WO2023286116A1 - Inhalation device, substrate, and control method - Google Patents

Inhalation device, substrate, and control method Download PDF

Info

Publication number
WO2023286116A1
WO2023286116A1 PCT/JP2021/026106 JP2021026106W WO2023286116A1 WO 2023286116 A1 WO2023286116 A1 WO 2023286116A1 JP 2021026106 W JP2021026106 W JP 2021026106W WO 2023286116 A1 WO2023286116 A1 WO 2023286116A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction device
unit
predetermined
circuit
circuit unit
Prior art date
Application number
PCT/JP2021/026106
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 小野
和俊 芹田
玲二朗 川崎
寛 手塚
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/026106 priority Critical patent/WO2023286116A1/en
Priority to TW110148462A priority patent/TW202302000A/en
Publication of WO2023286116A1 publication Critical patent/WO2023286116A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present disclosure relates to suction devices, substrates, and control methods.
  • the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component.
  • a user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
  • a sucking action in which the user sucks the aerosol is hereinafter also referred to as a puff or a puffing action.
  • Patent Documents 1 and 2 An induction heating suction device drives a resonance circuit at a predetermined drive frequency to induction heat a susceptor. The heated susceptor then vaporizes or atomizes the aerosol source to produce an aerosol.
  • induction heating suction device for example, repeated use by the user causes the circuit elements to deteriorate over time, which may cause errors in the operation of the circuit elements. Such errors can affect various control actions associated with the suction device, and thus the quality of the user's puff experience.
  • an object of the present disclosure is to enable various control operations relating to the suction device to be executed more accurately, and to provide a mechanism capable of further improving the quality of the user's puff experience. It is in.
  • an AC power generation unit that generates AC power
  • a storage unit that can accommodate a base material containing an aerosol source in an internal space
  • the storage unit a circuit unit comprising an electromagnetic induction source arranged on the outer periphery of the circuit, the circuit unit being arranged to generate a fluctuating magnetic field by the AC power and to allow the generated fluctuating magnetic field to enter the susceptor; a sensor unit arranged near the circuit unit to detect the vibration of the circuit unit and acquire a characteristic value of the circuit unit; a control unit that controls driving of the circuit unit based on the characteristic value obtained as a result, and heat generated from the susceptor is transmitted to the aerosol source of the base material, whereby the aerosol source is A suction device is provided that is vaporized or atomized.
  • the control unit may be configured to control driving of the circuit unit according to deviation from a predetermined reference value regarding the acquired characteristic value.
  • control unit corrects the predetermined drive frequency when the deviation amount is smaller than a predetermined first threshold; and the circuit unit when the deviation amount is equal to or greater than the first threshold. It may be configured to perform one or both of the non-driving.
  • the control unit is further configured to perform heating control of the aerosol source based on a predetermined heating profile, and the characteristic value is obtained while the heating control based on the heating profile is being performed. good.
  • the control unit may be further configured to perform heating control of the aerosol source based on a predetermined heating profile, and the characteristic value may be obtained before performing heating control based on the heating profile.
  • the sensor unit may be further configured to detect pressing of a button of the suction device, and the characteristic value may be obtained in response to detection of pressing of the button.
  • the sensor unit is further configured to detect that the base material has been accommodated in the accommodation unit, and the characteristic value is set to may be obtained.
  • the characteristic value is further acquired after the heating control based on the heating profile is completed, and the control unit further acquires the characteristic value acquired before the heating control is executed and the heating control is executed.
  • the driving of the circuit unit may be controlled based on a difference value from the characteristic value obtained after the characteristic value is obtained.
  • the control unit corrects the predetermined drive frequency when the difference value is smaller than a predetermined second threshold, and does not drive the circuit unit when the difference value is greater than or equal to the second threshold.
  • the control unit may be configured to do one or both of
  • the circuit section may include an RLC circuit, and the characteristic value may be an oscillation frequency accompanying oscillation of a capacitor when the RLC circuit is driven by the driving frequency.
  • the susceptor may be arranged in thermal proximity to the aerosol source inside the base material.
  • the susceptor forms part of the enclosure and is positioned in thermal proximity to the aerosol source by at least partially contacting a surface of the substrate contained within the interior space.
  • the susceptor may be cylindrically formed of stainless steel.
  • a base material is provided that is used in the suction device described above and is housed in the suction device.
  • a method for controlling the operation of a suction device comprises a housing part capable of housing a base material containing an aerosol source in an internal space, and a circuit part provided with an electromagnetic induction source arranged on the outer circumference of the housing part, and the method includes a predetermined a step of instructing a driving frequency to drive the circuit unit, comprising generating and supplying alternating current power to the circuit unit; detecting vibration of the circuit unit based on the driving of the circuit unit to obtain a characteristic value of the circuit unit; and obtaining the characteristic value of the circuit unit. and controlling the driving of the circuit unit based on the value, wherein the heat generated from the susceptor is transferred to the aerosol source of the substrate, thereby vaporizing or atomizing the aerosol source.
  • the step of controlling driving of the circuit unit corrects the predetermined driving frequency to a first frequency when the amount of deviation from a predetermined reference value regarding the acquired characteristic value is smaller than a predetermined first threshold.
  • the step of controlling further includes: driving the circuit unit at the first frequency for a predetermined period of time; estimating a first temperature of the susceptor after the predetermined period of time; Determining whether the temperature is within a predetermined tolerance range and, if the first temperature is within the predetermined tolerance range, notifying that heating control of the aerosol source can be performed based on a predetermined heating profile.
  • the controlling step further comprises further correcting the predetermined drive frequency from the first frequency to a second frequency when the first temperature is not within the predetermined allowable range; and the second frequency. for a predetermined time, estimating a second temperature of the susceptor after the predetermined time has elapsed, and determining whether the second temperature is within a predetermined acceptable range. and signaling that controlled action of heating of the aerosol source based on a predetermined heating profile is possible if the second temperature is within a predetermined tolerance range.
  • the controlling step may further include not driving the circuit unit when the second temperature is not within the predetermined allowable range.
  • the controlling step may include not driving the circuit unit when the deviation amount is equal to or greater than the first threshold value.
  • a mechanism is provided that can further improve the quality of the user's puff experience.
  • FIG. 2 is a block diagram showing a configuration related to induction heating by the suction device of FIG. 1;
  • Figure 2 shows an equivalent circuit of a circuit involved in induction heating by the suction device of Figure 1;
  • 2 is a block diagram showing a configuration example of a control unit included in the control device of FIG. 1;
  • FIG. 4 is a flow chart showing an example of the flow of processing of the control method according to the present embodiment;
  • 6 is a flow diagram showing an example of details of part of the process shown in FIG. 5;
  • FIG. FIG. 7 is a flowchart showing another example of the flow of processing of the control method according to the embodiment;
  • FIG. 7 is a flowchart showing another example of the flow of processing of the control method according to the embodiment.
  • FIG. 9 is a flow diagram showing an example of details of part of the process shown in FIG. 8;
  • FIG. 7 is a flowchart showing another example of the flow of processing of the control method according to the embodiment;
  • the suction device according to this configuration example is an example of an aerosol generating device that generates an aerosol by heating a substrate including an aerosol source through induction heating (IH (Induction Heating)) of a susceptor.
  • IH Induction Heating
  • the suction device according to this configuration example is configured using a known resonance circuit. In suction devices, the resonant circuit is typically driven by a fixed resonant frequency (ie drive frequency).
  • a suction device configured using a resonance circuit may have an error in the actual drive frequency with respect to the drive frequency instructed for the resonance circuit. It is known that this is mainly caused by changes in the reactance of coils and capacitors due to excessive use and aged deterioration. Drive frequency errors can affect various control actions for the suction device (eg, heating actions based on a heating profile). On the other hand, in order to strictly evaluate the error of the drive frequency, it is necessary to install special equipment in the suction device, which is technically and economically unrealistic.
  • the suction device according to this configuration example focuses on the operation of the capacitor, which is a component of the resonance circuit for induction heating the susceptor. In other words, it is possible to appropriately grasp the state of the resonance circuit through the suction device according to this configuration example, thereby making it possible to cope with the influence of the control operation due to the error in the drive frequency. In addition, the suction device according to this configuration example can be controlled to appropriately adjust the operation of the resonance circuit according to the state of the resonance circuit.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device.
  • the suction device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a susceptor 161, an electromagnetic induction source 162, and A retainer 140 is included.
  • the user performs suction while the stick-shaped substrate 150 is held by the holding portion 140 .
  • Each component will be described in order below.
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the suction device 100 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like.
  • the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
  • the sensor unit 112 detects various information regarding the suction device 100 .
  • the sensor unit 112 then outputs the detected information to the control unit 116 .
  • the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor.
  • the sensor unit 112 detects a numerical value associated with the user's suction
  • the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 .
  • the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user.
  • the sensor unit 112 includes a power button, and instructs the power supply unit 111 to start/stop power supply in response to pressing of the power button by the user. Further, the sensor unit 112 instructs start/stop of aerosol generation. The sensor unit 112 then outputs the information input by the user to the control unit 116 .
  • the sensor unit 112 may be configured by a motion sensor (for example, an acceleration sensor, a gyro sensor, etc.) that is arranged near the resonance circuit and detects vibration of a capacitor included in the resonance circuit.
  • a motion sensor is particularly arranged on the substrate of the resonant circuit so that, for example, as a result of driving the resonant circuit, the vibration of the capacitor is detected, and the vibration frequency caused by "ringing" (described later) is detected.
  • the sensor unit 112 may comprise an acoustic sensor, such as a miniature microphone, that detects the sound produced by the vibration of the capacitor. Such sound sensors detect, for example, the frequency of sound produced by "ringing".
  • the sensor section 112 may be configured with a temperature sensor that detects the temperature of the susceptor 161 .
  • a temperature sensor detects the temperature of the susceptor 161 based on the electrical resistance value of the electromagnetic induction source 162, for example.
  • the sensor section 112 may detect the temperature of the stick-shaped substrate 150 held by the holding section 140 based on the temperature of the susceptor 161 .
  • the sensor section 112 may be configured by a pressure sensor arranged on the inner wall of the holding section 140 .
  • the pressure sensor comes into contact with the outer peripheral surface of the stick-shaped base material 150. Detect contact pressure.
  • the sensor unit 112 may be configured by a capacitive proximity sensor provided near the opening 142 .
  • a proximity sensor is a capacitance type proximity sensor that generates an electric field and detects an object based on a change in capacitance or dielectric constant when the object enters the electric field. It detects the capacitance or dielectric constant of the nearby partial space.
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode).
  • the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like.
  • the light emission pattern here is a concept including color, timing of lighting/lighting out, and the like.
  • the notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device.
  • the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that the suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by electromagnetic induction reaches a predetermined temperature.
  • the storage unit 114 stores various information for the operation of the suction device 100 .
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116.
  • FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction (the number of puffs), the time of suction, and the accumulated suction time.
  • the storage unit 114 may store a heating profile, which is information defining the time-series transition of the target temperature, which is the target value of the temperature of the susceptor 161 .
  • the communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices.
  • the communication unit 115 performs communication conforming to any wired or wireless communication standard.
  • a communication standard for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user.
  • the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used and calculation parameters, etc., a RAM (Random Access Memory) for temporarily storing parameters that change as appropriate, and a timer.
  • the suction device 100 executes various processes under the control of the controller 116 .
  • the holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 .
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • the holding part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and holds the stick-shaped base material 150 inserted into the internal space 141.
  • the stick-shaped substrate 150 can be held by pressing from the outer periphery.
  • the retainer 140 also functions to define air flow paths through the stick-shaped substrate 150 .
  • An air inlet hole which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 .
  • the air outflow hole which is the exit of air from such a channel, is the opening 142 .
  • the stick-shaped base material 150 is a stick-shaped member.
  • the stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
  • the base material part 151 contains an aerosol source.
  • the aerosol source is vaporized or atomized by heating to produce an aerosol.
  • the aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient.
  • the aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least part of the base material part 151 is accommodated in the internal space 141 of the holding part 140 in a state in which the stick-shaped base material 150 is held by the holding part 140.
  • the mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held by the holding part 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 and sucks, air flows into the inside of the holding part 140 from an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the holding part 140 , that is, passes through the base material part 151 and reaches the inside of the user's mouth together with the aerosol generated from the base material part 151 .
  • the stick-type substrate 150 includes a susceptor 161 inside.
  • the susceptor 161 generates heat by electromagnetic induction.
  • the susceptor 161 is made of a conductive material such as metal.
  • the susceptor 161 is configured in a plate shape.
  • the susceptor 161 is arranged such that the longitudinal direction of the susceptor 161 coincides with the longitudinal direction of the stick-shaped substrate 150 .
  • the susceptor 161 is arranged inside the stick-shaped substrate 150 so as to be in thermal proximity to the aerosol source.
  • the susceptor 161 being thermally close to the aerosol source means that the susceptor 161 is arranged at a position where heat generated in the susceptor 161 is transferred to the aerosol source.
  • the susceptor 161 is contained in the substrate portion 151 along with the aerosol source and is surrounded by the aerosol source. With such a configuration, the heat generated from the susceptor 161 can be efficiently used to heat the aerosol source.
  • the susceptor 161 may not be accessible from the outside of the stick-shaped substrate 150 .
  • the susceptors 161 may be distributed in the central portion of the stick-shaped substrate 150 and not distributed near the periphery.
  • the electromagnetic induction source 162 causes the susceptor 161 to generate heat by electromagnetic induction.
  • the electromagnetic induction source 162 is composed of, for example, a coiled conductor wire, and is arranged so as to wrap around the outer periphery of the holding portion 140 .
  • the electromagnetic induction source 162 generates a magnetic field when alternating current is supplied through the power supply section 111 .
  • the electromagnetic induction source 162 is arranged at a position where the internal space 141 of the holding section 140 overlaps the generated magnetic field. Therefore, when a magnetic field is generated while the stick-shaped substrate 150 is held by the holding portion 140, an eddy current is generated in the susceptor 161 and Joule heat is generated.
  • the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 to vaporize or atomize it, thereby generating an aerosol.
  • the susceptor 161 is heated by the induction heating of the susceptor 161 by the electromagnetic induction source 162 , and the heat is transferred to the aerosol source contained in the stick-shaped base material 150 . This vaporizes or atomizes the aerosol source.
  • the sensor unit 112 when the sensor unit 112 detects that a predetermined user input has been performed, power may be supplied and an aerosol may be generated accordingly. Then, when the temperature of the stick-shaped substrate 150 induction-heated by the susceptor 161 and the electromagnetic induction source 162 reaches a predetermined temperature, the suction by the user may be enabled. After that, when the sensor unit 112 detects that a predetermined user input has been performed, the power supply may be stopped. As another example, power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
  • FIG. 1 shows an example in which the susceptor 161 is included in the base material portion 151 of the stick-shaped base material 150
  • the holding portion 140 may take on the function of the susceptor 161 , that is, the susceptor 161 may form part of the holding portion 140
  • Susceptor 161 is placed in thermal proximity to the aerosol source by at least partially contacting the surface of stick-shaped substrate 150 housed in interior space 141 .
  • the magnetic field generated by the electromagnetic induction source 162 generates an eddy current in the holding portion 140 and generates Joule heat.
  • the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 to vaporize or atomize it, thereby generating an aerosol.
  • the holding part 140 is preferably made of a metal with high thermal conductivity, such as stainless steel. This enables effective heat transfer from the holding portion 140 to the stick-shaped substrate 150 and the substrate portion 151 therein.
  • the combination of the suction device 100 and the stick-shaped substrate 150 may be regarded as one system in that aerosol can be generated by combining the suction device 100 and the stick-shaped substrate 150 .
  • Induction heating is the process of heating a conductive object by penetrating a varying magnetic field into the object.
  • Induction heating involves a magnetic field generator that generates a fluctuating magnetic field, and a conductive heated object that is heated by being exposed to the fluctuating magnetic field.
  • An example of a varying magnetic field is an alternating magnetic field.
  • the electromagnetic induction source 162 shown in FIG. 1 is an example of a magnetic field generator.
  • the susceptor 161 shown in FIG. 1 is an example of the object to be heated.
  • the object to be heated In a state in which the magnetic field generator and the object to be heated are arranged in relative positions such that the fluctuating magnetic field generated by the magnetic field generator penetrates into the object to be heated, when the fluctuating magnetic field is generated from the magnetic field generator, the object to be heated Eddy currents are induced. When the eddy current flows through the object to be heated, Joule heat corresponding to the electrical resistance of the object to be heated is generated and the object to be heated is heated. Such heating is also referred to as joule heating, ohmic heating, or resistance heating.
  • the object to be heated may have magnetism.
  • the object to be heated is further heated by magnetic hysteresis heating.
  • Magnetic hysteresis heating is the process of heating a magnetic object by impinging it with a varying magnetic field.
  • the magnetic dipoles contained in the magnetic body align along the magnetic field. Therefore, when a fluctuating magnetic field penetrates a magnetic material, the orientation of the magnetic dipole changes according to the applied fluctuating magnetic field. Due to such reorientation of the magnetic dipoles, heat is generated in the magnetic material, and the object to be heated is heated.
  • Magnetic hysteresis heating typically occurs at temperatures below the Curie point and does not occur at temperatures above the Curie point.
  • the Curie point is the temperature at which a magnetic material loses its magnetic properties. For example, when the temperature of an object to be heated which has ferromagnetism at a temperature below the Curie point exceeds the Curie point, the magnetism of the object to be heated undergoes a reversible phase transition from ferromagnetism to paramagnetism. When the temperature of the object to be heated exceeds the Curie point, magnetic hysteresis heating does not occur, so the rate of temperature increase slows down.
  • the object to be heated is made of a conductive material. Furthermore, it is desirable that the object to be heated is made of a ferromagnetic material. In the latter case, it is possible to increase the heating efficiency by combining resistance heating and magnetic hysteresis heating.
  • the object to be heated is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, stainless steel, and the like.
  • induction heating directly heats the susceptor 161 included in the stick-shaped base material 150
  • the base material can be heated more efficiently than when the stick-shaped base material 150 is heated from the outer periphery or the like by an external heat source. It is possible.
  • the temperature of the external heat source is inevitably higher than that of the stick-shaped substrate 150 .
  • the electromagnetic induction source 162 does not become hotter than the stick-shaped substrate 150 . Therefore, the temperature of the suction device 100 can be kept lower than when an external heat source is used, which is a great advantage in terms of user safety.
  • the electromagnetic induction source 162 uses power supplied from the power supply unit 111 to generate a varying magnetic field.
  • the power supply unit 111 may be a DC (Direct Current) power supply. In that case, the power supply unit 111 supplies AC power to the electromagnetic induction source 162 via a DC/AC (Alternate Current) inverter. In that case, the electromagnetic induction source 162 can generate an alternating magnetic field.
  • DC Direct Current
  • AC Alternate Current
  • the electromagnetic induction source 162 causes the fluctuating magnetic field generated from the electromagnetic induction source 162 to penetrate the susceptor 161 which is arranged in thermal proximity to the aerosol source contained in the stick-shaped base material 150 held by the holding part 140 . It is placed in the position where The susceptor 161 generates heat when a fluctuating magnetic field enters.
  • the electromagnetic induction source 162 shown in FIG. 1 is a solenoid coil.
  • the solenoid-type coil is arranged so that the conductive wire is wound around the outer periphery of the holding portion 140 . When a current is applied to the solenoid type coil, a magnetic field is generated in the central space surrounded by the coil, that is, the internal space 141 of the holding part 140 . As shown in FIG.
  • the susceptor 161 when the stick-shaped substrate 150 is held by the holding portion 140, the susceptor 161 is surrounded by the coil. Therefore, the fluctuating magnetic field generated by the electromagnetic induction source 162 enters the susceptor 161 and heats the susceptor 161 by induction.
  • FIG. 2 is a block diagram showing a configuration related to induction heating by the suction device 100 according to this embodiment.
  • the suction device 100 includes a power supply section 111, a drive circuit 169, and a control section 116.
  • the power supply unit 111 is a DC (Direct Current) power supply.
  • the power supply unit 111 supplies DC power to the drive circuit 169 .
  • the drive circuit 169 includes an RLC circuit 168 (described later) including an electromagnetic induction source 162 and an inverter circuit 163 .
  • the drive circuit 169 may further include other circuits such as a matching circuit.
  • the drive circuit 169 is driven by AC power supplied from the power supply unit 111 and converted by the inverter circuit 163 .
  • the drive circuit 169 causes the electromagnetic induction source 162 arranged on the outer periphery of the holding portion 140 to generate a varying magnetic field by AC power. Further, the drive circuit 169 is arranged at a position with respect to the susceptor 161 such that the generated varying magnetic field penetrates the susceptor 161 .
  • the inverter circuit 163 is a DC/AC (Alternate Current) inverter that converts DC power into AC power.
  • inverter circuit 163 is configured as a half-bridge inverter or a full-bridge inverter having one or more switching elements. Examples of switching elements include MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors).
  • the power supply unit 111 and the inverter circuit 163 are examples of an AC power generation unit that generates AC power.
  • the holding part 140 having the electromagnetic induction source 162 arranged on the outer periphery can accommodate the stick-shaped base material 150, which is a base material containing the aerosol source, and the susceptor 161, which is thermally adjacent to the aerosol source, in the internal space 141. It is an example of an accommodation part. It is understood that the stick substrate 150 may have multiple susceptors 161 .
  • the electromagnetic induction source 162 uses the AC power supplied from the inverter circuit 163 to generate a fluctuating magnetic field in the internal space 141 .
  • the electromagnetic induction source 162 is positioned so as to correspond to the susceptor 161 when the stick-shaped substrate 150 is held (that is, housed) in the holding portion 140 .
  • the susceptor 161 is surrounded by the electromagnetic induction source 162 while the stick-shaped base material 150 is held by the holding portion 140 .
  • the electromagnetic induction source 162 can induction-heat the susceptor 161 .
  • a plurality of susceptors 161 may be arranged at different positions along the insertion direction of the stick-shaped substrate 150 . be done.
  • the control unit 116 controls induction heating by the electromagnetic induction source 162 . Specifically, control unit 116 controls power supply to electromagnetic induction source 162 . For example, the control unit 116 estimates the temperature of the susceptor 161 based on information on DC power supplied from the power supply unit 111 to the drive circuit 169 . Then, the control unit 116 controls power supply to the electromagnetic induction source 162 based on the temperature of the susceptor 161 . For example, the control unit 116 controls power supply to the electromagnetic induction source 162 so that the temperature of the susceptor 161 changes according to the heating profile. Note that the temperature of the susceptor 161 may be detected by the temperature sensor of the sensor section 112 .
  • An example of a controlled object is the voltage of DC power supplied from the power supply unit 111 to the drive circuit 169 .
  • Another example of the controlled object is the switching period in the inverter circuit 163 .
  • Another example of a controlled object is the operation of each of the multiple switches 164 .
  • FIG. 3 is a diagram showing an equivalent circuit of a circuit involved in induction heating by the suction device 100 according to this embodiment.
  • the apparent electrical resistance value R A corresponds to the series connection formed by the electrical resistance value R C of the drive circuit 169 and the electrical resistance value R S of the susceptor 161 .
  • the temperature of the susceptor 161 can be estimated based on the apparent electrical resistance value RA . .
  • the drive circuit 169 of this configuration example includes an RLC circuit 168 .
  • the RLC circuit 168 is an example of a circuit section that is driven at a predetermined driving frequency in order to generate a varying magnetic field and induction heat the susceptor 161 .
  • RLC circuit 168 is a resonant circuit known per se. Here, the resistance value of the resistor, the inductance value of the inductor, and the capacitance value of the capacitor are adjusted and set in advance so that the resonance frequency becomes a predetermined driving frequency.
  • the exemplary RLC circuit 168 has resistance (R) provided by a resistor, inductance (L) provided by an inductor, and capacitance (C) provided by a capacitor connected in series.
  • the inductor is the electromagnetic induction source 162 described above, and is composed of, for example, a coiled wire.
  • the capacitor is, for example, a high dielectric constant ceramic capacitor.
  • the RLC circuit 168 may exhibit electrical resonance at a particular resonant frequency when the imaginary parts of the impedances or admittances of circuit elements cancel each other out. Resonance occurs in the RLC circuit 168 as the collapsing inductor's magnetic field generates current in the inductor winding that charges the capacitor, while the discharging capacitor provides current that generates the magnetic field in the inductor.
  • the RLC circuit 168 is driven at a particular resonant frequency, the series impedance of inductance and capacitance is minimized and the circuit current is maximized. Accordingly, effective and/or efficient induction heating can be provided by driving the RLC circuit 168 at a particular resonant frequency (ie, drive frequency).
  • the capacitor (eg, ceramic capacitor) of the RLC circuit 168 has the property that the dielectric deforms and distorts when an AC voltage is applied to the dielectric. Therefore, for example, when an AC voltage of a certain frequency is applied to the capacitor, the capacitor physically vibrates, and the vibration is transmitted to the substrate of the RLC circuit 168 and amplified, resulting in the generation of sound. This is the so-called "ringing" phenomenon.
  • the oscillation frequency regarding the oscillation of the capacitor is an example of the characteristic value of the RLC circuit 168.
  • the oscillation frequency of the capacitor when "ringing" occurs is related to the driving frequency with which the RLC circuit 168 is driven. That is, by obtaining the oscillation frequency of the capacitor with respect to the driving frequency of the RLC circuit 168, the characteristics of the RLC circuit 168 can be effectively and/or efficiently grasped. Then, the driving of the RLC circuit 168 can be effectively controlled.
  • the oscillation frequency of the capacitor with respect to a specific drive frequency is measured in advance and stored in the storage unit 114 as a reference value (that is, normal value).
  • the oscillation frequency obtained while actually driving the RLC circuit 168 is then measured to determine the deviation from the reference value.
  • Such a deviation is an error from the normal value.
  • the corresponding error from a specific drive frequency relative to the actual drive frequency can be estimated.
  • the state of the RLC circuit 168 can be grasped based on the estimated drive frequency error. Such a method is advantageous in that the drive frequency error can be easily estimated, and that it is not necessary to strictly detect the drive frequency using dedicated equipment.
  • the state of the RLC circuit 168 may include, for example, a degraded state and a failure state, and in this embodiment, driving of the RLC circuit 168 can be controlled based on such states.
  • FIG. 4 is a block diagram functionally showing a configuration example of the control unit 116 of the suction device 100 according to this embodiment.
  • the control unit 116 includes a power supply instruction unit 116a, an acquisition unit 116b, a circuit control unit 116c, a heating control unit 116d, and a notification instruction unit 116e.
  • the power supply instruction unit 116a instructs the power supply unit 111 to supply power to the drive circuit 169 or stop it.
  • the acquisition unit 116b instructs the sensor unit 112 to detect the vibration of the capacitor of the RLC circuit 168 and acquire the characteristic value of the RLC circuit 168 (particularly, the vibration frequency of the capacitor due to "ringing").
  • the characteristic value is not limited to the vibration frequency of the capacitor, and may include the frequency of sound generated by "ringing".
  • the circuit control unit 116 c instructs a predetermined driving frequency for driving the RLC circuit 168 . Further, the circuit control unit 116c controls the driving of the RLC circuit 168 based on the vibration frequency obtained by the obtaining unit 116b as a result of driving the RLC circuit 168 . Specifically, the circuit control unit 116c controls the driving of the RLC circuit 168 according to the deviation from the predetermined reference value regarding the vibration frequency described above.
  • the circuit control unit 116c estimates that the RLC circuit 168 is in a degraded state when the amount of deviation from a predetermined reference value for the obtained vibration frequency is smaller than a predetermined threshold value, and instructs the drive frequency correct. Also, if the amount of deviation is greater than or equal to the threshold, it is assumed that the RLC circuit 168 is in a faulty state, and the RLC circuit 168 is disabled so as not to be driven. Note that the control here may perform one or both of correcting the drive frequency and disabling the RLC circuit 168 so as not to drive it. As a result, it is possible to appropriately deal with malfunctions due to overuse or aged deterioration of the suction device 100 .
  • the heating control unit 116d performs heating control of the aerosol source based on the heating profile.
  • the heating profile is information that defines the time series transition of the target temperature, which is the target value of the temperature of the susceptor 161 .
  • the suction device 100 controls power supply to the electromagnetic induction source 162 so that the actual temperature of the susceptor 161 changes in accordance with the time series transition of the target temperature specified in the heating profile. This produces an aerosol as planned by the heating profile.
  • the heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . That is, by controlling the operation of the electromagnetic induction source 162 based on the heating profile, it is possible to optimize the flavor tasted by the user.
  • the notification instruction unit 116e instructs the notification unit 113 to perform a predetermined notification operation.
  • the notification is made in response to the control of the driving of the RLC circuit 168 by the circuit control unit 116c.
  • the notification unit 113 may be caused to notify that the drive frequency should be driven at the corrected drive frequency and/or that the driving of the RLC circuit 168 has been disabled.
  • FIG. 5 is a flow chart showing an example of the flow of processing of the control method according to the present embodiment
  • FIG. 6 is a flow chart showing an example of details of part of the processing shown in FIG.
  • each processing step shown here is merely an example, and the present invention is not limited to this, and arbitrary other processing steps may be included, or some processing steps may be omitted.
  • the order of each processing step shown here is merely an example, and is not limited to this, and may be in any order, or may be executed in parallel in some cases.
  • FIGS. 5 and 6 are particularly an example of a process flow in which the oscillation frequency of the capacitor, which is a characteristic value of the RLC circuit 168, is acquired while the heating control of the aerosol source is being performed based on the heating profile. be.
  • the control unit 116 first causes the sensor unit 112 to detect a suction request.
  • the power supply instruction unit 116a instructs the power supply unit 111 to start supplying power to the drive circuit 169 (step S11).
  • a puff request is a user action that the user requests to generate an aerosol.
  • An example of a suction request is a user operation on the suction device 100, such as pressing a button provided on the suction device 100 by the user.
  • a suction request is a user's operation of inserting the stick-shaped substrate 150 into the suction device 100 .
  • the fact that the stick-shaped base material 150 is held by the holding part 140 is detected by a pressure sensor arranged in the holding part 140 through detection of the contact pressure between the pressure sensor and the held stick-shaped base material 150.
  • a pressure sensor arranged in the holding part 140 through detection of the contact pressure between the pressure sensor and the held stick-shaped base material 150.
  • the control unit 116 can determine that the stick-shaped base material 150 is held by the holding unit 140 by causing the pressure sensor to detect the contact pressure.
  • a capacitive proximity sensor provided near the opening 142 detects the stick-shaped substrate 150 based on changes in capacitance or dielectric constant caused by the stick-shaped substrate 150 being inserted therein. 150 being held by the holding portion 140 may be detected.
  • a proximity sensor provided near the opening 142 detects the capacitance, dielectric constant, or the like of a partial space near the opening 142 in the internal space 141 .
  • various portions of the stick-shaped substrate 150 (a portion including the susceptor 161 and a portion not including the susceptor 161) pass through the partial spaces.
  • the capacitance and dielectric constant of the partial space will change. That is, the control unit 116 can determine that the stick-shaped substrate 150 is held by the holding unit 140 according to the time-series change in the capacitance or dielectric constant of the partial space.
  • the circuit control unit 116c drives the RLC circuit 168 by instructing the RLC circuit 168 with a predetermined drive frequency (step S12).
  • AC power is supplied to the electromagnetic induction source 162 of the RLC circuit 168 to generate a varying magnetic field.
  • a fluctuating magnetic field penetrates the susceptor 161 and the susceptor 161 is heated by induction.
  • the heating control unit 116d starts heating control of the aerosol source based on the heating profile (step S13).
  • the heating control of the aerosol source in step S13 is preferably executed in response to the temperature of the susceptor 161 reaching a predetermined threshold temperature.
  • step S13 while the heating control is being performed, the acquisition unit 116b causes the sensor unit 112 to acquire the vibration frequency of the capacitor associated with the "ringing" caused by the driving of the RLC circuit 168 (step S14). Note that the acquisition of the vibration frequency by the acquisition unit 116b may be periodically acquired during the heating control.
  • the circuit control unit 116c determines whether the obtained oscillation frequency of the capacitor is within a predetermined range (step S15).
  • step S15 If it is determined in step S15 that the oscillation frequency of the capacitor is within the predetermined range (Yes), it may be assumed that the RLC circuit 168 is in a normal state, and the heating control unit 116d performs heating control based on the heating profile. Execution is continued (step S16). A termination condition is associated with the heating profile, and step S16 is continued until the termination condition is satisfied.
  • an end condition is that the heating control period (that is, the heating time) has passed a predetermined period of time.
  • the termination condition may be that the user has reached a predetermined number of puffs over the duration of the heating control.
  • the heating control unit 116d determines that the conditions for ending the heating control are satisfied, it ends the heating control based on the heating profile (step S17).
  • step S15 if it is determined in step S15 that the vibration frequency of the capacitor is not within the predetermined range (No), it may be assumed that the RLC circuit 168 is not in a normal state, and the heating controller 116d sets the heating profile is stopped (step S18).
  • the circuit control unit 116c controls driving of the RLC circuit 168 (step S19/FIG. 6).
  • step S17 After the heating control is finished in step S17 or the driving control of the RLC circuit 168 is executed in step S19, this process is finished.
  • step S19 the process of controlling the driving of the RLC circuit 168 will now be described in more detail with reference to FIG.
  • the circuit control unit 116c After stopping the heating control in step S18, the circuit control unit 116c first calculates the amount of deviation from the predetermined reference value for the obtained vibration frequency (step S19a). Next, the circuit control unit 116c determines whether the amount of deviation is less than a predetermined threshold (step S19b).
  • step S19b When it is determined in step S19b that the amount of deviation is less than the predetermined threshold (Yes), the circuit control unit 116c determines that the RLC circuit 168 is in a deteriorated state (step S19c). In such a deteriorated state, it is preferable to continue adjusting the RLC circuit 168 to be driven from the next time onward. Specifically, the circuit control unit 116c corrects the predetermined drive frequency (step S19d).
  • the drive frequency of the RLC circuit 168 and the oscillation frequency of the capacitor of the RLC circuit 168 are pre-related, correction of the drive frequency is performed in such a way that the corresponding oscillation frequency is closer to the reference value. It's good. For example, if the oscillation frequency of the capacitor is obtained to be lower than the reference value, it is preferable to correct the drive frequency so that it increases (eg, from the original 100 kHz to 105 kHz).
  • the relationship between the drive frequency of the RLC circuit 168 and the oscillation frequency of the capacitor of the RLC circuit 168 is defined in advance by a predetermined regression formula determined by a known method, and the drive frequency is calculated during correction. you can Alternatively, the amount of correction of the drive frequency may be defined in advance in a table according to the range of the amount of deviation, and this may be referred to during correction.
  • the notification instruction unit 116e causes the notification unit 113 to notify that the circuit control unit 116c should drive the RLC circuit 168 with the corrected drive frequency (step S19e). ).
  • the notification instruction unit 116e causes the notification unit 113 to notify that the circuit control unit 116c should drive the RLC circuit 168 with the corrected drive frequency (step S19e).
  • Notifications are preferably presented to the user in the form of predetermined colors and lighting patterns of the LEDs.
  • step S19f determines that the RLC circuit 168 is in a failure state.
  • the failure state here may be a permanent failure state.
  • the circuit control unit 116c disables the RLC circuit 168 so that it will not be driven at all (step S19g).
  • the notification instruction unit 116e causes the notification unit 113 to notify that the RLC circuit 168 has been invalidated (step S19h).
  • the notification may present to the user that use of the suction device 100 has been prohibited in the form of a predetermined color and lighting pattern of the LEDs.
  • the operating state of the RLC circuit 168 can be continuously checked during heating control based on the heating profile. As a result, it is possible to appropriately deal with malfunctions due to excessive use of the suction device 100 or deterioration over time.
  • the control unit 116 first causes the sensor unit 112 to detect a suction request.
  • the power supply instruction unit 116a instructs the power supply unit 111 to start supplying power to the drive circuit 169 (step S21).
  • the circuit control unit 116c drives the RLC circuit 168 by instructing the RLC circuit 168 with a predetermined driving frequency (step S22).
  • the processing of steps S21 and S22 may be the same as steps S11 and S12 described above.
  • the suction request includes a user operation of the suction device 100 such as operating a button provided on the suction device 100 and a user operation of inserting the stick-shaped substrate 150 into the suction device 100. At least one may be included.
  • step S23 acquires the vibration frequency of the capacitor associated with the "ringing" caused by driving the RLC circuit 168. That is, the acquisition unit 116b acquires the vibration frequency of the capacitor in response to the user's suction request.
  • the processing of step S23 may be the same as that of step S14 described above.
  • step S24 determines whether the vibration frequency of the capacitor obtained in step S23 is within a predetermined range.
  • the processing of step S24 may be the same as that of step S15 described above.
  • step S24 When it is determined in step S24 that the vibration frequency of the capacitor is within the predetermined range (Yes), the heating control unit 116d starts heating control based on the heating profile (step S25). The heating control unit 116d continues the heating control until the termination condition is satisfied (step S26), and terminates when the termination condition is satisfied (step S27).
  • the processing of steps S26 and S27 may be the same as steps S16 and S17 described above.
  • step S24 determines whether the vibration frequency of the capacitor is not within the predetermined range (No)
  • the circuit control unit 116c controls the RLC circuit 168 without performing heating control based on the heating profile.
  • Drive control is executed (step S28).
  • the processing of step S28 may be the same as that of step S19 described above. That is, the circuit control unit 116c executes each process shown in FIG.
  • step S27 After the heating control is finished in step S27 or the driving control of the RLC circuit 168 is executed in step S28, the process of this modification is finished.
  • the operating state of the RLC circuit 168 can be checked before heating control.
  • Second example of modification> In the first modified example described above, the driving of the RLC circuit 168 is controlled according to the deviation from the acquired predetermined reference value for the vibration frequency. Instead of this, in this modified example, in addition to obtaining the vibration frequency of the capacitor before the heating control based on the heating profile is performed, as in the first modified example described above, the heating control is further performed. Get the vibration frequency even after it is executed. Then, the drive of the RLC circuit 168 is controlled according to the difference value between the vibration frequencies before and after the heating control. 8 and 9 are examples of the flow of processing according to this modification.
  • the control unit 116 causes the sensor unit 112 to detect a suction request.
  • the power supply instruction unit 116a instructs the power supply unit 111 to start supplying power to the drive circuit 169 (step S31).
  • the circuit control unit 116c drives the RLC circuit 168 by instructing the RLC circuit 168 with a predetermined driving frequency (step S32).
  • the obtaining unit 116b obtains the vibration frequency of the capacitor associated with the "ringing" caused by the driving of the RLC circuit 168 (step S33).
  • the processing of steps S31, S32 and S33 may be the same as steps S21, S22 and S23 described above.
  • the heating control unit 116d starts heating control based on the heating profile (step S34).
  • the heating control unit 116d continues the heating control until the termination condition is satisfied (step S35), and terminates when the termination condition is satisfied (step S36).
  • the processing of steps S34, S35 and S36 may be the same as steps S25, S26 and S27 described above.
  • the obtaining unit 116b further obtains the vibration frequency of the capacitor (step S37). That is, the vibration frequency is obtained both before and after the execution of heating control.
  • the circuit control unit 116c calculates a difference value between the vibration frequency acquired before the heating control is executed in step S33 and the vibration frequency acquired after the heating control is executed in step S37. It is determined whether it is within a predetermined range (step S38).
  • step S38 If it is determined in step S38 that the difference value is within the predetermined range (Yes), the circuit control unit 116c determines that the RLC circuit 168 is in a normal state, and terminates this process as it is. . On the other hand, if it is determined that the difference value is not within the predetermined range (No), the circuit control unit 116c controls the driving of the RLC circuit 168 (step S39), and then the process ends.
  • step S39 With reference to FIG. 9, the processing related to the control of driving the RLC circuit 168 in step S39 will be described in more detail.
  • the circuit control unit 116c determines whether the difference value calculated in step S38 is less than a predetermined threshold (step S39a).
  • step S39a When it is determined in step S39a that the difference value is less than the predetermined threshold (Yes), the circuit control unit 116c determines that the RLC circuit 168 is in a deteriorated state (step S39b). In this case, the circuit control unit 116c corrects the predetermined driving frequency in order to adjust the operation of the RLC circuit 168 to be driven from the next time (step S39c).
  • the notification instruction unit 116e causes the notification unit 113 to notify that the RLC circuit 168 should be driven at the corrected drive frequency (step S39d).
  • the processing of steps S39b, S39c and S39d may be the same as steps S19c, S19d and S19e.
  • step S39a determines whether the difference value is equal to or greater than the predetermined threshold value (No). If it is determined that the RLC circuit 168 is in a failure state (particularly, a permanent failure state) (step S39e). In this case, the RLC circuit 168 is disabled so as not to be driven at all (step S39f). In response, the notification instruction unit 116e causes the notification unit 113 to notify that the RLC circuit 168 has been disabled (step S39g).
  • the processing of steps S39e, S39f and S39g may be the same as steps S19f, S19g and S19h.
  • FIG. 10 is an example of the flow of processing according to this modified example.
  • the process according to this modification is executed after correcting the driving frequency of the RLC circuit 168 in step S19d of FIG.
  • the circuit control unit 116c determines whether the drive frequency after correction is appropriately set according to the state of the RLC circuit 168. Specifically, the circuit control unit 116c drives the RLC circuit 168 at the corrected drive frequency (first frequency) for a predetermined time (step S191a).
  • the heating controller 116d determines the first temperature of the susceptor 161 (step S191b).
  • the temperature of the susceptor 161 may be estimated based on information on the DC power supplied to the drive circuit 169, or may be detected by the temperature sensor of the sensor section 112. FIG.
  • the circuit control unit 116c determines whether the first temperature is within a predetermined allowable range (step S191c). Here, it is determined whether or not a desired temperature change can be obtained with respect to the induction heating of the susceptor 161 by performing a trial operation of the drive circuit 169 for a predetermined period of time. It should be noted that the predetermined period of time may be, for example, the period between the preheating stages of the heating profile.
  • step S191c If it is determined in step S191c that the first temperature is within the predetermined allowable range (Yes), it can be determined that the correction of the drive frequency in step S19d was appropriate. Subsequently, the notification instruction unit 116e causes the notification unit 113 to notify that the heating control of the aerosol source based on the heating profile can be executed (for example, that the preheating stage can be shifted to the heating stage) (step S191d). ). Note that the notification in step S191d may be executed instead of the notification in step S19e of FIG. 6 indicating that the RLC circuit 168 should be driven at the corrected driving frequency.
  • step S191c determines that the dynamic frequency correction in step S19d was not appropriate. That is, the power supply instruction unit 116a stops power supply, and the circuit control unit 116c again corrects the driving frequency of the RLC circuit 168 from the first frequency to the second frequency (step S191e).
  • the temperature of the susceptor 161 and the driving frequency may be associated in advance in order to correct the driving frequency of the RLC circuit 168 again.
  • the temperature of the susceptor 161 after driving the RLC circuit 168 at a specific driving frequency for a predetermined period of time may be determined in advance as a reference temperature (that is, normal temperature). Then, in step S191e, the drive frequency of the RLC circuit 168 may be corrected again according to the deviation between the first temperature and the reference temperature.
  • step S191a the circuit control unit 116c drives the RLC circuit 168 again for a predetermined period of time at the corrected second frequency (step S191f).
  • step S191b the heating control unit 116d determines the second temperature of the susceptor 161 after a predetermined period of time has passed (step S191g).
  • step S191c the circuit control unit 116c determines whether the second temperature is within a predetermined allowable range (step S191h).
  • step S191h If it is determined in step S191h that the second temperature is within the predetermined allowable range (Yes), the process proceeds to step S191d. Specifically, the notification instruction unit 116e causes the notification unit 113 to notify that the heating control of the aerosol source based on the heating profile can be executed. On the other hand, if it is determined that the second temperature is not within the predetermined allowable range (No), the process proceeds to step S19f described above, and it is determined that the RLC circuit 168 is in a failed state. In other words, it is preferable not to drive the RLC circuit 168 from now on.
  • the driving frequency of the RLC circuit 168 is corrected multiple times, so the accuracy of estimating the state of the RLC circuit 168 can be improved, and the RLC circuit 168 can be driven more accurately.
  • the driving frequency of the RLC circuit 168 is corrected multiple times, so the accuracy of estimating the state of the RLC circuit 168 can be improved, and the RLC circuit 168 can be driven more accurately.
  • the safety of the RLC circuit 168 in the heating operation can be improved.
  • the present disclosure is not limited to such examples. That is, the susceptor 161 can be placed at any location where the susceptor 161 is in thermal proximity to the aerosol source.
  • the susceptor 161 may be configured in a blade shape and arranged to protrude from the bottom portion 143 of the holding portion 140 into the internal space 141 . Then, when the stick-shaped base material 150 is inserted into the holding part 140, the blade-shaped susceptor 161 may be inserted so as to pierce the base part 151 from the end of the stick-shaped base material 150 in the insertion direction. .
  • a series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware.
  • Programs constituting software are stored in advance in a recording medium (non-transitory media) provided inside or outside each device, for example.
  • a recording medium non-transitory media
  • Each program for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the computer program may be distributed, for example, via a network without using a recording medium.
  • an AC power generator that generates AC power
  • a housing part capable of housing a substrate containing an aerosol source in its internal space
  • a circuit unit including an electromagnetic induction source arranged on the outer periphery of the housing unit, generating a fluctuating magnetic field with the AC power; a circuitry arranged to cause the generated varying magnetic field to penetrate a susceptor; a sensor unit arranged near the circuit unit for detecting vibration of the circuit unit and acquiring a characteristic value of the circuit unit; a control unit that instructs a predetermined driving frequency for driving the circuit unit and controls driving of the circuit unit based on the characteristic value obtained as a result of driving the circuit unit; wherein heat generated from the susceptor is transferred to an aerosol source on the substrate to vaporize or atomize the aerosol source.
  • the control unit is configured to control driving of the circuit unit according to deviation from a predetermined reference value for the obtained characteristic value.
  • the control unit correcting the predetermined drive frequency if the amount of deviation is less than a predetermined first threshold; not driving the circuit unit when the amount of deviation is greater than or equal to the first threshold; a suction device configured to perform one or both of (4)
  • the controller is further configured to perform heating control of the aerosol source based on a predetermined heating profile; The suction device, wherein the characteristic value is obtained while heating control based on the heating profile is being performed.
  • the controller is further configured to perform heating control of the aerosol source based on a predetermined heating profile; The suction device, wherein the characteristic value is obtained before the heating control based on the heating profile is performed.
  • the sensor unit is further configured to detect that a button of the suction device has been pressed, The suction device, wherein the characteristic value is obtained in response to a detected pressing of the button.
  • the sensor unit is further configured to detect that the substrate has been accommodated in the accommodation unit, The suction device, wherein the characteristic value is obtained in response to detection of the substrate being accommodated in the accommodation portion.
  • the characteristic value is further obtained after the heating control based on the heating profile is completed;
  • the control unit further controls the circuit unit based on a difference value between the characteristic value obtained before the heating control is performed and the characteristic value obtained after the heating control is performed.
  • a suction device configured to control the drive.
  • the control unit correcting the predetermined drive frequency if the difference value is smaller than a predetermined second threshold; not driving the circuit unit when the difference value is equal to or greater than the second threshold; a suction device configured to do one or both of (10)
  • the circuitry includes an RLC circuit;
  • the suction device wherein the characteristic value is a vibration frequency associated with vibration of a capacitor when the RLC circuit is driven by the drive frequency.
  • the circuitry includes an RLC circuit;
  • the suction device, wherein the characteristic value is the frequency of sound associated with vibration of a capacitor when the RLC circuit is driven by the driving frequency.
  • a method of controlling operation of a suction device comprising: a housing part capable of housing a substrate containing an aerosol source in its internal space; a circuit unit comprising an electromagnetic induction source disposed on the outer periphery of the housing unit, the method comprising: A step of instructing a predetermined drive frequency to drive the circuit unit, generating and supplying alternating current power to the circuit unit; causing the electromagnetic induction source to generate the varying magnetic field with the AC power such that the varying magnetic field penetrates the susceptor; detecting vibration of the circuit unit based on driving of the circuit unit to obtain a characteristic value of the circuit unit; a step of controlling driving of the circuit unit based on the obtained characteristic value; The method, wherein heat generated from the susceptor is transferred to the substrate aerosol source to vaporize or atomize the aerosol source.
  • the step of controlling driving of the circuit unit corrects the predetermined driving frequency to a first frequency when the amount of deviation from a predetermined reference value regarding the acquired characteristic value is smaller than a predetermined first threshold.
  • the controlling step further comprises: driving the circuitry at the first frequency for a predetermined time; determining a first temperature of the susceptor after the predetermined period of time; determining if the first temperature is within a predetermined tolerance; notifying that heating control of the aerosol source can be performed based on a predetermined heating profile when the first temperature is within a predetermined allowable range;
  • a method including (19) In the method of (18) above, The controlling step further comprises: further correcting the predetermined drive frequency from the first frequency to a second frequency when the first temperature is not within the predetermined allowable range; driving the circuitry at the second frequency for a predetermined time; determining a second temperature of the susceptor after the predetermined period of time; determining if the second temperature is
  • the step of controlling includes not driving the circuit unit when the amount of deviation is equal to or greater than the first threshold.
  • the method according to any one of (16) to (21) above further comprising: performing heating control of the aerosol source based on a predetermined heating profile; The method, wherein the characteristic value is obtained while heating control based on the heating profile is being performed.
  • the method according to any one of (16) to (21) above further comprising: performing heating control of the aerosol source based on a predetermined heating profile; The method, wherein the characteristic value is obtained prior to the step of performing heating control based on the heating profile.
  • the controlling step includes: correcting the predetermined drive frequency if the difference value is smaller than a predetermined second threshold; not driving the circuit unit when the difference value is equal to or greater than the second threshold; A method comprising one or both of (28) A program for causing a processor of a computer to execute any one of the methods (16) to (27).
  • an AC power generator that generates AC power
  • a housing part capable of housing a substrate containing an aerosol source in its internal space
  • a circuit unit comprising an electromagnetic induction source and a capacitor arranged on the outer periphery of the housing unit, generating a varying magnetic field in the internal space by the AC power; circuitry positioned to cause the generated varying magnetic field to penetrate a susceptor positioned within the substrate and in thermal proximity to the aerosol source; a sensor unit arranged on the substrate of the circuit unit and detecting vibration of the capacitor; a control unit that instructs a predetermined driving frequency for driving the circuit unit and controls the driving of the circuit unit based on the vibration frequency obtained as a result of driving the capacitor; a suction device.
  • an AC power generator that generates AC power
  • a housing part capable of housing a substrate containing an aerosol source in its internal space
  • a circuit unit comprising an electromagnetic induction source and a capacitor arranged on the outer periphery of the housing unit, generating a fluctuating magnetic field with the AC power; a circuit unit arranged to cause the generated varying magnetic field to penetrate a susceptor forming part of the housing unit; a sensor unit arranged on the substrate of the circuit unit and detecting vibration of the capacitor; a control unit that instructs a predetermined driving frequency for driving the circuit unit and controls the driving of the circuit unit based on the vibration frequency obtained as a result of driving the capacitor; wherein the susceptor is arranged to at least partially contact a surface of the substrate contained in the interior space.

Abstract

Provided is a mechanism enabling further increase in the quality of a puff experience of a user. This inhalation device is provided with: an AC power generation unit for generating AC power; a storage unit capable of storing a substrate containing an aerosol source in an inner space; a circuit unit that is provided with an electromagnetic induction source disposed on the outer periphery of the storage unit, and is disposed to generate a variable magnetic field using the AC power and to cause the generated variable magnetic field to enter a susceptor; a sensor unit that is disposed in the vicinity of the circuit unit and detects vibration of the circuit unit to acquire a characteristic value of the circuit unit; and a control unit that instructs a preset drive frequency for driving the circuit unit, and controls the drive of the circuit unit on the basis of the characteristic value acquired as a result of the drive of the circuit unit. Heat generated from the susceptor is transmitted to the aerosol source in the substrate to vaporize or atomize the aerosol source.

Description

吸引装置、基材、及び制御方法Suction device, substrate, and control method
 本開示は、吸引装置、基材、及び制御方法に関する。 The present disclosure relates to suction devices, substrates, and control methods.
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。ユーザがエアロゾルを吸引する吸引動作のことを、以下ではパフ又はパフ動作とも称する。 Inhalation devices, such as electronic cigarettes and nebulizers, that produce substances that are inhaled by the user are widespread. For example, the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device. A sucking action in which the user sucks the aerosol is hereinafter also referred to as a puff or a puffing action.
 従前、加熱用ブレード等の外部熱源を用いる方式の吸引装置が主流であった。また、近年では、誘導加熱式の吸引装置が注目を集めている(特許文献1、2)。誘導加熱式の吸引装置は、所定の駆動周波数で共振回路を駆動させて、サセプタを誘導加熱する。そして、発熱したサセプタがエアロゾル源を気化又は霧化してエアロゾルを生成する。 Previously, suction devices that used an external heat source such as a heating blade were the mainstream. Further, in recent years, an induction heating type suction device has attracted attention (Patent Documents 1 and 2). An induction heating suction device drives a resonance circuit at a predetermined drive frequency to induction heat a susceptor. The heated susceptor then vaporizes or atomizes the aerosol source to produce an aerosol.
特表2020-512662号公報Japanese Patent Publication No. 2020-512662 特表2020-516014号公報Japanese Patent Publication No. 2020-516014
 誘導加熱式の吸引装置において、例えば、ユーザが使用を重ねることで回路素子が経年劣化し、これにより、回路素子の動作に誤差が生じることがある。このような誤差は、吸引装置に関する各種制御動作に影響し得ることから、ユーザのパフ体験の質にも影響することになり得る。 In an induction heating suction device, for example, repeated use by the user causes the circuit elements to deteriorate over time, which may cause errors in the operation of the circuit elements. Such errors can affect various control actions associated with the suction device, and thus the quality of the user's puff experience.
 本開示は、このような問題に鑑みてなされたものである。すなわち、本開示の目的とするところは、吸引装置に関する各種制御動作をより正確に実行可能とすることにあり、また、ユーザのパフ体験の質をさらに向上させることが可能な仕組みを提供することにある。 This disclosure has been made in view of such problems. That is, an object of the present disclosure is to enable various control operations relating to the suction device to be executed more accurately, and to provide a mechanism capable of further improving the quality of the user's puff experience. It is in.
 上記課題を解決するために、本開示の第1観点によれば、交流電力を発生させる交流電力発生部と、エアロゾル源を含有する基材を内部空間に収容可能な収容部と、前記収容部の外周に配置された電磁誘導源を備える回路部であって、前記交流電力により変動磁場を発生させ、前記発生された変動磁場をサセプタに侵入させるように配置される、回路部と、前記回路部の近傍に配置され、前記回路部の振動を検出して、前記回路部の特性値を取得するセンサ部と、前記回路部を駆動する所定の駆動周波数を指示し、前記回路部の駆動の結果取得される前記特性値に基づいて前記回路部の駆動を制御する制御部と、を備え、前記サセプタから発生した熱が、前記基材のエアロゾル源に伝達されることにより、前記エアロゾル源が気化又は霧化される、吸引装置が提供される。 In order to solve the above problems, according to the first aspect of the present disclosure, an AC power generation unit that generates AC power, a storage unit that can accommodate a base material containing an aerosol source in an internal space, and the storage unit a circuit unit comprising an electromagnetic induction source arranged on the outer periphery of the circuit, the circuit unit being arranged to generate a fluctuating magnetic field by the AC power and to allow the generated fluctuating magnetic field to enter the susceptor; a sensor unit arranged near the circuit unit to detect the vibration of the circuit unit and acquire a characteristic value of the circuit unit; a control unit that controls driving of the circuit unit based on the characteristic value obtained as a result, and heat generated from the susceptor is transmitted to the aerosol source of the base material, whereby the aerosol source is A suction device is provided that is vaporized or atomized.
 前記制御部が、前記取得された特性値に関する所定の基準値からのずれにしたがい、前記回路部の駆動を制御するように構成されてもよい。 The control unit may be configured to control driving of the circuit unit according to deviation from a predetermined reference value regarding the acquired characteristic value.
 前記制御部が、前記ずれの量が所定の第1閾値より小さい場合に、前記所定の駆動周波数を補正することと、前記ずれの量が前記第1閾値以上である場合に、前記回路部を駆動させないことと、の一方又は双方を行うように構成されもよい。 wherein the control unit corrects the predetermined drive frequency when the deviation amount is smaller than a predetermined first threshold; and the circuit unit when the deviation amount is equal to or greater than the first threshold. It may be configured to perform one or both of the non-driving.
 前記制御部が、更に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するように構成され、前記特性値が、前記加熱プロファイルに基づく加熱制御が実行されている間に取得されてもよい。 The control unit is further configured to perform heating control of the aerosol source based on a predetermined heating profile, and the characteristic value is obtained while the heating control based on the heating profile is being performed. good.
 前記制御部が、更に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するように構成され、前記特性値が、前記加熱プロファイルに基づく加熱制御が実行される前に取得されてもよい。 The control unit may be further configured to perform heating control of the aerosol source based on a predetermined heating profile, and the characteristic value may be obtained before performing heating control based on the heating profile. .
 前記センサ部が、更に、当該吸引装置のボタンが押下されたのを検出するように構成され、前記特性値が、前記ボタンの押下が検出されたのに応じて取得されてもよい。 The sensor unit may be further configured to detect pressing of a button of the suction device, and the characteristic value may be obtained in response to detection of pressing of the button.
 前記センサ部が、更に、前記基材が前記収容部に収容されたのを検出するように構成され、前記特性値が、前記基材の前記収容部への収容が検出されたのに応じて取得されてもよい。 The sensor unit is further configured to detect that the base material has been accommodated in the accommodation unit, and the characteristic value is set to may be obtained.
 前記特性値が、更に、前記加熱プロファイルに基づく加熱制御が終了した後に取得され、前記制御部が、更に、前記加熱制御が実行される前に取得された前記特性値と、前記加熱制御が実行された後に取得された前記特性値との差分値に基づいて、前記回路部の駆動を制御するように構成されてもよい。 The characteristic value is further acquired after the heating control based on the heating profile is completed, and the control unit further acquires the characteristic value acquired before the heating control is executed and the heating control is executed. The driving of the circuit unit may be controlled based on a difference value from the characteristic value obtained after the characteristic value is obtained.
 前記制御部が、前記差分値が所定の第2閾値より小さい場合に、前記所定の駆動周波数を補正することと、前記差分値が前記第2閾値以上である場合に、前記回路部を駆動させないことと、のうちの一方又は双方を行うように構成されてもよい。 The control unit corrects the predetermined drive frequency when the difference value is smaller than a predetermined second threshold, and does not drive the circuit unit when the difference value is greater than or equal to the second threshold. may be configured to do one or both of
 前記回路部が、RLC回路を含み、前記特性値が、前記RLC回路が前記駆動周波数によって駆動されたときのコンデンサの振動に伴う振動周波数であってもよい。 The circuit section may include an RLC circuit, and the characteristic value may be an oscillation frequency accompanying oscillation of a capacitor when the RLC circuit is driven by the driving frequency.
 前記サセプタが、前記基材の内部で前記エアロゾル源に熱的に近接するように配置されてもよい。 The susceptor may be arranged in thermal proximity to the aerosol source inside the base material.
 前記サセプタが、前記収容部の一部を形成して、前記内部空間に収容されている前記基材の表面に少なくとも部分的に接触することにより、前記エアロゾル源に熱的に近接するように配置されてもよい。 The susceptor forms part of the enclosure and is positioned in thermal proximity to the aerosol source by at least partially contacting a surface of the substrate contained within the interior space. may be
 前記サセプタが、ステンレス鋼で筒状に形成されてよい。 The susceptor may be cylindrically formed of stainless steel.
 また、上記課題を解決するために、本開示の第2観点によれば、前述の吸引装置に使用され、前記吸引装置に収容される基材が提供される。 Further, in order to solve the above problems, according to a second aspect of the present disclosure, a base material is provided that is used in the suction device described above and is housed in the suction device.
 また、上記課題を解決するために、本開示の第3観点によれば、吸引装置の動作を制御する方法が提供される。前記吸引装置が、エアロゾル源を含有する基材を内部空間に収容可能な収容部と、前記収容部の外周に配置された電磁誘導源を備える回路部と、を備え、当該方法が、所定の駆動周波数を指示して前記回路部を駆動するステップであって、交流電力を発生して前記回路部に供給することと、変動磁場がサセプタに侵入するように、前記交流電力により前記電磁誘導源に前記変動磁場を発生させることと、を含む、ステップと、前記回路部の駆動に基づく前記回路部の振動を検出して、前記回路部の特性値を取得するステップと、前記取得された特性値に基づいて、前記回路部の駆動を制御するステップと、含み、前記サセプタから発生した熱が、前記基材のエアロゾル源に伝達されることにより、前記エアロゾル源が気化又は霧化される。 Also, in order to solve the above problems, according to the third aspect of the present disclosure, a method for controlling the operation of a suction device is provided. The suction device comprises a housing part capable of housing a base material containing an aerosol source in an internal space, and a circuit part provided with an electromagnetic induction source arranged on the outer circumference of the housing part, and the method includes a predetermined a step of instructing a driving frequency to drive the circuit unit, comprising generating and supplying alternating current power to the circuit unit; detecting vibration of the circuit unit based on the driving of the circuit unit to obtain a characteristic value of the circuit unit; and obtaining the characteristic value of the circuit unit. and controlling the driving of the circuit unit based on the value, wherein the heat generated from the susceptor is transferred to the aerosol source of the substrate, thereby vaporizing or atomizing the aerosol source.
 前記回路部の駆動を制御するステップが、前記取得された特性値に関する所定の基準値からのずれの量が所定の第1閾値より小さい場合に、前記所定の駆動周波数を第1周波数に補正することを含んでもよい。 The step of controlling driving of the circuit unit corrects the predetermined driving frequency to a first frequency when the amount of deviation from a predetermined reference value regarding the acquired characteristic value is smaller than a predetermined first threshold. may include
 前記制御するステップが、更に、前記第1周波数で前記回路部を所定の時間にわたり駆動することと、前記所定の時間の経過後に前記サセプタの第1温度を推定することと、前記第1温度が所定の許容範囲内にあるかについて判定することと、前記第1温度が所定の許容範囲内にある場合に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御の実行が可能であることを通知することと、を含んでもよい。 The step of controlling further includes: driving the circuit unit at the first frequency for a predetermined period of time; estimating a first temperature of the susceptor after the predetermined period of time; Determining whether the temperature is within a predetermined tolerance range and, if the first temperature is within the predetermined tolerance range, notifying that heating control of the aerosol source can be performed based on a predetermined heating profile. may include doing and
 前記制御するステップが、更に、前記第1温度が前記所定の許容範囲内にはない場合に、前記所定の駆動周波数を前記第1周波数から第2周波数に更に補正することと、前記第2周波数で所定の時間にわたり前記回路部を駆動することと、前記所定の時間の経過後に前記サセプタの第2温度を推定することと、前記第2温度が所定の許容範囲内にあるかについて判定することと、前記第2温度が所定の許容範囲内にある場合に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱の制御動作が可能であることを通知することと、を含んでもよい。 The controlling step further comprises further correcting the predetermined drive frequency from the first frequency to a second frequency when the first temperature is not within the predetermined allowable range; and the second frequency. for a predetermined time, estimating a second temperature of the susceptor after the predetermined time has elapsed, and determining whether the second temperature is within a predetermined acceptable range. and signaling that controlled action of heating of the aerosol source based on a predetermined heating profile is possible if the second temperature is within a predetermined tolerance range.
 前記制御するステップが、更に、前記第2温度が前記所定の許容範囲内にはない場合に、前記回路部を駆動させないことを含んでもよい。 The controlling step may further include not driving the circuit unit when the second temperature is not within the predetermined allowable range.
 前記制御するステップが、前記ずれの量が前記第1閾値以上である場合に、前記回路部を駆動させないことを含んでもよい。 The controlling step may include not driving the circuit unit when the deviation amount is equal to or greater than the first threshold value.
 以上説明したように本開示によれば、ユーザのパフ体験の質をさらに向上させることが可能な仕組みが提供される。 As described above, according to the present disclosure, a mechanism is provided that can further improve the quality of the user's puff experience.
本実施形態に係る吸引装置の構成例を模式的に示す模式図である。It is a schematic diagram which shows typically the structural example of the suction device which concerns on this embodiment. 図1の吸引装置による誘導加熱に関与する構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration related to induction heating by the suction device of FIG. 1; 図1の吸引装置による誘導加熱に関与する回路の等価回路を示す図である。Figure 2 shows an equivalent circuit of a circuit involved in induction heating by the suction device of Figure 1; 図1の制御装置が備える制御部の構成例を示すブロック図である。2 is a block diagram showing a configuration example of a control unit included in the control device of FIG. 1; FIG. 本実施形態に係る制御方法の処理の流れの一例を示すフロー図である。FIG. 4 is a flow chart showing an example of the flow of processing of the control method according to the present embodiment; 図5に示した処理の一部の詳細の一例を示すフロー図である。6 is a flow diagram showing an example of details of part of the process shown in FIG. 5; FIG. 本実施形態に係る制御方法の処理の流れの他の例を示すフロー図である。FIG. 7 is a flowchart showing another example of the flow of processing of the control method according to the embodiment; 本実施形態に係る制御方法の処理の流れの他の例を示すフロー図である。FIG. 7 is a flowchart showing another example of the flow of processing of the control method according to the embodiment; 図8に示した処理の一部の詳細の一例を示すフロー図である。FIG. 9 is a flow diagram showing an example of details of part of the process shown in FIG. 8; 本実施形態に係る制御方法の処理の流れの他の例を示すフロー図である。FIG. 7 is a flowchart showing another example of the flow of processing of the control method according to the embodiment;
 以下、図面を参照しながら本開示の実施形態に係る吸引装置、基材、及び制御方法について添付図面を参照して説明する。添付図面において、同一又は類似の要素には同一又は類似の参照符号が付され、各実施形態の説明において同一又は類似の要素に関する重複する説明は省略することがある。また、ある実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。更に、図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることがある。 Hereinafter, the suction device, substrate, and control method according to the embodiment of the present disclosure will be described with reference to the accompanying drawings. In the accompanying drawings, the same or similar elements are denoted by the same or similar reference numerals, and duplicate descriptions of the same or similar elements may be omitted in the description of each embodiment. Also, features illustrated in one embodiment are applicable to other embodiments as long as they are not mutually exclusive. Furthermore, the drawings are schematic and do not necessarily correspond to actual dimensions, proportions, and the like. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included.
 <1.吸引装置の構成例>
 本構成例に係る吸引装置は、サセプタを誘導加熱(IH(Induction Heating))を通じてエアロゾル源を含む基材を加熱することにより、エアロゾルを生成するエアロゾル生成装置の一例である。本構成例に係る吸引装置は、公知の共振回路を用いて構成される。吸引装置において、共振回路は通常、固定の共振周波数(つまり、駆動周波数)によって駆動される。
<1. Configuration example of suction device>
The suction device according to this configuration example is an example of an aerosol generating device that generates an aerosol by heating a substrate including an aerosol source through induction heating (IH (Induction Heating)) of a susceptor. The suction device according to this configuration example is configured using a known resonance circuit. In suction devices, the resonant circuit is typically driven by a fixed resonant frequency (ie drive frequency).
 共振回路を用いて構成される吸引装置は、共振回路に対して指示された駆動周波数に対し、実際の駆動周波数に誤差が生じることがある。このことは、使用過多や経年劣化に伴うコイル及びコンデンサに関するリアクタンスの変化等が主な原因となることが知られている。駆動周波数の誤差は、吸引装置に関する各種制御動作(例えば、加熱プロファイルに基づく加熱動作)に影響することがある。その一方で、駆動周波数の誤差を厳密に評価するには、専用の機材を吸引装置に搭載する必要があり、技術的にも費用面でも現実的とは言えない。 A suction device configured using a resonance circuit may have an error in the actual drive frequency with respect to the drive frequency instructed for the resonance circuit. It is known that this is mainly caused by changes in the reactance of coils and capacitors due to excessive use and aged deterioration. Drive frequency errors can affect various control actions for the suction device (eg, heating actions based on a heating profile). On the other hand, in order to strictly evaluate the error of the drive frequency, it is necessary to install special equipment in the suction device, which is technically and economically unrealistic.
 そこで、本構成例に係る吸引装置は、サセプタを誘導加熱するための共振回路の構成要素であるコンデンサの動作に着目している。つまり、本構成例に係る吸引装置を通じて、共振回路の状態を適切に把握するのを可能にし、これにより、駆動周波数の誤差に伴う制御動作の影響に対処可能とする。また、本構成例に係る吸引装置は、共振回路の状態に応じて、共振回路の動作を適切に調整するよう制御可能とする。 Therefore, the suction device according to this configuration example focuses on the operation of the capacitor, which is a component of the resonance circuit for induction heating the susceptor. In other words, it is possible to appropriately grasp the state of the resonance circuit through the suction device according to this configuration example, thereby making it possible to cope with the influence of the control operation due to the error in the drive frequency. In addition, the suction device according to this configuration example can be controlled to appropriately adjust the operation of the resonance circuit according to the state of the resonance circuit.
 これにより、吸引装置の使用を制限し、及び/又は、より適切な条件でRLC回路を駆動させるように、駆動周波数を補正することが可能になる。すなわち、誘導加熱式の吸引装置の動作を更に適切に制御することが可能になる。 This makes it possible to limit the use of the suction device and/or correct the drive frequency so as to drive the RLC circuit under more appropriate conditions. That is, it becomes possible to more appropriately control the operation of the induction heating type suction device.
 以下、図1を参照しながら、本構成例を説明する。図1は、吸引装置の構成例を模式的に示す模式図である。図1に示すように、本構成例に係る吸引装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、サセプタ161、電磁誘導源162、及び保持部140を含む。保持部140にスティック型基材150が保持された状態で、ユーザによる吸引が行われる。以下、各構成要素について順に説明する。 This configuration example will be described below with reference to FIG. FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device. As shown in FIG. 1, the suction device 100 according to this configuration example includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a susceptor 161, an electromagnetic induction source 162, and A retainer 140 is included. The user performs suction while the stick-shaped substrate 150 is held by the holding portion 140 . Each component will be described in order below.
 電源部111は、電力を蓄積する。そして、電源部111は、吸引装置100の各構成要素に、電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。電源部111は、USB(Universal Serial Bus)ケーブル等により外部電源に接続されることで、充電されてもよい。また、電源部111は、ワイヤレス電力伝送技術により送電側のデバイスに非接続な状態で充電されてもよい。他にも、電源部111のみを吸引装置100から取り外すことができてもよく、新しい電源部111と交換することができてもよい。 The power supply unit 111 accumulates power. The power supply unit 111 supplies electric power to each component of the suction device 100 . The power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery. The power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like. Also, the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
 センサ部112は、吸引装置100に関する各種情報を検出する。そして、センサ部112は、検出した情報を制御部116に出力する。一例として、センサ部112は、コンデンサマイクロホン等の圧力センサ、流量センサ又は温度センサにより構成される。そして、センサ部112は、ユーザによる吸引に伴う数値を検出した場合に、ユーザによる吸引が行われたことを示す情報を制御部116に出力する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。とりわけ、センサ部112は、電源ボタンを含み、ユーザによる電源ボタンの押下に応じて、電源部111による給電開始/停止を指示する。また、センサ部112は、エアロゾルの生成開始/停止を指示する。そして、センサ部112は、ユーザにより入力された情報を制御部116に出力する。 The sensor unit 112 detects various information regarding the suction device 100 . The sensor unit 112 then outputs the detected information to the control unit 116 . As an example, the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor. When the sensor unit 112 detects a numerical value associated with the user's suction, the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 . As another example, the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user. In particular, the sensor unit 112 includes a power button, and instructs the power supply unit 111 to start/stop power supply in response to pressing of the power button by the user. Further, the sensor unit 112 instructs start/stop of aerosol generation. The sensor unit 112 then outputs the information input by the user to the control unit 116 .
 更に、一例として、センサ部112は、共振回路の近傍に配置され、共振回路が具備するコンデンサの振動を検出するモーションセンサ(例えば、加速度センサやジャイロセンサ等)により構成されてよい。かかるモーションセンサは、特に、共振回路の基板上に配置されることにより、例えば、共振回路が駆動された結果、コンデンサの振動を検出して、「音鳴き」(後述)によって生じる振動周波数を検出する。これに加えて、又はこれに代えて、センサ部112は、コンデンサの振動に伴い生じる音を検出する小型マイクロホンのような音響センサにより構成されてよい。かかる音センサは、例えば、「音鳴き」によって生じる音の周波数を検出する。 Furthermore, as an example, the sensor unit 112 may be configured by a motion sensor (for example, an acceleration sensor, a gyro sensor, etc.) that is arranged near the resonance circuit and detects vibration of a capacitor included in the resonance circuit. Such a motion sensor is particularly arranged on the substrate of the resonant circuit so that, for example, as a result of driving the resonant circuit, the vibration of the capacitor is detected, and the vibration frequency caused by "ringing" (described later) is detected. do. Additionally or alternatively, the sensor unit 112 may comprise an acoustic sensor, such as a miniature microphone, that detects the sound produced by the vibration of the capacitor. Such sound sensors detect, for example, the frequency of sound produced by "ringing".
 更に、センサ部112は、サセプタ161の温度を検出する温度センサにより構成されてよい。かかる温度センサは、例えば、電磁誘導源162の電気抵抗値に基づいてサセプタ161の温度を検出する。センサ部112は、サセプタ161の温度に基づいて、保持部140により保持されたスティック型基材150の温度を検出してもよい。 Furthermore, the sensor section 112 may be configured with a temperature sensor that detects the temperature of the susceptor 161 . Such a temperature sensor detects the temperature of the susceptor 161 based on the electrical resistance value of the electromagnetic induction source 162, for example. The sensor section 112 may detect the temperature of the stick-shaped substrate 150 held by the holding section 140 based on the temperature of the susceptor 161 .
 更に、センサ部112は、保持部140の内壁に配置された圧力センサにより構成されてよい。かかる圧力センサは、例えば、保持部140おいてスティック型基材150を内部に保持する際に、スティック型基材150の外周面と接触することになるので、その際のスティック型基材150の接触圧を検出する。これに代えて、又はこれに加えて、センサ部112は、開口142付近に設けられた静電容量型の近接センサにより構成されてよい。かかる近接センサは、静電容量型の近接センサは、電界を発生させ、対象物が電界に進入した際の静電容量又は誘電率の変化により対象物を検出し、内部空間141のうち開口142付近の部分空間の静電容量又は誘電率等を検出する。 Furthermore, the sensor section 112 may be configured by a pressure sensor arranged on the inner wall of the holding section 140 . For example, when the stick-shaped base material 150 is held inside the holding part 140, the pressure sensor comes into contact with the outer peripheral surface of the stick-shaped base material 150. Detect contact pressure. Alternatively or additionally, the sensor unit 112 may be configured by a capacitive proximity sensor provided near the opening 142 . Such a proximity sensor is a capacitance type proximity sensor that generates an electric field and detects an object based on a change in capacitance or dielectric constant when the object enters the electric field. It detects the capacitance or dielectric constant of the nearby partial space.
 通知部113は、情報をユーザに通知する。一例として、通知部113は、LED(Light Emitting Diode)などの発光装置により構成される。その場合、通知部113は、電源部111の状態が要充電である場合、電源部111が充電中である場合、及び吸引装置100に異常が発生した場合等に、それぞれ異なる発光パターンで発光する。ここでの発光パターンとは、色、及び点灯/消灯のタイミング等を含む概念である。通知部113は、発光装置と共に、又は代えて、画像を表示する表示装置、音を出力する音出力装置、及び振動する振動装置等により構成されてもよい。他にも、通知部113は、ユーザによる吸引が可能になったことを示す情報を通知してもよい。ユーザによる吸引が可能になったことを示す情報は、電磁誘導により発熱したスティック型基材150の温度が所定の温度に到達した場合に、通知される。 The notification unit 113 notifies the user of information. As an example, the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode). In this case, the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like. . The light emission pattern here is a concept including color, timing of lighting/lighting out, and the like. The notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device. In addition, the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that the suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by electromagnetic induction reaches a predetermined temperature.
 記憶部114は、吸引装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114に記憶される情報の一例は、制御部116による各種構成要素の制御内容等の、吸引装置100のOS(Operating System)に関する情報である。記憶部114に記憶される情報の他の一例は、吸引回数(パフの回数)、吸引時刻、吸引時間累計等の、ユーザによる吸引に関する情報である。また、サセプタ161の温度の目標値である目標温度の時系列推移が規定された情報である加熱プロファイルが記憶部114に格納されてもよい。 The storage unit 114 stores various information for the operation of the suction device 100 . The storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory. An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116. FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction (the number of puffs), the time of suction, and the accumulated suction time. Further, the storage unit 114 may store a heating profile, which is information defining the time-series transition of the target temperature, which is the target value of the temperature of the susceptor 161 .
 通信部115は、吸引装置100と他の装置との間で情報を送受信するための、通信インタフェースである。通信部115は、有線又は無線の任意の通信規格に準拠した通信を行う。かかる通信規格としては、例えば、無線LAN(Local Area Network)、有線LAN、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。一例として、通信部115は、ユーザによる吸引に関する情報をスマートフォンに表示させるために、ユーザによる吸引に関する情報をスマートフォンに送信する。他の一例として、通信部115は、記憶部114に記憶されているOSの情報を更新するために、サーバから新たなOSの情報を受信する。 The communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices. The communication unit 115 performs communication conforming to any wired or wireless communication standard. As such a communication standard, for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted. As an example, the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user. As another example, the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。他に、制御部116は、使用するプログラム及び演算パラメータ等を記憶するROM(Read Only Memory)、適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)、並びにタイマー等を含んでもよい。吸引装置100は、制御部116による制御に基づいて、各種処理を実行する。電源部111から他の各構成要素への給電、電源部111の充電、センサ部112による情報の検出、通知部113による情報の通知、記憶部114による情報の記憶及び読み出し、並びに通信部115による情報の送受信は、制御部116により制御される処理の一例である。各構成要素への情報の入力、及び各構成要素から出力された情報に基づく処理等、吸引装置100により実行されるその他の処理も、制御部116により制御される。 The control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs. The control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor. In addition, the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used and calculation parameters, etc., a RAM (Random Access Memory) for temporarily storing parameters that change as appropriate, and a timer. The suction device 100 executes various processes under the control of the controller 116 . Power supply from power supply unit 111 to other components, charging of power supply unit 111, detection of information by sensor unit 112, notification of information by notification unit 113, storage and reading of information by storage unit 114, and communication unit 115 Transmission and reception of information is an example of processing controlled by the control unit 116 . Other processes executed by the suction device 100, such as information input to each component and processing based on information output from each component, are also controlled by the control unit 116. FIG.
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140は、筒状体の高さ方向の少なくとも一部において、内径がスティック型基材150の外径よりも小さくなるように構成され、内部空間141に挿入されたスティック型基材150を外周から圧迫するようにしてスティック型基材150を保持し得る。保持部140は、スティック型基材150を通る空気の流路を画定する機能も有する。かかる流路内への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。 The holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 . The holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 . For example, the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 . The holding part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and holds the stick-shaped base material 150 inserted into the internal space 141. The stick-shaped substrate 150 can be held by pressing from the outer periphery. The retainer 140 also functions to define air flow paths through the stick-shaped substrate 150 . An air inlet hole, which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 . On the other hand, the air outflow hole, which is the exit of air from such a channel, is the opening 142 .
 スティック型基材150は、スティック型の部材である。スティック型基材150は、基材部151、及び吸口部152を含む。 The stick-shaped base material 150 is a stick-shaped member. The stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
 基材部151は、エアロゾル源を含有する。エアロゾル源は、加熱されることで気化又は霧化され、エアロゾルが生成される。エアロゾル源は、例えば、刻みたばこ又はたばこ原料を、粒状、シート状、又は粉末状に成形した加工物などの、たばこ由来のものであってもよい。また、エアロゾル源は、たばこ以外の植物(例えばミント及びハーブ等)から作られた、非たばこ由来のものを含んでいてもよい。一例として、エアロゾル源は、メントール等の香料成分を含んでいてもよい。吸引装置100が医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。なお、エアロゾル源は固体に限られるものではなく、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体であってもよい。基材部151の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、保持部140の内部空間141に収容される The base material part 151 contains an aerosol source. The aerosol source is vaporized or atomized by heating to produce an aerosol. The aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient. The aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least part of the base material part 151 is accommodated in the internal space 141 of the holding part 140 in a state in which the stick-shaped base material 150 is held by the holding part 140.
 吸口部152は、吸引の際にユーザに咥えられる部材である。吸口部152の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から保持部140の内部に空気が流入する。流入した空気は、保持部140の内部空間141を通過して、すなわち、基材部151を通過して、基材部151から発生するエアロゾルと共に、ユーザの口内に到達する。 The mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held by the holding part 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 and sucks, air flows into the inside of the holding part 140 from an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the holding part 140 , that is, passes through the base material part 151 and reaches the inside of the user's mouth together with the aerosol generated from the base material part 151 .
 さらに、スティック型基材150は、内部にサセプタ161を含む。サセプタ161は、電磁誘導により発熱する。サセプタ161は、金属等の導電性の素材により構成される。一例として、サセプタ161は、板状に構成される。そして、サセプタ161は、サセプタ161の長手方向がスティック型基材150の長手方向に一致するように、配置される。 Furthermore, the stick-type substrate 150 includes a susceptor 161 inside. The susceptor 161 generates heat by electromagnetic induction. The susceptor 161 is made of a conductive material such as metal. As an example, the susceptor 161 is configured in a plate shape. The susceptor 161 is arranged such that the longitudinal direction of the susceptor 161 coincides with the longitudinal direction of the stick-shaped substrate 150 .
 ここで、サセプタ161は、スティック型基材150の内部でエアロゾル源に熱的に近接するように配置される。サセプタ161がエアロゾル源に熱的に近接しているとは、サセプタ161に発生した熱が、エアロゾル源に伝達される位置に、サセプタ161が配置されていることを指す。例えば、サセプタ161は、エアロゾル源と共に基材部151に含有され、エアロゾル源により周囲を囲まれる。かかる構成により、サセプタ161から発生した熱を、効率よくエアロゾル源の加熱に使用することが可能となる。 Here, the susceptor 161 is arranged inside the stick-shaped substrate 150 so as to be in thermal proximity to the aerosol source. The susceptor 161 being thermally close to the aerosol source means that the susceptor 161 is arranged at a position where heat generated in the susceptor 161 is transferred to the aerosol source. For example, the susceptor 161 is contained in the substrate portion 151 along with the aerosol source and is surrounded by the aerosol source. With such a configuration, the heat generated from the susceptor 161 can be efficiently used to heat the aerosol source.
 なお、サセプタ161には、スティック型基材150の外部から接触不可能であってもよい。例えば、サセプタ161は、スティック型基材150の中心部分に分布し、外周付近には分布していなくてもよい。 It should be noted that the susceptor 161 may not be accessible from the outside of the stick-shaped substrate 150 . For example, the susceptors 161 may be distributed in the central portion of the stick-shaped substrate 150 and not distributed near the periphery.
 電磁誘導源162は、電磁誘導によりサセプタ161を発熱させる。電磁誘導源162は、例えば、コイル状の導線により構成され、保持部140の外周に巻き付くように配置される。電磁誘導源162は、電源部111を通じて交流電流が供給されると、磁界を発生させる。電磁誘導源162は、発生させた磁界に保持部140の内部空間141が重畳する位置に配置される。よって、保持部140にスティック型基材150が保持された状態で磁界が発生すると、サセプタ161において渦電流が発生して、ジュール熱が発生する。かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて気化又は霧化され、エアロゾルが生成される。 The electromagnetic induction source 162 causes the susceptor 161 to generate heat by electromagnetic induction. The electromagnetic induction source 162 is composed of, for example, a coiled conductor wire, and is arranged so as to wrap around the outer periphery of the holding portion 140 . The electromagnetic induction source 162 generates a magnetic field when alternating current is supplied through the power supply section 111 . The electromagnetic induction source 162 is arranged at a position where the internal space 141 of the holding section 140 overlaps the generated magnetic field. Therefore, when a magnetic field is generated while the stick-shaped substrate 150 is held by the holding portion 140, an eddy current is generated in the susceptor 161 and Joule heat is generated. The Joule heat heats the aerosol source contained in the stick-shaped substrate 150 to vaporize or atomize it, thereby generating an aerosol.
 すなわち、電磁誘導源162によってサセプタ161が誘導加熱されることでサセプタ161が発熱し、その熱が、スティック型基材150に含有されたエアロゾル源に伝達される。これにより、エアロゾル源が気化又は霧化される。 That is, the susceptor 161 is heated by the induction heating of the susceptor 161 by the electromagnetic induction source 162 , and the heat is transferred to the aerosol source contained in the stick-shaped base material 150 . This vaporizes or atomizes the aerosol source.
 一例として、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、それに応じて給電され、エアロゾルが生成されてもよい。そして、サセプタ161及び電磁誘導源162により誘導加熱されたスティック型基材150の温度が所定の温度に到達した場合に、ユーザによる吸引を可能としてよい。その後、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、給電が停止されてもよい。他の一例として、ユーザによる吸引が行われたことがセンサ部112により検出されている期間において、給電され、エアロゾルが生成されてもよい。 As an example, when the sensor unit 112 detects that a predetermined user input has been performed, power may be supplied and an aerosol may be generated accordingly. Then, when the temperature of the stick-shaped substrate 150 induction-heated by the susceptor 161 and the electromagnetic induction source 162 reaches a predetermined temperature, the suction by the user may be enabled. After that, when the sensor unit 112 detects that a predetermined user input has been performed, the power supply may be stopped. As another example, power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
 なお、図1では、サセプタ161が、スティック型基材150の基材部151に含まれる例を示したが、本構成例はかかる例に限定されない。これに代えて、例えば、保持部140がサセプタ161の機能を担ってよく、つまり、サセプタ161が保持部140の一部を形成してもよい。サセプタ161は、内部空間141に収容されているスティック型基材150の表面に少なくとも部分的に接触することにより、エアロゾル源に熱的に近接するように配置される。この場合、電磁誘導源162が発生させた磁界によって、保持部140において渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて気化又は霧化され、エアロゾルが生成される。 Although FIG. 1 shows an example in which the susceptor 161 is included in the base material portion 151 of the stick-shaped base material 150, this configuration example is not limited to such an example. Alternatively, for example, the holding portion 140 may take on the function of the susceptor 161 , that is, the susceptor 161 may form part of the holding portion 140 . Susceptor 161 is placed in thermal proximity to the aerosol source by at least partially contacting the surface of stick-shaped substrate 150 housed in interior space 141 . In this case, the magnetic field generated by the electromagnetic induction source 162 generates an eddy current in the holding portion 140 and generates Joule heat. Then, the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 to vaporize or atomize it, thereby generating an aerosol.
 この例では、保持部140は、熱伝導率の高い金属で構成されることが好ましく、例えば、ステンレス鋼で形成されるのがよい。これにより、保持部140からスティック型基材150及びその内部の基材部151への効果的な熱の伝達が可能になる。 In this example, the holding part 140 is preferably made of a metal with high thermal conductivity, such as stainless steel. This enables effective heat transfer from the holding portion 140 to the stick-shaped substrate 150 and the substrate portion 151 therein.
 なお、吸引装置100とスティック型基材150とを組み合わせることでエアロゾルを生成可能になる点で、吸引装置100とスティック型基材150との組み合わせが1つのシステムとして捉えられてもよい。 Note that the combination of the suction device 100 and the stick-shaped substrate 150 may be regarded as one system in that aerosol can be generated by combining the suction device 100 and the stick-shaped substrate 150 .
 <2.誘導加熱>
 誘導加熱について、以下に詳細に説明する。
<2. Induction heating>
Induction heating is described in detail below.
 誘導加熱とは、導電性を有する物体に変動磁場を侵入させることによって、その物体を加熱するプロセスである。誘導加熱には、変動磁場を発生させる磁場発生器と、変動磁場に曝されることにより加熱される、導電性を有する被加熱物とが関与する。変動磁場の一例は、交番磁場である。図1に示した電磁誘導源162は、磁場発生器の一例である。図1に示したサセプタ161は、被加熱物の一例である。 Induction heating is the process of heating a conductive object by penetrating a varying magnetic field into the object. Induction heating involves a magnetic field generator that generates a fluctuating magnetic field, and a conductive heated object that is heated by being exposed to the fluctuating magnetic field. An example of a varying magnetic field is an alternating magnetic field. The electromagnetic induction source 162 shown in FIG. 1 is an example of a magnetic field generator. The susceptor 161 shown in FIG. 1 is an example of the object to be heated.
 磁場発生器と被加熱物とが、磁場発生器から発生した変動磁場が被加熱物に侵入するような相対位置に配置された状態において、磁場発生器から変動磁場が発生すると、被加熱物に渦電流が誘起される。被加熱物に渦電流が流れることにより、被加熱物の電気抵抗に応じたジュール熱が発生し、被加熱物が加熱される。このような加熱は、ジュール加熱、オーム加熱、又は抵抗加熱とも称される。 In a state in which the magnetic field generator and the object to be heated are arranged in relative positions such that the fluctuating magnetic field generated by the magnetic field generator penetrates into the object to be heated, when the fluctuating magnetic field is generated from the magnetic field generator, the object to be heated Eddy currents are induced. When the eddy current flows through the object to be heated, Joule heat corresponding to the electrical resistance of the object to be heated is generated and the object to be heated is heated. Such heating is also referred to as joule heating, ohmic heating, or resistance heating.
 被加熱物は、磁性を有していてもよい。その場合、被加熱物は、磁気ヒステリシス加熱によりさらに加熱される。磁気ヒステリシス加熱とは、磁性を有する物体に変動磁場を侵入させることによって、その物体を加熱するプロセスである。磁場が磁性体に侵入すると、磁性体に含まれる磁気双極子が磁場に沿って整列する。従って、変動磁場が磁性体に侵入すると、磁気双極子の向きは、印可された変動磁場に応じて変化する。このような磁気双極子の再配向によって、磁性体に熱が発生し、被加熱物が加熱される。 The object to be heated may have magnetism. In that case, the object to be heated is further heated by magnetic hysteresis heating. Magnetic hysteresis heating is the process of heating a magnetic object by impinging it with a varying magnetic field. When a magnetic field penetrates a magnetic body, the magnetic dipoles contained in the magnetic body align along the magnetic field. Therefore, when a fluctuating magnetic field penetrates a magnetic material, the orientation of the magnetic dipole changes according to the applied fluctuating magnetic field. Due to such reorientation of the magnetic dipoles, heat is generated in the magnetic material, and the object to be heated is heated.
 磁気ヒステリシス加熱は、典型的には、キュリー点以下の温度で発生し、キュリー点を超える温度では発生しない。キュリー点とは、磁性体がその磁気特性を失う温度である。例えば、キュリー点以下の温度で強磁性を有する被加熱物の温度がキュリー点を超えると、被加熱物の磁性には、強磁性から常磁性への可逆的な相転移が生じる。被加熱物の温度がキュリー点を超えると、磁気ヒステリシス加熱が発生しなくなるので、昇温速度が鈍化する。 Magnetic hysteresis heating typically occurs at temperatures below the Curie point and does not occur at temperatures above the Curie point. The Curie point is the temperature at which a magnetic material loses its magnetic properties. For example, when the temperature of an object to be heated which has ferromagnetism at a temperature below the Curie point exceeds the Curie point, the magnetism of the object to be heated undergoes a reversible phase transition from ferromagnetism to paramagnetism. When the temperature of the object to be heated exceeds the Curie point, magnetic hysteresis heating does not occur, so the rate of temperature increase slows down.
 被加熱物は、導電性の材料により構成されることが望ましい。さらに、被加熱物は、強磁性を有する材料により構成されることが望ましい。後者の場合、抵抗加熱と磁気ヒステリシス加熱との組み合わせにより、加熱効率を高めることが可能なためである。例えば、被加熱物は、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼などを含む素材群から選択される1以上の素材により構成される。 It is desirable that the object to be heated is made of a conductive material. Furthermore, it is desirable that the object to be heated is made of a ferromagnetic material. In the latter case, it is possible to increase the heating efficiency by combining resistance heating and magnetic hysteresis heating. For example, the object to be heated is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, stainless steel, and the like.
 抵抗加熱、及び磁気ヒステリシス加熱の双方において、熱は、外部熱源からの熱伝導により発生するのではなく、被加熱物の内部で発生する。そのため、被加熱物の急速な温度上昇、及び均一な熱分布を実現することができる。これは、被加熱物の材料及び形状、並びに変動磁場の大きさ及び向きを適切に設計することにより、実現することができる。即ち、スティック型基材150に含まれるサセプタ161の分布を適切に設計することにより、スティック型基材150の急速な温度上昇、及び均一な熱分布を実現することができる。従って、予備加熱にかかる時間を短縮可能な上に、ユーザが味わう香味の質を向上させることも可能である。 In both resistance heating and magnetic hysteresis heating, heat is generated inside the object to be heated, not by heat conduction from an external heat source. Therefore, rapid temperature rise of the object to be heated and uniform heat distribution can be realized. This can be realized by appropriately designing the material and shape of the object to be heated and the magnitude and direction of the varying magnetic field. That is, by appropriately designing the distribution of the susceptors 161 included in the stick-shaped substrate 150, a rapid temperature rise and uniform heat distribution of the stick-shaped substrate 150 can be achieved. Therefore, the time required for preheating can be shortened, and the quality of flavor that the user can enjoy can be improved.
 誘導加熱は、スティック型基材150に含まれるサセプタ161を直接加熱するため、外部熱源によりスティック型基材150を外周等から加熱する場合と比較して、基材を効率的に加熱することが可能である。また、外部熱源による加熱を行う場合、外部熱源は必然的にスティック型基材150よりも高温になる。一方で、誘導加熱を行う場合、電磁誘導源162はスティック型基材150よりも高温にならない。そのため、外部熱源を用いる場合と比較して吸引装置100の温度を低く維持することができるので、ユーザの安全面に関し大きな利点となる。 Since induction heating directly heats the susceptor 161 included in the stick-shaped base material 150, the base material can be heated more efficiently than when the stick-shaped base material 150 is heated from the outer periphery or the like by an external heat source. It is possible. Moreover, when heating is performed by an external heat source, the temperature of the external heat source is inevitably higher than that of the stick-shaped substrate 150 . On the other hand, when performing induction heating, the electromagnetic induction source 162 does not become hotter than the stick-shaped substrate 150 . Therefore, the temperature of the suction device 100 can be kept lower than when an external heat source is used, which is a great advantage in terms of user safety.
 電磁誘導源162は、電源部111から供給された電力を使用して変動磁場を発生させる。一例として、電源部111は、DC(Direct Current)電源であってもよい。その場合、電源部111は、DC/AC(Alternate Current)インバータを介して、交流電力を電磁誘導源162に供給する。その場合、電磁誘導源162は、交番磁場を発生させることができる。 The electromagnetic induction source 162 uses power supplied from the power supply unit 111 to generate a varying magnetic field. As an example, the power supply unit 111 may be a DC (Direct Current) power supply. In that case, the power supply unit 111 supplies AC power to the electromagnetic induction source 162 via a DC/AC (Alternate Current) inverter. In that case, the electromagnetic induction source 162 can generate an alternating magnetic field.
 電磁誘導源162は、保持部140により保持されたスティック型基材150に含有されたエアロゾル源に熱的に近接して配置されたサセプタ161に対し、電磁誘導源162から発生した変動磁場が侵入する位置に配置される。そして、サセプタ161は、変動磁場が侵入した場合に発熱する。図1に示した電磁誘導源162は、ソレノイド型のコイルである。そして、当該ソレノイド型のコイルは、導線が保持部140の外周に巻き付くように配置される。ソレノイド型のコイルに電流が印加された場合、コイルにより囲まれる中央の空間、即ち保持部140の内部空間141に磁場が発生する。図1に示すように、スティック型基材150が保持部140に保持された状態では、サセプタ161は、コイルにより囲まれることとなる。そのため、電磁誘導源162から発生した変動磁場は、サセプタ161に侵入し、サセプタ161を誘導加熱する。 The electromagnetic induction source 162 causes the fluctuating magnetic field generated from the electromagnetic induction source 162 to penetrate the susceptor 161 which is arranged in thermal proximity to the aerosol source contained in the stick-shaped base material 150 held by the holding part 140 . It is placed in the position where The susceptor 161 generates heat when a fluctuating magnetic field enters. The electromagnetic induction source 162 shown in FIG. 1 is a solenoid coil. The solenoid-type coil is arranged so that the conductive wire is wound around the outer periphery of the holding portion 140 . When a current is applied to the solenoid type coil, a magnetic field is generated in the central space surrounded by the coil, that is, the internal space 141 of the holding part 140 . As shown in FIG. 1, when the stick-shaped substrate 150 is held by the holding portion 140, the susceptor 161 is surrounded by the coil. Therefore, the fluctuating magnetic field generated by the electromagnetic induction source 162 enters the susceptor 161 and heats the susceptor 161 by induction.
 <3.技術的特徴>
 (1)詳細な内部構成
 本実施形態に係る誘導加熱に関与する構成について、図2を参照しながら詳しく説明する。図2は、本実施形態に係る吸引装置100による誘導加熱に関与する構成を示すブロック図である。
<3. Technical features>
(1) Detailed Internal Configuration A configuration related to induction heating according to the present embodiment will be described in detail with reference to FIG. FIG. 2 is a block diagram showing a configuration related to induction heating by the suction device 100 according to this embodiment.
 図2に示すように、吸引装置100は、電源部111、駆動回路169、及び制御部116を備える。 As shown in FIG. 2, the suction device 100 includes a power supply section 111, a drive circuit 169, and a control section 116.
 電源部111はDC(Direct Current)電源である。電源部111は、駆動回路169に直流電力を供給する。 The power supply unit 111 is a DC (Direct Current) power supply. The power supply unit 111 supplies DC power to the drive circuit 169 .
 駆動回路169は、電磁誘導源162を備えるRLC回路168(後述)と、インバータ回路163とを備える。駆動回路169は、整合回路等の他の回路をさらに備えていてもよい。駆動回路169は、電源部111から供給され、インバータ回路163で変換された交流電力によって駆動される。駆動回路169は、保持部140の外周に配置された電磁誘導源162に、交流電力により変動磁場を発生させる。また、駆動回路169は、サセプタ161に対し、発生された変動磁場がサセプタ161に侵入するような位置に配置される。 The drive circuit 169 includes an RLC circuit 168 (described later) including an electromagnetic induction source 162 and an inverter circuit 163 . The drive circuit 169 may further include other circuits such as a matching circuit. The drive circuit 169 is driven by AC power supplied from the power supply unit 111 and converted by the inverter circuit 163 . The drive circuit 169 causes the electromagnetic induction source 162 arranged on the outer periphery of the holding portion 140 to generate a varying magnetic field by AC power. Further, the drive circuit 169 is arranged at a position with respect to the susceptor 161 such that the generated varying magnetic field penetrates the susceptor 161 .
 インバータ回路163は、直流電力を交流電力に変換する、DC/AC(Alternate Current)インバータである。一例として、インバータ回路163は、1つ以上のスイッチング素子を有する、ハーフブリッジインバータ又はフルブリッジインバータとして構成される。スイッチング素子としては、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)及びIGBT(Insulated Gate Bipolar Transistor)等が挙げられる。電源部111及びインバータ回路163は、交流電力を発生させる交流電力発生部の一例である。 The inverter circuit 163 is a DC/AC (Alternate Current) inverter that converts DC power into AC power. As an example, inverter circuit 163 is configured as a half-bridge inverter or a full-bridge inverter having one or more switching elements. Examples of switching elements include MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors) and IGBTs (Insulated Gate Bipolar Transistors). The power supply unit 111 and the inverter circuit 163 are examples of an AC power generation unit that generates AC power.
 なお、電磁誘導源162を外周に配置する保持部140は、エアロゾル源を含有する基材であるスティック型基材150、及びエアロゾル源に熱的に近接するサセプタ161を内部空間141に収容可能な収容部の一例である。スティック型基材150は、複数のサセプタ161を有していてもよいことが理解される。 In addition, the holding part 140 having the electromagnetic induction source 162 arranged on the outer periphery can accommodate the stick-shaped base material 150, which is a base material containing the aerosol source, and the susceptor 161, which is thermally adjacent to the aerosol source, in the internal space 141. It is an example of an accommodation part. It is understood that the stick substrate 150 may have multiple susceptors 161 .
 電磁誘導源162は、インバータ回路163から供給された交流電力を使用して内部空間141に変動磁場を発生させる。電磁誘導源162は、保持部140にスティック型基材150が保持(つまり、収容)された状態においてサセプタ161に対応するように位置合わせされる。具体的には、保持部140にスティック型基材150が保持された状態において、サセプタ161は電磁誘導源162により囲まれることになる。これにより、電磁誘導源162は、サセプタ161を誘導加熱することができる。なお、サセプタ161は、スティック型基材150の挿入の方向に沿って異なる位置に複数配置されてもよく、この場合は、複数の電磁誘導源162が複数のサセプタ161に対応するように位置合わせされる。 The electromagnetic induction source 162 uses the AC power supplied from the inverter circuit 163 to generate a fluctuating magnetic field in the internal space 141 . The electromagnetic induction source 162 is positioned so as to correspond to the susceptor 161 when the stick-shaped substrate 150 is held (that is, housed) in the holding portion 140 . Specifically, the susceptor 161 is surrounded by the electromagnetic induction source 162 while the stick-shaped base material 150 is held by the holding portion 140 . Thereby, the electromagnetic induction source 162 can induction-heat the susceptor 161 . A plurality of susceptors 161 may be arranged at different positions along the insertion direction of the stick-shaped substrate 150 . be done.
 制御部116は、電磁誘導源162による誘導加熱を制御する。具体的には、制御部116は、電磁誘導源162への給電を制御する。例えば、制御部116は、電源部111から駆動回路169に供給される直流電力の情報に基づいて、サセプタ161の温度を推定する。そして、制御部116は、サセプタ161の温度に基づいて、電磁誘導源162への給電を制御する。例えば、制御部116は、加熱プロファイルに従ってサセプタ161の温度が推移するように、電磁誘導源162への給電を制御する。なお、サセプタ161の温度はセンサ部112の温度センサに検出させてもよい。 The control unit 116 controls induction heating by the electromagnetic induction source 162 . Specifically, control unit 116 controls power supply to electromagnetic induction source 162 . For example, the control unit 116 estimates the temperature of the susceptor 161 based on information on DC power supplied from the power supply unit 111 to the drive circuit 169 . Then, the control unit 116 controls power supply to the electromagnetic induction source 162 based on the temperature of the susceptor 161 . For example, the control unit 116 controls power supply to the electromagnetic induction source 162 so that the temperature of the susceptor 161 changes according to the heating profile. Note that the temperature of the susceptor 161 may be detected by the temperature sensor of the sensor section 112 .
 制御対象の一例は、電源部111から駆動回路169に供給される直流電力の電圧である。制御対象の他の一例は、インバータ回路163におけるスイッチング周期である。制御対象の他の一例は、複数のスイッチ164の各々の動作である。 An example of a controlled object is the voltage of DC power supplied from the power supply unit 111 to the drive circuit 169 . Another example of the controlled object is the switching period in the inverter circuit 163 . Another example of a controlled object is the operation of each of the multiple switches 164 .
 図3は、本実施形態に係る吸引装置100による誘導加熱に関与する回路の等価回路を示す図である。図3に示す見かけの電気抵抗値Rは、電源部111から駆動回路169に供給される直流電力の電流値IDC及び電圧値VDCにより計算される、駆動回路169を含む閉回路の電気抵抗値である。図3に示すように、見かけの電気抵抗値Rは、駆動回路169の電気抵抗値Rとサセプタ161の電気抵抗値Rとによって形成される直列接続に相当する。ここでは、見かけの電気抵抗値Rとサセプタ161の温度との間には、極めて単調な関係があるので、見かけの電気抵抗値Rに基づくことにより、サセプタ161の温度を推定することできる。 FIG. 3 is a diagram showing an equivalent circuit of a circuit involved in induction heating by the suction device 100 according to this embodiment. Apparent electrical resistance value RA shown in FIG. resistance value. As shown in FIG. 3, the apparent electrical resistance value R A corresponds to the series connection formed by the electrical resistance value R C of the drive circuit 169 and the electrical resistance value R S of the susceptor 161 . Here, since there is a very monotonic relationship between the apparent electrical resistance value RA and the temperature of the susceptor 161, the temperature of the susceptor 161 can be estimated based on the apparent electrical resistance value RA . .
 本構成例の駆動回路169は、RLC回路168を含む。RLC回路168は、変動磁場を発生させてサセプタ161を誘導加熱するために、所定の駆動周波数で駆動するような回路部の一例である。RLC回路168は、それ自体は公知の共振回路である。ここでは、共振周波数が所定の駆動周波数となるように、抵抗器の抵抗値、インダクタのインダクタンスの値、コンデンサの静電容量の値が予め調整され、設定されている。 The drive circuit 169 of this configuration example includes an RLC circuit 168 . The RLC circuit 168 is an example of a circuit section that is driven at a predetermined driving frequency in order to generate a varying magnetic field and induction heat the susceptor 161 . RLC circuit 168 is a resonant circuit known per se. Here, the resistance value of the resistor, the inductance value of the inductor, and the capacitance value of the capacitor are adjusted and set in advance so that the resonance frequency becomes a predetermined driving frequency.
 例示のRLC回路168は、抵抗器によって提供される抵抗(R)と、インダクタによって提供されるインダクタンス(L)と、コンデンサによって提供されるキャパシタンス(C)と、が直列に接続される。インダクタは前述の電磁誘導源162であり、例えばコイル状の導線で構成される。また、コンデンサは、例えば、高誘電率系のセラミックコンデンサである。なお、RLC回路168は、RLC直列回路で構成されることを想定して説明しているが、これに限定されずに、RLC並列回路で構成されてもよいことが理解される。 The exemplary RLC circuit 168 has resistance (R) provided by a resistor, inductance (L) provided by an inductor, and capacitance (C) provided by a capacitor connected in series. The inductor is the electromagnetic induction source 162 described above, and is composed of, for example, a coiled wire. Also, the capacitor is, for example, a high dielectric constant ceramic capacitor. Although the RLC circuit 168 has been described assuming that it is composed of an RLC series circuit, it is understood that it is not limited to this and may be composed of an RLC parallel circuit.
 RLC回路168は、回路素子のインピーダンス又はアドミタンスの虚数部が互いに打ち消し合うときに、特定の共振周波数で電気的共振を示すことがある。崩壊するインダクタの磁場が、コンデンサを充電するインダクタの巻線に電流を発生させるので、RLC回路168で共振が起きる一方、放電するコンデンサは、インダクタに磁場を生じさせる電流を供給する。RLC回路168が特定の共振周波数で駆動されると、インダクタンス及びキャパシタンスの直列インピーダンスは最小となり、回路電流は最大となる。したがって、特定の共振周波数(つまり、駆動周波数)でRLC回路168を駆動させることにより、効果的及び/又は効率的な誘導加熱を提供することができる。 The RLC circuit 168 may exhibit electrical resonance at a particular resonant frequency when the imaginary parts of the impedances or admittances of circuit elements cancel each other out. Resonance occurs in the RLC circuit 168 as the collapsing inductor's magnetic field generates current in the inductor winding that charges the capacitor, while the discharging capacitor provides current that generates the magnetic field in the inductor. When the RLC circuit 168 is driven at a particular resonant frequency, the series impedance of inductance and capacitance is minimized and the circuit current is maximized. Accordingly, effective and/or efficient induction heating can be provided by driving the RLC circuit 168 at a particular resonant frequency (ie, drive frequency).
 RLC回路168のコンデンサ(例えば、セラミックコンデンサ)は、誘電体に交流電圧がかかると誘電体が変形して歪むという特性を有することが知られている。このため、例えば、ある周波数の交流電圧がコンデンサに印加されると、コンデンサが物理的に振動し、その振動がRLC回路168の基板に伝達及び増幅されて、音が発生するという現象が生じる。いわゆる「音鳴き」の現象である。 It is known that the capacitor (eg, ceramic capacitor) of the RLC circuit 168 has the property that the dielectric deforms and distorts when an AC voltage is applied to the dielectric. Therefore, for example, when an AC voltage of a certain frequency is applied to the capacitor, the capacitor physically vibrates, and the vibration is transmitted to the substrate of the RLC circuit 168 and amplified, resulting in the generation of sound. This is the so-called "ringing" phenomenon.
 本実施形態では、コンデンサの振動に伴って発生する「音鳴き」に着目し、「音鳴き」に関連する特性値を取得することにより、RLC回路168の特性を把握することに向けられている。 In the present embodiment, attention is paid to the "sound noise" that occurs with the vibration of the capacitor, and the characteristics of the RLC circuit 168 are grasped by acquiring characteristic values related to the "sound noise." .
 コンデンサの振動に関する振動周波数は、RLC回路168の特性値の一例である。「音鳴き」が生じた際のコンデンサの振動周波数は、RLC回路168を駆動させる駆動周波数に関連付けられる。つまり、RLC回路168の駆動周波数に対するコンデンサの振動周波数を取得することにより、RLC回路168の特性を効果的及び/又は効率的に把握することができる。そして、RLC回路168の駆動を効果的に制御することができる。 The oscillation frequency regarding the oscillation of the capacitor is an example of the characteristic value of the RLC circuit 168. The oscillation frequency of the capacitor when "ringing" occurs is related to the driving frequency with which the RLC circuit 168 is driven. That is, by obtaining the oscillation frequency of the capacitor with respect to the driving frequency of the RLC circuit 168, the characteristics of the RLC circuit 168 can be effectively and/or efficiently grasped. Then, the driving of the RLC circuit 168 can be effectively controlled.
 例えば、特定の駆動周波数に対するコンデンサの振動周波数を予め測定しておき、これを基準値(つまり、正常値)として記憶部114に記憶しておく。そして、RLC回路168を実際に駆動している間に取得される振動周波数を測定し、基準値からのずれを決定する。このようなずれは、正常値からの誤差ということになる。そして、振動周波数の誤差の程度に応じて、これに対応する、実際の駆動周波数に関する特定の駆動周波数からの誤差を推定することができる。 For example, the oscillation frequency of the capacitor with respect to a specific drive frequency is measured in advance and stored in the storage unit 114 as a reference value (that is, normal value). The oscillation frequency obtained while actually driving the RLC circuit 168 is then measured to determine the deviation from the reference value. Such a deviation is an error from the normal value. Then, depending on the degree of error in the vibration frequency, the corresponding error from a specific drive frequency relative to the actual drive frequency can be estimated.
 推定された駆動周波数の誤差に基づいて、RLC回路168の状態を把握することができる。このような手法は、駆動周波数の誤差を簡易に推定することができ、特に、専用の機材を用いて駆動周波数を厳密に検出する必要がない点で有利である。なお、RLC回路168の状態には、例えば、劣化状態と故障状態とが含まれてよく、本実施形態では、このような状態に基づいて、RLC回路168の駆動を制御することができる。 The state of the RLC circuit 168 can be grasped based on the estimated drive frequency error. Such a method is advantageous in that the drive frequency error can be easily estimated, and that it is not necessary to strictly detect the drive frequency using dedicated equipment. The state of the RLC circuit 168 may include, for example, a degraded state and a failure state, and in this embodiment, driving of the RLC circuit 168 can be controlled based on such states.
 (2)制御部の構成例
 図4は、本実施形態に係る吸引装置100の制御部116の構成例を機能的に示したブロック図である。制御部116は、給電指示部116a、取得部116b、回路制御部116c、加熱制御部116d、及び通知指示部116eを含む。
(2) Configuration Example of Control Unit FIG. 4 is a block diagram functionally showing a configuration example of the control unit 116 of the suction device 100 according to this embodiment. The control unit 116 includes a power supply instruction unit 116a, an acquisition unit 116b, a circuit control unit 116c, a heating control unit 116d, and a notification instruction unit 116e.
 給電指示部116aは、電源部111に対し、駆動回路169への給電又はその停止を指示する。 The power supply instruction unit 116a instructs the power supply unit 111 to supply power to the drive circuit 169 or stop it.
 取得部116bは、センサ部112に対し、RLC回路168のコンデンサの振動を検出させて、RLC回路168の特性値(特に、「音鳴き」によるコンデンサの振動周波数)を取得するよう指示する。なお、特性値は、コンデンサの振動周波数に限定されず、これ以外にも、「音鳴き」により発生した音の周波数等が含まれてよい。 The acquisition unit 116b instructs the sensor unit 112 to detect the vibration of the capacitor of the RLC circuit 168 and acquire the characteristic value of the RLC circuit 168 (particularly, the vibration frequency of the capacitor due to "ringing"). It should be noted that the characteristic value is not limited to the vibration frequency of the capacitor, and may include the frequency of sound generated by "ringing".
 回路制御部116cは、RLC回路168を駆動する所定の駆動周波数を指示する。また、回路制御部116cは、RLC回路168を駆動させた結果として取得部116bで取得した前述の振動周波数に基づいて、RLC回路168の駆動の制御を実行する。具体的には、回路制御部116cは、前述の振動周波数に関する所定の基準値からのずれにしたがい、RLC回路168の駆動の制御を実行する。 The circuit control unit 116 c instructs a predetermined driving frequency for driving the RLC circuit 168 . Further, the circuit control unit 116c controls the driving of the RLC circuit 168 based on the vibration frequency obtained by the obtaining unit 116b as a result of driving the RLC circuit 168 . Specifically, the circuit control unit 116c controls the driving of the RLC circuit 168 according to the deviation from the predetermined reference value regarding the vibration frequency described above.
 詳しくは、回路制御部116cは、取得された振動周波数に関する所定の基準値からのずれの量が所定の閾値より小さい場合に、RLC回路168が劣化状態にあると推定して、指示する駆動周波数を補正する。また、ずれの量が閾値以上である場合に、RLC回路168が故障状態にあると推定して、RLC回路168を駆動させないように無効化する。なお、ここでの制御は、駆動周波数の補正することと、RLC回路168を駆動させないように無効化することとのうちの一方又は双方を行ってもよい。これにより、吸引装置100の使用過多や経年劣化に基づく動作不良に対し、適切に対処することができる。 Specifically, the circuit control unit 116c estimates that the RLC circuit 168 is in a degraded state when the amount of deviation from a predetermined reference value for the obtained vibration frequency is smaller than a predetermined threshold value, and instructs the drive frequency correct. Also, if the amount of deviation is greater than or equal to the threshold, it is assumed that the RLC circuit 168 is in a faulty state, and the RLC circuit 168 is disabled so as not to be driven. Note that the control here may perform one or both of correcting the drive frequency and disabling the RLC circuit 168 so as not to drive it. As a result, it is possible to appropriately deal with malfunctions due to overuse or aged deterioration of the suction device 100 .
 加熱制御部116dは、加熱プロファイルに基づきエアロゾル源の加熱制御を実行する。加熱プロファイルとは、サセプタ161の温度の目標値である目標温度の時系列推移が規定された情報である。吸引装置100は、加熱プロファイルにおいて規定された目標温度の時系列推移に従うべく、サセプタ161の実際の温度が推移するように、電磁誘導源162への給電を制御する。これにより、加熱プロファイルにより計画された通りにエアロゾルが生成される。加熱プロファイルは、典型的には、スティック型基材150から生成されるエアロゾルをユーザが吸引した際にユーザが味わう香味が最適になるように設計される。すなわち、加熱プロファイルに基づいて電磁誘導源162の動作を制御することにより、ユーザが味わう香味を最適にすることができる。 The heating control unit 116d performs heating control of the aerosol source based on the heating profile. The heating profile is information that defines the time series transition of the target temperature, which is the target value of the temperature of the susceptor 161 . The suction device 100 controls power supply to the electromagnetic induction source 162 so that the actual temperature of the susceptor 161 changes in accordance with the time series transition of the target temperature specified in the heating profile. This produces an aerosol as planned by the heating profile. The heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . That is, by controlling the operation of the electromagnetic induction source 162 based on the heating profile, it is possible to optimize the flavor tasted by the user.
 通知指示部116eは、通知部113に対し、所定の通知動作を実行するように指示する。例えば、回路制御部116cがRLC回路168の駆動を制御したのに応じた通知を行う。具体的には、駆動周波数を補正した結果補正後の駆動周波数で駆動すべき旨、及び/又はRLC回路168の駆動を無効化した旨を通知部113に通知させてよい。 The notification instruction unit 116e instructs the notification unit 113 to perform a predetermined notification operation. For example, the notification is made in response to the control of the driving of the RLC circuit 168 by the circuit control unit 116c. Specifically, the notification unit 113 may be caused to notify that the drive frequency should be driven at the corrected drive frequency and/or that the driving of the RLC circuit 168 has been disabled.
 (3)処理の流れ
 本実施形態に係る吸引装置100により実行される処理の流れの例を説明する。図5は本実施形態に係る制御方法の処理の流れの一例を示すフロー図であり、図6は図5に示した処理の一部の詳細の一例を示すフロー図である。なお、ここに示される各処理ステップは例示に過ぎず、これに限定されずに任意の他の処理ステップが含まれてもよいし、一部の処理ステップが省略されてもよい。また、ここに示される各処理ステップの順序も例示に過ぎず、これに限定されずに任意の順序としてよく、或いは、並列的に実行されてよい場合もある。
(3) Flow of Processing An example of the flow of processing executed by the suction device 100 according to the present embodiment will be described. FIG. 5 is a flow chart showing an example of the flow of processing of the control method according to the present embodiment, and FIG. 6 is a flow chart showing an example of details of part of the processing shown in FIG. It should be noted that each processing step shown here is merely an example, and the present invention is not limited to this, and arbitrary other processing steps may be included, or some processing steps may be omitted. Also, the order of each processing step shown here is merely an example, and is not limited to this, and may be in any order, or may be executed in parallel in some cases.
 図5及び図6は、特に、加熱プロファイルに基づいてエアロゾル源の加熱制御が実行されている間に、RLC回路168の特性値である、コンデンサの振動周波数が取得される処理の流れの例である。 FIGS. 5 and 6 are particularly an example of a process flow in which the oscillation frequency of the capacitor, which is a characteristic value of the RLC circuit 168, is acquired while the heating control of the aerosol source is being performed based on the heating profile. be.
 図5に示すように、本処理が開始されると、最初に、制御部116は吸引要求をセンサ部112に検出させる。これに応じて、給電指示部116aは、電源部111に対し、駆動回路169への給電開始を指示する(ステップS11)。吸引要求とは、エアロゾルを生成するようにユーザが要求するユーザ操作である。吸引要求の一例は、吸引装置100に設けられたボタンがユーザに押下されることのような、吸引装置100に対するユーザ操作である。 As shown in FIG. 5, when this process is started, the control unit 116 first causes the sensor unit 112 to detect a suction request. In response, the power supply instruction unit 116a instructs the power supply unit 111 to start supplying power to the drive circuit 169 (step S11). A puff request is a user action that the user requests to generate an aerosol. An example of a suction request is a user operation on the suction device 100, such as pressing a button provided on the suction device 100 by the user.
 吸引要求の他の一例は、吸引装置100にスティック型基材150をユーザが挿入するユーザ操作である。スティック型基材150が保持部140に保持されたことの検出は、保持部140に配置された圧力センサにより、当該圧力センサと、保持されたスティック型基材150との接触圧の検出を通じて実行されてもよい。詳しくは、スティック型基材150が挿入され保持されると、保持部140の内壁に配置された圧力センサは、スティック型基材150の外周と接触することになる。そして、制御部116は、圧力センサに接触圧を検出させることで、保持部140にスティック型基材150が保持されていることを判断することができる。 Another example of a suction request is a user's operation of inserting the stick-shaped substrate 150 into the suction device 100 . The fact that the stick-shaped base material 150 is held by the holding part 140 is detected by a pressure sensor arranged in the holding part 140 through detection of the contact pressure between the pressure sensor and the held stick-shaped base material 150. may be Specifically, when the stick-shaped substrate 150 is inserted and held, the pressure sensor arranged on the inner wall of the holding part 140 comes into contact with the outer circumference of the stick-shaped substrate 150 . Then, the control unit 116 can determine that the stick-shaped base material 150 is held by the holding unit 140 by causing the pressure sensor to detect the contact pressure.
 他の例では、開口142付近に設けられた静電容量型の近接センサにより、スティック型基材150を内部に挿入したことに伴う静電容量又は誘電率の変化に基づいて、スティック型基材150が保持部140に保持されたことを検出してもよい。詳しくは、開口142付近に設けられた近接センサが、内部空間141のうち開口142付近の部分空間の静電容量又は誘電率等を検出する。スティック型基材150が挿入/抜去されるのに伴い、スティック型基材150の様々な部分(サセプタ161を含む部分、及びサセプタ161を含まない部分)が当該部分空間を通過する。これに伴い、当該部分空間の静電容量及び誘電率が変化することになる。すなわち、制御部116は、このような部分空間の静電容量又は誘電率の時系列変化に応じて、保持部140にスティック型基材150が保持されていることを判断することができる。 In another example, a capacitive proximity sensor provided near the opening 142 detects the stick-shaped substrate 150 based on changes in capacitance or dielectric constant caused by the stick-shaped substrate 150 being inserted therein. 150 being held by the holding portion 140 may be detected. Specifically, a proximity sensor provided near the opening 142 detects the capacitance, dielectric constant, or the like of a partial space near the opening 142 in the internal space 141 . As the stick-shaped substrate 150 is inserted/removed, various portions of the stick-shaped substrate 150 (a portion including the susceptor 161 and a portion not including the susceptor 161) pass through the partial spaces. Accompanying this, the capacitance and dielectric constant of the partial space will change. That is, the control unit 116 can determine that the stick-shaped substrate 150 is held by the holding unit 140 according to the time-series change in the capacitance or dielectric constant of the partial space.
 引き続き、回路制御部116cは、所定の駆動周波数をRLC回路168に指示することで、RLC回路168を駆動させる(ステップS12)。これにより、RLC回路168の電磁誘導源162に交流電力を供給して、変動磁場を発生させる。その結果、変動磁場がサセプタ161に侵入して、サセプタ161が誘導加熱される。 Subsequently, the circuit control unit 116c drives the RLC circuit 168 by instructing the RLC circuit 168 with a predetermined drive frequency (step S12). As a result, AC power is supplied to the electromagnetic induction source 162 of the RLC circuit 168 to generate a varying magnetic field. As a result, a fluctuating magnetic field penetrates the susceptor 161 and the susceptor 161 is heated by induction.
 次いで、加熱制御部116dは、加熱プロファイルに基づくエアロゾル源の加熱制御を開始させる(ステップS13)。ここでは、ステップS12でサセプタ161が誘導加熱された結果、サセプタ161の温度が所定の閾値温度に到達したのに応じて、当該ステップS13のエアロゾル源の加熱制御を実行するのがよい。 Next, the heating control unit 116d starts heating control of the aerosol source based on the heating profile (step S13). Here, as a result of induction heating of the susceptor 161 in step S12, the heating control of the aerosol source in step S13 is preferably executed in response to the temperature of the susceptor 161 reaching a predetermined threshold temperature.
 ステップS13の結果として、加熱制御が実行されている間、取得部116bは、センサ部112に対し、RLC回路168が駆動されたことで生じる「音鳴り」に伴うコンデンサの振動周波数を取得させる(ステップS14)。なお、取得部116bによる振動周波数の取得は、加熱制御の間にわたり周期的に取得されてよい。 As a result of step S13, while the heating control is being performed, the acquisition unit 116b causes the sensor unit 112 to acquire the vibration frequency of the capacitor associated with the "ringing" caused by the driving of the RLC circuit 168 ( step S14). Note that the acquisition of the vibration frequency by the acquisition unit 116b may be periodically acquired during the heating control.
 次いで、回路制御部116cは、取得されたコンデンサの振動周波数が、所定の範囲内にあるかについて判定する(ステップS15)。 Next, the circuit control unit 116c determines whether the obtained oscillation frequency of the capacitor is within a predetermined range (step S15).
 ステップS15でコンデンサの振動周波数が所定の範囲内にあると判定される場合(Yes)、RLC回路168は正常状態にあると想定されてよく、加熱制御部116dは、加熱プロファイルに基づく加熱制御の実行を継続する(ステップS16)。なお、加熱プロファイルには終了条件が関連付けられており、ステップS16は終了条件を満たすまで継続される。 If it is determined in step S15 that the oscillation frequency of the capacitor is within the predetermined range (Yes), it may be assumed that the RLC circuit 168 is in a normal state, and the heating control unit 116d performs heating control based on the heating profile. Execution is continued (step S16). A termination condition is associated with the heating profile, and step S16 is continued until the termination condition is satisfied.
 終了条件の一例は、加熱制御の期間(つまり、加熱時間)が所定の時間を経過したことである。別の例では、終了条件は、加熱制御の期間にわたるユーザのパフの回数が所定回数に到達したこととしてもよい。 An example of an end condition is that the heating control period (that is, the heating time) has passed a predetermined period of time. In another example, the termination condition may be that the user has reached a predetermined number of puffs over the duration of the heating control.
 次いで、加熱制御部116dは、加熱制御の終了条件を満たしたことを判断すると、加熱プロファイルに基づく加熱制御を終了する(ステップS17)。 Next, when the heating control unit 116d determines that the conditions for ending the heating control are satisfied, it ends the heating control based on the heating profile (step S17).
 他方、ステップS15でコンデンサの振動周波数が所定の範囲内にはないと判定される場合は(No)、RLC回路168は正常状態にはないと想定されてよく、加熱制御部116dは、加熱プロファイルに基づく加熱制御を停止する(ステップS18)。 On the other hand, if it is determined in step S15 that the vibration frequency of the capacitor is not within the predetermined range (No), it may be assumed that the RLC circuit 168 is not in a normal state, and the heating controller 116d sets the heating profile is stopped (step S18).
 次いで、回路制御部116cは、RLC回路168の駆動の制御を実行する(ステップS19/図6)。 Next, the circuit control unit 116c controls driving of the RLC circuit 168 (step S19/FIG. 6).
 ステップS17で加熱制御が終了されたか、或いは、ステップS19でRLC回路168の駆動の制御が実行された後、本処理は終了する。 After the heating control is finished in step S17 or the driving control of the RLC circuit 168 is executed in step S19, this process is finished.
 ステップS19に関し、これより図6を参照して、RLC回路168の駆動の制御の処理について更に詳細に説明する。 Regarding step S19, the process of controlling the driving of the RLC circuit 168 will now be described in more detail with reference to FIG.
 ステップS18で加熱制御を停止した後、最初に、回路制御部116cは、取得済みの振動周波数に関する所定の基準値からのずれの量を算出する(ステップS19a)。次いで、回路制御部116cは、ずれの量が所定の閾値未満であるかについて判定する(ステップS19b)。 After stopping the heating control in step S18, the circuit control unit 116c first calculates the amount of deviation from the predetermined reference value for the obtained vibration frequency (step S19a). Next, the circuit control unit 116c determines whether the amount of deviation is less than a predetermined threshold (step S19b).
 ステップS19bでずれの量が所定の閾値未満であると判定される場合(Yes)、回路制御部116cは、RLC回路168が劣化状態にあると判断する(ステップS19c)。このような劣化状態の場合は、引き続き、次回以降に駆動させるRLC回路168を調整するのがよい。具体的には、回路制御部116cは、所定の駆動周波数を補正する(ステップS19d)。 When it is determined in step S19b that the amount of deviation is less than the predetermined threshold (Yes), the circuit control unit 116c determines that the RLC circuit 168 is in a deteriorated state (step S19c). In such a deteriorated state, it is preferable to continue adjusting the RLC circuit 168 to be driven from the next time onward. Specifically, the circuit control unit 116c corrects the predetermined drive frequency (step S19d).
 RLC回路168の駆動周波数と、RLC回路168のコンデンサの振動周波数とは、予め関係づけられているので、駆動周波数の補正は、対応する振動周波数がより基準値に近くなるような態様で実行するのがよい。例えば、コンデンサの振動周波数が基準値より小さく取得された場合には、駆動周波数が大きくなるように補正するのがよい(例えば、当初の100kHzから105kHzへ)。なお、RLC回路168の駆動周波数と、RLC回路168のコンデンサの振動周波数との関係は、公知の手法で決定される所定の回帰式で予め規定され、補正の際に駆動周波数を計算するようにしてよい。或いは、ずれの量がどの範囲にあるかに応じて、駆動周波数の補正量が予めテーブルに規定され、補正の際にこれを参照してもよい。 Since the drive frequency of the RLC circuit 168 and the oscillation frequency of the capacitor of the RLC circuit 168 are pre-related, correction of the drive frequency is performed in such a way that the corresponding oscillation frequency is closer to the reference value. It's good. For example, if the oscillation frequency of the capacitor is obtained to be lower than the reference value, it is preferable to correct the drive frequency so that it increases (eg, from the original 100 kHz to 105 kHz). The relationship between the drive frequency of the RLC circuit 168 and the oscillation frequency of the capacitor of the RLC circuit 168 is defined in advance by a predetermined regression formula determined by a known method, and the drive frequency is calculated during correction. you can Alternatively, the amount of correction of the drive frequency may be defined in advance in a table according to the range of the amount of deviation, and this may be referred to during correction.
 ステップS19dで駆動周波数が補正されたのに応じて、通知指示部116eは、回路制御部116cは、補正後の駆動周波数でRLC回路168を駆動させるべき旨を通知部113に通知させる(ステップS19e)。例えば、補正後の駆動周波数でRLC回路168を駆動させるために、ユーザに対し、再度のボタン押下等を通じた吸引再要求の操作を促すのがよい。通知は、LEDの所定の色及び発光パターンの態様でユーザに提示するのがよい。 In response to the correction of the drive frequency in step S19d, the notification instruction unit 116e causes the notification unit 113 to notify that the circuit control unit 116c should drive the RLC circuit 168 with the corrected drive frequency (step S19e). ). For example, in order to drive the RLC circuit 168 at the corrected drive frequency, it is preferable to prompt the user to perform a suction re-request operation by pressing the button again. Notifications are preferably presented to the user in the form of predetermined colors and lighting patterns of the LEDs.
 他方、ステップS19bでずれの量が所定の閾値以上であると判定される場合は(No)、回路制御部116cは、RLC回路168が故障状態であると判断する(ステップS19f)。ここでの故障状態とは、永久故障の状態としてよい。故障状態の場合は、回路制御部116cは、RLC回路168を今後は一切駆動させないように無効化する(ステップS19g)。 On the other hand, if it is determined in step S19b that the amount of deviation is greater than or equal to the predetermined threshold value (No), the circuit control section 116c determines that the RLC circuit 168 is in a failure state (step S19f). The failure state here may be a permanent failure state. In the case of failure, the circuit control unit 116c disables the RLC circuit 168 so that it will not be driven at all (step S19g).
 ステップS19gでRLC回路168を無効化したのに応じて、通知指示部116eは、RLC回路168が無効化された旨を通知部113に通知させる(ステップS19h)。通知は、LEDの所定の色及び発光パターンの態様で、吸引装置100の使用が禁止されたことをユーザに提示するのがよい。 In response to the invalidation of the RLC circuit 168 in step S19g, the notification instruction unit 116e causes the notification unit 113 to notify that the RLC circuit 168 has been invalidated (step S19h). The notification may present to the user that use of the suction device 100 has been prohibited in the form of a predetermined color and lighting pattern of the LEDs.
 本処理の例では、加熱プロファイルに基づく加熱制御中に、RLC回路168の動作の状態を継続してチェックすることができる。これにより、吸引装置100の使用過多や経年劣化に基づく動作不良に対し、適切な対処をすることができる。 In this processing example, the operating state of the RLC circuit 168 can be continuously checked during heating control based on the heating profile. As a result, it is possible to appropriately deal with malfunctions due to excessive use of the suction device 100 or deterioration over time.
 <4.変更例>
 <4.1.第1の変更例>
 前述の実施形態では、加熱プロファイルに基づいてエアロゾル源の加熱制御が実行されている間に、コンデンサの振動周波数が取得されるものとした。これに代えて、本変更例では、吸引要求を検出した後であって、加熱プロファイルに基づく加熱制御が実行される前に、振動周波数が取得される。図7は、本変更例に係る処理の流れの例である。
<4. Change example>
<4.1. First modification example>
In the above-described embodiment, the oscillation frequency of the capacitor is acquired while heating control of the aerosol source is performed based on the heating profile. Instead, in this modified example, the vibration frequency is acquired after the suction request is detected and before the heating control based on the heating profile is executed. FIG. 7 is an example of the flow of processing according to this modification.
 図7に示すように、本処理が開始されると、最初に、制御部116は、吸引要求をセンサ部112に検出させる。これに応じて、給電指示部116aは、電源部111に対し、駆動回路169への給電開始を指示する(ステップS21)。引き続き、回路制御部116cは、所定の駆動周波数をRLC回路168に指示することで、RLC回路168を駆動させる(ステップS22)。ステップS21及びS22の処理は、前述のステップS11及びS12と同様としてよい。前述のように、吸引要求には、吸引装置100に設けられたボタンが操作されるような吸引装置100に対するユーザ操作と、吸引装置100にスティック型基材150を挿入するユーザ操作とのうちの少なくとも一方が含まれてよい。 As shown in FIG. 7, when this process is started, the control unit 116 first causes the sensor unit 112 to detect a suction request. In response, the power supply instruction unit 116a instructs the power supply unit 111 to start supplying power to the drive circuit 169 (step S21). Subsequently, the circuit control unit 116c drives the RLC circuit 168 by instructing the RLC circuit 168 with a predetermined driving frequency (step S22). The processing of steps S21 and S22 may be the same as steps S11 and S12 described above. As described above, the suction request includes a user operation of the suction device 100 such as operating a button provided on the suction device 100 and a user operation of inserting the stick-shaped substrate 150 into the suction device 100. At least one may be included.
 引き続き、取得部116bは、RLC回路168が駆動されたことで生じる「音鳴り」に伴うコンデンサの振動周波数を取得させる(ステップS23)。つまり、取得部116bは、ユーザからの吸引要求に応じて、コンデンサの振動周波数が取得される。ステップS23の処理は、前述のステップS14と同様としてよい。 Subsequently, the acquiring unit 116b acquires the vibration frequency of the capacitor associated with the "ringing" caused by driving the RLC circuit 168 (step S23). That is, the acquisition unit 116b acquires the vibration frequency of the capacitor in response to the user's suction request. The processing of step S23 may be the same as that of step S14 described above.
 次いで、回路制御部116cは、ステップS23で取得されたコンデンサの振動周波数が、所定の範囲内にあるかについて判定する(ステップS24)。ステップS24の処理は、前述のステップS15と同様としてよい。 Next, the circuit control unit 116c determines whether the vibration frequency of the capacitor obtained in step S23 is within a predetermined range (step S24). The processing of step S24 may be the same as that of step S15 described above.
 ステップS24でコンデンサの振動周波数が所定の範囲内にあると判定される場合(Yes)、加熱制御部116dは、加熱プロファイルに基づく加熱制御を開始する(ステップS25)。加熱制御部116dは、終了条件を満たすまで加熱制御の実行を継続し(ステップS26)、終了条件を満たした場合に終了する(ステップS27)。ステップS26及びS27の処理は、前述のステップS16及びS17と同様としてよい。 When it is determined in step S24 that the vibration frequency of the capacitor is within the predetermined range (Yes), the heating control unit 116d starts heating control based on the heating profile (step S25). The heating control unit 116d continues the heating control until the termination condition is satisfied (step S26), and terminates when the termination condition is satisfied (step S27). The processing of steps S26 and S27 may be the same as steps S16 and S17 described above.
 他方、ステップS24でコンデンサの振動周波数が所定の範囲内にはないと判定される場合は(No)、加熱プロファイルに基づく加熱制御が実行されることなく、回路制御部116cは、RLC回路168の駆動の制御を実行する(ステップS28)。ステップS28の処理は、前述のステップS19と同様としてよい。つまり、回路制御部116cは、図6に示した各処理を実行する。 On the other hand, if it is determined in step S24 that the vibration frequency of the capacitor is not within the predetermined range (No), the circuit control unit 116c controls the RLC circuit 168 without performing heating control based on the heating profile. Drive control is executed (step S28). The processing of step S28 may be the same as that of step S19 described above. That is, the circuit control unit 116c executes each process shown in FIG.
 ステップS27で加熱制御が終了されたか、或いは、ステップS28でRLC回路168の駆動の制御が実行された後、本変更例の処理は終了する。 After the heating control is finished in step S27 or the driving control of the RLC circuit 168 is executed in step S28, the process of this modification is finished.
 本変更例では、加熱制御前にRLC回路168の動作の状態をチェックすることができる。これにより、使用過多や経年劣化に基づく動作不良に対し、適切な対処をすることができるのみならず、吸引装置100の安全性を向上させることができる。また、エアロゾル源を徒に加熱することによる浪費を予防することができる。 In this modified example, the operating state of the RLC circuit 168 can be checked before heating control. As a result, it is possible not only to take appropriate measures against malfunctions due to overuse or deterioration over time, but also to improve the safety of the suction device 100 . Also, waste due to unnecessary heating of the aerosol source can be prevented.
 <4.2.第2の変更例>
 前述の第1変更例では、取得された振動周波数に関する所定の基準値からのずれにしたがい、RLC回路168の駆動を制御するものとした。これに代えて、本変更例では、前述の第1の変更例のように、加熱プロファイルに基づく加熱制御が実行される前にコンデンサの振動周波数を取得することに加えて、更に、加熱制御が実行された後にも振動周波数を取得する。そして、加熱制御の前後の振動周波数の差分値にしたがい、RLC回路168の駆動を制御する。図8及び図9は、本変更例に係る処理の流れの例である。
<4.2. Second example of modification>
In the first modified example described above, the driving of the RLC circuit 168 is controlled according to the deviation from the acquired predetermined reference value for the vibration frequency. Instead of this, in this modified example, in addition to obtaining the vibration frequency of the capacitor before the heating control based on the heating profile is performed, as in the first modified example described above, the heating control is further performed. Get the vibration frequency even after it is executed. Then, the drive of the RLC circuit 168 is controlled according to the difference value between the vibration frequencies before and after the heating control. 8 and 9 are examples of the flow of processing according to this modification.
 図8に示すように、本処理が開始されると、制御部116は吸引要求をセンサ部112に検出させる。これに応じて、給電指示部116aは、電源部111に対し、駆動回路169への給電開始を指示する(ステップS31)。引き続き、回路制御部116cは、所定の駆動周波数をRLC回路168に指示することで、RLC回路168を駆動させる(ステップS32)。そして、取得部116bは、RLC回路168が駆動されたことで生じる「音鳴り」に伴うコンデンサの振動周波数を取得させる(ステップS33)。ステップS31、S32及びS33の処理は、前述のステップS21、S22及びS23と同様としてよい。 As shown in FIG. 8, when this process is started, the control unit 116 causes the sensor unit 112 to detect a suction request. In response, the power supply instruction unit 116a instructs the power supply unit 111 to start supplying power to the drive circuit 169 (step S31). Subsequently, the circuit control unit 116c drives the RLC circuit 168 by instructing the RLC circuit 168 with a predetermined driving frequency (step S32). Then, the obtaining unit 116b obtains the vibration frequency of the capacitor associated with the "ringing" caused by the driving of the RLC circuit 168 (step S33). The processing of steps S31, S32 and S33 may be the same as steps S21, S22 and S23 described above.
 引き続き、加熱制御部116dは、加熱プロファイルに基づく加熱制御を開始する(ステップS34)。加熱制御部116dは、終了条件を満たすまで加熱制御の実行を継続し(ステップS35)、終了条件を満たした場合に終了する(ステップS36)。ステップS34、S35及びS36の処理は、前述のステップS25、S26及びS27と同様としてよい。 Subsequently, the heating control unit 116d starts heating control based on the heating profile (step S34). The heating control unit 116d continues the heating control until the termination condition is satisfied (step S35), and terminates when the termination condition is satisfied (step S36). The processing of steps S34, S35 and S36 may be the same as steps S25, S26 and S27 described above.
 本変更例では、加熱制御部116dが加熱プロファイルに基づく加熱制御を終了した後に、取得部116bは、コンデンサの振動周波数を更に取得する(ステップS37)。つまり、振動周波数は、加熱制御の実行の前と後の両方で取得される。 In this modified example, after the heating control unit 116d finishes the heating control based on the heating profile, the obtaining unit 116b further obtains the vibration frequency of the capacitor (step S37). That is, the vibration frequency is obtained both before and after the execution of heating control.
 回路制御部116cは、ステップS33で加熱制御が実行される前に取得された振動周波数と、ステップS37で加熱制御が実行された後に取得された振動周波数との差分値を算出し、差分値が所定の範囲内にあるかを判定する(ステップS38)。 The circuit control unit 116c calculates a difference value between the vibration frequency acquired before the heating control is executed in step S33 and the vibration frequency acquired after the heating control is executed in step S37. It is determined whether it is within a predetermined range (step S38).
 ステップS38で差分値が所定の範囲内にあると判定される場合(Yes)、回路制御部116cは、RLC回路168が正常の状態であると判断して、本処理をそのまま終了させればよい。他方、差分値が所定の範囲内にないと判定される場合には(No)、回路制御部116cは、RLC回路168の駆動の制御を実行し(ステップS39)、次いで本処理は終了する。 If it is determined in step S38 that the difference value is within the predetermined range (Yes), the circuit control unit 116c determines that the RLC circuit 168 is in a normal state, and terminates this process as it is. . On the other hand, if it is determined that the difference value is not within the predetermined range (No), the circuit control unit 116c controls the driving of the RLC circuit 168 (step S39), and then the process ends.
 図9を参照して、ステップS39におけるRLC回路168の駆動の制御に係る処理について更に詳細に説明する。 With reference to FIG. 9, the processing related to the control of driving the RLC circuit 168 in step S39 will be described in more detail.
 最初に、回路制御部116cは、ステップS38で算出した差分値が所定の閾値未満であるかについて判定する(ステップS39a)。 First, the circuit control unit 116c determines whether the difference value calculated in step S38 is less than a predetermined threshold (step S39a).
 ステップS39aで差分値が所定の閾値未満であると判定される場合(Yes)、回路制御部116cは、RLC回路168が劣化状態にあると判断する(ステップS39b)。この場合は、回路制御部116cは、次回以降に駆動させるRLC回路168の動作を調整すべく、所定の駆動周波数を補正する(ステップS39c)。 When it is determined in step S39a that the difference value is less than the predetermined threshold (Yes), the circuit control unit 116c determines that the RLC circuit 168 is in a deteriorated state (step S39b). In this case, the circuit control unit 116c corrects the predetermined driving frequency in order to adjust the operation of the RLC circuit 168 to be driven from the next time (step S39c).
 ステップS39cで駆動周波数を補正したのに応じて、通知指示部116eは、補正後の駆動周波数でRLC回路168を駆動させるべき旨を通知部113に通知させる(ステップS39d)。ステップS39b、S39c及びS39dの処理は、ステップS19c、S19d及びS19eと同様としてよい。 In response to correcting the drive frequency in step S39c, the notification instruction unit 116e causes the notification unit 113 to notify that the RLC circuit 168 should be driven at the corrected drive frequency (step S39d). The processing of steps S39b, S39c and S39d may be the same as steps S19c, S19d and S19e.
 他方、ステップS39aで差分値が所定の閾値以上であると判定される場合は(No)、RLC回路168が故障状態(特に、永久故障状態)であると判断する(ステップS39e)。この場合は、RLC回路168を今後は一切駆動させないように無効化する(ステップS39f)。これに応じて、通知指示部116eは、RLC回路168が無効化された旨を通知部113に通知させる(ステップS39g)。ステップS39e、S39f及びS39gの処理は、ステップS19f、S19g及びS19hと同様としてよい。 On the other hand, if it is determined in step S39a that the difference value is equal to or greater than the predetermined threshold value (No), it is determined that the RLC circuit 168 is in a failure state (particularly, a permanent failure state) (step S39e). In this case, the RLC circuit 168 is disabled so as not to be driven at all (step S39f). In response, the notification instruction unit 116e causes the notification unit 113 to notify that the RLC circuit 168 has been disabled (step S39g). The processing of steps S39e, S39f and S39g may be the same as steps S19f, S19g and S19h.
 本変更例では、加熱制御の前後を通じてRLC回路168の動作の状態をピンポイントでチェックすることができる。これにより、使用過多や経年劣化に基づく動作不良に対し、適切な対処をすることができる。 In this modified example, it is possible to pinpoint the state of operation of the RLC circuit 168 before and after heating control. As a result, it is possible to take appropriate measures against malfunctions due to overuse or aged deterioration.
 <4.3.第3の変更例>
 前述の実施形態では、コンデンサの振動周波数に関する基準値からのずれの量が所定の閾値未満である場合に、RLC回路168が劣化状態にあると判断して、RLC回路168の駆動周波数を補正するものとした(ステップS19b~S19d)。本変更例では、これに加えて、補正した駆動周波数を用いてサセプタ161の誘導加熱の動作を評価することにより、加熱プロファイルに基づく適切な加熱制御を可能とする。
<4.3. Third modification>
In the above-described embodiments, when the amount of deviation from the reference value for the oscillation frequency of the capacitor is less than a predetermined threshold, it is determined that the RLC circuit 168 is in a degraded state, and the driving frequency of the RLC circuit 168 is corrected. (Steps S19b to S19d). In this modified example, in addition to this, by evaluating the induction heating operation of the susceptor 161 using the corrected drive frequency, appropriate heating control based on the heating profile is made possible.
 図10は、本変更例に係る処理の流れの例である。図7のステップS28においてRLC回路の駆動を制御する際に、図6のステップS19dでRLC回路168の駆動周波数を補正した後に、本変形例に係る処理が実行される。 FIG. 10 is an example of the flow of processing according to this modified example. When controlling the driving of the RLC circuit in step S28 of FIG. 7, the process according to this modification is executed after correcting the driving frequency of the RLC circuit 168 in step S19d of FIG.
 最初に、回路制御部116cは、補正後の駆動周波数が、RLC回路168の状態に合わせて適切に設定されたものかを判断する。具体的には、回路制御部116cは、補正後の駆動周波数(第1周波数)でRLC回路168を所定の時間にわたり駆動させる(ステップS191a)。 First, the circuit control unit 116c determines whether the drive frequency after correction is appropriately set according to the state of the RLC circuit 168. Specifically, the circuit control unit 116c drives the RLC circuit 168 at the corrected drive frequency (first frequency) for a predetermined time (step S191a).
 所定の時間が経過した後に、加熱制御部116dは、サセプタ161の第1温度を決定する(ステップS191b)。なお、サセプタ161の温度は、駆動回路169に供給される直流電力の情報に基づいて推定されてもよいし、センサ部112の温度センサに検出させてもよい。 After a predetermined period of time has passed, the heating controller 116d determines the first temperature of the susceptor 161 (step S191b). The temperature of the susceptor 161 may be estimated based on information on the DC power supplied to the drive circuit 169, or may be detected by the temperature sensor of the sensor section 112. FIG.
 回路制御部116cは、第1温度が所定の許容範囲内にあるかについて判定する(ステップS191c)。ここでは、所定の時間にわたり駆動回路169を試運転させることにより、サセプタ161の誘導加熱に関し、所望の温度変化が得られるかについて判定している。なお、所定の時間とは、例えば、加熱プロファイルの予備加熱段階の間の期間としてよい。 The circuit control unit 116c determines whether the first temperature is within a predetermined allowable range (step S191c). Here, it is determined whether or not a desired temperature change can be obtained with respect to the induction heating of the susceptor 161 by performing a trial operation of the drive circuit 169 for a predetermined period of time. It should be noted that the predetermined period of time may be, for example, the period between the preheating stages of the heating profile.
 ステップS191cで第1温度が所定の許容範囲内にあると判定される場合(Yes)、ステップS19dによる駆動周波数の補正が適切であったと判断することができる。引き続き、通知指示部116eは、加熱プロファイルに基づくエアロゾル源の加熱制御の実行が可能であること(例えば、予備加熱段階から加熱段階に移行可能であること)を通知部113に通知させる(ステップS191d)。なお、ステップS191dの通知は、図6のステップS19eにおける、補正後の駆動周波数でRLC回路168を駆動させるべき旨の通知に代えて実行されてよい。 If it is determined in step S191c that the first temperature is within the predetermined allowable range (Yes), it can be determined that the correction of the drive frequency in step S19d was appropriate. Subsequently, the notification instruction unit 116e causes the notification unit 113 to notify that the heating control of the aerosol source based on the heating profile can be executed (for example, that the preheating stage can be shifted to the heating stage) (step S191d). ). Note that the notification in step S191d may be executed instead of the notification in step S19e of FIG. 6 indicating that the RLC circuit 168 should be driven at the corrected driving frequency.
 他方、ステップS191cで第1温度が所定の許容範囲内にはないと判定される場合は(No)、回路制御部116cは、ステップS19dによる動周波数の補正は適切ではなかったと判断する。つまり、給電指示部116aは給電を停止させ、更に、回路制御部116cは、RLC回路168の駆動周波数を、第1周波数から第2周波数に再度補正する(ステップS191e)。ここでは、RLC回路168の駆動周波数の再度の補正を実行するために、例えば、サセプタ161の温度と駆動周波数とが予め関連付けられていてよい。また、特定の駆動周波数でRLC回路168を所定の時間にわたり駆動した後のサセプタ161の温度を予め基準温度(つまり、正常温度)として決定されていてよい。そして、ステップS191eでは、第1温度と基準温度とのずれに応じて、RLC回路168の駆動周波数の再度の補正が実行されてよい。 On the other hand, if it is determined in step S191c that the first temperature is not within the predetermined allowable range (No), the circuit control unit 116c determines that the dynamic frequency correction in step S19d was not appropriate. That is, the power supply instruction unit 116a stops power supply, and the circuit control unit 116c again corrects the driving frequency of the RLC circuit 168 from the first frequency to the second frequency (step S191e). Here, for example, the temperature of the susceptor 161 and the driving frequency may be associated in advance in order to correct the driving frequency of the RLC circuit 168 again. Further, the temperature of the susceptor 161 after driving the RLC circuit 168 at a specific driving frequency for a predetermined period of time may be determined in advance as a reference temperature (that is, normal temperature). Then, in step S191e, the drive frequency of the RLC circuit 168 may be corrected again according to the deviation between the first temperature and the reference temperature.
 次いで、ステップS191aと同様に、回路制御部116cは、補正後の第2周波数で、再度所定の時間にわたりRLC回路168を駆動させる(ステップS191f)。引き続き、ステップS191bと同様に、所定の時間が経過した後に、加熱制御部116dは、サセプタ161の第2温度を決定する(ステップS191g)。
そして、ステップS191cと同様に、回路制御部116cは、第2温度が所定の許容範囲内にあるかについて判定する(ステップS191h)。
Next, as in step S191a, the circuit control unit 116c drives the RLC circuit 168 again for a predetermined period of time at the corrected second frequency (step S191f). Subsequently, similarly to step S191b, the heating control unit 116d determines the second temperature of the susceptor 161 after a predetermined period of time has passed (step S191g).
Then, similarly to step S191c, the circuit control unit 116c determines whether the second temperature is within a predetermined allowable range (step S191h).
 ステップS191hで第2温度が所定の許容範囲内にあると判定される場合(Yes)、前述のステップS191dに進む。具体的には、通知指示部116eは、加熱プロファイルに基づくエアロゾル源の加熱制御の実行が可能であることを通知部113に通知させる。他方、第2温度が所定の許容範囲内にはないと判定される場合は(No)、前述のステップS19fに進み、RLC回路168が故障状態にあることを判断すればよい。つまり、RLC回路168を今後駆動させないようにするのがよい。 If it is determined in step S191h that the second temperature is within the predetermined allowable range (Yes), the process proceeds to step S191d. Specifically, the notification instruction unit 116e causes the notification unit 113 to notify that the heating control of the aerosol source based on the heating profile can be executed. On the other hand, if it is determined that the second temperature is not within the predetermined allowable range (No), the process proceeds to step S19f described above, and it is determined that the RLC circuit 168 is in a failed state. In other words, it is preferable not to drive the RLC circuit 168 from now on.
 本変更例では、RLC回路168の駆動周波数を複数回にわたり補正することになるので、RLC回路168の状態の推定の精度を向上させ、RLC回路168をより精度よく駆動させることができる。これにより、吸引装置100の使用過多や経年劣化に基づく動作不良に対し、適切な対処をすることができる。また、加熱動作におけるRLC回路168の安全性を向上させることができる。 In this modified example, the driving frequency of the RLC circuit 168 is corrected multiple times, so the accuracy of estimating the state of the RLC circuit 168 can be improved, and the RLC circuit 168 can be driven more accurately. As a result, it is possible to appropriately deal with malfunctions due to excessive use of the suction device 100 or deterioration over time. Also, the safety of the RLC circuit 168 in the heating operation can be improved.
 <5.補足>
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<5. Supplement>
Although the preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 例えば、前述の実施形態では、スティック型基材150にサセプタ161が含有される例、又はサセプタ161が保持部140の一部を形成する例を説明したが、本開示はかかる例に限定されない。即ち、サセプタ161は、サセプタ161がエアロゾル源に熱的に近接する任意の位置に配置され得る。一例として、サセプタ161は、ブレード状に構成されて保持部140の底部143から内部空間141に突出するように配置されてもよい。そして、スティック型基材150が保持部140に挿入された際に、スティック型基材150の挿入方向の端部から基材部151に、ブレード状のサセプタ161が突き刺さるように挿入されてもよい。 For example, in the above-described embodiment, an example in which the stick-shaped base material 150 contains the susceptor 161 or an example in which the susceptor 161 forms part of the holding portion 140 has been described, but the present disclosure is not limited to such examples. That is, the susceptor 161 can be placed at any location where the susceptor 161 is in thermal proximity to the aerosol source. As an example, the susceptor 161 may be configured in a blade shape and arranged to protrude from the bottom portion 143 of the holding portion 140 into the internal space 141 . Then, when the stick-shaped base material 150 is inserted into the holding part 140, the blade-shaped susceptor 161 may be inserted so as to pierce the base part 151 from the end of the stick-shaped base material 150 in the insertion direction. .
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、本明細書において説明した各装置を制御するコンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、コンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware. Programs constituting software are stored in advance in a recording medium (non-transitory media) provided inside or outside each device, for example. Each program, for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the computer program may be distributed, for example, via a network without using a recording medium.
 なお、以下のような構成も本発明の技術的範囲に属する。
(1)
 交流電力を発生させる交流電力発生部と、
 エアロゾル源を含有する基材を内部空間に収容可能な収容部と、
 前記収容部の外周に配置された電磁誘導源を備える回路部であって、
  前記交流電力により変動磁場を発生させ、
  前記発生された変動磁場をサセプタに侵入させるように配置される、回路部と、
 前記回路部の近傍に配置され、前記回路部の振動を検出して、前記回路部の特性値を取得するセンサ部と、
 前記回路部を駆動する所定の駆動周波数を指示し、前記回路部の駆動の結果取得される前記特性値に基づいて前記回路部の駆動を制御する制御部と、
を備え、前記サセプタから発生した熱が、前記基材のエアロゾル源に伝達されることにより、前記エアロゾル源が気化又は霧化される、吸引装置。
(2)
 前記(1)の吸引装置において、
 前記制御部が、前記取得された特性値に関する所定の基準値からのずれにしたがい、前記回路部の駆動を制御するように構成される、吸引装置。
(3)
 前記(2)の吸引装置において、
 前記制御部が、
  前記ずれの量が所定の第1閾値より小さい場合に、前記所定の駆動周波数を補正することと、
  前記ずれの量が前記第1閾値以上である場合に、前記回路部を駆動させないことと、
 の一方又は双方を行うように構成される、吸引装置。
(4)
 前記(1)から(3)の吸引装置において、
 前記制御部が、更に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するように構成され、
 前記特性値が、前記加熱プロファイルに基づく加熱制御が実行されている間に取得される、吸引装置。
(5)
 前記(1)から(3)の何れかの吸引装置において、
 前記制御部が、更に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するように構成され、
 前記特性値が、前記加熱プロファイルに基づく加熱制御が実行される前に取得される、吸引装置。
(6)
 前記(5)の吸引装置において、
 前記センサ部が、更に、当該吸引装置のボタンが押下されたのを検出するように構成され、
 前記特性値が、前記ボタンの押下が検出されたのに応じて取得される、吸引装置。
(7)
 前記(5)の吸引装置において、
 前記センサ部が、更に、前記基材が前記収容部に収容されたのを検出するように構成され、
 前記特性値が、前記基材の前記収容部への収容が検出されたのに応じて取得される、吸引装置。
(8)
 前記(5)から(7)の何れかの吸引装置において、
 前記特性値が、更に、前記加熱プロファイルに基づく加熱制御が終了した後に取得され、
 前記制御部が、更に、前記加熱制御が実行される前に取得された前記特性値と、前記加熱制御が実行された後に取得された前記特性値との差分値に基づいて、前記回路部の駆動を制御するように構成される、吸引装置。
(9)
 前記(8)の吸引装置において、
 前記制御部が、
  前記差分値が所定の第2閾値より小さい場合に、前記所定の駆動周波数を補正することと、
  前記差分値が前記第2閾値以上である場合に、前記回路部を駆動させないことと、
 のうちの一方又は双方を行うように構成される、吸引装置。
(10)
 前記(1)から(9)の何れかの吸引装置において、
 前記回路部が、RLC回路を含み、
 前記特性値が、前記RLC回路が前記駆動周波数によって駆動されたときのコンデンサの振動に伴う振動周波数である、吸引装置。
(11)
 前記(1)から(9)の何れかの吸引装置において、
 前記回路部が、RLC回路を含み、
 前記特性値が、前記RLC回路が前記駆動周波数によって駆動されたときのコンデンサの振動に伴う音の周波数である、吸引装置。
(12)
 前記(1)から(11)の何れかの吸引装置において、
 前記サセプタが、前記基材の内部で前記エアロゾル源に熱的に近接するように配置される、吸引装置。
(13)
 前記(1)から(11)の何れかの吸引装置において、
 前記サセプタが、前記収容部の一部を形成して、前記内部空間に収容されている前記基材の表面に少なくとも部分的に接触することにより、前記エアロゾル源に熱的に近接するように配置される、吸引装置。
(14)
 前記(13)の吸引装置において、
 前記サセプタが、ステンレス鋼で筒状に形成される、吸引装置。
(15)
 前記(1)から(14)の何れかの吸引装置に使用され、前記吸引装置に収容される基材。
(16)
 吸引装置の動作を制御する方法であって、前記吸引装置が、
 エアロゾル源を含有する基材を内部空間に収容可能な収容部と、
 前記収容部の外周に配置された電磁誘導源を備える回路部と、を備え、当該方法が、
 所定の駆動周波数を指示して前記回路部を駆動するステップであって、
  交流電力を発生して前記回路部に供給することと、
  変動磁場がサセプタに侵入するように、前記交流電力により前記電磁誘導源に前記変動磁場を発生させることと、を含む、ステップと、
 前記回路部の駆動に基づく前記回路部の振動を検出して、前記回路部の特性値を取得するステップと、
 前記取得された特性値に基づいて、前記回路部の駆動を制御するステップと、含み、
 前記サセプタから発生した熱が、前記基材のエアロゾル源に伝達されることにより、前記エアロゾル源が気化又は霧化される、方法。
(17)
 前記(16)の方法において、
 前記回路部の駆動を制御するステップが、前記取得された特性値に関する所定の基準値からのずれの量が所定の第1閾値より小さい場合に、前記所定の駆動周波数を第1周波数に補正することを含む、方法。
(18)
 前記(17)の方法において、
 前記制御するステップが、更に、
  前記第1周波数で前記回路部を所定の時間にわたり駆動することと、
  前記所定の時間の経過後に前記サセプタの第1温度を決定することと、
  前記第1温度が所定の許容範囲内にあるかについて判定することと、
  前記第1温度が所定の許容範囲内にある場合に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御の実行が可能であることを通知することと、
 を含む、方法。
(19)
 前記(18)の方法において、
 前記制御するステップが、更に、
  前記第1温度が前記所定の許容範囲内にはない場合に、前記所定の駆動周波数を前記第1周波数から第2周波数に更に補正することと、
  前記第2周波数で所定の時間にわたり前記回路部を駆動することと、
  前記所定の時間の経過後に前記サセプタの第2温度を決定することと、
  前記第2温度が所定の許容範囲内にあるかについて判定することと、
  前記第2温度が所定の許容範囲内にある場合に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱の制御動作が可能であることを通知することと、
 を含む、方法。
(20)
 前記(19)の方法において、
 前記制御するステップが、更に、前記第2温度が前記所定の許容範囲内にはない場合に、前記回路部を駆動させないことを含む、方法。
(21)
 前記(17)から(20)の何れかの方法において、
 前記制御するステップが、前記ずれの量が前記第1閾値以上である場合に、前記回路部を駆動させないことを含む、方法。
(22)
 前記(16)から(21)の何れかの方法であって、更に、
 所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するステップを含み、
 前記特性値が、前記加熱プロファイルに基づく加熱制御が実行されている間に取得される、方法。
(23)
 前記(16)から(21)の何れかの方法であって、更に、
 所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するステップを含み、
 前記特性値が、前記加熱プロファイルに基づく加熱制御を実行する前記ステップの前に取得される、方法。
(24)
 前記(23)の方法であって、更に、
 前記吸引装置のボタンが押下されたのを検出するステップを含み、
 前記特性値が、前記ボタンの押下が検出されたのに応じて取得される、方法。
(25)
 前記(23)の方法であって、更に、
 前記基材が前記収容部に収容されたのを検出するステップを含み、
 前記特性値が、前記基材の前記収容部への収容が検出されたのに応じて取得される、方法。
(26)
 前記(23)から(25)の何れかの方法において、
 前記特性値が、更に、前記加熱プロファイルに基づく加熱制御が終了した後に取得され、
 前記制御するステップが、更に、前記加熱制御が実行される前に取得された前記特性値と、前記加熱制御が実行された後に取得された前記特性値との差分値に基づく、方法。
(27)
 前記(26)の方法において、
 前記制御するステップが、
  前記差分値が所定の第2閾値より小さい場合に、前記所定の駆動周波数を補正することと、
  前記差分値が前記第2閾値以上である場合に、前記回路部を駆動させないことと、
 のうちの一方又は双方を含む、方法。
(28)
 前記(16)から(27)の何れかの方法を、コンピュータのプロセッサに実行させるためのプログラム。
(29)
 交流電力を発生させる交流電力発生部と、
 エアロゾル源を含有する基材を内部空間に収容可能な収容部と、
 前記収容部の外周に配置された電磁誘導源及びコンデンサを備える回路部であって、
  前記交流電力により前記内部空間に変動磁場を発生させ、
  前記発生された変動磁場を、前記基材の内部で前記エアロゾル源に熱的に近接するように配置されたサセプタに侵入させるように配置される、回路部と、
 前記回路部の基板上に配置され、前記コンデンサの振動を検出するセンサ部と、
 前記回路部を駆動する所定の駆動周波数を指示し、前記コンデンサの駆動の結果取得される振動周波数に基づいて前記回路部の駆動を制御する制御部と、
を備える、吸引装置。
(30)
 交流電力を発生させる交流電力発生部と、
 エアロゾル源を含有する基材を内部空間に収容可能な収容部と、
 前記収容部の外周に配置された電磁誘導源及びコンデンサを備える回路部であって、
  前記交流電力により変動磁場を発生させ、
  前記発生された変動磁場を、前記収容部の一部を形成するサセプタに侵入させるように配置される、回路部と、
 前記回路部の基板上に配置され、前記コンデンサの振動を検出するセンサ部と、
 前記回路部を駆動する所定の駆動周波数を指示し、前記コンデンサの駆動の結果取得される振動周波数に基づいて前記回路部の駆動を制御する制御部と、
を備え、前記サセプタが、前記内部空間に収容されている前記基材の表面に少なくとも部分的に接触するように配置される、吸引装置。
(31)
 前記(30)の吸引装置において、
 前記サセプタが、ステンレス鋼で筒状に形成される、吸引装置。
The following configuration also belongs to the technical scope of the present invention.
(1)
an AC power generator that generates AC power;
a housing part capable of housing a substrate containing an aerosol source in its internal space;
A circuit unit including an electromagnetic induction source arranged on the outer periphery of the housing unit,
generating a fluctuating magnetic field with the AC power;
a circuitry arranged to cause the generated varying magnetic field to penetrate a susceptor;
a sensor unit arranged near the circuit unit for detecting vibration of the circuit unit and acquiring a characteristic value of the circuit unit;
a control unit that instructs a predetermined driving frequency for driving the circuit unit and controls driving of the circuit unit based on the characteristic value obtained as a result of driving the circuit unit;
wherein heat generated from the susceptor is transferred to an aerosol source on the substrate to vaporize or atomize the aerosol source.
(2)
In the suction device of (1) above,
The suction device, wherein the control unit is configured to control driving of the circuit unit according to deviation from a predetermined reference value for the obtained characteristic value.
(3)
In the suction device of (2) above,
The control unit
correcting the predetermined drive frequency if the amount of deviation is less than a predetermined first threshold;
not driving the circuit unit when the amount of deviation is greater than or equal to the first threshold;
a suction device configured to perform one or both of
(4)
In the suction device of (1) to (3) above,
the controller is further configured to perform heating control of the aerosol source based on a predetermined heating profile;
The suction device, wherein the characteristic value is obtained while heating control based on the heating profile is being performed.
(5)
In the suction device according to any one of (1) to (3) above,
the controller is further configured to perform heating control of the aerosol source based on a predetermined heating profile;
The suction device, wherein the characteristic value is obtained before the heating control based on the heating profile is performed.
(6)
In the suction device of (5) above,
The sensor unit is further configured to detect that a button of the suction device has been pressed,
The suction device, wherein the characteristic value is obtained in response to a detected pressing of the button.
(7)
In the suction device of (5) above,
The sensor unit is further configured to detect that the substrate has been accommodated in the accommodation unit,
The suction device, wherein the characteristic value is obtained in response to detection of the substrate being accommodated in the accommodation portion.
(8)
In the suction device according to any one of (5) to (7) above,
the characteristic value is further obtained after the heating control based on the heating profile is completed;
The control unit further controls the circuit unit based on a difference value between the characteristic value obtained before the heating control is performed and the characteristic value obtained after the heating control is performed. A suction device configured to control the drive.
(9)
In the suction device of (8) above,
The control unit
correcting the predetermined drive frequency if the difference value is smaller than a predetermined second threshold;
not driving the circuit unit when the difference value is equal to or greater than the second threshold;
a suction device configured to do one or both of
(10)
In the suction device according to any one of (1) to (9),
the circuitry includes an RLC circuit;
The suction device, wherein the characteristic value is a vibration frequency associated with vibration of a capacitor when the RLC circuit is driven by the drive frequency.
(11)
In the suction device according to any one of (1) to (9),
the circuitry includes an RLC circuit;
The suction device, wherein the characteristic value is the frequency of sound associated with vibration of a capacitor when the RLC circuit is driven by the driving frequency.
(12)
In the suction device according to any one of (1) to (11),
An aspiration device, wherein the susceptor is positioned within the substrate and in thermal proximity to the aerosol source.
(13)
In the suction device according to any one of (1) to (11),
The susceptor forms part of the enclosure and is positioned in thermal proximity to the aerosol source by at least partially contacting a surface of the substrate contained within the interior space. Suction device.
(14)
In the suction device of (13) above,
The suction device, wherein the susceptor is cylindrically formed of stainless steel.
(15)
A substrate used in the suction device according to any one of (1) to (14) and accommodated in the suction device.
(16)
A method of controlling operation of a suction device, said suction device comprising:
a housing part capable of housing a substrate containing an aerosol source in its internal space;
a circuit unit comprising an electromagnetic induction source disposed on the outer periphery of the housing unit, the method comprising:
A step of instructing a predetermined drive frequency to drive the circuit unit,
generating and supplying alternating current power to the circuit unit;
causing the electromagnetic induction source to generate the varying magnetic field with the AC power such that the varying magnetic field penetrates the susceptor;
detecting vibration of the circuit unit based on driving of the circuit unit to obtain a characteristic value of the circuit unit;
a step of controlling driving of the circuit unit based on the obtained characteristic value;
The method, wherein heat generated from the susceptor is transferred to the substrate aerosol source to vaporize or atomize the aerosol source.
(17)
In the method of (16) above,
The step of controlling driving of the circuit unit corrects the predetermined driving frequency to a first frequency when the amount of deviation from a predetermined reference value regarding the acquired characteristic value is smaller than a predetermined first threshold. method, including
(18)
In the method of (17) above,
The controlling step further comprises:
driving the circuitry at the first frequency for a predetermined time;
determining a first temperature of the susceptor after the predetermined period of time;
determining if the first temperature is within a predetermined tolerance;
notifying that heating control of the aerosol source can be performed based on a predetermined heating profile when the first temperature is within a predetermined allowable range;
A method, including
(19)
In the method of (18) above,
The controlling step further comprises:
further correcting the predetermined drive frequency from the first frequency to a second frequency when the first temperature is not within the predetermined allowable range;
driving the circuitry at the second frequency for a predetermined time;
determining a second temperature of the susceptor after the predetermined period of time;
determining if the second temperature is within a predetermined tolerance;
signaling that controlled action of heating of the aerosol source based on a predetermined heating profile is possible when the second temperature is within a predetermined tolerance;
A method, including
(20)
In the method of (19) above,
The method, wherein the controlling step further includes not driving the circuit unit when the second temperature is not within the predetermined allowable range.
(21)
In any one of the methods (17) to (20),
The method, wherein the step of controlling includes not driving the circuit unit when the amount of deviation is equal to or greater than the first threshold.
(22)
The method according to any one of (16) to (21) above, further comprising:
performing heating control of the aerosol source based on a predetermined heating profile;
The method, wherein the characteristic value is obtained while heating control based on the heating profile is being performed.
(23)
The method according to any one of (16) to (21) above, further comprising:
performing heating control of the aerosol source based on a predetermined heating profile;
The method, wherein the characteristic value is obtained prior to the step of performing heating control based on the heating profile.
(24)
The method of (23) above, further comprising:
detecting that a button of the suction device has been pressed;
The method, wherein the characteristic value is obtained in response to a detected pressing of the button.
(25)
The method of (23) above, further comprising:
detecting that the base material is accommodated in the accommodation unit;
The method, wherein the characteristic value is obtained in response to detection of accommodation of the substrate in the accommodation portion.
(26)
In any one of the methods (23) to (25),
the characteristic value is further obtained after the heating control based on the heating profile is completed;
The method, wherein the controlling step is further based on a difference value between the characteristic value obtained before the heating control is performed and the characteristic value obtained after the heating control is performed.
(27)
In the method of (26) above,
The controlling step includes:
correcting the predetermined drive frequency if the difference value is smaller than a predetermined second threshold;
not driving the circuit unit when the difference value is equal to or greater than the second threshold;
A method comprising one or both of
(28)
A program for causing a processor of a computer to execute any one of the methods (16) to (27).
(29)
an AC power generator that generates AC power;
a housing part capable of housing a substrate containing an aerosol source in its internal space;
A circuit unit comprising an electromagnetic induction source and a capacitor arranged on the outer periphery of the housing unit,
generating a varying magnetic field in the internal space by the AC power;
circuitry positioned to cause the generated varying magnetic field to penetrate a susceptor positioned within the substrate and in thermal proximity to the aerosol source;
a sensor unit arranged on the substrate of the circuit unit and detecting vibration of the capacitor;
a control unit that instructs a predetermined driving frequency for driving the circuit unit and controls the driving of the circuit unit based on the vibration frequency obtained as a result of driving the capacitor;
a suction device.
(30)
an AC power generator that generates AC power;
a housing part capable of housing a substrate containing an aerosol source in its internal space;
A circuit unit comprising an electromagnetic induction source and a capacitor arranged on the outer periphery of the housing unit,
generating a fluctuating magnetic field with the AC power;
a circuit unit arranged to cause the generated varying magnetic field to penetrate a susceptor forming part of the housing unit;
a sensor unit arranged on the substrate of the circuit unit and detecting vibration of the capacitor;
a control unit that instructs a predetermined driving frequency for driving the circuit unit and controls the driving of the circuit unit based on the vibration frequency obtained as a result of driving the capacitor;
wherein the susceptor is arranged to at least partially contact a surface of the substrate contained in the interior space.
(31)
In the suction device of (30) above,
The suction device, wherein the susceptor is cylindrically formed of stainless steel.
100…吸引装置、111…電源部、112…センサ部、113…通知部、114…記憶部、115…通信部、116…制御部、116a…給電指示部、116b…取得部、116c…回路制御部、116d…加熱制御部、116e…通知指示部、140…保持部、141…内部空間、150…スティック型基材、151…基材部、161…サセプタ、162…電磁誘導源、インバータ回路…163、168…RLC回路、169…駆動回路 DESCRIPTION OF SYMBOLS 100... Suction apparatus 111... Power supply part 112... Sensor part 113... Notification part 114... Storage part 115... Communication part 116... Control part 116a... Power supply instruction|indication part 116b... Acquisition part 116c... Circuit control Part 116d Heating control part 116e Notification instruction part 140 Holding part 141 Internal space 150 Stick-type base material 151 Base material part 161 Susceptor 162 Electromagnetic induction source, inverter circuit... 163, 168... RLC circuit, 169... drive circuit

Claims (20)

  1.  交流電力を発生させる交流電力発生部と、
     エアロゾル源を含有する基材を内部空間に収容可能な収容部と、
     前記収容部の外周に配置された電磁誘導源を備える回路部であって、
      前記交流電力により変動磁場を発生させ、
      前記発生された変動磁場をサセプタに侵入させるように配置される、回路部と、
     前記回路部の近傍に配置され、前記回路部の振動を検出して、前記回路部の特性値を取得するセンサ部と、
     前記回路部を駆動する所定の駆動周波数を指示し、前記回路部の駆動の結果取得される前記特性値に基づいて前記回路部の駆動を制御する制御部と、
    を備え、前記サセプタから発生した熱が、前記基材のエアロゾル源に伝達されることにより、前記エアロゾル源が気化又は霧化される、吸引装置。
    an AC power generator that generates AC power;
    a housing part capable of housing a substrate containing an aerosol source in its internal space;
    A circuit unit including an electromagnetic induction source arranged on the outer periphery of the housing unit,
    generating a fluctuating magnetic field with the AC power;
    a circuitry arranged to cause the generated varying magnetic field to penetrate a susceptor;
    a sensor unit arranged near the circuit unit for detecting vibration of the circuit unit and acquiring a characteristic value of the circuit unit;
    a control unit that instructs a predetermined driving frequency for driving the circuit unit and controls driving of the circuit unit based on the characteristic value obtained as a result of driving the circuit unit;
    wherein heat generated from the susceptor is transferred to an aerosol source on the substrate to vaporize or atomize the aerosol source.
  2.  請求項1に記載の吸引装置において、
     前記制御部が、前記取得された特性値に関する所定の基準値からのずれにしたがい、前記回路部の駆動を制御するように構成される、吸引装置。
    The suction device of claim 1, wherein
    The suction device, wherein the control unit is configured to control driving of the circuit unit according to deviation from a predetermined reference value for the obtained characteristic value.
  3.  請求項2に記載の吸引装置において、
     前記制御部が、
      前記ずれの量が所定の第1閾値より小さい場合に、前記所定の駆動周波数を補正することと、
      前記ずれの量が前記第1閾値以上である場合に、前記回路部を駆動させないことと、
     の一方又は双方を行うように構成される、吸引装置。
    The suction device according to claim 2,
    The control unit
    correcting the predetermined drive frequency if the amount of deviation is less than a predetermined first threshold;
    not driving the circuit unit when the amount of deviation is greater than or equal to the first threshold;
    a suction device configured to perform one or both of
  4.  請求項1から3に記載の吸引装置において、
     前記制御部が、更に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するように構成され、
     前記特性値が、前記加熱プロファイルに基づく加熱制御が実行されている間に取得される、吸引装置。
    In the suction device according to claims 1 to 3,
    the controller is further configured to perform heating control of the aerosol source based on a predetermined heating profile;
    The suction device, wherein the characteristic value is obtained while heating control based on the heating profile is being performed.
  5.  請求項1から3の何れか一項に記載の吸引装置において、
     前記制御部が、更に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御を実行するように構成され、
     前記特性値が、前記加熱プロファイルに基づく加熱制御が実行される前に取得される、吸引装置。
    In the suction device according to any one of claims 1 to 3,
    the controller is further configured to perform heating control of the aerosol source based on a predetermined heating profile;
    The suction device, wherein the characteristic value is obtained before the heating control based on the heating profile is performed.
  6.  請求項5に記載の吸引装置において、
     前記センサ部が、更に、当該吸引装置のボタンが押下されたのを検出するように構成され、
     前記特性値が、前記ボタンの押下が検出されたのに応じて取得される、吸引装置。
    A suction device according to claim 5,
    The sensor unit is further configured to detect that a button of the suction device has been pressed,
    The suction device, wherein the characteristic value is obtained in response to a detected pressing of the button.
  7.  請求項5に記載の吸引装置において、
     前記センサ部が、更に、前記基材が前記収容部に収容されたのを検出するように構成され、
     前記特性値が、前記基材の前記収容部への収容が検出されたのに応じて取得される、吸引装置。
    A suction device according to claim 5,
    The sensor unit is further configured to detect that the substrate has been accommodated in the accommodation unit,
    The suction device, wherein the characteristic value is obtained in response to detection of the substrate being accommodated in the accommodation portion.
  8.  請求項5から7の何れか一項に記載の吸引装置において、
     前記特性値が、更に、前記加熱プロファイルに基づく加熱制御が終了した後に取得され、
     前記制御部が、更に、前記加熱制御が実行される前に取得された前記特性値と、前記加熱制御が実行された後に取得された前記特性値との差分値に基づいて、前記回路部の駆動を制御するように構成される、吸引装置。
    In the suction device according to any one of claims 5 to 7,
    the characteristic value is further obtained after the heating control based on the heating profile is completed;
    The control unit further controls the circuit unit based on a difference value between the characteristic value obtained before the heating control is performed and the characteristic value obtained after the heating control is performed. A suction device configured to control the drive.
  9.  請求項8に記載の吸引装置において、
     前記制御部が、
      前記差分値が所定の第2閾値より小さい場合に、前記所定の駆動周波数を補正することと、
      前記差分値が前記第2閾値以上である場合に、前記回路部を駆動させないことと、
     のうちの一方又は双方を行うように構成される、吸引装置。
    A suction device according to claim 8, wherein
    The control unit
    correcting the predetermined drive frequency if the difference value is smaller than a predetermined second threshold;
    not driving the circuit unit when the difference value is equal to or greater than the second threshold;
    a suction device configured to do one or both of
  10.  請求項1から9の何れか一項に記載の吸引装置において、
     前記回路部が、RLC回路を含み、
     前記特性値が、前記RLC回路が前記駆動周波数によって駆動されたときのコンデンサの振動に伴う振動周波数である、吸引装置。
    In the suction device according to any one of claims 1 to 9,
    the circuitry includes an RLC circuit;
    The suction device, wherein the characteristic value is a vibration frequency associated with vibration of a capacitor when the RLC circuit is driven by the drive frequency.
  11.  請求項1から10の何れか一項に記載の吸引装置において、
     前記サセプタが、前記基材の内部で前記エアロゾル源に熱的に近接するように配置される、吸引装置。
    A suction device according to any one of claims 1 to 10,
    An aspiration device, wherein the susceptor is positioned within the substrate and in thermal proximity to the aerosol source.
  12.  請求項1から10の何れか一項に記載の吸引装置において、
     前記サセプタが、前記収容部の一部を形成して、前記内部空間に収容されている前記基材の表面に少なくとも部分的に接触することにより、前記エアロゾル源に熱的に近接するように配置される、吸引装置。
    A suction device according to any one of claims 1 to 10,
    The susceptor forms part of the enclosure and is positioned in thermal proximity to the aerosol source by at least partially contacting a surface of the substrate contained within the interior space. Suction device.
  13.  請求項12に記載の吸引装置において、
     前記サセプタが、ステンレス鋼で筒状に形成される、吸引装置。
    A suction device according to claim 12, wherein
    The suction device, wherein the susceptor is cylindrically formed of stainless steel.
  14.  請求項1から13の何れか一項に記載の吸引装置に使用され、前記吸引装置に収容される基材。 A substrate used in the suction device according to any one of claims 1 to 13 and accommodated in the suction device.
  15.  吸引装置の動作を制御する方法であって、前記吸引装置が、
     エアロゾル源を含有する基材を内部空間に収容可能な収容部と、
     前記収容部の外周に配置された電磁誘導源を備える回路部と、を備え、当該方法が、
     所定の駆動周波数を指示して前記回路部を駆動するステップであって、
      交流電力を発生して前記回路部に供給することと、
      変動磁場がサセプタに侵入するように、前記交流電力により前記電磁誘導源に前記変動磁場を発生させることと、を含む、ステップと、
     前記回路部の駆動に基づく前記回路部の振動を検出して、前記回路部の特性値を取得するステップと、
     前記取得された特性値に基づいて、前記回路部の駆動を制御するステップと、含み、
     前記サセプタから発生した熱が、前記基材のエアロゾル源に伝達されることにより、前記エアロゾル源が気化又は霧化される、方法。
    A method of controlling operation of a suction device, said suction device comprising:
    a housing part capable of housing a substrate containing an aerosol source in its internal space;
    a circuit unit comprising an electromagnetic induction source disposed on the outer periphery of the housing unit, the method comprising:
    A step of instructing a predetermined drive frequency to drive the circuit unit,
    generating and supplying alternating current power to the circuit unit;
    causing the electromagnetic induction source to generate the varying magnetic field with the AC power such that the varying magnetic field penetrates the susceptor;
    detecting vibration of the circuit unit based on driving of the circuit unit to obtain a characteristic value of the circuit unit;
    a step of controlling driving of the circuit unit based on the obtained characteristic value;
    The method, wherein heat generated from the susceptor is transferred to the substrate aerosol source to vaporize or atomize the aerosol source.
  16.  請求項15に記載の方法において、
     前記回路部の駆動を制御するステップが、前記取得された特性値に関する所定の基準値からのずれの量が所定の第1閾値より小さい場合に、前記所定の駆動周波数を第1周波数に補正することを含む、方法。
    16. The method of claim 15, wherein
    The step of controlling driving of the circuit unit corrects the predetermined driving frequency to a first frequency when the amount of deviation from a predetermined reference value regarding the acquired characteristic value is smaller than a predetermined first threshold. method, including
  17.  請求項16に記載の方法において、
     前記制御するステップが、更に、
      前記第1周波数で前記回路部を所定の時間にわたり駆動することと、
      前記所定の時間の経過後に前記サセプタの第1温度を推定することと、
      前記第1温度が所定の許容範囲内にあるかについて判定することと、
      前記第1温度が所定の許容範囲内にある場合に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱制御の実行が可能であることを通知することと、
     を含む、方法。
    17. The method of claim 16, wherein
    The controlling step further comprises:
    driving the circuitry at the first frequency for a predetermined time;
    estimating a first temperature of the susceptor after the predetermined time has elapsed;
    determining if the first temperature is within a predetermined tolerance;
    notifying that heating control of the aerosol source can be performed based on a predetermined heating profile when the first temperature is within a predetermined allowable range;
    A method, including
  18.  請求項17に記載の方法において、
     前記制御するステップが、更に、
      前記第1温度が前記所定の許容範囲内にはない場合に、前記所定の駆動周波数を前記第1周波数から第2周波数に更に補正することと、
      前記第2周波数で所定の時間にわたり前記回路部を駆動することと、
      前記所定の時間の経過後に前記サセプタの第2温度を推定することと、
      前記第2温度が所定の許容範囲内にあるかについて判定することと、
      前記第2温度が所定の許容範囲内にある場合に、所定の加熱プロファイルに基づく前記エアロゾル源の加熱の制御動作が可能であることを通知することと、
     を含む、方法。
    18. The method of claim 17, wherein
    The controlling step further comprises:
    further correcting the predetermined drive frequency from the first frequency to a second frequency when the first temperature is not within the predetermined allowable range;
    driving the circuitry at the second frequency for a predetermined time;
    estimating a second temperature of the susceptor after the predetermined time has elapsed;
    determining if the second temperature is within a predetermined tolerance;
    signaling that controlled action of heating of the aerosol source based on a predetermined heating profile is possible when the second temperature is within a predetermined tolerance;
    A method, including
  19.  請求項18に記載の方法において、
     前記制御するステップが、更に、前記第2温度が前記所定の許容範囲内にはない場合に、前記回路部を駆動させないことを含む、方法。
    19. The method of claim 18, wherein
    The method, wherein the controlling step further includes not driving the circuit unit when the second temperature is not within the predetermined allowable range.
  20.  請求項16から19の何れか一項に記載の方法において、
     前記制御するステップが、前記ずれの量が前記第1閾値以上である場合に、前記回路部を駆動させないことを含む、方法。
    20. The method of any one of claims 16-19,
    The method, wherein the step of controlling includes not driving the circuit unit when the amount of deviation is equal to or greater than the first threshold.
PCT/JP2021/026106 2021-07-12 2021-07-12 Inhalation device, substrate, and control method WO2023286116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026106 WO2023286116A1 (en) 2021-07-12 2021-07-12 Inhalation device, substrate, and control method
TW110148462A TW202302000A (en) 2021-07-12 2021-12-23 Inhaler device, base material, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026106 WO2023286116A1 (en) 2021-07-12 2021-07-12 Inhalation device, substrate, and control method

Publications (1)

Publication Number Publication Date
WO2023286116A1 true WO2023286116A1 (en) 2023-01-19

Family

ID=84919114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026106 WO2023286116A1 (en) 2021-07-12 2021-07-12 Inhalation device, substrate, and control method

Country Status (2)

Country Link
TW (1) TW202302000A (en)
WO (1) WO2023286116A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054820A (en) * 2014-05-21 2019-04-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Inductive heating device for heating aerosol-forming substrate
JP2021509806A (en) * 2018-11-23 2021-04-08 ケイティー アンド ジー コーポレイション Aerosol generator and its operation method
JP6923771B1 (en) * 2021-03-31 2021-08-25 日本たばこ産業株式会社 Induction heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054820A (en) * 2014-05-21 2019-04-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Inductive heating device for heating aerosol-forming substrate
JP2021509806A (en) * 2018-11-23 2021-04-08 ケイティー アンド ジー コーポレイション Aerosol generator and its operation method
JP6923771B1 (en) * 2021-03-31 2021-08-25 日本たばこ産業株式会社 Induction heating device

Also Published As

Publication number Publication date
TW202302000A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
EP3801088B1 (en) Electrical heating assembly for heating an aerosol-forming substrate
JP6933323B2 (en) Device for heating smoking material
JP7358483B2 (en) Induction heated aerosol generator with susceptor assembly
JP2021184390A (en) Apparatus for resonance circuit
UA126904C2 (en) Apparatus for heating smokable material
WO2021260894A1 (en) Inhaling device, control method, and program
WO2023286116A1 (en) Inhalation device, substrate, and control method
WO2023026408A1 (en) Inhalation device, substrate, and control method
WO2022224317A1 (en) Inhalation device, base material, control method, and program
WO2023042361A1 (en) Aerosol generation system, control method, and program
WO2022224318A1 (en) Control device, base material, system, control method, and program
WO2023157276A1 (en) Induction heating system, control method, and program
WO2022176126A1 (en) Inhalation device, program, and system
WO2022195771A1 (en) Suction device, program, and system
WO2023157275A1 (en) Induction heating system, control method, and program
WO2022176129A1 (en) Inhalation device, program, and system
WO2023162196A1 (en) Inhaling device and aerosol generation system
WO2023042362A1 (en) Aerosol generation system, control method, and program
WO2022195770A1 (en) Inhalation device, program, and system
WO2022195769A1 (en) Suction device, program, and system
WO2023007525A1 (en) Aerosol generation system
WO2022176112A1 (en) Suction device, program, and system
WO2022195868A1 (en) Inhalation device and system
TW202235017A (en) An aerosol generating device and an aerosol generating system
KR20230142519A (en) Aerosol generating device and aerosol generating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE