WO2023286151A1 - 加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体 - Google Patents

加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体 Download PDF

Info

Publication number
WO2023286151A1
WO2023286151A1 PCT/JP2021/026274 JP2021026274W WO2023286151A1 WO 2023286151 A1 WO2023286151 A1 WO 2023286151A1 JP 2021026274 W JP2021026274 W JP 2021026274W WO 2023286151 A1 WO2023286151 A1 WO 2023286151A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
machining time
machine tool
load
spindle motor
Prior art date
Application number
PCT/JP2021/026274
Other languages
English (en)
French (fr)
Inventor
直史 霜田
友宏 澤田
敦 齋野
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to US18/578,500 priority Critical patent/US20240338005A1/en
Priority to EP21950094.9A priority patent/EP4364888A1/en
Priority to JP2023534469A priority patent/JP7484025B2/ja
Priority to PCT/JP2021/026274 priority patent/WO2023286151A1/ja
Priority to CN202180099872.6A priority patent/CN117561142A/zh
Publication of WO2023286151A1 publication Critical patent/WO2023286151A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31412Calculate machining time, update as function of load, speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36219Calculate machining information, like time, surface to be machined from program

Definitions

  • the present invention relates to a machining time estimation method, a machining time estimation device, etc. for estimating the machining time of a workpiece in an NC machine tool.
  • Patent Document 1 As a device for estimating the machining time of a workpiece in an NC machine tool, the one disclosed in Japanese Patent Application Laid-Open No. 2003-175439 (Patent Document 1 below) is conventionally known.
  • This machining time estimating device includes a program storage unit for storing an NC program composed of a plurality of command blocks, and after reading the NC program stored in the program storage unit and analyzing it for each block, based on the analysis result
  • a program analysis unit that outputs a control signal, receives the control signal output from the program analysis unit, and based on the received control signal, operates each drive mechanism unit related to axis movement and auxiliary functions of the NC machine tool.
  • a device for estimating a machining time when machining is performed using the NC program in the NC machine tool including a drive control unit for controlling.
  • the machining time control device includes a database in which actual operation time data of the drive mechanism unit related to the auxiliary function is stored, control signals output from the program analysis unit, and operations obtained from the drive mechanism unit.
  • actual operation time calculation means for calculating an actual operation time of at least the drive mechanism unit related to the auxiliary function based on the completion signal, and updating data stored in the database with data related to the calculated actual operation time; Analyze the NC program stored in the program storage unit for each block, calculate an estimated operation time of the drive mechanism unit related to the axis movement based on the analysis result, and search the database based on the analysis result.
  • the operation time estimation means calculates the estimated machining time by integrating the calculated estimated operation times of the respective blocks.
  • the actual operating time calculation means calculates the actual operating time of at least the drive mechanism unit related to the auxiliary function each time the machine tool performs actual machining, and the calculated actual operating time
  • the data stored in the database is updated with such data.
  • this updating process can increase the reliability of the data stored in the database.
  • the operating time estimating means performs the processing of estimating the machining time using the database whose reliability is improved as described above. That is, the NC program stored in the program storage unit is analyzed for each block, and when an axis movement command is issued, the axis movement amount is determined based on the axis movement command, and the axis movement amount and the determined axis movement amount are calculated. An estimated operation time for axis movement is calculated based on the commanded axis feed rate. When the auxiliary function operation is commanded, the database is searched based on the auxiliary function operation command, and the corresponding auxiliary function operation time is acquired.
  • the time obtained by the above processing is used as the estimated operation time of the block.
  • the time obtained by the above processing is added. is used as the estimated operation time of the block, and when the axis movement and the auxiliary function operation are performed in parallel, the longer of the times obtained by the above processing is used as the estimated operation time of the block. .
  • the estimated machining time is calculated by integrating the estimated operation times.
  • the actual operation time of the auxiliary function changes with time or changes depending on the state of the machine tool
  • the actual operation time can be changed using the database reflecting the actual situation. Since the time is calculated, it is possible to calculate a highly accurate machining time that matches the actual state of the machine tool.
  • the cutting speed is subject to certain restrictions due to multiple factors such as work material, tool wear, and toughness of the tool.
  • the limit is determined by the rated output and tool performance, which are the performance of the spindle motor mounted on the NC machine tool.
  • the machining conditions differ depending on the performance of the spindle motor mounted on the NC machine tool and the tools used, and the NC programs created under these machining conditions also differ. Therefore, when machining a certain workpiece, the machining time varies depending on the performance of the spindle motor mounted on the NC machine tool and the tool used.
  • the present invention has been made in view of the above circumstances, and is a machining time estimator capable of estimating a shortened machining time according to the performance when machining the same workpiece using a new machine tool.
  • the object of the present invention is to provide a method, a machining time estimation device, and the like.
  • the present invention for solving the above problems is Using an NC program created for machining a predetermined work, a machining time when the work is machined by a first NC machine tool is obtained as a first machining time, and Acquiring a high-load machining ratio, which is a ratio of high-load machining time that is executed in a high-load state of a predetermined level or more to the rated output of the first spindle motor provided in the first NC machine tool, Based on the obtained first machining time, the high-load machining ratio, the rated output of the first spindle motor, and the rated output of the second spindle motor provided in the second NC machine tool, the workpiece is processed by the second NC machine tool. and the load state with respect to the rated output of the second spindle motor is the same high load state as that of the first NC machine tool.
  • a machining time estimation method for estimating a second machining time when the work is machined by the second NC machine tool is obtained as a first machining time, and Acquiring a
  • the present invention is a device capable of suitably implementing the above-described machining time estimation method, a motor information input unit for inputting the rated output of the first spindle motor provided in the first NC machine tool and the rated output of the second spindle motor provided in the second NC machine tool; a machining time input unit for inputting, as a first machining time, a machining time when the work is machined by the first NC machine tool using an NC program created for machining a predetermined work; A high-load machining ratio input unit for inputting a high-load machining ratio, which is a ratio of high-load machining time that is executed in a high-load state of a predetermined or higher load with respect to the rated output of the first spindle motor, in the first machining time.
  • a machining time estimating unit for estimating a second machining time when the second NC machine tool machining the work by changing the NC program under the same high load condition as in It depends.
  • the rated output of the first spindle motor provided in the first NC machine tool and the rated output of the second spindle provided in the second NC machine tool are output from the motor information input unit.
  • the rated power of the motor is entered and retrieved.
  • the first machining time when machining the workpiece by the first NC machine tool is input, and from the high load machining ratio input unit , a high-load machining ratio, which is the ratio of the high-load machining time that is executed in a high-load state equal to or higher than a predetermined value with respect to the rated output of the first spindle motor, in the first machining time is input and acquired.
  • the machining time estimating unit determines the machining time when the work is machined by the second NC machine tool and the load state with respect to the rated output of the second spindle motor.
  • a second machining time is estimated when the work is machined by the second NC machine tool by changing the NC program to the same high load condition as the high load condition in the 1 NC machine tool.
  • the first NC machine tool is assumed to be the existing equipment
  • the second NC machine tool is assumed to be the equipment to be renewed
  • the second NC machine tool to be renewed is used.
  • the load state with respect to the rated output of the second spindle motor is the same high load state as the high load state in the first NC machine tool. Since the machining time, that is, the second machining time shortened according to the performance of the second NC machine tool is estimated, the user can obtain it when updating from the existing first NC machine tool to the second NC machine tool. The effect can be easily recognized.
  • the second machining time can be estimated without creating a new NC program that is improved according to the performance of the second NC machine tool to be updated, the user can change the existing first NC machine tool to the second machining time. It is possible to easily and quickly recognize the effect that can be obtained by updating to a 2NC machine tool.
  • the machining time estimator assumes that the first machining time is T 1 , the high-load machining rate is R, the rated output of the first spindle motor is MP 1 , and the rated output of the second spindle motor is MP 2 .
  • the high load means that the output of the spindle motor is a load of a predetermined ratio or more of its rated output.
  • the output of the spindle motor is 80% or more of the rated output.
  • the high-load machining ratio means the ratio of the machining time in which the output of the spindle motor during machining has a high load to the entire machining time.
  • the processing time estimation device includes a touch panel having a function of inputting data and a function of displaying data
  • the motor information input unit, the machining time input unit, and the high load machining ratio input unit are configured to input information through the touch panel
  • the machining time estimating unit may adopt a mode configured to display the estimated second machining time on the touch panel.
  • each data can be easily input, and the estimated second processing time can be easily confirmed (recognized).
  • the rated output of the first spindle motor and the rated output of the second spindle motor are, of course, provided by the manufacturer of the first NC machine tool and the manufacturer of the second NC machine tool, respectively.
  • the first machining time and the high-load machining ratio can be obtained as actual data when machining using the existing first NC machine tool.
  • these data can be obtained from the data obtained by this monitoring system.
  • manually measure the first machining time and monitor the load state of the first spindle motor during machining to determine the first machining time and the High load machining ratio can be acquired.
  • the first machining time and the high-load machining ratio can be estimated by analyzing the NC program.
  • the machining time estimating device executes an NC program created for machining the workpiece using at least the information about the workpiece, the information about the tool, and the machine information about the first NC machine tool.
  • a machining state analysis unit that estimates the first machining time and the high load machining ratio when machining is performed by the first NC machine tool, The machining state analysis unit is configured to input the estimated first machining time to the machining time input unit and to input the high load machining ratio to the high load machining ratio input unit.
  • the first machining time can be estimated from the tool path obtained by analyzing the NC program, the feed rate, and the like.
  • the high-load machining ratio is obtained by estimating the high-load machining time from the information on the work, the information on the tool, and the machine information on the first NC machine tool in addition to the tool path and feed rate. , can be calculated as the ratio of the high-load machining time to the first machining time.
  • the load MP [kW] of the spindle motor acting during machining can be calculated from the following formula.
  • MP f ⁇ Vc ⁇ D ⁇ Kc/(60 ⁇ 10 3 ⁇ ) where f is the feed rate per revolution [mm/rev], Vc is the cutting speed [m/min], D is the machining diameter [mm], Kc is the cutting resistance [MPa], and ⁇ is the machine efficiency coefficient.
  • the machining state analysis unit uses at least the information about the workpiece, the information about the tool, and the machine information about the first NC machine tool, and calculates the first machining time by a simulation method that virtually executes the NC program. And the high load machining rate can be estimated.
  • the present invention a motor information input unit for inputting the rated output of the first spindle motor provided in the first NC machine tool and the rated output of the second spindle motor provided in the second NC machine tool; a machining time input unit for inputting, as a first machining time, a machining time when the work is machined by the first NC machine tool using an NC program created for machining a predetermined work; A high-load machining ratio input unit for inputting a high-load machining ratio, which is a ratio of high-load machining time that is executed in a high-load state of a predetermined or higher load with respect to the rated output of the first spindle motor, in the first machining time.
  • a machining time estimating unit for estimating a second machining time when the workpiece is machined by the second NC machine tool by changing the NC program to the same high load condition as As a display unit that displays the second machining time estimated by the machining time estimation unit, It relates to a computer program for operating a computer.
  • the machining time estimator assumes that the first machining time is T 1 , the high-load machining ratio is R, the rated output of the first spindle motor is MP 1 , and the rated output of the second spindle motor is MP 2 .
  • the present invention also relates to a computer-readable recording medium on which the above computer program is written.
  • the second NC machine tool when a first NC machine tool is used as existing equipment and a second NC machine tool is used as equipment to be renewed, when the same workpiece is machined by this second NC machine tool to be renewed, the second The second machining time assumed when machining is performed under the condition that the load state for the rated output of the spindle motor is the same high load state as the high load state in the first NC machine tool, that is, according to the performance of the second NC machine tool Since the shortened second machining time can be estimated, it is possible to easily recognize the effect that can be obtained when the existing first NC machine tool is replaced with the second NC machine tool.
  • the second machining time can be estimated without creating a new NC program improved according to the performance of the second NC machine tool to be updated, the existing first NC machine tool can be changed to the second NC machine tool. It is possible to easily and quickly recognize the effect that can be obtained by updating.
  • FIG. 1 The machining time estimating device 1 of the present example uses an NC program created for machining a predetermined work, a first machining time when the work is machined by the first NC machine tool, and the first NC machine tool Based on the rated output of the provided first spindle motor, etc., a second machining time required when machining the workpiece is estimated using a second NC machine tool equipped with a second spindle motor having a different rated output.
  • the NC program is changed under the condition that the load condition with respect to the rated output of the second spindle motor is the same high load condition as the high load condition of the first NC machine tool. and a device for estimating a second machining time when the workpiece is machined.
  • the machining time estimating device 1 is composed of a motor information input unit 3, a machining time input unit 4, a high load machining ratio input unit 5, and a machining time estimating unit 6. It is composed of a device 2 and a touch panel 7 as an input/output device.
  • the computing device 2 is composed of a computer including a CPU, a RAM, a ROM, etc., and its functions are realized by a computer program to execute processing described later. Further, the computing device 2 and the touch panel 7 are embodied as a tablet personal computer (tablet PC).
  • the above computer program can be stored in a computer-readable recording medium as appropriate.
  • the motor information input unit 3, the machining time input unit 4, and the high-load machining ratio input unit 5 each display an input/output screen as shown in FIG.
  • Data relating to the rated output of the first spindle motor and data relating to the rated output of the second spindle motor, which are input from the output screen, are input to the machining time estimating section 6 .
  • the machining time input unit 4 inputs data relating to the first machining time input from the input/output screen to the machining time estimation unit 6, and the high load machining ratio input unit 5 similarly inputs the input/output screen to the machining time estimating section 6.
  • FIG. A box is an input box for inputting a numerical value, and by an operator inputting a numerical value in each box, respective data are input to the motor information input section 3, the machining time input section 4, and the high load machining ratio input section 5. is input to the machining time estimating unit 6 via the .
  • An estimation process start signal is input to the machining time estimating section 6 by pressing the "execute" key displayed to the right of "second machining time estimation".
  • first spindle motor rated output and “second spindle motor rated output” are input from the maker of the first NC machine tool and the maker of the second NC machine tool.
  • the high load means that the output of the spindle motor is at a load equal to or greater than a predetermined percentage of its rated output.
  • a high load can be defined as a case where the output of the spindle motor is 100% of the rated output, which means limit machining.
  • the high-load machining ratio means the ratio of the machining time in which the spindle motor output during machining is the high load with respect to the entire machining time. From this definition, the high load machining rate when machining the work using the first NC machine tool is a high load state with respect to the rated output of the first spindle motor within the first machining time. It is the ratio of the machining time that has been reduced.
  • the first machining time and the high-load machining ratio can be obtained from actual data when the workpiece is machined using the first NC machine tool.
  • the first NC machine tool is equipped with a monitoring system that monitors operating conditions
  • the first machining time and the machining time under high load conditions can be obtained from the data obtained by this monitoring system.
  • manually measure the first machining time and monitor the load state of the first spindle motor during machining to determine the first machining time and the High load machining ratio can be acquired.
  • the machining time estimating unit 6 receives an estimation process start signal from the touch panel 7, and after receiving the signal, calculates the second machining time T2 of the first spindle motor input from the motor information input unit 3. Data related to the rated output and the rated output of the second spindle motor, the first machining time input from the machining time input unit 4, and the high load machining ratio input from the high load machining ratio input unit 5 Based on the data, a second machining time is estimated when the workpiece is machined using a second NC machine tool having performance different from that of the first NC machine tool. In this second machining time, the NC program is changed so that the load condition with respect to the rated output of the second spindle motor becomes the same high load condition as the high load condition in the first NC machine tool. It is the machining time when it is assumed that the work is machined by a machine.
  • the machining time estimator 6 sets the first machining time T 1 , the high-load machining ratio R, the rated output of the first spindle motor MP 1 , the rated output of the second spindle motor is MP2, the second machining time T2 is estimated by the following formula .
  • T 2 ((T 1 ⁇ (T 1 ⁇ R))+(T 1 ⁇ R) ⁇ (MP 1 /MP 2 )
  • T HL1 T 1 ⁇ R
  • This high-load machining time THL2 is determined by changing the NC program so that the load condition with respect to the rated output of the second spindle motor becomes the same high-load condition as the high-load condition of the first NC machine tool. This is the machining time in a high-load state assuming that the workpiece is machined by a machine. Therefore, in this estimation, the NC program is unchanged.
  • the machining time T_LL1 T 1 -(T 1 ⁇ R) Therefore, the second machining time T2 is estimated (approximated) by the above formula.
  • the machining time estimator 6 displays the second machining time T2 estimated as described above in the box to the right of "estimated second machining time" displayed on the touch panel 7. do.
  • the operator inputs data related to the rated output of the first spindle motor, the rated output of the second spindle motor, the data relating to the rated output of the second spindle motor, the first Data relating to the machining time and data relating to the high-load machining ratio are input.
  • the machining time estimator 6 causes the second NC machine tool to machine the workpiece.
  • the NC program is changed to the condition that the load state with respect to the rated output of the second spindle motor is the same high load state as the high load state in the first NC machine tool.
  • a second machining time is estimated when the work is machined by the 2NC machine tool, and the estimated second machining time is displayed on the touch panel 7 .
  • the first NC machine tool is assumed to be existing equipment, and the second NC machine tool is assumed to be equipment to be renewed, and the same work can be processed by this second NC machine tool to be renewed.
  • the second machining time assumed when machining is performed under the condition that the load state with respect to the rated output of the second spindle motor is the same high load state as the high load state in the first NC machine tool, that is, Since the shortened second machining time is estimated according to the performance of the second NC machine tool, the user can easily recognize the effect that can be obtained when the existing first NC machine tool is replaced with the second NC machine tool. can do.
  • the second machining time can be estimated without creating a new NC program that is improved according to the performance of the second NC machine tool to be updated, the user can change the existing first NC machine tool to the second machining time. It is possible to easily and quickly recognize the effect that can be obtained by updating to a 2NC machine tool.
  • the data relating to the rated output of the first spindle motor, the data relating to the rated output of the second spindle motor, the data relating to the first machining time, and the data relating to the high load machining rate are Since it is possible to input from the touch panel 7, each data can be easily input, and since the estimated second processing time is displayed on the touch panel 7, the second processing time can be easily confirmed ( recognition).
  • FIG. 1 The processing time estimating device 10 of this example includes a second computing device 11 in addition to the computing device 2 and the touch panel 7 described above.
  • the second arithmetic unit 11 is composed of an NC program storage unit 12, a machining information storage unit 13 and a machining state analysis unit 14.
  • the second arithmetic unit 11 is also composed of a computer including a CPU, a RAM, a ROM, etc.
  • the function of the machining state analysis unit 14 is realized by a computer program, and executes processing to be described later.
  • the NC program storage unit 12 and the machining information storage unit 13 are configured by appropriate storage media such as RAM.
  • the second computing device 11 can be embodied as a tablet personal computer (tablet PC) together with the computing device 2 and the touch panel 7 .
  • the above computer program can be stored in a computer-readable recording medium as appropriate.
  • the NC program storage unit 12 is a functional unit that stores NC programs used in NC machine tools, and in this example, stores NC programs for machining the work by the first NC machine tool.
  • the machining information storage unit 13 stores information on the work (for example, information on material dimensions and information on material), information on tools (e.g., specific cutting resistance to material), and information on the first NC machine tool It is a functional unit that stores such machine information (for example, the rated output of the first spindle motor and the machine efficiency coefficient).
  • the machining state analysis unit 14 analyzes the NC program stored in the NC program storage unit 12, executes the NC program with the first NC machine tool, and performs the first machining when machining the workpiece. A process of estimating the time and the high-load machining ratio is performed.
  • the machining state analysis unit 14 analyzes an NC program composed of a plurality of blocks written in NC language for each block, and recognizes the tool path, the spindle speed, and the feed amount (feed rate). The first machining time is estimated from these. In addition, the machining state analysis unit 14 stores the recognized tool path, spindle rotation speed, feed rate (feed rate), workpiece dimensions, workpiece material, and ratio of tool to workpiece material stored in the machining information storage unit 13. A high-load machining ratio is estimated from the cutting force, the rated output of the first spindle motor of the first NC machine tool, the machine efficiency coefficient, and the like.
  • the machining state analysis unit 14 inputs the estimated first machining time to the machining time estimation unit 6 via the machining time input unit 4, and inputs the estimated high load machining ratio to the high load machining ratio input unit. 5 to the machining time estimator 6 .
  • a workpiece W indicated by a solid line is processed by a tool T into a shape indicated by a dashed line (hatched shape).
  • the machining state analysis unit 14 analyzes the NC program for each block and recognizes the tool paths shown in FIGS.
  • the specific toolpath recognized in this example is that roughing is P 1 ⁇ P 2 ⁇ P 3 ⁇ P 4 ⁇ P 5 ⁇ P 6 ⁇ P 7 ⁇ P 8 ⁇ P 9 ⁇ P 10 ⁇ P 11 ⁇ P 12 ⁇ P 13 ⁇ P 14 ⁇ P 1
  • the finishing process is P 1 ⁇ P 15 ⁇ P 16 ⁇ P 17 ⁇ P 1 .
  • the dashed arrow indicates a rapid feed path
  • the dotted arrow indicates a cutting feed path.
  • the machining state analysis unit 14 estimates the travel time of the tool T in each pass from the distance and feed rate in each pass, integrates the estimated travel times, and estimates the first machining time.
  • the machining state analysis unit 14 estimates the load MP [kW] in the first spindle motor for the cutting feed pass among the passes according to the following formula.
  • MP f ⁇ Vc ⁇ D ⁇ Kc/(60 ⁇ 10 3 ⁇ ) where f is the feed rate per revolution [mm/rev], Vc is the cutting speed [m/min], D is the machining diameter [mm], Kc is the cutting resistance [MPa], and ⁇ is the machine efficiency coefficient.
  • the feed amount f [mm/rev] and the cutting speed Vc [m/min] can be obtained by analyzing the NC program, and the machining diameter D [mm] can be obtained by analyzing the NC program or processing information storage unit 13, and the cutting resistance Kc [MPa] and the mechanical efficiency coefficient ⁇ can be obtained from the data stored in the machining information storage unit 13.
  • the machining state analysis unit 14 calculates the percentage of the rated output of the load MP [kW] in the first spindle motor, and the calculated percentage exceeds a predetermined percentage (for example, 80%).
  • the high-load machining time is calculated by adding up the machining times of the passes. For example, in the examples shown in FIGS. 5 to 9, P 4 ⁇ P 5 , P 8 ⁇ P 9 , and P 12 ⁇ P 13 are passes related to high-load machining.
  • the machining state analysis unit 14 inputs the calculated first machining time to the machining time estimating unit 6 via the machining time input unit 4, and inputs the calculated high load machining ratio to the high load machining ratio input. It is input to the machining time estimating section 6 via the section 5 .
  • the operator inputs data relating to the rated output of the first spindle motor and the rated output of the second spindle motor via the touch panel 7.
  • the NC program is analyzed by the machining state analysis unit 14, and the first machining time and the high load machining ratio are calculated.
  • the calculated first machining time is input to the machining time estimation unit 6 via the machining time input unit 4, and the calculated high load machining ratio is input to the high load machining ratio input unit 5 Machining time estimation It is input to part 6.
  • the machining time estimating unit 6 performs the above-described The second machining time is estimated, and the estimated second machining time is displayed on the touch panel 7 .
  • the machining state analysis unit 14 can calculate the first machining time and the high-load machining ratio. Even if there is no monitoring system for monitoring, the first machining time and the high-load machining rate can be obtained without manual work, and in this sense, the second machining time can be easily and quickly estimated. be able to.
  • the machining state analysis unit 14 analyzes the NC program to calculate the first machining time and the high-load machining ratio. Instead, the machining state analysis unit 14 uses at least the information related to the work, the information related to the tool, and the machine information related to the first NC machine tool, and uses a simulation method to virtually execute the NC program. It may be configured to estimate the machining time and the high-load machining rate.
  • the rated output of the first spindle motor is input from the touch panel 7 by the operator.
  • Data related to the rated output of the first spindle motor may be input from the machining state analysis unit 14 to the machining time estimation unit 6 via the motor information input unit 3 .
  • the second arithmetic unit 11 may be configured by a computer different from the arithmetic unit 2.
  • Machining time estimating device 2 Arithmetic device 3 Motor information input unit 4 Machining time input unit 5 High load machining ratio input unit 6 Machining time estimating unit 7 Touch panel 10 Machining time estimating device 11 Second computing device 12 NC program storage unit 13 Machining information Storage unit 14 Machining state analysis unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

第1NC工作機械の第1主軸モータの定格出力、及び第2NC工作機械の第2主軸モータの定格出力を入力するモータ情報入力部(3)と、NCプログラムを用いて、第1NC工作機械によりワークを加工したときの第1加工時間を入力する加工時間入力部(4)と、第1加工時間の内、所定の高負荷状態で加工が行われる高負荷加工割合を入力する高負荷加工割合入力部(5)と、加工時間推定部(6)と備える。加工時間推定部(6)は、第1主軸モータ及び第2主軸モータの定格出力、第1加工時間、高負荷加工割合を基に、第2主軸モータの定格出力に対する負荷状態が、第1NC工作機械における高負荷状態と同じ高負荷状態となる条件で、第2NC工作機械によりワークを加工したときの第2加工時間を推定する。

Description

加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体
 本発明は、NC工作機械におけるワークの加工時間を推定する加工時間推定方法及び加工時間推定装置等に関する。
 NC工作機械におけるワークの加工時間を推定する装置として、従来、特開2003-175439号公報(下記特許文献1)に開示されたものが知られている。
 この加工時間推定装置は、複数の指令ブロックから構成されたNCプログラムを記憶するプログラム記憶部と、前記プログラム記憶部に格納されたNCプログラムを読み出してブロック毎に解析した後、解析結果に基づいた制御信号を出力するプログラム解析部と、前記プログラム解析部から出力された制御信号を受信し、受信した制御信号に基づいて、NC工作機械の軸移動及び補助機能に係る各駆動機構部の作動を制御する駆動制御部とを備えた前記NC工作機械において、前記NCプログラムを用いて加工したときの加工時間を推定する装置である。
 具体的には、前記加工時間制御装置は、補助機能に係る駆動機構部の実動作時間データを蓄積したデータベースと、前記プログラム解析部から出力される制御信号、及び前記駆動機構部から得られる動作完了信号に基づいて、少なくとも前記補助機能に係る駆動機構部の実動作時間を算出し、算出した実動作時間に係るデータで前記データベースに格納されたデータを更新する実動作時間算出手段と、前記プログラム記憶部に格納されたNCプログラムをブロック毎に解析し、解析結果を基に前記軸移動に係る駆動機構部の推定動作時間を算出するとともに、前記解析結果を基に前記データベースを検索して前記補助機能に係る駆動機構部の動作時間を推定し、得られた前記軸移動に係る駆動機構部の推定動作時間及び前記補助機能に係る駆動機構部の推定動作時間を基に、前記ブロック毎の推定動作時間を算出した後、算出した各ブロックの推定動作時間を積算して推定加工時間を算出する動作時間推定手段とを備えている。
 この加工時間推定装置によれば、工作機械で実加工が行われるたびに、実動作時間算出手段により、少なくとも補助機能に係る駆動機構部の実動作時間が算出され、算出された実動作時間に係るデータで前記データベースに格納されたデータが更新される。斯くして、この更新処理により、データベースに格納されたデータの信頼性を高めることができる。
 そして、動作時間推定手段は、上記のようにして信頼性の高められたデータベースを用いて加工時間の推定処理を行う。即ち、プログラム記憶部に格納されたNCプログラムをブロック毎に解析し、軸移動が指令されている場合には、当該軸移動指令を基に軸移動量を求め、更に、求めた軸移動量と指令された軸送り速度を基に、軸移動の推定動作時間を算出する。補助機能動作が指令されている場合には、当該補助機能動作指令を基に前記データベースを検索して、該当する補助機能動作時間を取得する。
 そして、1ブロックに、軸移動指令と補助機能動作指令のどらか一方が指令されている場合には、上記処理によって得られた時間を当該ブロックの推定動作時間とする。一方、1ブロックに、軸移動指令と補助機能動作指令の双方が指令されている場合であって、軸移動と補助機能動作とが順次行われる場合には、上記処理によって得られた時間を加算して当該ブロックの推定動作時間とし、軸移動と補助機能動作とが並行して行われる場合には、上記処理によって得られた時間の内、長い方の時間を当該ブロックの推定動作時間とする。そして、このようにして各ブロックについて推定動作時間を算出した後、これらを積算して推定加工時間を算出する。
 斯くして、この加工時間推定装置によれば、補助機能に係る実動作時間が経時的に変化したり、工作機械の時々の状態によって変化しても、かかる実態を反映したデータベースを用いて加工時間を算出するようにしているので、工作機械の実態に即した精度の高い加工時間を算出することができる。
特開2003-175439号公報
 ところで、NC工作機械における加工条件の内、切削速度は、ワーク材質、工具摩耗や工具の靭性などの複合的な要素から一定の制約を受け、また、工具の送り量や切り込み深さについても、その限界はNC工作機械に搭載される主軸モータの性能である定格出力や工具性能によって定まる。
 このため、同じワークを加工する場合でも、NC工作機械に搭載される主軸モータの性能や、使用する工具によって加工条件が異なり、この加工条件の下で作成されるNCプログラムも異なる。したがって、あるワークを加工する場合に、NC工作機械に搭載される主軸モータの性能や、使用する工具によって、その加工時間が異なることになる。
 どの分野においてもそうであるが、工作機械の分野においても、絶えず改良がなされており、日々、性能が向上された工作機械が上市されている。一方、工作機械のユーザは、ワークの加工コストを低減させるべく日々研鑽を重ねており、そのための一手法として、ワークを加工するための設備、即ち、工作機械を最新化して、加工の自動化や、加工時間の短縮化などを図っている。
 中でも、既存の工作機械を更新して、最新の工作機械を導入することで、工作機械の稼働率の向上や、工作機機械の性能(特に主軸モータの定格出力)を向上させることができ、これに応じて加工コストの低減化を図ることができる。そこで、ユーザは、工作機械の更新を検討する際に、加工コストの低減化を図ることができる一つの指標として加工時間に着目し、既存の工作機械を更新して、最新の工作機械を導入することにより、同じワークを加工した場合に、どの程度加工時間が短縮されるかについて検討するようにしている。そして、このような加工時間の検討に、上述した従来の加工時間推定装置の適用が期待される。
 ところが、更新された工作機械で加工した場合に期待される加工時間(短縮された加工時間)を、上述した従来の加工時間推定装置を用いて推定するには、更新予定の工作機械の性能に応じて改善したNCプログラムを新たに作成する必要があるという問題があった。そして、この新たなNCプログラムを作成するためには、既存のNCプログラムを正確に解析する必要があり、その作業が面倒であるばかりか、工作機械の性能に応じた加工条件は多岐にわたるため、新たなNCプログラムを容易には作成することができなかった。
 そこで、新たな工作機械を用いた場合に短縮される加工時間を迅速に推定することができれば、ユーザは、工作機械を更新することについての有益性を迅速に判断することができ、一方、工作機械のメーカにおいても、このような有益性をユーザに提供できれば、迅速に商談を進めることができて望ましい。
 本発明は、以上の実情に鑑みなされたものであって、新たな工作機械を用いて同じワークを加工する場合に、その性能に応じて短縮された加工時間を推定することができる加工時間推定方法、及び加工時間推定装置等の提供を、その目的とする。
 上記課題を解決するための本発明は、
 所定のワークを加工するために作成されたNCプログラムを用いて、第1NC工作機械により前記ワークを加工したときの加工時間を第1加工時間として取得するとともに、該第1加工時間の内、前記第1NC工作機械に設けられる第1主軸モータの定格出力に対して、所定以上の高負荷状態で実行される高負荷加工時間の割合である高負荷加工割合を取得し、
 取得された前記第1加工時間、前記高負荷加工割合、前記第1主軸モータの定格出力、及び第2NC工作機械に設けられる第2主軸モータの定格出力に基づき、前記第2NC工作機械により前記ワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間を推定するようにした加工時間推定方法に係る。
 また、本発明は、上記の加工時間推定方法を好適に実施できる装置であって、
 第1NC工作機械に設けられる第1主軸モータの定格出力、及び第2NC工作機械に設けられる第2主軸モータの定格出力を入力するモータ情報入力部と、
 所定のワークを加工するために作成されたNCプログラムを用いて、前記第1NC工作機械により前記ワークを加工したときの加工時間を第1加工時間として入力する加工時間入力部と、
 前記第1加工時間の内、前記第1主軸モータの定格出力に対して所定以上の高負荷状態で実行される高負荷加工時間の割合である高負荷加工割合を入力する高負荷加工割合入力部と、
 前記モータ情報入力部から入力された第1主軸モータの定格出力及び第2主軸モータの定格出力、前記加工時間入力部から入力された第1加工時間、並びに前記高負荷加工割合入力部から入力された高負荷加工割合を基に、前記第2NC工作機械により前記ワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間を推定する加工時間推定部とを備えた加工時間推定装置に係る。
 本発明に係る加工時間推定装置、及び加工時間推定方法によれば、モータ情報入力部から、第1NC工作機械に設けられる第1主軸モータの定格出力、及び第2NC工作機械に設けられる第2主軸モータの定格出力が入力され、取得される。また、加工時間入力部から、所定のワーク加工用に作成されたNCプログラムを用いて、第1NC工作機械により当該ワークを加工したときの第1加工時間が入力され、高負荷加工割合入力部から、前記第1加工時間の内、前記第1主軸モータの定格出力に対して所定以上の高負荷状態で実行される高負荷加工時間の割合である高負荷加工割合が入力され、取得される。
 そして、取得された各データに基づいて、加工時間推定部により、第2NC工作機械により前記ワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間が推定される。
 このように、本発明に係る加工時間推定装置、及び加工時間推定方法によれば、前記第1NC工作機械を既存設備とし、第2NC工作機械を更新予定の設備として、この更新予定の第2NC工作機械により同じワークを加工する場合に、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件で加工したときに想定される第2加工時間、即ち、第2NC工作機械の性能に応じて短縮された第2加工時間が推定されるので、ユーザは、既存の第1NC工作機械から第2NC工作機械に更新した場合に得ることができる効果を容易に認識することができる。
 また、上記第2加工時間を、更新予定の第2NC工作機械の性能に応じて改善した新たなNCプログラムを作成することなく推定することができるので、ユーザは、既存の第1NC工作機械から第2NC工作機械に更新した場合に得ることができる効果を容易に、しかも迅速に認識することができる。
 尚、前記加工時間推定部は、前記第1加工時間をT、前記高負荷加工割合をR、前記第1主軸モータの定格出力をMP、前記第2主軸モータの定格出力をMPとして、前記第2加工時間Tを、以下の計算式によって推定することができる。
=((T-(T×R))+(T×R)×(MP/MP
 本発明における前記高負荷は、主軸モータの出力がその定格出力に対して所定の割合以上の負荷となっていることを意味し、例えば、主軸モータの出力が定格出力の80%以上となる場合を高負荷と定義することができ、或いは、限界加工を意味するように、主軸モータの出力が定格出力の100%となる場合を高負荷と定義することができる。そして、前記高負荷加工割合は、加工時間全体に対する、加工時の主軸モータ出力が高負荷となっている加工時間の割合を意味する。
 また、前記加工時間推定装置は、データを入力する機能、及びデータを表示する機能を有するタッチパネルを備え、
 前記モータ情報入力部、前記加工時間入力部及び高負荷加工割合入力部は、前記タッチパネルを介してそれぞれ情報を入力するように構成され、
 前記加工時間推定部は、推定した前記第2加工時間を前記タッチパネルに表示するように構成された態様を採ることができる。
 この態様によれば、各データの入力を容易に行うことができ、また、推定された第2加工時間を容易に確認(認識)することができる。
 前記第1主軸モータの定格出力及び第2主軸モータの定格出力は、当然のことながら、第1NC工作機械のメーカ、及び第2NC工作機械のメーカからそれぞれ提供される。
 また、前記第1加工時間及び高負荷加工割合は、既存の第1NC工作機械を用いて加工したときの実データとして得ることができる。例えば、第1NC工作機械が稼働状態を監視するモニタリングシステムを備えている場合には、このモニタリングシステムによって得られるデータからこれらのデータを取得することができる。或いは、このようなモニタリングシステムを備えていない場合には、人手作業により、第1加工時間を測定するとともに、加工中の第1主軸モータの負荷状態をモニタリングすることによって、前記第1加工時間及び高負荷加工割合を取得することができる。
 或いは、前記第1加工時間及び高負荷加工割合は、前記NCプログラムを解析することによって推定することができる。
 この場合、前記加工時間推定装置は、少なくとも、前記ワークに係る情報、工具に係る情報及び第1NC工作機械に係る機械情報を用い、前記ワークを加工するために作成されたNCプログラムを実行して前記第1NC工作機械により加工したときの前記第1加工時間、及び前記高負荷加工割合を推定する加工状態解析部を、更に備え、
 前記加工状態解析部は、推定した前記第1加工時間を前記加工時間入力部に入力し、前記高負荷加工割合を前記高負荷加工割合入力部に入力するように構成される。
 前記第1加工時間は、NCプログラムを解析することによって得られるツールパス、及び送り速度などから推定することができる。また、前記高負荷加工割合は、前記ツールパス及び送り速度に加えて、ワークに係る情報、工具に係る情報及び第1NC工作機械に係る機械情報から高負荷となった加工時間を推定することにより、第1加工時間に対する高負荷加工時間の割合として算出することができる。
 尚、加工時に作用する主軸モータの負荷MP[kW]は、以下の計算式から算出することができる。
MP=f×Vc×D×Kc/(60×10×η)
但し、fは1回転当たりの送り量[mm/rev]、Vcは切削速度[m/min]、Dは加工径[mm]、Kcは被切削抵抗[MPa]、ηは機械効率係数である。
 或いは、前記加工状態解析部は、少なくとも、前記ワークに係る情報、工具に係る情報及び第1NC工作機械に係る機械情報を用い、前記NCプログラムを仮想的に実行するシミュレーション手法によって前記第1加工時間及び高負荷加工割合を推定することができる。
 また、本発明は、
 第1NC工作機械に設けられる第1主軸モータの定格出力、及び第2NC工作機械に設けられる第2主軸モータの定格出力を入力するモータ情報入力部と、
 所定のワークを加工するために作成されたNCプログラムを用いて、前記第1NC工作機械により前記ワークを加工したときの加工時間を第1加工時間として入力する加工時間入力部と、
 前記第1加工時間の内、前記第1主軸モータの定格出力に対して所定以上の高負荷状態で実行される高負荷加工時間の割合である高負荷加工割合を入力する高負荷加工割合入力部と、
 前記モータ情報入力部から入力された第1主軸モータの定格出力及び第2主軸モータの定格出力、前記加工時間入力部から入力された第1加工時間、並びに前記高負荷加工割合入力部から入力された高負荷加工割合を基に、前記第2NC工作機械により前記ワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間を推定する加工時間推定部と、
 前記加工時間推定部により推定された第2加工時間を表示する表示部として、
 コンピュータを機能させるためのコンピュータプログラムに係る。
 また、前記加工時間推定部は、前記第1加工時間をT、前記高負荷加工割合をR、前記第1主軸モータの定格出力をMP、前記第2主軸モータの定格出力をMPとして、前記第2加工時間Tを以下の計算式によって推定するように、前記コンピュータを機能させる態様を採ることができる。
=((T-(T×R))+(T×R)×(MP/MP
 また、本発明は、上記のコンピュータプログラムを記載したコンピュータ読み取り可能な記録媒体に係る。
 以上のように、本発明によれば、第1NC工作機械を既存設備とし、第2NC工作機械を更新予定の設備として、この更新予定の第2NC工作機械により同じワークを加工する場合に、第2主軸モータの定格出力に対する負荷状態が、第1NC工作機械における高負荷状態と同じ高負荷状態となる条件で加工したときに想定される第2加工時間、即ち、第2NC工作機械の性能に応じて短縮された第2加工時間を推定することができるので、既存の第1NC工作機械から第2NC工作機械に更新した場合に得ることができる効果を容易に認識することができる。
 また、第2加工時間を、更新予定の第2NC工作機械の性能に応じて改善した新たなNCプログラムを作成することなく推定することができるので、既存の第1NC工作機械から第2NC工作機械に更新した場合に得ることができる効果を容易に、しかも迅速に認識することができる。
本発明の第1の実施形態に係る加工時間推定装置の概略構成を示したブロック図である。 第1の実施形態に係るタッチパネルを示した説明図である。 本発明の第2の実施形態に係る加工時間推定装置の概略構成を示したブロック図である。 第2の実施形態に係る加工状態解析部における処理を説明するための説明図である。 第2の実施形態に係る加工状態解析部における処理を説明するための説明図である。 第2の実施形態に係る加工状態解析部における処理を説明するための説明図である。 第2の実施形態に係る加工状態解析部における処理を説明するための説明図である。 第2の実施形態に係る加工状態解析部における処理を説明するための説明図である。 第2の実施形態に係る加工状態解析部における処理を説明するための説明図である。
 以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。
1.第1の実施形態
 まず、第1の実施形態に係る加工時間推定装置について、図1及び図2に基づいて説明する。本例の加工時間推定装置1は、所定のワークを加工するために作成されたNCプログラムを用いて、第1NC工作機械により前記ワークを加工したときの第1加工時間、及び第1NC工作機械に設けられる第1主軸モータの定格出力などに基づいて、これとは定格出力の異なる第2主軸モータを備えた第2NC工作機械を用いて、前記ワークを加工したときに要する第2加工時間を推定する装置であり、より詳しくは、前記第2主軸モータの定格出力に対する負荷状態が、第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更したと仮定して、前記ワークを加工したときの第2加工時間を推定する装置である。
 具体的には、前記加工時間推定装置1は、図1に示すように、モータ情報入力部3、加工時間入力部4、高負荷加工割合入力部5及び加工時間推定部6から構成される演算装置2と、入出力装置としてのタッチパネル7から構成される。尚、演算装置2は、CPU、RAM、ROMなどを含むコンピュータから構成され、コンピュータプログラムによってその機能が実現され、後述する処理を実行する。また、演算装置2及びタッチパネル7はタブレット型のパーソナルコンピュータ(タブレットPC)として具現化される。また、上記のコンピュータプログラムは、コンピュータ読み取り可能な、適宜記録媒体に格納することができる。
 前記モータ情報入力部3、加工時間入力部4、高負荷加工割合入力部5は、それぞれ、図2に示すような入出力画面をタッチパネル7上に表示し、モータ情報入力部3は、この入出力画面から入力される第1主軸モータ定格出力に係るデータ、及び第2主軸モータ定格出力に係るデータを前記加工時間推定部6に入力する。また、加工時間入力部4は、前記入出力画面から入力される第1加工時間に係るデータを前記加工時間推定部6に入力し、前記高負荷加工割合入力部5は、同じく前記入出力画面から入力される高負荷加工割合に係るデータを前記加工時間推定部6に入力する。
 尚、図2において表示された各項目、「第1主軸モータ定格出力」、「第2主軸モータ定格出力」、「第1加工時間」及び「高負荷加工割合」のそれぞれ右隣に表示されたボックスが、数値を入力するための入力ボックスであり、オペレータが各ボックスに数値を入力することで、それぞれのデータが前記モータ情報入力部3、加工時間入力部4及び高負荷加工割合入力部5を介して前記加工時間推定部6に入力される。また、「第2加工時間推定」の右隣に表示された「実行」キーを押下することで、推定処理開始信号が前記加工時間推定部6に入力される。
 また、「第1主軸モータ定格出力」及び「第2主軸モータ定格出力」に係るデータは、第1NC工作機械のメーカ、及び第2NC工作機械のメーカからそれぞれ提供されるものが入力される。
 前記高負荷は、主軸モータの出力がその定格出力に対して所定の割合以上の負荷となっていることを意味し、例えば、主軸モータの出力が定格出力の80%以上となる場合を高負荷と定義することができ、或いは、限界加工を意味するように、主軸モータの出力が定格出力の100%となる場合を高負荷と定義することができる。そして、前記高負荷加工割合は、加工時間全体に対する、加工時の主軸モータ出力が前記高負荷となっている加工時間の割合を意味する。このような定義から、前記第1NC工作機械を用いて前記ワークを加工したときの高負荷加工割合は、前記第1加工時間の内、前記第1主軸モータの定格出力に対して高負荷状態となった加工時間の割合である。
 前記第1加工時間及び当該高負荷加工割合は、第1NC工作機械を用いて前記ワークを加工したときの実データから取得することができる。例えば、第1NC工作機械が稼働状態を監視するモニタリングシステムを備えている場合には、このモニタリングシステムによって得られるデータから前記第1加工時間及び高負荷状態での加工時間を取得することができる。或いは、このようなモニタリングシステムを備えていない場合には、人手作業により、第1加工時間を測定するとともに、加工中の第1主軸モータの負荷状態をモニタリングすることによって、前記第1加工時間及び高負荷加工割合を取得することができる。
 前記加工時間推定部6は、前記タッチパネル7から推定処理開始信号が入力され、これを受信した後、前記第2加工時間Tを、前記モータ情報入力部3から入力された第1主軸モータの定格出力、及び第2主軸モータの定格出力に係るデータ、前記加工時間入力部4から入力された第1加工時間、並びに、前記高負荷加工割合入力部5から入力された高負荷加工割合に係るデータに基づいて、前記第1NC工作機械とは性能の異なる第2NC工作機械を用いて前記ワークを加工したときの第2加工時間を推定する。この第2加工時間は、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したと仮定したときの加工時間である。
 具体的には、前記加工時間推定部6は、前記第1加工時間をT、前記高負荷加工割合をR、前記第1主軸モータの定格出力をMP、前記第2主軸モータの定格出力をMPとして、前記第2加工時間Tを、以下の計算式によって推定する。
=((T-(T×R))+(T×R)×(MP/MP
 第1加工時間Tの内、高負荷状態での加工時間THL1は、以下の計算式によって算出される。
HL1=T×R
 そして、第2主軸モータの定格出力に対する負荷状態が、第1NC工作機械における高負荷状態と同じ高負荷状態となる条件で、第2NC工作機械によりワークを加工したと仮定したときの高負荷加工時間THL2は、以下の計算式によって推定(近似)される。
HL2=THL1(=T×R)×(MP/MP
尚、この高負荷加工時間THL2は、第2主軸モータの定格出力に対する負荷状態が、第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、NCプログラムを変更して第2NC工作機械によりワークを加工したと仮定したときの、高負荷状態における加工時間である。したがって、この推定において、NCプログラムは変更されていない。
 一方、第1加工時間Tの内、高負荷加工では無い加工時間TLL1は、以下の計算式によって算出される。
LL1=T-(T×R)
したがって、前記第2加工時間Tは、上記計算式によって推定(近似)される。
 斯くして、前記加工時間推定部6は、以上のようにして推定した前記第2加工時間Tを、タッチパネル7上に表示された「推定第2加工時間」の右隣のボックス内に表示する。
 以上の構成を備えた本例の加工時間推定装置1によれば、まず、オペレータにより、タッチパネル7を介して、第1主軸モータの定格出力、第2主軸モータの定格出力に係るデータ、第1加工時間に係るデータ、及び高負荷加工割合に係るデータが入力される。
 そして、上記の各データが入力された後、タッチパネル7上の「実行」キーが押下されて、推定処理開始信号が入力されると、加工時間推定部6により、第2NC工作機械によりワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間が推定され、推定された第2加工時間がタッチパネル7上に表示される。
 斯くして、本例の加工時間推定装置1によれば、前記第1NC工作機械を既存設備とし、前記第2NC工作機械を更新予定の設備として、この更新予定の第2NC工作機械により同じワークを加工する場合に、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件で加工したときに想定される第2加工時間、即ち、第2NC工作機械の性能に応じて短縮された第2加工時間が推定されるので、ユーザは、既存の第1NC工作機械から第2NC工作機械に更新した場合に得ることができる効果を容易に認識することができる。
 また、上記第2加工時間を、更新予定の第2NC工作機械の性能に応じて改善した新たなNCプログラムを作成することなく推定することができるので、ユーザは、既存の第1NC工作機械から第2NC工作機械に更新した場合に得ることができる効果を容易に、しかも迅速に認識することができる。
 また、本例の加工時間推定装置1によれば、第1主軸モータの定格出力、第2主軸モータの定格出力に係るデータ、第1加工時間に係るデータ、及び高負荷加工割合に係るデータをタッチパネル7から入力することができるので、各データの入力を容易に行うことができ、また、推定された第2加工時間がタッチパネル7に表示されるので、当該第2加工時間を容易に確認(認識)することができる。
2.第2の実施形態
 次に、本発明の第2の実施形態について、図3から図9に基づいて説明する。本例の加工時間推定装置10は、上述した演算装置2及びタッチパネル7に加えて、第2演算装置11を備えるものである。
 図3に示すように、前記第2演算装置11は、NCプログラム記憶部12、加工情報記憶部13及び加工状態解析部14から構成される。尚、この第2演算装置11も、CPU、RAM、ROMなどを含むコンピュータから構成され、加工状態解析部14はコンピュータプログラムによってその機能が実現され、後述する処理を実行する。また、前記NCプログラム記憶部12及び加工情報記憶部13はRAMなどの適宜記憶媒体から構成される。そして、この第2演算装置11は、前記演算装置2及びタッチパネル7とともに、タブレット型のパーソナルコンピュータ(タブレットPC)として具現化することができる。また、上記のコンピュータプログラムは、コンピュータ読み取り可能な、適宜記録媒体に格納することができる。
 前記NCプログラム記憶部12は、NC工作機械で用いられるNCプログラムを記憶する機能部であり、本例では、前記第1NC工作機械により前記ワークを加工するためのNCプログラムが格納される。
 前記加工情報記憶部13は、前記ワークに係る情報(例えば、素材寸法に係る情報、及び素材材質に係る情報)、工具に係る情報(例えば、素材材質に対する比切削抵抗)及び第1NC工作機械に係る機械情報(例えば、第1主軸モータの定格出力、機械効率係数)などを記憶する機能部である。
 前記加工状態解析部14は、前記NCプログラム記憶部12に格納されたNCプログラムを解析して、前記第1NC工作機械により、このNCプログラムを実行して、前記ワークを加工したときの第1加工時間及び高負荷加工割合を推定する処理を行う。
 例えば、前記加工状態解析部14は、NC言語を記述した複数のブロックから構成されるNCプログラムをブロックごとに解析して、ツールパス、主軸回転数、送り量(送り速度)を認識するとともに、これらから第1加工時間を推定する。また、前記加工状態解析部14は、認識されたツールパス、主軸回転数、送り量(送り速度)、並びに前記加工情報記憶部13に格納されたワーク寸法、ワーク材質、ワーク材質に対する工具の比切削抵抗、第1NC工作機械の第1主軸モータの定格出力及び機械効率係数などから高負荷加工割合を推定する。そして、加工状態解析部14は、推定した第1加工時間を、前記加工時間入力部4を介して前記加工時間推定部6に入力し、推定した高負荷加工割合を、高負荷加工割合入力部5を介して前記加工時間推定部6に入力する。
 例えば、図4に示すように、実線で示したワークWを、工具Tにより加工して、一点鎖線で示す形状(ハッチングを付した形状)に加工するものとする。
 前記加工状態解析部14は、NCプログラムをブロックごとに解析して、図5から図9に示したツールパスを認識する。この例で認識される具体的なツールパスは、荒加工がP→P→P→P→P→P→P→P→P→P10→P11→P12→P13→P14→Pの経路であり、仕上げ加工は、P→P15→P16→P17→Pの経路である。また、図中、破線で示した矢印は早送りの経路であり、点線で示した矢印は切削送りの経路である。
 そして、加工状態解析部14は、各パスにおける距離及び送り速度から、各パスにおける工具Tの移動時間を推定し、推定された各移動時間を積算して、前記第1加工時間を推定する。
 また、加工状態解析部14は、各パスの内、切削送りのパスについて、以下の計算式にしたがって、第1主軸モータにおける負荷MP[kW]を推定する。
MP=f×Vc×D×Kc/(60×10×η)
但し、fは1回転当たりの送り量[mm/rev]、Vcは切削速度[m/min]、Dは加工径[mm]、Kcは被切削抵抗[MPa]、ηは機械効率係数である。
尚、送り量f[mm/rev]及び切削速度Vc[m/min]はNCプログラムを解析することによって取得することができ、加工径D[mm]は、NCプログラムの解析または加工情報記憶部13に格納されたデータから取得することができ、また、被切削抵抗Kc[MPa]、及び機械効率係数ηは加工情報記憶部13に格納されたデータから取得することができる。
 そして、加工状態解析部14は、第1主軸モータにおける負荷MP[kW]が、その定格出力の何割に当たるかを算出し、算出された割合が所定の割合(例えば、80%)を超えたパスの加工時間を合算して、高負荷加工時間を算出する。例えば、図5から図9に示した例では、P→P、P→P、P12→P13が高負荷加工に係るパスである。高負荷加工時間と第1加工時間との比をとって、高負荷加工割合(=高負荷加工時間/第1加工時間)を算出する。
 そして、加工状態解析部14は、算出した第1加工時間を、前記加工時間入力部4を介して前記加工時間推定部6に入力し、算出した高負荷加工割合を、前記高負荷加工割合入力部5を介して前記加工時間推定部6に入力する。
 以上の構成を備えた本例の加工時間推定装置10によれば、まず、オペレータにより、タッチパネル7を介して、第1主軸モータの定格出力及び第2主軸モータの定格出力に係るデータが入力された後、タッチパネル7上の「実行」キーが押下されて、推定処理開始信号が入力されると、前記加工状態解析部14により、NCプログラムが解析されて、第1加工時間及び高負荷加工割合が算出され、算出された第1加工時間が加工時間入力部4を介して加工時間推定部6に入力され、算出された高負荷加工割合が高負荷加工割合入力部5を介して加工時間推定部6に入力される。
 そして、このようにして、加工時間推定部6に各データが入力されると、入力された各データに基づいて、当該加工時間推定部6により、第1の実施形態と同様にして、前記の第2加工時間が推定され、推定された第2加工時間がタッチパネル7上に表示される。
 斯くして、本例の加工時間推定装置10によれば、加工状態解析部14によって、第1加工時間及び高負荷加工割合を算出することができるので、例えば、第1NC工作機械が稼働状態を監視するモニタリングシステムを備えていない場合でも、人手作業を介することなく、第1加工時間及び高負荷加工割合を取得することができ、この意味おいて、第2加工時間を容易且つ迅速に推定することができる。
 以上、本発明の具体的な実施の形態について説明したが、本発明が採り得る態様は、何ら上例のものに限定されるものでは無い。
 例えば、上記第2の実施形態では、前記加工状態解析部14がNCプログラムを解析することによって、第1加工時間及び高負荷加工割合を算出するようにしたが、このような態様に限られるものでは無く、前記加工状態解析部14は、少なくとも、前記ワークに係る情報、工具に係る情報及び第1NC工作機械に係る機械情報を用い、前記NCプログラムを仮想的に実行するシミュレーション手法によって前記第1加工時間及び高負荷加工割合を推定するように構成されていても良い。
 また、上記第2の実施形態において、第1主軸モータの定格出力は、オペレータにより、タッチパネル7から入力される態様としたが、これに限られるものでは無く、前記加工情報記憶部13に格納された第1主軸モータの定格出力に係るデータを、前記加工状態解析部14から、前記モータ情報入力部3を介して前記加工時間推定部6に入力するようにした態様としても良い。
 また、上記第2の実施形態において、前記第2演算装置11は、前記演算装置2とは異なるコンピュータから構成されていても良い。
 繰り返しになるが、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 1  加工時間推定装置
 2  演算装置
 3  モータ情報入力部
 4  加工時間入力部
 5  高負荷加工割合入力部
 6  加工時間推定部
 7  タッチパネル
 10 加工時間推定装置
 11 第2演算装置
 12 NCプログラム記憶部
 13 加工情報記憶部
 14 加工状態解析部

Claims (9)

  1.  所定のワークを加工するために作成されたNCプログラムを用いて、第1NC工作機械により前記ワークを加工したときの加工時間を第1加工時間として取得するとともに、該第1加工時間の内、前記第1NC工作機械に設けられる第1主軸モータの定格出力に対して、所定以上の高負荷状態で実行される高負荷加工時間の割合である高負荷加工割合を取得し、
     取得された前記第1加工時間、前記高負荷加工割合、前記第1主軸モータの定格出力、及び第2NC工作機械に設けられる第2主軸モータの定格出力に基づき、前記第2NC工作機械により前記ワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間を推定するようにしたことを特徴とする加工時間推定方法。
  2.  前記第1加工時間をT、前記高負荷加工割合をR、前記第1主軸モータの定格出力をMP、前記第2主軸モータの定格出力をMPとして、前記第2加工時間Tを以下の計算式によって推定することを特徴とする請求項1記載の加工時間推定方法。
    =((T-(T×R))+(T×R)×(MP/MP
  3.  第1NC工作機械に設けられる第1主軸モータの定格出力、及び第2NC工作機械に設けられる第2主軸モータの定格出力を入力するモータ情報入力部と、
     所定のワークを加工するために作成されたNCプログラムを用いて、前記第1NC工作機械により前記ワークを加工したときの加工時間を第1加工時間として入力する加工時間入力部と、
     前記第1加工時間の内、前記第1主軸モータの定格出力に対して所定以上の高負荷状態で実行される高負荷加工時間の割合である高負荷加工割合を入力する高負荷加工割合入力部と、
     前記モータ情報入力部から入力された第1主軸モータの定格出力及び第2主軸モータの定格出力、前記加工時間入力部から入力された第1加工時間、並びに前記高負荷加工割合入力部から入力された高負荷加工割合を基に、前記第2NC工作機械により前記ワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間を推定する加工時間推定部とを備えていることを特徴とする加工時間推定装置。
  4.  データを入力する機能、及びデータを表示する機能を有するタッチパネルを備え、
     前記モータ情報入力部、前記加工時間入力部及び高負荷加工割合入力部は、前記タッチパネルを介してそれぞれ情報を入力するように構成され、
     前記加工時間推定部は、推定した前記第2加工時間を前記タッチパネルに表示するように構成されていることを特徴とする請求項3記載の加工時間推定装置。
  5.  少なくとも、前記ワークに係る情報、工具に係る情報及び第1NC工作機械に係る機械情報を用い、前記ワークを加工するために作成されたNCプログラムを実行して前記第1NC工作機械により加工したときの前記第1加工時間、及び前記高負荷加工割合を推定する加工状態解析部を備え、
     前記加工状態解析部は、推定した前記第1加工時間を前記加工時間入力部に入力し、前記高負荷加工割合を前記高負荷加工割合入力部に入力するように構成されていることを特徴とする請求項3又は4記載の加工時間推定装置。
  6.  前記加工時間推定部は、前記第1加工時間をT、前記高負荷加工割合をR、前記第1主軸モータの定格出力をMP、前記第2主軸モータの定格出力をMPとして、前記第2加工時間Tを以下の計算式によって推定するように構成されていることを特徴とする請求項3から5のいずれか1項に記載の加工時間推定装置。
    =((T-(T×R))+(T×R)×(MP/MP
  7.  第1NC工作機械に設けられる第1主軸モータの定格出力、及び第2NC工作機械に設けられる第2主軸モータの定格出力を入力するモータ情報入力部と、
     所定のワークを加工するために作成されたNCプログラムを用いて、前記第1NC工作機械により前記ワークを加工したときの加工時間を第1加工時間として入力する加工時間入力部と、
     前記第1加工時間の内、前記第1主軸モータの定格出力に対して所定以上の高負荷状態で実行される高負荷加工時間の割合である高負荷加工割合を入力する高負荷加工割合入力部と、
     前記モータ情報入力部から入力された第1主軸モータの定格出力及び第2主軸モータの定格出力、前記加工時間入力部から入力された第1加工時間、並びに前記高負荷加工割合入力部から入力された高負荷加工割合を基に、前記第2NC工作機械により前記ワークを加工したときの加工時間であって、前記第2主軸モータの定格出力に対する負荷状態が、前記第1NC工作機械における高負荷状態と同じ高負荷状態となる条件に、前記NCプログラムを変更して前記第2NC工作機械により前記ワークを加工したときの第2加工時間を推定する加工時間推定部と、
     前記加工時間推定部により推定された第2加工時間を表示する表示部として、
     コンピュータを機能させるためのコンピュータプログラム。
  8.  前記加工時間推定部は、前記第1加工時間をT、前記高負荷加工割合をR、前記第1主軸モータの定格出力をMP、前記第2主軸モータの定格出力をMPとして、前記第2加工時間Tを以下の計算式によって推定するように構成されていることを特徴とする請求項7記載のコンピュータプログラム。
    =((T-(T×R))+(T×R)×(MP/MP
  9.  請求項7又は8記載のコンピュータプログラムを記載したコンピュータ読み取り可能な記録媒体。
     
PCT/JP2021/026274 2021-07-13 2021-07-13 加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体 WO2023286151A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/578,500 US20240338005A1 (en) 2021-07-13 2021-07-13 Machining time estimation method, machining time estimation device, computer program, and recording medium
EP21950094.9A EP4364888A1 (en) 2021-07-13 2021-07-13 Machining time estimation method, machining time estimation device, computer program, and recording medium
JP2023534469A JP7484025B2 (ja) 2021-07-13 2021-07-13 加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体
PCT/JP2021/026274 WO2023286151A1 (ja) 2021-07-13 2021-07-13 加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体
CN202180099872.6A CN117561142A (zh) 2021-07-13 2021-07-13 加工时间估计方法、加工时间估计装置、计算机程序以及记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026274 WO2023286151A1 (ja) 2021-07-13 2021-07-13 加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体

Publications (1)

Publication Number Publication Date
WO2023286151A1 true WO2023286151A1 (ja) 2023-01-19

Family

ID=84919725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026274 WO2023286151A1 (ja) 2021-07-13 2021-07-13 加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体

Country Status (5)

Country Link
US (1) US20240338005A1 (ja)
EP (1) EP4364888A1 (ja)
JP (1) JP7484025B2 (ja)
CN (1) CN117561142A (ja)
WO (1) WO2023286151A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663894A (en) * 1995-09-06 1997-09-02 Ford Global Technologies, Inc. System and method for machining process characterization using mechanical signature analysis
JP2002287810A (ja) * 2001-03-27 2002-10-04 Furukawa Techno Research Kk 物品加工システム
JP2003175439A (ja) 2001-12-11 2003-06-24 Mori Seiki Co Ltd Nc工作機械の加工時間推定装置
JP2017146859A (ja) * 2016-02-18 2017-08-24 ファナック株式会社 数値制御工作機械の加工時間予測装置
JP2020024676A (ja) * 2018-06-14 2020-02-13 サンドビック マシニング ソリューションズ アクティエボラーグ データベースから選択された方針に基づく機械加工

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663894A (en) * 1995-09-06 1997-09-02 Ford Global Technologies, Inc. System and method for machining process characterization using mechanical signature analysis
JP2002287810A (ja) * 2001-03-27 2002-10-04 Furukawa Techno Research Kk 物品加工システム
JP2003175439A (ja) 2001-12-11 2003-06-24 Mori Seiki Co Ltd Nc工作機械の加工時間推定装置
JP2017146859A (ja) * 2016-02-18 2017-08-24 ファナック株式会社 数値制御工作機械の加工時間予測装置
JP2020024676A (ja) * 2018-06-14 2020-02-13 サンドビック マシニング ソリューションズ アクティエボラーグ データベースから選択された方針に基づく機械加工

Also Published As

Publication number Publication date
JPWO2023286151A1 (ja) 2023-01-19
JP7484025B2 (ja) 2024-05-15
CN117561142A (zh) 2024-02-13
US20240338005A1 (en) 2024-10-10
EP4364888A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
CN110704974B (zh) 基于数字孪生驱动的工艺模型的建模与使用方法
JP6680756B2 (ja) 制御装置及び機械学習装置
CN111687652B (zh) 握持力调整装置以及握持力调整系统
WO2019239606A1 (ja) 工作機械の加工寸法予測装置、工作機械の加工寸法予測システム、工作機械の設備異常判定装置、工作機械の加工寸法予測方法及びプログラム
US7167772B2 (en) Machining time calculating apparatus
JP2020138279A (ja) 加工条件調整装置及び加工条件調整システム
JP6781242B2 (ja) 制御装置、機械学習装置及びシステム
JP2003175439A (ja) Nc工作機械の加工時間推定装置
JP5143005B2 (ja) 機械における加工プロセスの最適化のための方法
CN109581962A (zh) 数值控制系统
JP4815907B2 (ja) 加工時間予測方法および予測装置ならびに加工時間予測機能を備えたncデータ編集装置
JP2019162712A (ja) 制御装置、機械学習装置及びシステム
CN107664985B (zh) Cad/cam-cnc集成系统
US10386814B2 (en) Machining status display apparatus, and NC program generating apparatus and NC program editing apparatus provided with the same
CN110174871B (zh) 控制装置、机器学习装置以及系统
EP4035829B1 (en) Control system
JP2019166559A (ja) 加工条件調整装置及び機械学習装置
JP2019141869A (ja) 制御装置及び機械学習装置
JP7053518B2 (ja) 切削液量調整装置及び切削液量調整システム
CN115562167A (zh) 一种数字孪生数控机床运行能耗监控系统
JP2019082894A (ja) 加工条件調整装置及び機械学習装置
JP2004030421A (ja) Nc工作機械
WO2023286151A1 (ja) 加工時間推定方法、加工時間推定装置、コンピュータプロブラム及び記録媒体
JP6833090B2 (ja) 工作機械の加工寸法予測装置、工作機械の加工寸法予測システム、工作機械の設備異常判定装置、工作機械の加工寸法予測方法及びプログラム
JP2021047520A (ja) 作業支援システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534469

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180099872.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021950094

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021950094

Country of ref document: EP

Effective date: 20240202

NENP Non-entry into the national phase

Ref country code: DE