュータ読み取り可能な記録媒体
JP2021044675A (ja) * 2019-09-10 2021-03-18 日本無線株式会社 移動端末装置及び無線ネットワークシステム

Also Published As

Publication number Publication date
JPWO2023286157A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
CN1812307B (zh) 在通信系统中传送信息的方法和系统
JP5018838B2 (ja) 無線通信機
US8688044B2 (en) Method and system for selective equalization enablement based on modulation type
JP5757412B2 (ja) 分散アンテナシステム
CN113645171B (zh) 可重构智能表面多用户mimo系统调制解调方法及装置
US20070263569A1 (en) Detection Complexity Reducing Apparatus and Method in Multiple Input Multiple Output (MIMO) Antenna System
Rajaram et al. Modulation-based simultaneous wireless information and power transfer
Haque et al. A comprehensive study and performance comparison of M-ary modulation schemes for an efficient wireless mobile communication system
US20070265036A1 (en) Radio communication apparatus and method
JP5361827B2 (ja) 送信機および送信方法
WO2023286157A1 (ja) 送信制御装置、無線通信システム、送信制御方法およびプログラム
JP3793637B2 (ja) Ofdm信号伝送装置
JPH11234230A (ja) マルチキャリア通信システム用送信局装置、受信局装置、及びマルチキャリア通信システム
Liang et al. Orthogonal frequency and mode division multiplexing for wireless communications
WO2012078666A1 (en) Signaling to protect advanced receiver performance in wireless local area networks (lans)
Dinis et al. A multi-antenna technique for mm-wave communications with large constellations and strongly nonlinear amplifiers
Shaha et al. Implementing directional Tx-Rx of high modulation QAM signaling with SDR testbed
KR100781640B1 (ko) 다이버시티 이득을 얻는 다중 계층 변조 방법 및 그 장치
Chen et al. Constant envelope multi-mode OAM communication system with UCA antennas
WO2023199461A1 (ja) 無線通信方法、無線通信システム、送信装置及び受信装置
JP5567949B2 (ja) 送信機、その送信機から電波を受信する受信機およびそれらを備えた無線通信システム
Bodet et al. Hierarchical bandwidth phase modulation for reduced peak-to-average power ratio in ultrabroadband terahertz communications
JP2014183532A (ja) 無線通信システム、無線通信装置および無線通信方法
WO2023199467A1 (ja) 無線通信方法、無線通信システム、送信装置及び受信装置
JP3738997B2 (ja) 通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534475

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE