WO2022176129A1 - Inhalation device, program, and system - Google Patents

Inhalation device, program, and system Download PDF

Info

Publication number
WO2022176129A1
WO2022176129A1 PCT/JP2021/006193 JP2021006193W WO2022176129A1 WO 2022176129 A1 WO2022176129 A1 WO 2022176129A1 JP 2021006193 W JP2021006193 W JP 2021006193W WO 2022176129 A1 WO2022176129 A1 WO 2022176129A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electromagnetic induction
susceptor
suction device
induction source
Prior art date
Application number
PCT/JP2021/006193
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 芹田
玲二朗 川崎
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP21926564.2A priority Critical patent/EP4226788A1/en
Priority to JP2023500243A priority patent/JPWO2022176129A1/ja
Priority to PCT/JP2021/006193 priority patent/WO2022176129A1/en
Publication of WO2022176129A1 publication Critical patent/WO2022176129A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present invention relates to suction devices, programs and systems.
  • the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component.
  • a user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
  • the action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
  • Patent Document 1 discloses a technique for estimating the temperature of a susceptor contained in a base material from the apparent ohmic resistance when the susceptor is induction-heated.
  • an object of the present invention is to provide a mechanism that enables generation of suitable aerosol in an induction heating suction device. .
  • a suction device comprising: a power supply unit that supplies power; and an electromagnetic induction that generates a varying magnetic field using the power supplied from the power supply a source, a controller for controlling power supply to the electromagnetic induction source, an internal space, and an opening communicating the internal space with the outside, and an aerosol source inserted into the internal space through the opening.
  • a holding part that holds a base material; a response part that is arranged at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates; and a temperature that detects the temperature of the responding part.
  • the electromagnetic induction source transmits the aerosol generated from the electromagnetic induction source to a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding part;
  • the susceptor is arranged at a position where a fluctuating magnetic field penetrates, the susceptor generates heat when the fluctuating magnetic field penetrates, and the controller controls the electromagnetic induction source based on the temperature of the response section detected by the temperature sensor.
  • a suction device is provided that controls the power supply to the.
  • the Curie point of the susceptor and the Curie point of the response section may be substantially the same.
  • the response section may be made of a material that is paramagnetic within a temperature range that the response section can reach due to induction heating by the electromagnetic induction source.
  • the Curie point of the susceptor is lower than the maximum temperature that the susceptor can reach by induction heating by the electromagnetic induction source, and the control unit uses different temperature estimation algorithms before and after the Curie point of the susceptor to The temperature of the susceptor may be estimated.
  • Each of the susceptor and the response section may be made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel.
  • the response section may be arranged between the electromagnetic induction source and the holding section.
  • the response portion may be a cylindrical member that covers at least a portion of the outer circumference of the holding portion.
  • the response unit may be at least part of the holding unit.
  • the suction device further includes a magnetic shield that blocks a magnetic field, the magnetic shield is disposed between a housing that constitutes a shell of the suction device and the electromagnetic induction source, and the response unit It may be part of a shield.
  • the control unit may estimate the temperature of the susceptor based on the temperature of the response unit, and control power supply to the electromagnetic induction source based on the estimated temperature of the susceptor.
  • the control unit may control power supply to the electromagnetic induction source based on the estimated temperature of the susceptor and the temperature of the response unit detected by the temperature sensor.
  • the control unit may control power supply to the electromagnetic induction source based on a heating profile that is information that defines a time-series transition of a target temperature that is a target temperature of the susceptor.
  • the control unit switches the heating profile to be used, and a temperature estimation algorithm used to estimate the temperature of the susceptor based on the temperature of the response unit may be different for each heating profile to be used. .
  • the control unit may control power supply to the electromagnetic induction source based on the temperature of the operating environment of the suction device.
  • the control unit may control power supply to the electromagnetic induction source based on the type of the base material held by the holding unit.
  • the control unit may control power supply to the electromagnetic induction source based on the operation history of the suction device.
  • the control unit may control power supply to the electromagnetic induction source based on the number of times power is supplied to the electromagnetic induction source and/or the interval at which power is supplied to the electromagnetic induction source.
  • Controlling power supply to the electromagnetic induction source may include stopping power supply to the electromagnetic induction source.
  • a program to be executed by a computer that controls a suction device comprising: a power supply unit for supplying power; An aerosol having an electromagnetic induction source that generates a varying magnetic field using power supplied from a power supply, an internal space, and an opening that communicates the internal space with the outside, and that is inserted into the internal space through the opening.
  • a holding part that holds a substrate containing a source; a responding part that is arranged at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates; and a temperature of the responding part.
  • the electromagnetic induction source being connected to a susceptor disposed in thermal proximity to the aerosol source contained in the substrate held by the holding part. and the susceptor generates heat when the fluctuating magnetic field penetrates, and the program detects the temperature of the response section detected by the temperature sensor.
  • a program is provided for controlling power supply to an electromagnetic induction source.
  • a system comprising a suction device and a base material, the base material containing an aerosol source, the suction device an electromagnetic induction source that generates a varying magnetic field using the power supplied from the power supply unit; a control unit that controls power supply to the electromagnetic induction source; an internal space; and the internal space a holding portion for holding the substrate inserted into the internal space through the opening; A response section that generates heat when a magnetic field penetrates; and a temperature sensor that detects the temperature of the response section, wherein the electromagnetic induction source is the aerosol source contained in the base material held by the holding section.
  • the control unit a system for controlling power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor.
  • FIG. 4 is a graph showing an example of time-series transition of the actual temperature of the susceptor 161 induction-heated based on the heating profile shown in Table 1.
  • FIG. 5 is a graph for explaining an example of a susceptor temperature estimation algorithm according to the present embodiment; It is a flowchart which shows an example of the flow of the process performed by the suction device which concerns on this embodiment. It is a figure which shows roughly an example of the physical structure inside the suction device which concerns on a 1st modification.
  • Configuration example of suction device The suction device according to this configuration example generates an aerosol by heating a substrate including an aerosol source by induction heating (IH (Induction Heating)). This configuration example will be described below with reference to FIG.
  • IH Induction Heating
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device.
  • the suction device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a susceptor 161, an electromagnetic induction source 162, and A retainer 140 is included.
  • the user performs suction while the stick-shaped substrate 150 is held by the holding portion 140 .
  • Each component will be described in order below.
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the suction device 100 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like.
  • the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
  • the sensor unit 112 detects various information regarding the suction device 100 .
  • the sensor unit 112 then outputs the detected information to the control unit 116 .
  • the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor.
  • the sensor unit 112 detects a numerical value associated with the user's suction
  • the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 .
  • the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user.
  • sensor unit 112 may include a button for instructing start/stop of aerosol generation.
  • the sensor unit 112 then outputs the information input by the user to the control unit 116 .
  • the sensor section 112 is configured by a temperature sensor that detects the temperature of the susceptor 161 .
  • a temperature sensor detects the temperature of the susceptor 161 based on the electrical resistance value of the electromagnetic induction source 162, for example.
  • the sensor section 112 may detect the temperature of the stick-shaped substrate 150 held by the holding section 140 based on the temperature of the susceptor 161 .
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode).
  • the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like.
  • the light emission pattern here is a concept including color, timing of lighting/lighting out, and the like.
  • the notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device.
  • the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by electromagnetic induction reaches a predetermined temperature.
  • the storage unit 114 stores various information for the operation of the suction device 100 .
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116.
  • FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
  • the communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices.
  • the communication unit 115 performs communication conforming to any wired or wireless communication standard.
  • a communication standard for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user.
  • the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate.
  • the suction device 100 executes various processes under the control of the controller 116 .
  • the holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 .
  • the holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • the holding part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and holds the stick-shaped base material 150 inserted into the internal space 141.
  • the stick-shaped substrate 150 can be held by pressing from the outer periphery.
  • the retainer 140 also functions to define air flow paths through the stick-shaped substrate 150 .
  • An air inlet hole which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 .
  • the air outflow hole which is the exit of air from such a channel, is the opening 142 .
  • the stick-shaped base material 150 is a stick-shaped member.
  • the stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
  • the base material portion 151 includes an aerosol source.
  • the aerosol source is atomized by heating to produce an aerosol.
  • the aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient.
  • the aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least part of the base material part 151 is accommodated in the internal space 141 of the holding part 140 in a state in which the stick-shaped base material 150 is held by the holding part 140.
  • the mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held by the holding part 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 and sucks, air flows into the inside of the holding part 140 from an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the holding part 140 , that is, passes through the base material part 151 and reaches the inside of the user's mouth together with the aerosol generated from the base material part 151 .
  • the stick-type base material 150 includes a susceptor 161 .
  • the susceptor 161 generates heat by electromagnetic induction.
  • the susceptor 161 is made of a conductive material such as metal.
  • the susceptor 161 is a piece of metal.
  • a susceptor 161 is placed in close proximity to the aerosol source. In the example shown in FIG. 1, the susceptor 161 is included in the base portion 151 of the stick-shaped base 150 .
  • the susceptor 161 is placed in thermal proximity to the aerosol source.
  • the susceptor 161 being thermally close to the aerosol source means that the susceptor 161 is arranged at a position where heat generated in the susceptor 161 is transferred to the aerosol source.
  • the susceptor 161 is contained in the substrate portion 151 along with the aerosol source and is surrounded by the aerosol source. With such a configuration, the heat generated from the susceptor 161 can be efficiently used to heat the aerosol source.
  • the susceptor 161 may not be accessible from the outside of the stick-shaped substrate 150 .
  • the susceptors 161 may be distributed in the central portion of the stick-shaped substrate 150 and not distributed near the periphery.
  • the electromagnetic induction source 162 causes the susceptor 161 to generate heat by electromagnetic induction.
  • the electromagnetic induction source 162 is composed of, for example, a coiled conductor wire, and is arranged so as to wrap around the outer periphery of the holding portion 140 .
  • the electromagnetic induction source 162 generates a magnetic field when alternating current is supplied from the power supply section 111 .
  • the electromagnetic induction source 162 is arranged at a position where the internal space 141 of the holding section 140 overlaps the generated magnetic field. Therefore, when a magnetic field is generated while the stick-shaped substrate 150 is held by the holding portion 140, an eddy current is generated in the susceptor 161 and Joule heat is generated.
  • the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol.
  • power may be supplied and an aerosol may be generated when the sensor unit 112 detects that a predetermined user input has been performed.
  • the temperature of the stick-shaped substrate 150 induction-heated by the susceptor 161 and the electromagnetic induction source 162 reaches a predetermined temperature, the suction by the user becomes possible.
  • the power supply may be stopped.
  • power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
  • FIG. 1 shows an example in which the susceptor 161 is included in the base material portion 151 of the stick-shaped base material 150
  • the holding part 140 may serve the function of the susceptor 161 .
  • the magnetic field generated by the electromagnetic induction source 162 generates an eddy current in the holding portion 140 and generates Joule heat.
  • the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol.
  • the combination of the suction device 100 and the stick-shaped substrate 150 may be regarded as one system in that aerosol can be generated by combining the suction device 100 and the stick-shaped substrate 150 .
  • Induction heating is the process of heating a conductive object by penetrating a varying magnetic field into the object.
  • Induction heating involves a magnetic field generator that generates a fluctuating magnetic field, and a conductive heated object that is heated by being exposed to the fluctuating magnetic field.
  • An example of a varying magnetic field is an alternating magnetic field.
  • the electromagnetic induction source 162 shown in FIG. 1 is an example of a magnetic field generator.
  • the susceptor 161 shown in FIG. 1 is an example of the object to be heated.
  • the magnetic field generator and the object to be heated are arranged in relative positions such that the fluctuating magnetic field generated by the magnetic field generator penetrates into the object to be heated, when the fluctuating magnetic field is generated from the magnetic field generator, the object to be heated Eddy currents are induced.
  • Joule heat corresponding to the electrical resistance of the object to be heated is generated and the object to be heated is heated.
  • Such heating is also referred to as joule heating, ohmic heating, or resistance heating.
  • the object to be heated may have magnetism.
  • the object to be heated is further heated by magnetic hysteresis heating.
  • Magnetic hysteresis heating is the process of heating a magnetic object by impinging it with a varying magnetic field.
  • the magnetic dipoles contained in the magnetic body align along the magnetic field. Therefore, when a fluctuating magnetic field penetrates a magnetic material, the orientation of the magnetic dipole changes according to the applied fluctuating magnetic field. Due to such reorientation of the magnetic dipoles, heat is generated in the magnetic material, and the object to be heated is heated.
  • Magnetic hysteresis heating typically occurs at temperatures below the Curie point and does not occur at temperatures above the Curie point.
  • the Curie point is the temperature at which a magnetic material loses its magnetic properties. For example, when the temperature of an object to be heated which has ferromagnetism at a temperature below the Curie point exceeds the Curie point, the magnetism of the object to be heated undergoes a reversible phase transition from ferromagnetism to paramagnetism. When the temperature of the object to be heated exceeds the Curie point, magnetic hysteresis heating does not occur, so the rate of temperature increase slows down.
  • the object to be heated is made of a conductive material. Furthermore, it is desirable that the object to be heated is made of a ferromagnetic material. In the latter case, it is possible to increase the heating efficiency by combining resistance heating and magnetic hysteresis heating.
  • the object to be heated is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, stainless steel, and the like.
  • induction heating directly heats the susceptor 161 included in the stick-shaped base material 150
  • the base material can be heated more efficiently than when the stick-shaped base material 150 is heated from the outer periphery or the like by an external heat source. It is possible.
  • the temperature of the external heat source is inevitably higher than that of the stick-shaped substrate 150 .
  • the electromagnetic induction source 162 does not become hotter than the stick-shaped substrate 150 . Therefore, the temperature of the suction device 100 can be kept lower than when an external heat source is used, which is a great advantage in terms of user safety.
  • the electromagnetic induction source 162 uses power supplied from the power supply unit 111 to generate a varying magnetic field.
  • the power supply unit 111 has a DC (direct current) power supply and a DC/AC (alternate current) inverter, and supplies alternating current to the electromagnetic induction source 162 .
  • the electromagnetic induction source 162 can generate an alternating magnetic field.
  • the electromagnetic induction source 162 causes the fluctuating magnetic field generated from the electromagnetic induction source 162 to enter the susceptor 161 which is arranged in thermal proximity to the aerosol source contained in the stick-shaped base material 150 held by the holding part 140 . placed in position.
  • the susceptor 161 generates heat when a fluctuating magnetic field enters.
  • the electromagnetic induction source 162 shown in FIG. 1 is a solenoid coil.
  • the solenoid-type coil is arranged so that the conductive wire is wound around the outer periphery of the holding portion 140 . When a current is applied to the solenoid type coil, a magnetic field is generated in the central space surrounded by the coil, that is, the internal space 141 of the holding part 140 . As shown in FIG.
  • the susceptor 161 when the stick-shaped substrate 150 is held by the holding portion 140, the susceptor 161 is surrounded by the coil. Therefore, the fluctuating magnetic field generated by the electromagnetic induction source 162 enters the susceptor 161 and heats the susceptor 161 by induction.
  • the suction device 100 controls power supply to the electromagnetic induction source 162 based on the heating profile.
  • a heating profile is information that defines a time-series transition of a target temperature, which is a target value of temperature.
  • the suction device 100 controls power supply to the electromagnetic induction source 162 so that the actual temperature of the susceptor 161 (hereinafter also referred to as the actual temperature) changes in the same manner as the target temperature specified in the heating profile changes over time. do.
  • An example of a controlled object is voltage. This produces an aerosol as planned by the heating profile.
  • the heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . Therefore, by controlling the operation of the electromagnetic induction source 162 based on the heating profile, the flavor experienced by the user can be optimized.
  • a heating profile includes one or more combinations of the elapsed time from the start of heating and the target temperature to be reached in that elapsed time. Then, the control unit 116 controls the temperature of the susceptor 161 based on the difference between the target temperature in the heating profile corresponding to the elapsed time from the start of the current heating and the current actual temperature. Temperature control of the susceptor 161 can be realized, for example, by known feedback control. In feedback control, the controller 116 may control the power supplied to the electromagnetic induction source 162 based on the difference between the actual temperature and the target temperature. Feedback control may be, for example, PID control (Proportional-Integral-Differential Controller). Alternatively, control unit 116 may perform simple ON-OFF control. For example, the control unit 116 may supply power to the electromagnetic induction source 162 until the actual temperature reaches the target temperature, and interrupt power supply to the electromagnetic induction source 162 when the actual temperature reaches the target temperature.
  • PID control Proportional-Integral-
  • the time interval from the start to the end of the process of generating an aerosol using the stick-shaped substrate 150 is also referred to as a heating session below. called.
  • the beginning of the heating session is the timing at which heating based on the heating profile is started.
  • the end of the heating session is when a sufficient amount of aerosol is no longer produced.
  • a heating session consists of a first half preheating period and a second half puffable period.
  • the puffable period is the period during which a sufficient amount of aerosol is assumed to be generated.
  • the preheating period is the period from the start of heating to the start of the puffable period. Heating performed in the preheating period is also referred to as preheating.
  • FIG. 2 is a graph showing an example of time-series transition of the actual temperature of the susceptor 161 induction-heated based on the heating profile shown in Table 1.
  • the horizontal axis of this graph is time (seconds).
  • the vertical axis of this graph is the temperature of the susceptor 161 .
  • a line 21 in this graph indicates the time series transition of the actual temperature of the susceptor 161 .
  • points 22 (22A to 22F) in this graph indicate target temperatures defined in the heating profile.
  • the actual temperature of the susceptor 161 transitions in the same manner as the target temperature defined in the heating profile.
  • the heating profile first includes an initial heating section.
  • the initial temperature rising section is a time section included at the beginning of the heating profile, and is a section in which the target temperature set at the end is higher than the initial temperature.
  • the initial temperature is the assumed temperature of the susceptor 161 before starting heating.
  • An example of an initial temperature is any temperature, such as 0°C.
  • Another example of the initial temperature is the temperature corresponding to the air temperature.
  • the actual temperature of the susceptor 161 reaches 295° C. 25 seconds after the start of heating and is maintained at 295° C. until 35 seconds after the start of heating, according to the target temperature set in the initial temperature rising section.
  • the heating profile then includes an intermediate cooling interval.
  • the midway temperature decrease interval is a time interval after the initial temperature increase interval in which the target temperature set at the end is lower than the target temperature set at the end of the initial temperature increase interval.
  • the actual temperature of the susceptor 161 drops from 295.degree. C. to 230.degree.
  • power supply to the electromagnetic induction source 162 may be stopped. Even in that case, the residual heat of the susceptor 161 and the stick-shaped substrate 150 generates a sufficient amount of aerosol. If the susceptor 161 is kept at a high temperature, the aerosol source contained in the stick-shaped substrate 150 is rapidly consumed, which may cause inconveniences such as too strong flavor tasted by the user. In this regard, by providing an intermediate temperature drop section in the middle, it is possible to avoid such inconvenience and improve the quality of the user's puff experience.
  • the heating profile then includes a reheating interval.
  • the re-heating interval is a time interval after the intermediate temperature-lowering interval, in which the target temperature set at the end is higher than the target temperature set at the end of the intermediate temperature-lowering interval.
  • the actual temperature of the susceptor 161 gradually increases from 230° C. to 260° C. from 45 seconds to 355 seconds after the start of heating according to the target temperature set in the reheating section.
  • the temperature of the susceptor 161 continues to drop, the temperature of the stick-shaped base material 150 also drops, so the amount of aerosol generated decreases and the flavor tasted by the user may deteriorate.
  • by raising the temperature again after lowering the temperature it is possible to prevent deterioration of the flavor that the user enjoys even in the second half of the heating session.
  • the heating profile includes a heating end section at the end.
  • the heating end section is a time section after the reheating section and is a time section in which heating is not performed.
  • the target temperature does not have to be set.
  • the actual temperature of the susceptor 161 drops after 355 seconds from the start of heating.
  • Power supply to the electromagnetic induction source 162 may be terminated 355 seconds after the start of heating. Even in that case, the remaining heat of the susceptor 161 and the stick-shaped substrate 150 will generate a sufficient amount of aerosol for a while.
  • 365 seconds after the start of heating the puffable period, ie the heating session, ends.
  • the timing at which the puffable period starts and ends may be notified to the user. Furthermore, the user may be notified of the timing (for example, the timing of the end of the reheating interval) that is a predetermined time before the end of the puffable period. In that case, the user can perform puffing during the puffable period by referring to such notification.
  • the timing for example, the timing of the end of the reheating interval
  • FIG. 3 is a diagram schematically showing an example of the physical configuration inside the suction device 100 according to the present embodiment.
  • the power supply unit 111 is configured as a battery
  • the control unit 116 is configured as a circuit board
  • the electromagnetic induction source 162 is configured as a solenoid coil
  • the holding unit 140 is configured as a cylindrical chamber. ing.
  • An air flow path 170 is connected to the holding portion 140 .
  • the opening 142 of the holding portion 140 and the air intake hole 171 of the air flow path 170 are provided in the housing 101 that constitutes the outer shell of the suction device 100 . are taken in and out.
  • Air flow path 170 has a function of supplying air taken in from air intake hole 171 to internal space 141 of holding portion 140 via a hole (not shown) provided in bottom portion 143 of holding portion 140 .
  • the suction device 100 further includes a response section 119 .
  • the response unit 119 generates heat when a fluctuating magnetic field enters. That is, the response unit 119 is an example of an object to be heated by induction heating.
  • the response unit 119 is arranged at a position where the fluctuating magnetic field generated by the electromagnetic induction source 162 enters. In the example shown in FIG. 3 , the response section 119 is arranged between the electromagnetic induction source 162 and the holding section 140 .
  • a current is applied to the electromagnetic induction source 162 configured as a solenoid type coil, a magnetic field is generated in the space surrounded by the coil and including the response section 119 .
  • the fluctuating magnetic field enters the response section 119, and the response section 119 generates heat.
  • the suction device 100 includes a temperature sensor 118 that detects the temperature of the response section 119 as the sensor section 112 .
  • Temperature sensor 118 may be a thermistor, as an example. In the example shown in FIG. 3, the temperature sensor 118 is placed in contact with the responsive section 119 to detect the temperature of the responsive section 119 .
  • the temperature sensor 118 may be arranged at a position that overlaps less with the position of the susceptor 161 contained in the stick-shaped substrate 150 held by the holding portion 140 in the insertion direction of the stick-shaped substrate 150 . desirable.
  • the temperature sensor 118 may be arranged on the bottom portion 143 side as shown in FIG. desirable.
  • Such an arrangement makes it possible to reduce the adverse effect on the heating of the susceptor 161 caused by the entry of the magnetic field into the temperature sensor 118 .
  • the response section 119 as well.
  • the temperature sensor 118 may be placed outside the coil that is the electromagnetic induction source 162 .
  • the response unit 119 and the susceptor 161 are arranged at positions where the fluctuating magnetic field generated from the electromagnetic induction source 162 similarly penetrates. Therefore, it is considered that the temperature of the response section 119 and the temperature of the susceptor 161 maintain a certain correspondence expressed by a function such as a linear function. Therefore, control unit 116 controls power supply to electromagnetic induction source 162 based on the temperature of response unit 119 detected by temperature sensor 118 .
  • the response section 119 and the susceptor 161 may have the same configuration, in which case the temperature of the response section 119 and the temperature of the susceptor 161 are considered to be the same.
  • control unit 116 substitutes the temperature of the response unit 119 for the temperature of the susceptor 161 and controls power supply to the electromagnetic induction source 162 based on the heating profile. According to such a configuration, it is possible to generate suitable aerosol even in the induction heating type suction device 100 in which it is difficult to directly detect the temperature of the susceptor 161 .
  • Controlling power supply to the electromagnetic induction source 162 according to the temperature of the response unit 119 includes adjusting the amount of power supply to the electromagnetic induction source 162 . With such a configuration, it is possible to appropriately control the amount of heat generated by the susceptor 161 . Furthermore, controlling power supply to electromagnetic induction source 162 according to the temperature of response unit 119 may include stopping power supply to electromagnetic induction source 162 . With such a configuration, it is possible to prevent overheating of the susceptor 161 or the response section 119 and ensure the safety of the user.
  • the control unit 116 may estimate the temperature of the susceptor 161 based on the temperature of the response unit 119 and control power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 .
  • the control unit 116 estimates the temperature of the susceptor 161 based on the temperature of the response unit 119, and controls power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 and the heating profile.
  • the Curie point of the susceptor 161 and the Curie point of the response unit 119 may be substantially the same.
  • the susceptor 161 and the response section 119 may be made of the same material. According to such a configuration, since the magnetic phase transition occurs at the same temperature in the susceptor 161 and the response section 119, the slowdown of the temperature rise rate accompanying the magnetic phase transition occurs at the same timing. Therefore, it is possible to reduce the decrease in the accuracy of estimating the temperature of the susceptor 161 as compared with the case where the timing of the slowdown of the temperature rise rate due to the magnetic phase transition is shifted.
  • the Curie point of the response section 119 may be higher than the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 .
  • the maximum temperature that the response section 119 can reach due to induction heating by the electromagnetic induction source 162 is determined according to the specifications of the suction device 100 such as the output voltage from the power supply section 111 and the characteristics of the response section 119 . According to such a configuration, magnetic phase transition does not occur in the response section 119 within the range in which the suction device 100 normally operates. Therefore, it is possible to avoid deterioration in the temperature estimation accuracy of the susceptor 161 due to the slowdown of the temperature rise rate of the response section 119 due to the magnetic phase transition of the response section 119 .
  • the response section 119 may be made of a material that is paramagnetic within the temperature range that the response section 119 can reach by induction heating by the electromagnetic induction source 162 .
  • An example of such a material is a paramagnetic material such as aluminum.
  • the temperature range that the response section 119 can reach by induction heating by the electromagnetic induction source 162 is a range below the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 . According to such a configuration, magnetic phase transition does not occur in the response section 119 within the range in which the suction device 100 normally operates. Therefore, it is possible to avoid deterioration in the temperature estimation accuracy of the susceptor 161 due to the slowdown of the temperature rise rate of the response section 119 due to the magnetic phase transition of the response section 119 .
  • the Curie point of the susceptor 161 may be lower than the maximum temperature that the susceptor 161 can reach by induction heating by the electromagnetic induction source 162 .
  • the control unit 116 estimates the temperature of the susceptor 161 using different temperature estimation algorithms before and after the Curie point of the susceptor 161 .
  • the maximum temperature that the susceptor 161 can reach by induction heating by the electromagnetic induction source 162 is determined according to the specifications of the suction device 100 and the stick-shaped substrate 150, such as the output voltage from the power supply section 111 and the characteristics of the susceptor 161.
  • FIG. 4 is a graph for explaining an example of a temperature estimation algorithm for the susceptor 161 according to this embodiment.
  • the horizontal axis of this graph is the temperature of the response section 119 and the vertical axis is the temperature of the susceptor 161 .
  • T1 MAX is the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 .
  • T2 MAX is the maximum temperature that the susceptor 161 can reach by induction heating by the electromagnetic induction source 162 .
  • T2C is the Curie point of the susceptor 161;
  • T1C' is the temperature of the response section 119 at the timing when the temperature of the susceptor 161 reaches the Curie point T2C .
  • the control section 116 estimates the temperature of the susceptor 161 based on the temperature of the response section 119 and the ratio R1.
  • the temperature rise rate of the susceptor 161 slows down due to the magnetic phase transition. A relationship of a different ratio R2 is established.
  • the control section 116 estimates the temperature of the susceptor 161 based on the temperature of the response section 119 and the ratio R2. By using different ratios R1 and R2 before and after the magnetic phase transition occurs in the susceptor 161, the temperature of the susceptor 161 can be accurately estimated.
  • FIG. 5 is a flowchart showing an example of the flow of processing executed by the suction device 100 according to this embodiment.
  • the sensor unit 112 receives a user's operation to instruct the start of heating (step S102).
  • An example of an operation for instructing the start of heating is pressing a button provided on the suction device 100 .
  • control unit 116 estimates the temperature of the susceptor 161 based on the temperature of the response unit 119 detected by the temperature sensor 118 (step S104). At that time, as described above with reference to FIG. An estimation algorithm is used to estimate the temperature of the susceptor 161 .
  • control unit 116 controls power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 and the heating profile (step S106). For example, the control unit 116 controls power supply to the electromagnetic induction source 162 so that the estimated temperature of the susceptor 161 changes in the same way as the target temperature specified in the heating profile changes over time.
  • FIG. 6 is a diagram schematically showing an example of a physical configuration inside a suction device 100 according to a first modification.
  • the response portion 119 may be a tubular member that covers at least a portion of the outer circumference of the holding portion 140 .
  • suitable aerosol can be generated.
  • the response unit 119 according to this modification may function as an external heat source that heats the stick-shaped base material 150 held by the holding unit 140 . That is, the suction device 100 according to this modified example may heat the stick-shaped substrate 150 from the inside and the outer periphery by induction heating the susceptor 161 and the response section 119 . Such a configuration enables efficient generation of aerosol.
  • the control unit 116 may control power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 and the temperature of the response unit 119 detected by the temperature sensor 118 .
  • the control unit 116 controls power supply to the electromagnetic induction source 162 so that the temperature of the susceptor 161 and/or the temperature of the response unit 119 changes in the same manner as the target temperature specified in the heating profile. Control. It should be noted that there may be a first heating profile that defines the time-series transition of the target temperature of the susceptor 161 and a second heating profile that defines the time-series transition of the target temperature of the response section 119 .
  • control unit 116 controls the temperature of the susceptor 161 so that the temperature of the susceptor 161 transitions in the same manner as the target temperature defined in the first heating profile changes over time, and the target temperature defined in the second heating profile.
  • Power supply to the electromagnetic induction source 162 is controlled so that the temperature of the response unit 119 changes in the same manner as the time-series transition.
  • the response section 119 may be at least part of the holding section 140 .
  • at least part of the holding part 140 may be configured as a heated object that generates heat when a fluctuating magnetic field penetrates. Also in this case, the same actions and effects as in the first modified example are achieved.
  • the suction device 100 may further include a magnetic shield that blocks a magnetic field.
  • a magnetic shield is placed between the housing 101 that constitutes the outer shell of the suction device 100 and the electromagnetic induction source 162 .
  • the magnetic shield is desirably placed between the electronic components such as the controller 116 and the electromagnetic induction source 162 . This is to prevent adverse effects of the fluctuating magnetic field on electronic components.
  • the magnetic shield has the function of restricting the passage of a magnetic field from the inside of the magnetic shield (that is, the electromagnetic induction source 162 side) to the outside (that is, the housing 101 side).
  • a magnetic shield is composed of any material that has the function of blocking a magnetic field.
  • the magnetic shield is preferably made of a material with high magnetic permeability. Examples of such materials include nu-metals and permalloys.
  • the magnetic shield may be configured in a film shape and arranged to wrap around the electromagnetic induction source 162 from the outside. Such a configuration makes it possible to block the magnetic field generated by the electromagnetic induction source 162 before it spreads.
  • the response section 119 may be part of the magnetic shield.
  • the response section 119 may function as a magnetic shield. According to such a configuration, it is possible to achieve both reduction of adverse effects of the fluctuating magnetic field and generation of suitable aerosol.
  • a standard environment is a standard operating environment of the suction device 100 .
  • the operating environment of the suction device 100 includes the environment surrounding the suction device 100 such as temperature, humidity and pressure, the state of the suction device 100 such as the operation history of the suction device 100, and the stick-shaped base material 150 to be induction-heated. It is a concept that includes states.
  • the standard environment includes tolerances for each of a plurality of parameters indicating the operating environment of the suction device 100, such as temperature, humidity, pressure, the state of the suction device 100, and the state of the stick-shaped substrate 150 to be induction-heated. defined by a set of parameters provided.
  • the control unit 116 controls the power supply to the electromagnetic induction source 162 based on the disturbance element in addition to the temperature of the response unit 119 .
  • the control unit 116 estimates the temperature of the susceptor 161 based on the temperature of the response unit 119 and the disturbance factor, and the temperature of the susceptor 161 changes in the same manner as the target temperature specified in the heating profile changes over time.
  • the power supply to the electromagnetic induction source 162 is controlled so as to do so. According to such a configuration, it is possible to achieve suitable aerosol generation even when a disturbance element exists.
  • the following describes the disturbance elements and power supply control according to the disturbance elements.
  • An example of a disturbance factor is the temperature of the operating environment of the suction device 100 .
  • An example of the temperature of the operating environment of the suction device 100 is air temperature.
  • Another example of the temperature of the operating environment of the suction device 100 is the temperature inside the suction device 100 .
  • the suction device 100 includes an environmental temperature sensor that detects the temperature of the operating environment of the suction device 100 as the sensor section 112 . Then, the control unit 116 controls power supply to the electromagnetic induction source 162 based on the temperature of the operating environment of the suction device 100 detected by the environmental temperature sensor.
  • control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the temperature of the operating environment of the suction device 100, and based on the temperature of the susceptor 161 after correction, Controls power supply to inductive source 162 .
  • the control unit 116 corrects the temperature of the susceptor 161 to be higher when the temperature of the operating environment of the suction device 100 is higher than the temperature of the standard environment.
  • the control unit 116 corrects the temperature of the susceptor 161 to be lower when the temperature of the operating environment of the suction device 100 is lower than the temperature of the standard environment.
  • the control unit 116 controls power supply to the electromagnetic induction source 162 based on the operation history of the suction device 100 . Specifically, the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the operation history of the suction device 100, and calculates the temperature of the electromagnetic induction source based on the corrected temperature of the susceptor 161. 162 is controlled. As an example, when the actual temperature of the susceptor 161 is predicted to be higher than expected due to the difference between the actual operation history of the suction device 100 and the operation history in the standard environment, the control unit 116 adjusts the temperature of the susceptor 161. Correct higher.
  • the control unit 116 increases the temperature of the susceptor 161. Correct low.
  • the operation history of the suction device 100 may be stored in the storage unit 114.
  • the control unit 116 updates the operation history stored in the storage unit 114 each time the stick-type substrate 150 is induction-heated based on the heating profile.
  • An example of the operation history of the suction device 100 is the number of times power is supplied to the electromagnetic induction source 162 .
  • the number of times power is supplied to the electromagnetic induction source 162 is the number of times induction heating is performed based on the heating profile.
  • the control unit 116 controls power supply to the electromagnetic induction source 162 based on the number of times power is supplied to the electromagnetic induction source 162 .
  • the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the number of times power is supplied to the electromagnetic induction source 162, Controls power supply to inductive source 162 .
  • the controller 116 corrects the temperature of the susceptor 161 to be lower.
  • the power supply interval to the electromagnetic induction source 162 is the length of time from the previous execution of the induction heating based on the heating profile to the current execution.
  • the control unit 116 controls power supply to the electromagnetic induction source 162 based on the power supply interval to the electromagnetic induction source 162 .
  • the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the power supply interval to the electromagnetic induction source 162, Controls power supply to inductive source 162 .
  • the controller 116 corrects the temperature of the susceptor 161 to be higher.
  • the controller 116 corrects the temperature of the susceptor 161 to be lower.
  • control unit 116 controls power supply to electromagnetic induction source 162 based on the type of stick-shaped base material 150 held by holding unit 140 .
  • the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the type of the stick-shaped base material 150, and based on the corrected temperature of the susceptor 161, the electromagnetic induction control the power supply to the source 162; As an example, when it is predicted that the actual temperature of the susceptor 161 will be higher than expected due to the difference between the type of the stick-shaped base material 150 held by the holding part 140 and the type of the stick-shaped base material 150 in the standard environment. There is In that case, the controller 116 corrects the temperature of the susceptor 161 to be higher.
  • the controller 116 corrects the temperature of the susceptor 161 to be lower.
  • the type of stick-shaped base material 150 held by the holding portion 140 can be identified by various methods.
  • identification information such as a two-dimensional code indicating the type of stick-shaped base material 150 may be given to stick-shaped base material 150 .
  • the type of the stick-shaped base material 150 can be identified by performing image recognition or the like on the identification information given to the stick-shaped base material 150 held by the holding unit 140 .
  • the type of susceptor 161 contained may be different for each type of stick-shaped substrate 150 .
  • the electrical resistance value of the closed circuit including the power supply unit 111 and the electromagnetic induction source 162 when power is supplied to the electromagnetic induction source 162 depends on the type of the susceptor 161 contained in the stick-shaped substrate 150 held by the holding unit 140. may vary. In that case, the type of the stick-shaped substrate 150 can be identified based on the electrical resistance value of the closed circuit including the power source 111 and the electromagnetic induction source 162 .
  • control unit 116 may switch the heating profile to be used.
  • the temperature estimation algorithm used to estimate the temperature of the susceptor 161 based on the temperature of the responder 119 may differ for each heating profile used.
  • the amount of correction based on the disturbance factor for the temperature of the susceptor 161 estimated based on the temperature of the response section 119 may differ for each heating profile used. That is, the correction amount based on the temperature of the operating environment of the suction device 100, the operation history of the suction device 100, and/or the type of the stick-shaped substrate 150 held by the holding section 140 differs for each heating profile used. good too. This is because the target temperature differs for each heating profile, and the estimation error caused by the disturbance element may differ accordingly. With such a configuration, the temperature of the susceptor 161 can be accurately estimated even when the heating profile is switched. This makes it possible to achieve the generation of suitable aerosol.
  • a magnetic phase transition may occur in the response section 119 within a temperature range that the response section 119 can reach due to induction heating by the electromagnetic induction source 162 . That is, the Curie point of the response section 119 may be lower than the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 . In that case, the correspondence relationship between the temperature of the response section 119 and the temperature of the susceptor 161 changes before and after the Curie point of the response section 119 .
  • control unit 116 uses different temperature estimation algorithms before and after the Curie point of the response unit 119 to estimate the temperature of the susceptor 161 . According to this configuration, for the same reason as the example described above with reference to FIG. It is possible to reduce the decrease in
  • the temperature sensor 118 is a thermistor, but the present invention is not limited to this example.
  • the response unit 119 may be configured to change its electrical resistance value according to temperature, and may be supplied with power from the power supply unit 111 .
  • the temperature sensor 118 estimates the temperature of the response section 119 based on the electrical resistance value of the closed circuit including the power supply section 111 and the response section 119 .
  • the temperature sensor 118 may be arranged separately from the response section 119 , or the control section 116 may also function as the temperature sensor 118 .
  • the present invention is not limited to this example. That is, the susceptor 161 can be placed at any location where the susceptor 161 is in thermal proximity to the aerosol source.
  • the susceptor 161 may be configured in a blade shape and arranged to protrude from the bottom portion 143 of the holding portion 140 into the internal space 141 . Then, when the stick-shaped base material 150 is inserted into the holding part 140, the blade-shaped susceptor 161 may be inserted so as to pierce the base part 151 from the end of the stick-shaped base material 150 in the insertion direction.
  • the susceptor 161 may be arranged on the inner wall of the holding part 140 forming the inner space 141 .
  • a series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware.
  • Programs that make up the software are stored in advance in, for example, recording media (non-transitory media) provided inside or outside each device.
  • Each program for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed, for example, via a network without using a recording medium.
  • a suction device a power supply unit that supplies electric power; an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply; a control unit that controls power supply to the electromagnetic induction source; a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds a substrate containing an aerosol source that is inserted into the internal space through the opening; a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates; a temperature sensor that detects the temperature of the response unit; with The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit.
  • the control unit controls power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor.
  • suction device. (2) the Curie point of the susceptor and the Curie point of the responder are substantially the same; The suction device according to (1) above.
  • the Curie point of the response unit is higher than the maximum temperature that the response unit can reach by induction heating by the electromagnetic induction source.
  • the response unit is made of a material that is paramagnetic within a temperature range that the response unit can reach due to induction heating by the electromagnetic induction source, The suction device according to (1) above.
  • each of the susceptor and the response unit is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel; The suction device according to any one of (1) to (5) above.
  • the response unit is arranged between the electromagnetic induction source and the holding unit, The suction device according to any one of (1) to (6) above.
  • the responsive part is a cylindrical member that covers at least part of the outer circumference of the holding part, The suction device according to any one of (1) to (7) above.
  • the response unit is at least part of the holding unit, The suction device according to any one of (1) to (6) above.
  • the suction device further comprises a magnetic shield that blocks the magnetic field, The magnetic shield is disposed between a housing that constitutes the outer shell of the suction device and the electromagnetic induction source, the responsive unit is part of the magnetic shield, The suction device according to any one of (1) to (6) above.
  • the control unit estimates the temperature of the susceptor based on the temperature of the response unit, and controls power supply to the electromagnetic induction source based on the estimated temperature of the susceptor.
  • the suction device according to any one of (1) to (10) above. (12)
  • the control unit controls power supply to the electromagnetic induction source based on the estimated temperature of the susceptor and the temperature of the response unit detected by the temperature sensor.
  • the suction device according to (11) above.
  • the control unit controls power supply to the electromagnetic induction source based on a heating profile that is information that defines a time-series transition of a target temperature that is a target value of the temperature of the susceptor.
  • the suction device according to (11) or (12) above.
  • the control unit switches the heating profile to be used, the temperature estimation algorithm used to estimate the temperature of the susceptor based on the temperature of the responsive section is different for each of the heating profiles used;
  • the suction device according to (13) above.
  • the control unit controls power supply to the electromagnetic induction source based on the temperature of the operating environment of the suction device.
  • the suction device according to any one of (1) to (14) above.
  • the control unit controls power supply to the electromagnetic induction source based on the type of the base material held by the holding unit.
  • the suction device according to any one of (1) to (15) above.
  • the control unit controls power supply to the electromagnetic induction source based on the operation history of the suction device.
  • the control unit controls power supply to the electromagnetic induction source based on the number of times power is supplied to the electromagnetic induction source and/or the interval at which power is supplied to the electromagnetic induction source.
  • controlling power supply to the electromagnetic induction source includes stopping power supply to the electromagnetic induction source;
  • the suction device according to any one of (1) to (18) above.
  • a program to be executed by a computer that controls a suction device The suction device is a power supply unit that supplies electric power; an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply; a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds a substrate containing an aerosol source that is inserted into the internal space through the opening; a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates; a temperature sensor that detects the temperature of the response unit; with The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit.
  • a system comprising a suction device and a substrate, the substrate contains an aerosol source;
  • the suction device is a power supply unit that supplies electric power; an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply; a control unit that controls power supply to the electromagnetic induction source; a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds the base material inserted into the internal space through the opening; a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates; a temperature sensor that detects the temperature of the response unit; with The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the
  • the control unit controls power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor. system.
  • the susceptor is contained in the base material, The system according to (21) above.
  • suction device 101 housing 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 118 temperature sensor 119 response unit 140 holding unit 141 internal space 142 opening 143 bottom 150 stick-shaped substrate 151 substrate 152 mouthpiece Part 161 Susceptor 162 Electromagnetic induction source 170 Air flow path 171 Air intake hole

Abstract

[Problem] To provide a structure that enables preferential generation of aerosol in an induction heating-type inhalation device. [Solution] An inhalation device includes: a power supply unit; an electromagnetic induction source that uses electric power supplied from the power supply unit to generate a fluctuating magnetic field; a control unit that controls a supply of power to the electromagnetic induction source; a holding unit that holds a substrate which has been inserted into an internal space through an opening and which contains an aerosol source; a response unit that is disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source intrudes and that generates heat when the fluctuating magnetic field intrudes; and a temperature sensor that detects a temperature of the response unit. The electromagnetic induction source is disposed at a position where the fluctuating magnetic field intrudes in a susceptor that is disposed thermally near the aerosol source contained in the substrate held by the holding unit and that generates heat when the fluctuating magnetic field intrudes. The control unit controls the supply of power to the electromagnetic induction source on the basis of the temperature of the response unit detected by the temperature sensor.

Description

吸引装置、プログラム及びシステムAspirators, programs and systems
 本発明は、吸引装置、プログラム及びシステムに関する。 The present invention relates to suction devices, programs and systems.
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。ユーザがエアロゾルを吸引する動作を、以下ではパフ又はパフ動作とも称する。 Inhalation devices, such as electronic cigarettes and nebulizers, that produce substances that are inhaled by the user are widespread. For example, the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device. The action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
 これまでは、加熱用ブレード等の外部熱源を用いる方式の吸引装置が主流であった。しかし近年では、誘導加熱式の吸引装置が注目を集めている。例えば下記特許文献1では、基材に含まれるサセプタを誘導加熱する際に、サセプタの温度を見かけのオーム抵抗により推定する技術が開示されている。 Until now, suction devices that use external heat sources such as heating blades have been the mainstream. In recent years, however, induction heating type suction devices have attracted attention. For example, Patent Document 1 below discloses a technique for estimating the temperature of a susceptor contained in a base material from the apparent ohmic resistance when the susceptor is induction-heated.
特許第6623175号公報Japanese Patent No. 6623175
 外部熱源を用いる方式の吸引装置では、外部熱源の温度を測定して制御することで、好適なエアロゾルの生成が実現されていた。他方、誘導加熱方式の吸引装置では、サセプタの温度を直接的に測定及び制御することが困難なので、好適なエアロゾルの生成の実現が困難であった。上記特許文献1等に開示されているように、サセプタの温度を推定する技術が開発されてはいるものの、その精度には向上の余地が残されている。 In the suction device that uses an external heat source, suitable aerosol generation was achieved by measuring and controlling the temperature of the external heat source. On the other hand, since it is difficult to directly measure and control the temperature of the susceptor with the induction heating type suction device, it has been difficult to achieve suitable aerosol generation. As disclosed in Patent Document 1 and the like, techniques for estimating the temperature of the susceptor have been developed, but there is still room for improvement in accuracy.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、誘導加熱式の吸引装置において、好適なエアロゾルの生成を可能にする仕組みを提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a mechanism that enables generation of suitable aerosol in an induction heating suction device. .
 上記課題を解決するために、本発明のある観点によれば、吸引装置であって、電力を供給する電源部と、前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、前記電磁誘導源への給電を制御する制御部と、内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された、エアロゾル源を含有する基材を保持する保持部と、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、前記応答部の温度を検出する温度センサと、を備え、前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記サセプタは、前記変動磁場が侵入した場合に発熱し、前記制御部は、前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御する、吸引装置が提供される。 In order to solve the above problems, according to one aspect of the present invention, there is provided a suction device comprising: a power supply unit that supplies power; and an electromagnetic induction that generates a varying magnetic field using the power supplied from the power supply a source, a controller for controlling power supply to the electromagnetic induction source, an internal space, and an opening communicating the internal space with the outside, and an aerosol source inserted into the internal space through the opening. a holding part that holds a base material; a response part that is arranged at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates; and a temperature that detects the temperature of the responding part. a sensor, wherein the electromagnetic induction source transmits the aerosol generated from the electromagnetic induction source to a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding part; The susceptor is arranged at a position where a fluctuating magnetic field penetrates, the susceptor generates heat when the fluctuating magnetic field penetrates, and the controller controls the electromagnetic induction source based on the temperature of the response section detected by the temperature sensor. A suction device is provided that controls the power supply to the.
 前記サセプタのキュリー点と前記応答部のキュリー点とは、実質的に同一であってもよい。 The Curie point of the susceptor and the Curie point of the response section may be substantially the same.
 前記応答部は、前記電磁誘導源による誘導加熱により前記応答部が到達可能な温度の範囲内において常磁性である素材により構成されてもよい。 The response section may be made of a material that is paramagnetic within a temperature range that the response section can reach due to induction heating by the electromagnetic induction source.
 前記サセプタのキュリー点は、前記電磁誘導源による誘導加熱により前記サセプタが到達可能な最高温度よりも低く、前記制御部は、前記サセプタのキュリー点の前後で異なる温度推定アルゴリズムを使用して、前記サセプタの温度を推定してもよい。 The Curie point of the susceptor is lower than the maximum temperature that the susceptor can reach by induction heating by the electromagnetic induction source, and the control unit uses different temperature estimation algorithms before and after the Curie point of the susceptor to The temperature of the susceptor may be estimated.
 前記サセプタ及び前記応答部の各々は、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼を含む素材群から選択される1以上の素材により構成されてもよい。 Each of the susceptor and the response section may be made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel.
 前記応答部は、前記電磁誘導源と前記保持部との間に配置されてもよい。 The response section may be arranged between the electromagnetic induction source and the holding section.
 前記応答部は、前記保持部の外周の少なくとも一部を覆う筒状部材であってもよい。 The response portion may be a cylindrical member that covers at least a portion of the outer circumference of the holding portion.
 前記応答部は、前記保持部の少なくとも一部であってもよい。 The response unit may be at least part of the holding unit.
 前記吸引装置は、磁場を遮断する磁気シールドをさらに備え、前記磁気シールドは、前記吸引装置の再外殻を構成するハウジングと前記電磁誘導源との間に配置され、前記応答部は、前記磁気シールドの一部であってもよい。 The suction device further includes a magnetic shield that blocks a magnetic field, the magnetic shield is disposed between a housing that constitutes a shell of the suction device and the electromagnetic induction source, and the response unit It may be part of a shield.
 前記制御部は、前記応答部の温度に基づいて前記サセプタの温度を推定し、推定した前記サセプタの温度に基づいて前記電磁誘導源への給電を制御してもよい。 The control unit may estimate the temperature of the susceptor based on the temperature of the response unit, and control power supply to the electromagnetic induction source based on the estimated temperature of the susceptor.
 前記制御部は、推定した前記サセプタの温度と前記温度センサにより検出された前記応答部の温度とに基づいて、前記電磁誘導源への給電を制御してもよい。 The control unit may control power supply to the electromagnetic induction source based on the estimated temperature of the susceptor and the temperature of the response unit detected by the temperature sensor.
 前記制御部は、前記サセプタの温度の目標値である目標温度の時系列推移が規定された情報である加熱プロファイルに基づいて、前記電磁誘導源への給電を制御してもよい。 The control unit may control power supply to the electromagnetic induction source based on a heating profile that is information that defines a time-series transition of a target temperature that is a target temperature of the susceptor.
 前記制御部は、使用する前記加熱プロファイルを切り替え、前記応答部の温度に基づいて前記サセプタの温度を推定するために使用される温度推定アルゴリズムは、使用する前記加熱プロファイルごとに異なっていてもよい。 The control unit switches the heating profile to be used, and a temperature estimation algorithm used to estimate the temperature of the susceptor based on the temperature of the response unit may be different for each heating profile to be used. .
 前記制御部は、前記吸引装置の動作環境の温度に基づいて、前記電磁誘導源への給電を制御してもよい。 The control unit may control power supply to the electromagnetic induction source based on the temperature of the operating environment of the suction device.
 前記制御部は、前記保持部に保持された前記基材の種類に基づいて、前記電磁誘導源への給電を制御してもよい。 The control unit may control power supply to the electromagnetic induction source based on the type of the base material held by the holding unit.
 前記制御部は、前記吸引装置の動作履歴に基づいて、前記電磁誘導源への給電を制御してもよい。 The control unit may control power supply to the electromagnetic induction source based on the operation history of the suction device.
 前記制御部は、前記電磁誘導源への給電回数、及び/又は前記電磁誘導源への給電間隔に基づいて、前記電磁誘導源への給電を制御してもよい。 The control unit may control power supply to the electromagnetic induction source based on the number of times power is supplied to the electromagnetic induction source and/or the interval at which power is supplied to the electromagnetic induction source.
 前記電磁誘導源への給電を制御することは、前記電磁誘導源への給電を停止することを含んでいてもよい。 Controlling power supply to the electromagnetic induction source may include stopping power supply to the electromagnetic induction source.
 また、上記課題を解決するために、本発明の別の観点によれば、吸引装置を制御するコンピュータに実行させるためのプログラムであって、前記吸引装置は、電力を供給する電源部と、前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された、エアロゾル源を含有する基材を保持する保持部と、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、前記応答部の温度を検出する温度センサと、を備え、前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記サセプタは、前記変動磁場が侵入した場合に発熱し、前記プログラムは、前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御すること、を実行させるプログラムが提供される。 Further, in order to solve the above problems, according to another aspect of the present invention, there is provided a program to be executed by a computer that controls a suction device, the suction device comprising: a power supply unit for supplying power; An aerosol having an electromagnetic induction source that generates a varying magnetic field using power supplied from a power supply, an internal space, and an opening that communicates the internal space with the outside, and that is inserted into the internal space through the opening. a holding part that holds a substrate containing a source; a responding part that is arranged at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates; and a temperature of the responding part. and a temperature sensor for detecting the electromagnetic induction source, the electromagnetic induction source being connected to a susceptor disposed in thermal proximity to the aerosol source contained in the substrate held by the holding part. and the susceptor generates heat when the fluctuating magnetic field penetrates, and the program detects the temperature of the response section detected by the temperature sensor. A program is provided for controlling power supply to an electromagnetic induction source.
 また、上記課題を解決するために、本発明の別の観点によれば、吸引装置と基材とを備えるシステムであって、前記基材は、エアロゾル源を含有し、前記吸引装置は、電力を供給する電源部と、前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、前記電磁誘導源への給電を制御する制御部と、内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記基材を保持する保持部と、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、前記応答部の温度を検出する温度センサと、を備え、前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記サセプタは、前記変動磁場が侵入した場合に発熱し、前記制御部は、前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御する、システムが提供される。 Further, in order to solve the above problems, according to another aspect of the present invention, there is provided a system comprising a suction device and a base material, the base material containing an aerosol source, the suction device an electromagnetic induction source that generates a varying magnetic field using the power supplied from the power supply unit; a control unit that controls power supply to the electromagnetic induction source; an internal space; and the internal space a holding portion for holding the substrate inserted into the internal space through the opening; A response section that generates heat when a magnetic field penetrates; and a temperature sensor that detects the temperature of the response section, wherein the electromagnetic induction source is the aerosol source contained in the base material held by the holding section. is arranged at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates into the susceptor arranged thermally close to the susceptor, the susceptor generates heat when the fluctuating magnetic field penetrates, and the control unit , a system for controlling power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor.
 以上説明したように本発明によれば、誘導加熱式の吸引装置において、好適なエアロゾルの生成を可能にする仕組みが提供される。 As described above, according to the present invention, there is provided a mechanism that enables the generation of suitable aerosol in an induction heating suction device.
吸引装置の構成例を模式的に示す模式図である。It is a schematic diagram which shows the structural example of a suction device typically. 表1に示した加熱プロファイルに基づき誘導加熱されたサセプタ161の実温度の時系列推移の一例を示すグラフである。4 is a graph showing an example of time-series transition of the actual temperature of the susceptor 161 induction-heated based on the heating profile shown in Table 1. FIG. 本実施形態に係る吸引装置内部の物理的な構成の一例を概略的に示す図である。It is a figure which shows roughly an example of the physical structure inside the suction device which concerns on this embodiment. 本実施形態に係るサセプタの温度推定アルゴリズムの一例を説明するためのグラフである。5 is a graph for explaining an example of a susceptor temperature estimation algorithm according to the present embodiment; 本実施形態に係る吸引装置により実行される処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed by the suction device which concerns on this embodiment. 第1の変形例に係る吸引装置内部の物理的な構成の一例を概略的に示す図である。It is a figure which shows roughly an example of the physical structure inside the suction device which concerns on a 1st modification.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
 <1.吸引装置の構成例>
 本構成例に係る吸引装置は、エアロゾル源を含む基材を、誘導加熱(IH(Induction Heating))により加熱することで、エアロゾルを生成する。以下、図1を参照しながら、本構成例を説明する。
<1. Configuration example of suction device>
The suction device according to this configuration example generates an aerosol by heating a substrate including an aerosol source by induction heating (IH (Induction Heating)). This configuration example will be described below with reference to FIG.
 図1は、吸引装置の構成例を模式的に示す模式図である。図1に示すように、本構成例に係る吸引装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、サセプタ161、電磁誘導源162、及び保持部140を含む。保持部140にスティック型基材150が保持された状態で、ユーザによる吸引が行われる。以下、各構成要素について順に説明する。 FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device. As shown in FIG. 1, the suction device 100 according to this configuration example includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, a susceptor 161, an electromagnetic induction source 162, and A retainer 140 is included. The user performs suction while the stick-shaped substrate 150 is held by the holding portion 140 . Each component will be described in order below.
 電源部111は、電力を蓄積する。そして、電源部111は、吸引装置100の各構成要素に、電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。電源部111は、USB(Universal Serial Bus)ケーブル等により外部電源に接続されることで、充電されてもよい。また、電源部111は、ワイヤレス電力伝送技術により送電側のデバイスに非接続な状態で充電されてもよい。他にも、電源部111のみを吸引装置100から取り外すことができてもよく、新しい電源部111と交換することができてもよい。 The power supply unit 111 accumulates power. The power supply unit 111 supplies electric power to each component of the suction device 100 . The power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery. The power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like. Also, the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
 センサ部112は、吸引装置100に関する各種情報を検出する。そして、センサ部112は、検出した情報を制御部116に出力する。一例として、センサ部112は、コンデンサマイクロホン等の圧力センサ、流量センサ又は温度センサにより構成される。そして、センサ部112は、ユーザによる吸引に伴う数値を検出した場合に、ユーザによる吸引が行われたことを示す情報を制御部116に出力する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。とりわけ、センサ部112は、エアロゾルの生成開始/停止を指示するボタンを含み得る。そして、センサ部112は、ユーザにより入力された情報を制御部116に出力する。他の一例として、センサ部112は、サセプタ161の温度を検出する温度センサにより構成される。かかる温度センサは、例えば、電磁誘導源162の電気抵抗値に基づいてサセプタ161の温度を検出する。センサ部112は、サセプタ161の温度に基づいて、保持部140により保持されたスティック型基材150の温度を検出してもよい。 The sensor unit 112 detects various information regarding the suction device 100 . The sensor unit 112 then outputs the detected information to the control unit 116 . As an example, the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor. When the sensor unit 112 detects a numerical value associated with the user's suction, the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 . As another example, the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user. Among other things, sensor unit 112 may include a button for instructing start/stop of aerosol generation. The sensor unit 112 then outputs the information input by the user to the control unit 116 . As another example, the sensor section 112 is configured by a temperature sensor that detects the temperature of the susceptor 161 . Such a temperature sensor detects the temperature of the susceptor 161 based on the electrical resistance value of the electromagnetic induction source 162, for example. The sensor section 112 may detect the temperature of the stick-shaped substrate 150 held by the holding section 140 based on the temperature of the susceptor 161 .
 通知部113は、情報をユーザに通知する。一例として、通知部113は、LED(Light Emitting Diode)などの発光装置により構成される。その場合、通知部113は、電源部111の状態が要充電である場合、電源部111が充電中である場合、及び吸引装置100に異常が発生した場合等に、それぞれ異なる発光パターンで発光する。ここでの発光パターンとは、色、及び点灯/消灯のタイミング等を含む概念である。通知部113は、発光装置と共に、又は代えて、画像を表示する表示装置、音を出力する音出力装置、及び振動する振動装置等により構成されてもよい。他にも、通知部113は、ユーザによる吸引が可能になったことを示す情報を通知してもよい。ユーザによる吸引が可能になったことを示す情報は、電磁誘導により発熱したスティック型基材150の温度が所定の温度に達した場合に、通知される。 The notification unit 113 notifies the user of information. As an example, the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode). In this case, the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like. . The light emission pattern here is a concept including color, timing of lighting/lighting out, and the like. The notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device. In addition, the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by electromagnetic induction reaches a predetermined temperature.
 記憶部114は、吸引装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114に記憶される情報の一例は、制御部116による各種構成要素の制御内容等の、吸引装置100のOS(Operating System)に関する情報である。記憶部114に記憶される情報の他の一例は、吸引回数、吸引時刻、吸引時間累計等の、ユーザによる吸引に関する情報である。 The storage unit 114 stores various information for the operation of the suction device 100 . The storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory. An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116. FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
 通信部115は、吸引装置100と他の装置との間で情報を送受信するための、通信インタフェースである。通信部115は、有線又は無線の任意の通信規格に準拠した通信を行う。かかる通信規格としては、例えば、無線LAN(Local Area Network)、有線LAN、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。一例として、通信部115は、ユーザによる吸引に関する情報をスマートフォンに表示させるために、ユーザによる吸引に関する情報をスマートフォンに送信する。他の一例として、通信部115は、記憶部114に記憶されているOSの情報を更新するために、サーバから新たなOSの情報を受信する。 The communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices. The communication unit 115 performs communication conforming to any wired or wireless communication standard. As such a communication standard, for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted. As an example, the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user. As another example, the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。他に、制御部116は、使用するプログラム及び演算パラメータ等を記憶するROM(Read Only Memory)、並びに適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。吸引装置100は、制御部116による制御に基づいて、各種処理を実行する。電源部111から他の各構成要素への給電、電源部111の充電、センサ部112による情報の検出、通知部113による情報の通知、記憶部114による情報の記憶及び読み出し、並びに通信部115による情報の送受信は、制御部116により制御される処理の一例である。各構成要素への情報の入力、及び各構成要素から出力された情報に基づく処理等、吸引装置100により実行されるその他の処理も、制御部116により制御される。 The control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs. The control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor. In addition, the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate. The suction device 100 executes various processes under the control of the controller 116 . Power supply from power supply unit 111 to other components, charging of power supply unit 111, detection of information by sensor unit 112, notification of information by notification unit 113, storage and reading of information by storage unit 114, and communication unit 115 Transmission and reception of information is an example of processing controlled by the control unit 116 . Other processes executed by the suction device 100, such as information input to each component and processing based on information output from each component, are also controlled by the control unit 116. FIG.
 保持部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。保持部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を保持する。例えば、保持部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。保持部140は、筒状体の高さ方向の少なくとも一部において、内径がスティック型基材150の外径よりも小さくなるように構成され、内部空間141に挿入されたスティック型基材150を外周から圧迫するようにしてスティック型基材150を保持し得る。保持部140は、スティック型基材150を通る空気の流路を画定する機能も有する。かかる流路内への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。 The holding part 140 has an internal space 141 and holds the stick-shaped base material 150 while accommodating a part of the stick-shaped base material 150 in the internal space 141 . The holding part 140 has an opening 142 that communicates the internal space 141 with the outside, and holds the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 . For example, the holding portion 140 is a tubular body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 . The holding part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and holds the stick-shaped base material 150 inserted into the internal space 141. The stick-shaped substrate 150 can be held by pressing from the outer periphery. The retainer 140 also functions to define air flow paths through the stick-shaped substrate 150 . An air inlet hole, which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 . On the other hand, the air outflow hole, which is the exit of air from such a channel, is the opening 142 .
 スティック型基材150は、スティック型の部材である。スティック型基材150は、基材部151、及び吸口部152を含む。 The stick-shaped base material 150 is a stick-shaped member. The stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
 基材部151は、エアロゾル源を含む。エアロゾル源は、加熱されることで霧化され、エアロゾルが生成される。エアロゾル源は、例えば、刻みたばこ又はたばこ原料を、粒状、シート状、又は粉末状に成形した加工物などの、たばこ由来のものであってもよい。また、エアロゾル源は、たばこ以外の植物(例えばミント及びハーブ等)から作られた、非たばこ由来のものを含んでいてもよい。一例として、エアロゾル源は、メントール等の香料成分を含んでいてもよい。吸引装置100が医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。なお、エアロゾル源は固体に限られるものではなく、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体であってもよい。基材部151の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、保持部140の内部空間141に収容される The base material portion 151 includes an aerosol source. The aerosol source is atomized by heating to produce an aerosol. The aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient. The aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least part of the base material part 151 is accommodated in the internal space 141 of the holding part 140 in a state in which the stick-shaped base material 150 is held by the holding part 140.
 吸口部152は、吸引の際にユーザに咥えられる部材である。吸口部152の少なくとも一部は、スティック型基材150が保持部140に保持された状態において、開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から保持部140の内部に空気が流入する。流入した空気は、保持部140の内部空間141を通過して、すなわち、基材部151を通過して、基材部151から発生するエアロゾルと共に、ユーザの口内に到達する。 The mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held by the holding part 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 and sucks, air flows into the inside of the holding part 140 from an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the holding part 140 , that is, passes through the base material part 151 and reaches the inside of the user's mouth together with the aerosol generated from the base material part 151 .
 さらに、スティック型基材150は、サセプタ161を含む。サセプタ161は、電磁誘導により発熱する。サセプタ161は、金属等の導電性の素材により構成される。一例として、サセプタ161は、金属片である。サセプタ161は、エアロゾル源に近接して配置される。図1に示した例では、サセプタ161は、スティック型基材150の基材部151に含まれる。 Furthermore, the stick-type base material 150 includes a susceptor 161 . The susceptor 161 generates heat by electromagnetic induction. The susceptor 161 is made of a conductive material such as metal. As an example, the susceptor 161 is a piece of metal. A susceptor 161 is placed in close proximity to the aerosol source. In the example shown in FIG. 1, the susceptor 161 is included in the base portion 151 of the stick-shaped base 150 .
 ここで、サセプタ161は、エアロゾル源に熱的に近接して配置される。サセプタ161がエアロゾル源に熱的に近接しているとは、サセプタ161に発生した熱が、エアロゾル源に伝達される位置に、サセプタ161が配置されていることを指す。例えば、サセプタ161は、エアロゾル源と共に基材部151に含有され、エアロゾル源により周囲を囲まれる。かかる構成により、サセプタ161から発生した熱を、効率よくエアロゾル源の加熱に使用することが可能となる。 Here, the susceptor 161 is placed in thermal proximity to the aerosol source. The susceptor 161 being thermally close to the aerosol source means that the susceptor 161 is arranged at a position where heat generated in the susceptor 161 is transferred to the aerosol source. For example, the susceptor 161 is contained in the substrate portion 151 along with the aerosol source and is surrounded by the aerosol source. With such a configuration, the heat generated from the susceptor 161 can be efficiently used to heat the aerosol source.
 なお、サセプタ161には、スティック型基材150の外部から接触不可能であってもよい。例えば、サセプタ161は、スティック型基材150の中心部分に分布し、外周付近には分布していなくてもよい。 It should be noted that the susceptor 161 may not be accessible from the outside of the stick-shaped substrate 150 . For example, the susceptors 161 may be distributed in the central portion of the stick-shaped substrate 150 and not distributed near the periphery.
 電磁誘導源162は、電磁誘導によりサセプタ161を発熱させる。電磁誘導源162は、例えば、コイル状の導線により構成され、保持部140の外周に巻き付くように配置される。電磁誘導源162は、電源部111から交流電流が供給されると、磁界を発生させる。電磁誘導源162は、発生させた磁界に保持部140の内部空間141が重畳する位置に配置される。よって、保持部140にスティック型基材150が保持された状態で磁界が発生すると、サセプタ161において渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて霧化され、エアロゾルが生成される。一例として、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、給電され、エアロゾルが生成されてもよい。サセプタ161及び電磁誘導源162により誘導加熱されたスティック型基材150の温度が所定の温度に達した場合に、ユーザによる吸引が可能となる。その後、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、給電が停止されてもよい。他の一例として、ユーザによる吸引が行われたことがセンサ部112により検出されている期間において、給電され、エアロゾルが生成されてもよい。 The electromagnetic induction source 162 causes the susceptor 161 to generate heat by electromagnetic induction. The electromagnetic induction source 162 is composed of, for example, a coiled conductor wire, and is arranged so as to wrap around the outer periphery of the holding portion 140 . The electromagnetic induction source 162 generates a magnetic field when alternating current is supplied from the power supply section 111 . The electromagnetic induction source 162 is arranged at a position where the internal space 141 of the holding section 140 overlaps the generated magnetic field. Therefore, when a magnetic field is generated while the stick-shaped substrate 150 is held by the holding portion 140, an eddy current is generated in the susceptor 161 and Joule heat is generated. Then, the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol. As an example, power may be supplied and an aerosol may be generated when the sensor unit 112 detects that a predetermined user input has been performed. When the temperature of the stick-shaped substrate 150 induction-heated by the susceptor 161 and the electromagnetic induction source 162 reaches a predetermined temperature, the suction by the user becomes possible. After that, when the sensor unit 112 detects that a predetermined user input has been performed, the power supply may be stopped. As another example, power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
 なお、図1では、サセプタ161が、スティック型基材150の基材部151に含まれる例を示したが、本構成例はかかる例に限定されない。例えば、保持部140が、サセプタ161の機能を担っても良い。この場合、電磁誘導源162が発生させた磁界によって、保持部140において渦電流が発生して、ジュール熱が発生する。そして、かかるジュール熱によりスティック型基材150に含まれるエアロゾル源が加熱されて霧化され、エアロゾルが生成される。 Although FIG. 1 shows an example in which the susceptor 161 is included in the base material portion 151 of the stick-shaped base material 150, this configuration example is not limited to such an example. For example, the holding part 140 may serve the function of the susceptor 161 . In this case, the magnetic field generated by the electromagnetic induction source 162 generates an eddy current in the holding portion 140 and generates Joule heat. Then, the Joule heat heats the aerosol source contained in the stick-shaped substrate 150 and atomizes it to generate an aerosol.
 なお、吸引装置100とスティック型基材150とを組み合わせることでエアロゾルを生成可能になる点で、吸引装置100とスティック型基材150との組み合わせが1つのシステムとして捉えられてもよい。 Note that the combination of the suction device 100 and the stick-shaped substrate 150 may be regarded as one system in that aerosol can be generated by combining the suction device 100 and the stick-shaped substrate 150 .
 <2.誘導加熱>
 誘導加熱について、以下に詳細に説明する。
<2. Induction heating>
Induction heating is described in detail below.
 誘導加熱とは、導電性を有する物体に変動磁場を侵入させることによって、その物体を加熱するプロセスである。誘導加熱には、変動磁場を発生させる磁場発生器と、変動磁場に曝されることにより加熱される、導電性を有する被加熱物とが関与する。変動磁場の一例は、交番磁場である。図1に示した電磁誘導源162は、磁場発生器の一例である。図1に示したサセプタ161は、被加熱物の一例である。 Induction heating is the process of heating a conductive object by penetrating a varying magnetic field into the object. Induction heating involves a magnetic field generator that generates a fluctuating magnetic field, and a conductive heated object that is heated by being exposed to the fluctuating magnetic field. An example of a varying magnetic field is an alternating magnetic field. The electromagnetic induction source 162 shown in FIG. 1 is an example of a magnetic field generator. The susceptor 161 shown in FIG. 1 is an example of the object to be heated.
 磁場発生器と被加熱物とが、磁場発生器から発生した変動磁場が被加熱物に侵入するような相対位置に配置された状態で、磁場発生器から変動磁場が発生すると、被加熱物に渦電流が誘起される。被加熱物に渦電流が流れることにより、被加熱物の電気抵抗に応じたジュール熱が発生し、被加熱物が加熱される。このような加熱は、ジュール加熱、オーム加熱、又は抵抗加熱とも称される。 When the magnetic field generator and the object to be heated are arranged in relative positions such that the fluctuating magnetic field generated by the magnetic field generator penetrates into the object to be heated, when the fluctuating magnetic field is generated from the magnetic field generator, the object to be heated Eddy currents are induced. When the eddy current flows through the object to be heated, Joule heat corresponding to the electrical resistance of the object to be heated is generated and the object to be heated is heated. Such heating is also referred to as joule heating, ohmic heating, or resistance heating.
 被加熱物は、磁性を有していてもよい。その場合、被加熱物は、磁気ヒステリシス加熱によりさらに加熱される。磁気ヒステリシス加熱とは、磁性を有する物体に変動磁場を侵入させることによって、その物体を加熱するプロセスである。磁場が磁性体に侵入すると、磁性体に含まれる磁気双極子が磁場に沿って整列する。従って、変動磁場が磁性体に侵入すると、磁気双極子の向きは、印可された変動磁場に応じて変化する。このような磁気双極子の再配向によって、磁性体に熱が発生し、被加熱物が加熱される。 The object to be heated may have magnetism. In that case, the object to be heated is further heated by magnetic hysteresis heating. Magnetic hysteresis heating is the process of heating a magnetic object by impinging it with a varying magnetic field. When a magnetic field penetrates a magnetic body, the magnetic dipoles contained in the magnetic body align along the magnetic field. Therefore, when a fluctuating magnetic field penetrates a magnetic material, the orientation of the magnetic dipole changes according to the applied fluctuating magnetic field. Due to such reorientation of the magnetic dipoles, heat is generated in the magnetic material, and the object to be heated is heated.
 磁気ヒステリシス加熱は、典型的には、キュリー点以下の温度で発生し、キュリー点を超える温度では発生しない。キュリー点とは、磁性体がその磁気特性を失う温度である。例えば、キュリー点以下の温度で強磁性を有する被加熱物の温度がキュリー点を超えると、被加熱物の磁性には、強磁性から常磁性への可逆的な相転移が生じる。被加熱物の温度がキュリー点を超えると、磁気ヒステリシス加熱が発生しなくなるので、昇温速度が鈍化する。 Magnetic hysteresis heating typically occurs at temperatures below the Curie point and does not occur at temperatures above the Curie point. The Curie point is the temperature at which a magnetic material loses its magnetic properties. For example, when the temperature of an object to be heated which has ferromagnetism at a temperature below the Curie point exceeds the Curie point, the magnetism of the object to be heated undergoes a reversible phase transition from ferromagnetism to paramagnetism. When the temperature of the object to be heated exceeds the Curie point, magnetic hysteresis heating does not occur, so the rate of temperature increase slows down.
 被加熱物は、導電性の材料により構成されることが望ましい。さらに、被加熱物は、強磁性を有する材料により構成されることが望ましい。後者の場合、抵抗加熱と磁気ヒステリシス加熱との組み合わせにより、加熱効率を高めることが可能なためである。例えば、被加熱物は、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼などを含む素材群から選択される1以上の素材により構成される。 It is desirable that the object to be heated is made of a conductive material. Furthermore, it is desirable that the object to be heated is made of a ferromagnetic material. In the latter case, it is possible to increase the heating efficiency by combining resistance heating and magnetic hysteresis heating. For example, the object to be heated is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, stainless steel, and the like.
 抵抗加熱、及び磁気ヒステリシス加熱の双方において、熱は、外部熱源からの熱伝導により発生するのではなく、被加熱物の内部で発生する。そのため、被加熱物の急速な温度上昇、及び均一な熱分布を実現することができる。これは、被加熱物の材料及び形状、並びに変動磁場の大きさ及び向きを適切に設計することにより、実現することができる。即ち、スティック型基材150に含まれるサセプタ161の分布を適切に設計することにより、スティック型基材150の急速な温度上昇、及び均一な熱分布を実現することができる。従って、予備加熱にかかる時間を短縮可能な上に、ユーザが味わう香味の質を向上させることも可能である。 In both resistance heating and magnetic hysteresis heating, heat is generated inside the object to be heated, not by heat conduction from an external heat source. Therefore, rapid temperature rise of the object to be heated and uniform heat distribution can be realized. This can be realized by appropriately designing the material and shape of the object to be heated and the magnitude and direction of the varying magnetic field. That is, by appropriately designing the distribution of the susceptors 161 included in the stick-shaped substrate 150, a rapid temperature rise and uniform heat distribution of the stick-shaped substrate 150 can be achieved. Therefore, the time required for preheating can be shortened, and the quality of flavor that the user can enjoy can be improved.
 誘導加熱は、スティック型基材150に含まれるサセプタ161を直接加熱するため、外部熱源によりスティック型基材150を外周等から加熱する場合と比較して、基材を効率的に加熱することが可能である。また、外部熱源による加熱を行う場合、外部熱源は必然的にスティック型基材150よりも高温になる。一方で、誘導加熱を行う場合、電磁誘導源162はスティック型基材150よりも高温にならない。そのため、外部熱源を用いる場合と比較して吸引装置100の温度を低く維持することができるので、ユーザの安全面に関し大きな利点となる。 Since induction heating directly heats the susceptor 161 included in the stick-shaped base material 150, the base material can be heated more efficiently than when the stick-shaped base material 150 is heated from the outer periphery or the like by an external heat source. It is possible. Moreover, when heating is performed by an external heat source, the temperature of the external heat source is inevitably higher than that of the stick-shaped substrate 150 . On the other hand, when performing induction heating, the electromagnetic induction source 162 does not become hotter than the stick-shaped substrate 150 . Therefore, the temperature of the suction device 100 can be kept lower than when an external heat source is used, which is a great advantage in terms of user safety.
 電磁誘導源162は、電源部111から供給された電力を使用して変動磁場を発生させる。一例として、電源部111は、DC(Direct Current)電源、及びDC/AC(alternate current)インバータを有し、交流電流を電磁誘導源162に供給する。その場合、電磁誘導源162は、交番磁場を発生させることができる。 The electromagnetic induction source 162 uses power supplied from the power supply unit 111 to generate a varying magnetic field. As an example, the power supply unit 111 has a DC (direct current) power supply and a DC/AC (alternate current) inverter, and supplies alternating current to the electromagnetic induction source 162 . In that case, the electromagnetic induction source 162 can generate an alternating magnetic field.
 電磁誘導源162は、保持部140により保持されたスティック型基材150に含有されたエアロゾル源に熱的に近接して配置されたサセプタ161に、電磁誘導源162から発生した変動磁場が侵入する位置に配置される。そして、サセプタ161は、変動磁場が侵入した場合に発熱する。図1に示した電磁誘導源162は、ソレノイド型のコイルである。そして、当該ソレノイド型のコイルは、導線が保持部140の外周に巻き付くように配置される。ソレノイド型のコイルに電流が印可された場合、コイルにより囲まれる中央の空間、即ち保持部140の内部空間141に磁場が発生する。図1に示すように、スティック型基材150が保持部140に保持された状態では、サセプタ161は、コイルにより囲まれることとなる。そのため、電磁誘導源162から発生した変動磁場は、サセプタ161に侵入し、サセプタ161を誘導加熱する。 The electromagnetic induction source 162 causes the fluctuating magnetic field generated from the electromagnetic induction source 162 to enter the susceptor 161 which is arranged in thermal proximity to the aerosol source contained in the stick-shaped base material 150 held by the holding part 140 . placed in position. The susceptor 161 generates heat when a fluctuating magnetic field enters. The electromagnetic induction source 162 shown in FIG. 1 is a solenoid coil. The solenoid-type coil is arranged so that the conductive wire is wound around the outer periphery of the holding portion 140 . When a current is applied to the solenoid type coil, a magnetic field is generated in the central space surrounded by the coil, that is, the internal space 141 of the holding part 140 . As shown in FIG. 1, when the stick-shaped substrate 150 is held by the holding portion 140, the susceptor 161 is surrounded by the coil. Therefore, the fluctuating magnetic field generated by the electromagnetic induction source 162 enters the susceptor 161 and heats the susceptor 161 by induction.
 <3.技術的特徴>
 (1)加熱プロファイル
 吸引装置100は、加熱プロファイルに基づいて、電磁誘導源162への給電を制御する。加熱プロファイルとは、温度の目標値である目標温度の時系列推移が規定された情報である。吸引装置100は、加熱プロファイルにおいて規定された目標温度の時系列推移と同様に、サセプタ161の実際の温度(以下、実温度とも称する)が推移するように、電磁誘導源162への給電を制御する。制御対象の一例は、電圧である。これにより、加熱プロファイルにより計画された通りにエアロゾルが生成される。加熱プロファイルは、典型的には、スティック型基材150から生成されるエアロゾルをユーザが吸引した際にユーザが味わう香味が最適になるように設計される。よって、加熱プロファイルに基づいて電磁誘導源162の動作を制御することにより、ユーザが味わう香味を最適にすることができる。
<3. Technical features>
(1) Heating profile The suction device 100 controls power supply to the electromagnetic induction source 162 based on the heating profile. A heating profile is information that defines a time-series transition of a target temperature, which is a target value of temperature. The suction device 100 controls power supply to the electromagnetic induction source 162 so that the actual temperature of the susceptor 161 (hereinafter also referred to as the actual temperature) changes in the same manner as the target temperature specified in the heating profile changes over time. do. An example of a controlled object is voltage. This produces an aerosol as planned by the heating profile. The heating profile is typically designed to optimize the flavor experienced by the user when the user inhales the aerosol produced from the stick-shaped substrate 150 . Therefore, by controlling the operation of the electromagnetic induction source 162 based on the heating profile, the flavor experienced by the user can be optimized.
 加熱プロファイルは、加熱を開始してからの経過時間と、当該経過時間において到達するべき目標温度と、の組み合わせを、ひとつ以上含む。そして、制御部116は、現在の加熱を開始してからの経過時間に対応する加熱プロファイルにおける目標温度と、現在の実温度と、の乖離に基づいて、サセプタ161の温度を制御する。サセプタ161の温度制御は、例えば公知のフィードバック制御によって実現できる。フィードバック制御では、制御部116は、実温度と目標温度との差分等に基づいて、電磁誘導源162へ供給する電力を制御すればよい。フィードバック制御は、例えばPID制御(Proportional-Integral-Differential Controller)であってよい。若しくは、制御部116は、単純なON-OFF制御を行ってもよい。例えば、制御部116は、実温度が目標温度に達するまで電磁誘導源162への給電を実行し、実温度が目標温度に達した場合に電磁誘導源162への給電を中断してもよい。 A heating profile includes one or more combinations of the elapsed time from the start of heating and the target temperature to be reached in that elapsed time. Then, the control unit 116 controls the temperature of the susceptor 161 based on the difference between the target temperature in the heating profile corresponding to the elapsed time from the start of the current heating and the current actual temperature. Temperature control of the susceptor 161 can be realized, for example, by known feedback control. In feedback control, the controller 116 may control the power supplied to the electromagnetic induction source 162 based on the difference between the actual temperature and the target temperature. Feedback control may be, for example, PID control (Proportional-Integral-Differential Controller). Alternatively, control unit 116 may perform simple ON-OFF control. For example, the control unit 116 may supply power to the electromagnetic induction source 162 until the actual temperature reaches the target temperature, and interrupt power supply to the electromagnetic induction source 162 when the actual temperature reaches the target temperature.
 スティック型基材150を用いてエアロゾルを生成する処理が開始してから終了するまでの時間区間、より詳しくは、電磁誘導源162が加熱プロファイルに基づいて動作する時間区間を、以下では加熱セッションとも称する。加熱セッションの始期は、加熱プロファイルに基づく加熱が開始されるタイミングである。加熱セッションの終期は、十分な量のエアロゾルが生成されなくなったタイミングである。加熱セッションは、前半の予備加熱期間、及び後半のパフ可能期間から成る。パフ可能期間とは、十分な量のエアロゾルが発生すると想定される期間である。予備加熱期間とは、加熱が開始されてからパフ可能期間が開始されるまでの期間である。予備加熱期間において行われる加熱は、予備加熱とも称される。 The time interval from the start to the end of the process of generating an aerosol using the stick-shaped substrate 150, more specifically, the time interval during which the electromagnetic induction source 162 operates based on the heating profile, is also referred to as a heating session below. called. The beginning of the heating session is the timing at which heating based on the heating profile is started. The end of the heating session is when a sufficient amount of aerosol is no longer produced. A heating session consists of a first half preheating period and a second half puffable period. The puffable period is the period during which a sufficient amount of aerosol is assumed to be generated. The preheating period is the period from the start of heating to the start of the puffable period. Heating performed in the preheating period is also referred to as preheating.
 加熱プロファイルの一例を、下記の表1に示す。 An example of a heating profile is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 制御部116が表1に示した加熱プロファイルに従って電磁誘導源162への給電を制御した場合の、サセプタ161の実温度の時系列推移について、図2を参照しながら説明する。図2は、表1に示した加熱プロファイルに基づき誘導加熱されたサセプタ161の実温度の時系列推移の一例を示すグラフである。本グラフの横軸は、時間(秒)である。本グラフの縦軸は、サセプタ161の温度である。本グラフにおける線21は、サセプタ161の実温度の時系列推移を示している。また、本グラフにおけるポイント22(22A~22F)は、加熱プロファイルにおいて規定された目標温度を示している。図2に示すように、サセプタ161の実温度は、加熱プロファイルにおいて規定された目標温度の時系列推移と同様に推移している。 The time series transition of the actual temperature of the susceptor 161 when the control unit 116 controls the power supply to the electromagnetic induction source 162 according to the heating profile shown in Table 1 will be described with reference to FIG. FIG. 2 is a graph showing an example of time-series transition of the actual temperature of the susceptor 161 induction-heated based on the heating profile shown in Table 1. In FIG. The horizontal axis of this graph is time (seconds). The vertical axis of this graph is the temperature of the susceptor 161 . A line 21 in this graph indicates the time series transition of the actual temperature of the susceptor 161 . Also, points 22 (22A to 22F) in this graph indicate target temperatures defined in the heating profile. As shown in FIG. 2, the actual temperature of the susceptor 161 transitions in the same manner as the target temperature defined in the heating profile.
 表1に示したように、加熱プロファイルは、最初に初期昇温区間を含む。初期昇温区間とは、加熱プロファイルの最初に含まれる時間区間であって、終期に設定された目標温度が、初期温度よりも高い区間である。初期温度とは、加熱開始前のサセプタ161の温度として想定される温度である。初期温度の一例は、0℃等の任意の温度である。初期温度の他の一例は、気温に対応する温度である。図2に示すように、初期昇温区間に設定された目標温度に従い、サセプタ161の実温度は、加熱開始から25秒後に295℃に達し、加熱開始から35秒後まで295℃に維持されている。これにより、スティック型基材150の温度が十分な量のエアロゾルが発生する温度に達することが想定される。加熱開始後すぐに295℃まで一気に昇温されることで、予備加熱を早期に終え、パフ可能期間を早期に開始させることが可能となる。なお、図2では、初期昇温区間と予備加熱期間とが一致する例が示されているが、相違していてもよい。 As shown in Table 1, the heating profile first includes an initial heating section. The initial temperature rising section is a time section included at the beginning of the heating profile, and is a section in which the target temperature set at the end is higher than the initial temperature. The initial temperature is the assumed temperature of the susceptor 161 before starting heating. An example of an initial temperature is any temperature, such as 0°C. Another example of the initial temperature is the temperature corresponding to the air temperature. As shown in FIG. 2, the actual temperature of the susceptor 161 reaches 295° C. 25 seconds after the start of heating and is maintained at 295° C. until 35 seconds after the start of heating, according to the target temperature set in the initial temperature rising section. there is As a result, it is assumed that the temperature of the stick-type substrate 150 reaches a temperature at which a sufficient amount of aerosol is generated. By rapidly raising the temperature to 295° C. immediately after the start of heating, it is possible to finish preheating early and start the puffable period early. Although FIG. 2 shows an example in which the initial heating period and the preheating period match, they may be different.
 表1に示したように、加熱プロファイルは、次に途中降温区間を含む。途中降温区間とは、初期昇温区間の後の時間区間であって、終期に設定された目標温度が、初期昇温区間の終期に設定された目標温度よりも低い時間区間である。図2に示すように、途中降温区間に設定された目標温度に従い、サセプタ161の実温度は、加熱開始から35秒後から45秒後にかけて、295℃から230℃に降下している。かかる区間において、電磁誘導源162への給電が停止されてもよい。その場合であっても、サセプタ161及びスティック型基材150の余熱により、十分な量のエアロゾルが生成される。サセプタ161を高温のまま維持すると、スティック型基材150に含まれるエアロゾル源が急速に消費され、ユーザが味わう香味が強すぎてしまう等の不都合が生じ得る。その点、途中降温区間を途中に設けることで、そのような不都合を回避して、ユーザのパフ体験の質を向上させることが可能である。 As shown in Table 1, the heating profile then includes an intermediate cooling interval. The midway temperature decrease interval is a time interval after the initial temperature increase interval in which the target temperature set at the end is lower than the target temperature set at the end of the initial temperature increase interval. As shown in FIG. 2, the actual temperature of the susceptor 161 drops from 295.degree. C. to 230.degree. In this section, power supply to the electromagnetic induction source 162 may be stopped. Even in that case, the residual heat of the susceptor 161 and the stick-shaped substrate 150 generates a sufficient amount of aerosol. If the susceptor 161 is kept at a high temperature, the aerosol source contained in the stick-shaped substrate 150 is rapidly consumed, which may cause inconveniences such as too strong flavor tasted by the user. In this regard, by providing an intermediate temperature drop section in the middle, it is possible to avoid such inconvenience and improve the quality of the user's puff experience.
 表1に示したように、加熱プロファイルは、次に再昇温区間を含む。再昇温区間とは、途中降温区間の後の時間区間であって、終期に設定された目標温度が、途中降温区間の終期に設定された目標温度よりも高い時間区間である。図2に示すように、再昇温区間に設定された目標温度に従い、サセプタ161の実温度は、加熱開始から45秒後から355秒後にかけて、230℃から260℃に段階的に上昇している。サセプタ161を降温させ続けると、スティック型基材150も降温するので、エアロゾルの生成量が低下し、ユーザが味わう香味が劣化してしまい得る。その点、降温させた後に再度昇温させることで、加熱セッションの後半においてもユーザが味わう香味の劣化を防止することが可能となる。 As shown in Table 1, the heating profile then includes a reheating interval. The re-heating interval is a time interval after the intermediate temperature-lowering interval, in which the target temperature set at the end is higher than the target temperature set at the end of the intermediate temperature-lowering interval. As shown in FIG. 2, the actual temperature of the susceptor 161 gradually increases from 230° C. to 260° C. from 45 seconds to 355 seconds after the start of heating according to the target temperature set in the reheating section. there is If the temperature of the susceptor 161 continues to drop, the temperature of the stick-shaped base material 150 also drops, so the amount of aerosol generated decreases and the flavor tasted by the user may deteriorate. In this regard, by raising the temperature again after lowering the temperature, it is possible to prevent deterioration of the flavor that the user enjoys even in the second half of the heating session.
 表1に示したように、加熱プロファイルは、最後に加熱終了区間を含む。加熱終了区間とは、再昇温区間の後の時間区間であって、加熱しない時間区間である。目標温度は、設定されていなくてもよい。図2に示すように、サセプタ161の実温度は、加熱開始から355秒後以降、降下している。加熱開始から355秒後に、電磁誘導源162への給電が終了してもよい。その場合であっても、しばらくの間、サセプタ161及びスティック型基材150の余熱により、十分な量のエアロゾルが生成される。図2に示した例では、加熱開始から365秒後に、パフ可能期間、即ち加熱セッションは終了する。 As shown in Table 1, the heating profile includes a heating end section at the end. The heating end section is a time section after the reheating section and is a time section in which heating is not performed. The target temperature does not have to be set. As shown in FIG. 2, the actual temperature of the susceptor 161 drops after 355 seconds from the start of heating. Power supply to the electromagnetic induction source 162 may be terminated 355 seconds after the start of heating. Even in that case, the remaining heat of the susceptor 161 and the stick-shaped substrate 150 will generate a sufficient amount of aerosol for a while. In the example shown in FIG. 2, 365 seconds after the start of heating, the puffable period, ie the heating session, ends.
 パフ可能期間が開始するタイミング及び終了するタイミングが、ユーザに通知されてもよい。さらに、パフ可能期間が終了するよりも所定時間前のタイミング(例えば、再昇温区間が終了するタイミング)が、ユーザに通知されてもよい。その場合、ユーザは、かかる通知を参考に、パフ可能期間においてパフを行うことができる。 The timing at which the puffable period starts and ends may be notified to the user. Furthermore, the user may be notified of the timing (for example, the timing of the end of the reheating interval) that is a predetermined time before the end of the puffable period. In that case, the user can perform puffing during the puffable period by referring to such notification.
 (2)サセプタ161の温度推定を伴う給電制御
 図3は、本実施形態に係る吸引装置100内部の物理的な構成の一例を概略的に示す図である。図3に示した例では、電源部111は電池として構成され、制御部116は回路基板として構成され、電磁誘導源162はソレノイド型コイルとして構成され、保持部140は円筒状のチャンバとして構成されている。また、保持部140には空気流路170が接続されている。保持部140の開口142、及び空気流路170の空気取込孔171は、吸引装置100の再外殻を構成するハウジング101に設けられており、開口142及び空気取込孔171を介して空気の取り込み及び排出が行われる。空気流路170は、空気取込孔171から取り込んだ空気を、保持部140の底部143に設けられた図示しない孔を介して、保持部140の内部空間141に供給する機能を有する。保持部140に保持されたスティック型基材150の吸口部152をユーザが咥えて吸引すると、空気流路170から内部空間141に供給された空気が、スティック型基材150から発生したエアロゾルと共に、ユーザの口内に到達する。
(2) Power Supply Control with Estimation of Temperature of Susceptor 161 FIG. 3 is a diagram schematically showing an example of the physical configuration inside the suction device 100 according to the present embodiment. In the example shown in FIG. 3, the power supply unit 111 is configured as a battery, the control unit 116 is configured as a circuit board, the electromagnetic induction source 162 is configured as a solenoid coil, and the holding unit 140 is configured as a cylindrical chamber. ing. An air flow path 170 is connected to the holding portion 140 . The opening 142 of the holding portion 140 and the air intake hole 171 of the air flow path 170 are provided in the housing 101 that constitutes the outer shell of the suction device 100 . are taken in and out. Air flow path 170 has a function of supplying air taken in from air intake hole 171 to internal space 141 of holding portion 140 via a hole (not shown) provided in bottom portion 143 of holding portion 140 . When the user sucks the mouthpiece 152 of the stick-shaped base material 150 held by the holding part 140, the air supplied from the air flow path 170 to the internal space 141, together with the aerosol generated from the stick-shaped base material 150, Reach inside the user's mouth.
 吸引装置100は、さらに応答部119を含む。応答部119は、変動磁場が侵入した場合に発熱する。即ち、応答部119は、誘導加熱される被加熱物の一例である。応答部119は、電磁誘導源162から発生した変動磁場が侵入する位置に配置される。図3に示した例では、応答部119は、電磁誘導源162と保持部140との間に配置されている。ソレノイド型のコイルとして構成された電磁誘導源162に電流が印可された場合、コイルにより囲まれる、応答部119を含む空間に磁場が発生する。これにより、応答部119に変動磁場が侵入するので、応答部119は発熱することとなる。 The suction device 100 further includes a response section 119 . The response unit 119 generates heat when a fluctuating magnetic field enters. That is, the response unit 119 is an example of an object to be heated by induction heating. The response unit 119 is arranged at a position where the fluctuating magnetic field generated by the electromagnetic induction source 162 enters. In the example shown in FIG. 3 , the response section 119 is arranged between the electromagnetic induction source 162 and the holding section 140 . When a current is applied to the electromagnetic induction source 162 configured as a solenoid type coil, a magnetic field is generated in the space surrounded by the coil and including the response section 119 . As a result, the fluctuating magnetic field enters the response section 119, and the response section 119 generates heat.
 吸引装置100は、センサ部112として、応答部119の温度を検出する温度センサ118を含む。温度センサ118は、一例としてサーミスタであってもよい。図3に示した例では、温度センサ118は、応答部119に接触するよう配置され、応答部119の温度を検出する。 The suction device 100 includes a temperature sensor 118 that detects the temperature of the response section 119 as the sensor section 112 . Temperature sensor 118 may be a thermistor, as an example. In the example shown in FIG. 3, the temperature sensor 118 is placed in contact with the responsive section 119 to detect the temperature of the responsive section 119 .
 なお、温度センサ118は、スティック型基材150の挿入方向において、保持部140に保持されたスティック型基材150に含有されるサセプタ161の位置との重複がより少ない位置に配置されることが望ましい。例えば、スティック型基材150の挿入方向の先端側(即ち、底部143側)におけるサセプタ161の分布が少ない場合、図3に示すように、温度センサ118は、底部143側に配置されることが望ましい。かかる配置によれば、温度センサ118への磁場の侵入に起因する、サセプタ161の加熱への悪影響を、軽減することが可能となる。応答部119に関しても同様である。また、同様の理由で、温度センサ118は、電磁誘導源162であるコイルの外側に配置されてもよい。 Note that the temperature sensor 118 may be arranged at a position that overlaps less with the position of the susceptor 161 contained in the stick-shaped substrate 150 held by the holding portion 140 in the insertion direction of the stick-shaped substrate 150 . desirable. For example, when the distribution of the susceptors 161 is small on the tip side (that is, on the bottom portion 143 side) of the stick-type substrate 150 in the insertion direction, the temperature sensor 118 may be arranged on the bottom portion 143 side as shown in FIG. desirable. Such an arrangement makes it possible to reduce the adverse effect on the heating of the susceptor 161 caused by the entry of the magnetic field into the temperature sensor 118 . The same applies to the response section 119 as well. Also, for the same reason, the temperature sensor 118 may be placed outside the coil that is the electromagnetic induction source 162 .
 応答部119とサセプタ161とは、電磁誘導源162から発生した変動磁場が同様に侵入する位置に配置されている。そのため、応答部119の温度とサセプタ161の温度とには、一次関数等の関数により表現される一定の対応関係が保たれると考えられる。そこで、制御部116は、温度センサ118により検出された応答部119の温度に基づいて、電磁誘導源162への給電を制御する。例えば、応答部119とサセプタ161とは同一の構成であってもよく、その場合には応答部119の温度とサセプタ161の温度とは同一であると考えられる。その場合、制御部116は、応答部119の温度をサセプタ161の温度に代用して、加熱プロファイルに基づいて電磁誘導源162への給電を制御する。かかる構成によれば、サセプタ161の温度を直接的に検出することが困難な誘導加熱式の吸引装置100においても、好適なエアロゾルを生成することが可能となる。 The response unit 119 and the susceptor 161 are arranged at positions where the fluctuating magnetic field generated from the electromagnetic induction source 162 similarly penetrates. Therefore, it is considered that the temperature of the response section 119 and the temperature of the susceptor 161 maintain a certain correspondence expressed by a function such as a linear function. Therefore, control unit 116 controls power supply to electromagnetic induction source 162 based on the temperature of response unit 119 detected by temperature sensor 118 . For example, the response section 119 and the susceptor 161 may have the same configuration, in which case the temperature of the response section 119 and the temperature of the susceptor 161 are considered to be the same. In that case, the control unit 116 substitutes the temperature of the response unit 119 for the temperature of the susceptor 161 and controls power supply to the electromagnetic induction source 162 based on the heating profile. According to such a configuration, it is possible to generate suitable aerosol even in the induction heating type suction device 100 in which it is difficult to directly detect the temperature of the susceptor 161 .
 応答部119の温度に応じて電磁誘導源162への給電を制御することは、電磁誘導源162への給電量を調整することを含む。かかる構成によれば、サセプタ161の発熱量を適切に制御することが可能となる。さらに、応答部119の温度に応じて電磁誘導源162への給電を制御することは、電磁誘導源162への給電を停止することを含んでいてもよい。かかる構成によれば、サセプタ161又は応答部119の過加熱を防止し、ユーザの安全を確保することが可能となる。 Controlling power supply to the electromagnetic induction source 162 according to the temperature of the response unit 119 includes adjusting the amount of power supply to the electromagnetic induction source 162 . With such a configuration, it is possible to appropriately control the amount of heat generated by the susceptor 161 . Furthermore, controlling power supply to electromagnetic induction source 162 according to the temperature of response unit 119 may include stopping power supply to electromagnetic induction source 162 . With such a configuration, it is possible to prevent overheating of the susceptor 161 or the response section 119 and ensure the safety of the user.
 制御部116は、応答部119の温度に基づいてサセプタ161の温度を推定し、推定したサセプタ161の温度に基づいて電磁誘導源162への給電を制御してもよい。例えば、応答部119とサセプタ161とで構成が異なる場合、応答部119の温度とサセプタ161の温度とは異なり得る。その場合に、制御部116は、応答部119の温度に基づいてサセプタ161の温度を推定し、推定されたサセプタ161の温度と加熱プロファイルとに基づいて電磁誘導源162への給電を制御する。かかる構成によれば、応答部119の温度とサセプタ161の温度とが異なる場合であっても、好適なエアロゾルを生成することが可能となる。 The control unit 116 may estimate the temperature of the susceptor 161 based on the temperature of the response unit 119 and control power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 . For example, if the response unit 119 and the susceptor 161 have different configurations, the temperature of the response unit 119 and the temperature of the susceptor 161 may differ. In this case, the control unit 116 estimates the temperature of the susceptor 161 based on the temperature of the response unit 119, and controls power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 and the heating profile. With such a configuration, even if the temperature of the response section 119 and the temperature of the susceptor 161 are different, it is possible to generate a suitable aerosol.
 サセプタ161のキュリー点と応答部119のキュリー点とは、実質的に同一であってもよい。一例として、サセプタ161と応答部119とは、同一素材により構成されていてもよい。かかる構成によれば、サセプタ161及び応答部119において、同一温度で磁気相転移が発生するので、磁気相転移に伴う昇温速度の鈍化が同じタイミングで発生することとなる。従って、磁気相転移に伴う昇温速度の鈍化が発生するタイミングがずれる場合と比較して、サセプタ161の温度推定精度の低下を軽減することが可能となる。 The Curie point of the susceptor 161 and the Curie point of the response unit 119 may be substantially the same. As an example, the susceptor 161 and the response section 119 may be made of the same material. According to such a configuration, since the magnetic phase transition occurs at the same temperature in the susceptor 161 and the response section 119, the slowdown of the temperature rise rate accompanying the magnetic phase transition occurs at the same timing. Therefore, it is possible to reduce the decrease in the accuracy of estimating the temperature of the susceptor 161 as compared with the case where the timing of the slowdown of the temperature rise rate due to the magnetic phase transition is shifted.
 応答部119のキュリー点は、電磁誘導源162による誘導加熱により応答部119が到達可能な最高温度よりも高くてもよい。電磁誘導源162による誘導加熱により応答部119が到達可能な最高温度は、電源部111からの出力電圧及び応答部119の特性等の、吸引装置100の仕様により求められる。かかる構成によれば、吸引装置100が通常動作する範囲内において、応答部119に磁気相転移が発生しない。そのため、応答部119の磁気相転移に伴う応答部119の昇温速度の鈍化に起因する、サセプタ161の温度推定精度の低下を回避することが可能となる。 The Curie point of the response section 119 may be higher than the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 . The maximum temperature that the response section 119 can reach due to induction heating by the electromagnetic induction source 162 is determined according to the specifications of the suction device 100 such as the output voltage from the power supply section 111 and the characteristics of the response section 119 . According to such a configuration, magnetic phase transition does not occur in the response section 119 within the range in which the suction device 100 normally operates. Therefore, it is possible to avoid deterioration in the temperature estimation accuracy of the susceptor 161 due to the slowdown of the temperature rise rate of the response section 119 due to the magnetic phase transition of the response section 119 .
 応答部119は、電磁誘導源162による誘導加熱により応答部119が到達可能な温度の範囲内において常磁性である素材により構成されてもよい。そのような素材の一例として、アルミニウム等の常磁性体が挙げられる。電磁誘導源162による誘導加熱により応答部119が到達可能な温度の範囲とは、電磁誘導源162による誘導加熱により応答部119が到達可能な最高温度以下の範囲である。かかる構成によれば、吸引装置100が通常動作する範囲内において、応答部119に磁気相転移が発生しない。そのため、応答部119の磁気相転移に伴う応答部119の昇温速度の鈍化に起因する、サセプタ161の温度推定精度の低下を回避することが可能となる。 The response section 119 may be made of a material that is paramagnetic within the temperature range that the response section 119 can reach by induction heating by the electromagnetic induction source 162 . An example of such a material is a paramagnetic material such as aluminum. The temperature range that the response section 119 can reach by induction heating by the electromagnetic induction source 162 is a range below the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 . According to such a configuration, magnetic phase transition does not occur in the response section 119 within the range in which the suction device 100 normally operates. Therefore, it is possible to avoid deterioration in the temperature estimation accuracy of the susceptor 161 due to the slowdown of the temperature rise rate of the response section 119 due to the magnetic phase transition of the response section 119 .
 サセプタ161のキュリー点は、電磁誘導源162による誘導加熱によりサセプタ161が到達可能な最高温度よりも低くてもよい。その場合、制御部116は、サセプタ161のキュリー点の前後で異なる温度推定アルゴリズムを使用して、サセプタ161の温度を推定する。電磁誘導源162による誘導加熱によりサセプタ161が到達可能な最高温度は、電源部111からの出力電圧及びサセプタ161の特性等の、吸引装置100及びスティック型基材150の仕様により求められる。かかる構成によれば、サセプタ161の磁気相転移に伴うサセプタ161の昇温速度の鈍化に起因する、サセプタ161の温度推定精度の低下を軽減することが可能となる。この点について、図4を参照しながら詳しく説明する。 The Curie point of the susceptor 161 may be lower than the maximum temperature that the susceptor 161 can reach by induction heating by the electromagnetic induction source 162 . In that case, the control unit 116 estimates the temperature of the susceptor 161 using different temperature estimation algorithms before and after the Curie point of the susceptor 161 . The maximum temperature that the susceptor 161 can reach by induction heating by the electromagnetic induction source 162 is determined according to the specifications of the suction device 100 and the stick-shaped substrate 150, such as the output voltage from the power supply section 111 and the characteristics of the susceptor 161. According to such a configuration, it is possible to reduce the decrease in the temperature estimation accuracy of the susceptor 161 caused by the slowdown of the temperature rise rate of the susceptor 161 due to the magnetic phase transition of the susceptor 161 . This point will be described in detail with reference to FIG.
 図4は、本実施形態に係るサセプタ161の温度推定アルゴリズムの一例を説明するためのグラフである。本グラフの横軸は応答部119の温度であり、縦軸はサセプタ161の温度である。T1MAXは、電磁誘導源162による誘導加熱により応答部119が到達可能な最高温度である。T2MAXは、電磁誘導源162による誘導加熱によりサセプタ161が到達可能な最高温度である。T2は、サセプタ161のキュリー点である。T1C´は、サセプタ161の温度がキュリー点T2に達したタイミングにおける応答部119の温度である。サセプタ161の温度がキュリー点T2よりも低い場合、応答部119の温度とサセプタ161の温度との間には比R1の関係が成立している。そのため、制御部116は、応答部119の温度が温度T1C´よりも低い場合、応答部119の温度及び比R1に基づいて、サセプタ161の温度を推定する。他方、サセプタ161の温度がキュリー点T2よりも高い場合、磁気相転移に伴いサセプタ161の昇温速度が鈍化するため、応答部119の温度とサセプタ161の温度との間には、比R1と異なる比R2の関係が成立している。そのため、制御部116は、応答部119の温度が温度T1C´よりも高い場合、応答部119の温度及び比R2に基づいて、サセプタ161の温度を推定する。このように、サセプタ161に磁気相転移が発生する前後で異なる比R1及び比R2を使用することで、サセプタ161の温度を精度よく推定することが可能となる。 FIG. 4 is a graph for explaining an example of a temperature estimation algorithm for the susceptor 161 according to this embodiment. The horizontal axis of this graph is the temperature of the response section 119 and the vertical axis is the temperature of the susceptor 161 . T1 MAX is the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 . T2 MAX is the maximum temperature that the susceptor 161 can reach by induction heating by the electromagnetic induction source 162 . T2C is the Curie point of the susceptor 161; T1C' is the temperature of the response section 119 at the timing when the temperature of the susceptor 161 reaches the Curie point T2C . When the temperature of the susceptor 161 is lower than the Curie point T2C , the temperature of the response section 119 and the temperature of the susceptor 161 have a ratio R1. Therefore, when the temperature of the response section 119 is lower than the temperature T1C ', the control section 116 estimates the temperature of the susceptor 161 based on the temperature of the response section 119 and the ratio R1. On the other hand, when the temperature of the susceptor 161 is higher than the Curie point T2C , the temperature rise rate of the susceptor 161 slows down due to the magnetic phase transition. A relationship of a different ratio R2 is established. Therefore, when the temperature of the response section 119 is higher than the temperature T1C ', the control section 116 estimates the temperature of the susceptor 161 based on the temperature of the response section 119 and the ratio R2. By using different ratios R1 and R2 before and after the magnetic phase transition occurs in the susceptor 161, the temperature of the susceptor 161 can be accurately estimated.
 (3)処理の流れ
 図5は、本実施形態に係る吸引装置100により実行される処理の流れの一例を示すフローチャートである。
(3) Flow of Processing FIG. 5 is a flowchart showing an example of the flow of processing executed by the suction device 100 according to this embodiment.
 図5に示すように、まず、センサ部112は、加熱開始を指示するユーザ操作を受け付ける(ステップS102)。加熱開始を指示する操作の一例は、吸引装置100に設けられたボタンの押下である。 As shown in FIG. 5, first, the sensor unit 112 receives a user's operation to instruct the start of heating (step S102). An example of an operation for instructing the start of heating is pressing a button provided on the suction device 100 .
 次いで、制御部116は、温度センサ118により検出された応答部119の温度に基づいて、サセプタ161の温度を推定する(ステップS104)。その際、制御部116は、図4を参照しながら上記説明したように、応答部119の温度がサセプタ161のキュリー点T2に対応する温度T1C´よりも高いか低いかによって、異なる温度推定アルゴリズムを用いてサセプタ161の温度を推定する。 Next, the control unit 116 estimates the temperature of the susceptor 161 based on the temperature of the response unit 119 detected by the temperature sensor 118 (step S104). At that time, as described above with reference to FIG. An estimation algorithm is used to estimate the temperature of the susceptor 161 .
 次に、制御部116は、推定したサセプタ161の温度、及び加熱プロファイルに基づいて、電磁誘導源162への給電を制御する(ステップS106)。例えば、制御部116は、加熱プロファイルに規定された目標温度の時系列推移と同様に、推定したサセプタ161の温度が推移するように、電磁誘導源162への給電を制御する。 Next, the control unit 116 controls power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 and the heating profile (step S106). For example, the control unit 116 controls power supply to the electromagnetic induction source 162 so that the estimated temperature of the susceptor 161 changes in the same way as the target temperature specified in the heating profile changes over time.
 <4.変形例>
 (1)第1の変形例
 図6は、第1の変形例に係る吸引装置100内部の物理的な構成の一例を概略的に示す図である。図6に示すように、応答部119は、保持部140の外周の少なくとも一部を覆う筒状部材であってもよい。かかる構成によっても、図3を参照しながら上記説明した例と同様に、応答部119の温度に基づいて電磁誘導源162への給電を制御することで、好適なエアロゾルの生成が可能となる。
<4. Variation>
(1) First Modification FIG. 6 is a diagram schematically showing an example of a physical configuration inside a suction device 100 according to a first modification. As shown in FIG. 6 , the response portion 119 may be a tubular member that covers at least a portion of the outer circumference of the holding portion 140 . With such a configuration, as in the example described above with reference to FIG. 3, by controlling the power supply to the electromagnetic induction source 162 based on the temperature of the response section 119, suitable aerosol can be generated.
 さらには、本変形例に係る応答部119は、保持部140に保持されたスティック型基材150を加熱する外部熱源として機能してもよい。即ち、本変形例に係る吸引装置100は、サセプタ161と応答部119とを誘導加熱することにより、スティック型基材150を内部と外周とから加熱してもよい。かかる構成によれば、エアロゾルの効率的な生成が可能となる。 Furthermore, the response unit 119 according to this modification may function as an external heat source that heats the stick-shaped base material 150 held by the holding unit 140 . That is, the suction device 100 according to this modified example may heat the stick-shaped substrate 150 from the inside and the outer periphery by induction heating the susceptor 161 and the response section 119 . Such a configuration enables efficient generation of aerosol.
 制御部116は、推定したサセプタ161の温度と、温度センサ118により検出された応答部119の温度とに基づいて、電磁誘導源162への給電を制御してもよい。一例として、制御部116は、サセプタ161の温度及び/又は応答部119の温度が、加熱プロファイルに規定された目標温度の時系列推移と同様に推移するように、電磁誘導源162への給電を制御する。なお、サセプタ161の目標温度の時系列推移を規定した第1の加熱プロファイルと、応答部119の目標温度の時系列推移を規定した第2の加熱プロファイルと、があってもよい。その場合、制御部116は、第1の加熱プロファイルに規定された目標温度の時系列推移と同様にサセプタ161の温度が推移するように、且つ、第2の加熱プロファイルに規定された目標温度の時系列推移と同様に応答部119の温度が推移するように、電磁誘導源162への給電を制御する。かかる構成によれば、2つの熱源を使用した効率的且つ好適なエアロゾルの生成が可能となる。 The control unit 116 may control power supply to the electromagnetic induction source 162 based on the estimated temperature of the susceptor 161 and the temperature of the response unit 119 detected by the temperature sensor 118 . As an example, the control unit 116 controls power supply to the electromagnetic induction source 162 so that the temperature of the susceptor 161 and/or the temperature of the response unit 119 changes in the same manner as the target temperature specified in the heating profile. Control. It should be noted that there may be a first heating profile that defines the time-series transition of the target temperature of the susceptor 161 and a second heating profile that defines the time-series transition of the target temperature of the response section 119 . In that case, the control unit 116 controls the temperature of the susceptor 161 so that the temperature of the susceptor 161 transitions in the same manner as the target temperature defined in the first heating profile changes over time, and the target temperature defined in the second heating profile. Power supply to the electromagnetic induction source 162 is controlled so that the temperature of the response unit 119 changes in the same manner as the time-series transition. Such a configuration enables efficient and suitable aerosol generation using two heat sources.
 (2)第2の変形例
 応答部119は、保持部140の少なくとも一部であってもよい。例えば、保持部140の少なくとも一部が、変動磁場の侵入によって発熱する被加熱物として構成されてもよい。その場合も、第1の変形例と同様の作用及び効果が奏される。
(2) Second Modification The response section 119 may be at least part of the holding section 140 . For example, at least part of the holding part 140 may be configured as a heated object that generates heat when a fluctuating magnetic field penetrates. Also in this case, the same actions and effects as in the first modified example are achieved.
 (3)第3の変形例
 例えば、吸引装置100は、磁場を遮断する磁気シールドをさらに備えていてもよい。磁気シールドは、吸引装置100の再外殻を構成するハウジング101と電磁誘導源162との間に配置される。かかる構成により、電磁誘導源162から発生した磁場が、ハウジング101及び吸引装置100付近にある他の装置に及ぶことを防止しつつ、サセプタ161に侵入することを妨げないようにすることが可能となる。さらに言えば、磁気シールドは、制御部116等の電子部品と電磁誘導源162との間に配置されることが望ましい。変動磁場が電子部品に与える悪影響を防止するためである。
(3) Third Modification For example, the suction device 100 may further include a magnetic shield that blocks a magnetic field. A magnetic shield is placed between the housing 101 that constitutes the outer shell of the suction device 100 and the electromagnetic induction source 162 . With such a configuration, it is possible to prevent the magnetic field generated by the electromagnetic induction source 162 from reaching the housing 101 and other devices in the vicinity of the suction device 100, while preventing the magnetic field from entering the susceptor 161. Become. Furthermore, the magnetic shield is desirably placed between the electronic components such as the controller 116 and the electromagnetic induction source 162 . This is to prevent adverse effects of the fluctuating magnetic field on electronic components.
 磁気シールドは、磁気シールドの内側(即ち、電磁誘導源162側)から外側(即ち、ハウジング101側)に磁場が通過することを制限する機能を有する。磁気シールドは、磁場を遮断する機能を有する任意の素材により構成される。さらには、磁気シールドは、高い透磁率を有する素材により構成されることが好ましい。そのような素材の一例としては、ニューメタル及びパーマロイ等が挙げられる。例えば、磁気シールドは、膜状に構成され、電磁誘導源162に外側から巻き付くように配置されてもよい。かかる構成により、電磁誘導源162が発生した磁場が拡散する前に遮断することが可能となる。 The magnetic shield has the function of restricting the passage of a magnetic field from the inside of the magnetic shield (that is, the electromagnetic induction source 162 side) to the outside (that is, the housing 101 side). A magnetic shield is composed of any material that has the function of blocking a magnetic field. Furthermore, the magnetic shield is preferably made of a material with high magnetic permeability. Examples of such materials include nu-metals and permalloys. For example, the magnetic shield may be configured in a film shape and arranged to wrap around the electromagnetic induction source 162 from the outside. Such a configuration makes it possible to block the magnetic field generated by the electromagnetic induction source 162 before it spreads.
 吸引装置100が磁気シールドを備える場合、応答部119は磁気シールドの一部であってもよい。換言すると、応答部119が、磁気シールドとして機能してもよい。かかる構成によれば、変動磁場による悪影響の軽減と、好適なエアロゾルの生成とを両立させることが可能となる。 When the suction device 100 includes a magnetic shield, the response section 119 may be part of the magnetic shield. In other words, the response section 119 may function as a magnetic shield. According to such a configuration, it is possible to achieve both reduction of adverse effects of the fluctuating magnetic field and generation of suitable aerosol.
 (4)第4の変形例
 図4に示した比R1及び比R2等のような、応答部119の温度とサセプタ161の温度との対応関係に基づく温度推定アルゴリズムは、標準環境において予め定められ、応答部119の温度に基づくサセプタ161の温度推定に利用される。
(4) Fourth Modification A temperature estimation algorithm based on the correspondence relationship between the temperature of the response section 119 and the temperature of the susceptor 161, such as the ratio R1 and the ratio R2 shown in FIG. , is used for estimating the temperature of the susceptor 161 based on the temperature of the response section 119 .
 標準環境とは、吸引装置100の標準的な動作環境である。吸引装置100の動作環境とは、温度、湿度及び圧力等の吸引装置100をとりまく環境、吸引装置100の動作履歴等の吸引装置100の状態、及び誘導加熱の対象となるスティック型基材150の状態を含む概念である。標準環境は、温度、湿度、圧力、吸引装置100の状態、及び誘導加熱の対象となるスティック型基材150の状態等の、吸引装置100の動作環境を示す複数のパラメータの各々に許容差を設けた、一組のパラメータによって定義される。 A standard environment is a standard operating environment of the suction device 100 . The operating environment of the suction device 100 includes the environment surrounding the suction device 100 such as temperature, humidity and pressure, the state of the suction device 100 such as the operation history of the suction device 100, and the stick-shaped base material 150 to be induction-heated. It is a concept that includes states. The standard environment includes tolerances for each of a plurality of parameters indicating the operating environment of the suction device 100, such as temperature, humidity, pressure, the state of the suction device 100, and the state of the stick-shaped substrate 150 to be induction-heated. defined by a set of parameters provided.
 標準環境においては、応答部119の温度に基づいて、サセプタ161の実温度を正確に推定可能である。しかしながら、吸引装置100の動作環境は、外乱要素の存在により、標準環境から乖離し得る。標準環境から乖離した動作環境においては、応答部119の温度に基づいて推定したサセプタ161の温度は、サセプタ161の実温度から乖離する。その結果、好適なエアロゾルの生成が困難になる。 In a standard environment, it is possible to accurately estimate the actual temperature of the susceptor 161 based on the temperature of the response section 119 . However, the operating environment of the suction device 100 may deviate from the standard environment due to the presence of disturbance elements. In an operating environment that deviates from the standard environment, the temperature of the susceptor 161 estimated based on the temperature of the response section 119 deviates from the actual temperature of the susceptor 161 . As a result, the production of suitable aerosols becomes difficult.
 そこで、本変形例に係る制御部116は、応答部119の温度に加え、外乱要素にさらに基づいて、電磁誘導源162への給電を制御する。例えば、制御部116は、応答部119の温度に加え、さらに外乱要素に基づいてサセプタ161の温度を推定し、加熱プロファイルに規定された目標温度の時系列推移と同様にサセプタ161の温度が推移するよう、電磁誘導源162への給電を制御する。かかる構成によれば、外乱要素が存在する場合であっても、好適なエアロゾルの生成を実現することが可能となる。 Therefore, the control unit 116 according to this modification controls the power supply to the electromagnetic induction source 162 based on the disturbance element in addition to the temperature of the response unit 119 . For example, the control unit 116 estimates the temperature of the susceptor 161 based on the temperature of the response unit 119 and the disturbance factor, and the temperature of the susceptor 161 changes in the same manner as the target temperature specified in the heating profile changes over time. The power supply to the electromagnetic induction source 162 is controlled so as to do so. According to such a configuration, it is possible to achieve suitable aerosol generation even when a disturbance element exists.
 以下、外乱要素と外乱要素に応じた給電制御について説明する。 The following describes the disturbance elements and power supply control according to the disturbance elements.
 -動作環境の温度
 外乱要素の一例は、吸引装置100の動作環境の温度である。吸引装置100の動作環境の温度の一例は、気温である。吸引装置100の動作環境の温度の他の一例は、吸引装置100内部の温度である。吸引装置100は、センサ部112として、吸引装置100の動作環境の温度を検出する環境温度センサを含む。そして、制御部116は、環境温度センサにより検出された吸引装置100の動作環境の温度に基づいて、電磁誘導源162への給電を制御する。詳しくは、制御部116は、応答部119の温度に基づいて推定されたサセプタ161の温度を、吸引装置100の動作環境の温度に基づいて補正し、補正後のサセプタ161の温度に基づいて電磁誘導源162への給電を制御する。一例として、制御部116は、吸引装置100の動作環境の温度が、標準環境の温度よりも高い場合に、サセプタ161の温度をより高く補正する。他方、制御部116は、吸引装置100の動作環境の温度が、標準環境の温度よりも低い場合に、サセプタ161の温度をより低く補正する。
- Temperature of operating environment An example of a disturbance factor is the temperature of the operating environment of the suction device 100 . An example of the temperature of the operating environment of the suction device 100 is air temperature. Another example of the temperature of the operating environment of the suction device 100 is the temperature inside the suction device 100 . The suction device 100 includes an environmental temperature sensor that detects the temperature of the operating environment of the suction device 100 as the sensor section 112 . Then, the control unit 116 controls power supply to the electromagnetic induction source 162 based on the temperature of the operating environment of the suction device 100 detected by the environmental temperature sensor. Specifically, the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the temperature of the operating environment of the suction device 100, and based on the temperature of the susceptor 161 after correction, Controls power supply to inductive source 162 . As an example, the control unit 116 corrects the temperature of the susceptor 161 to be higher when the temperature of the operating environment of the suction device 100 is higher than the temperature of the standard environment. On the other hand, the control unit 116 corrects the temperature of the susceptor 161 to be lower when the temperature of the operating environment of the suction device 100 is lower than the temperature of the standard environment.
 かかる構成によれば、吸引装置100の動作環境の温度に起因する、サセプタ161の温度の推定誤差を軽減することができる。これにより、好適なエアロゾルの生成を実現することが可能となる。 According to this configuration, it is possible to reduce an error in estimating the temperature of the susceptor 161 due to the temperature of the operating environment of the suction device 100. This makes it possible to achieve the generation of suitable aerosol.
 -動作履歴
 外乱要素の他の一例は、吸引装置100の動作履歴である。制御部116は、吸引装置100の動作履歴に基づいて、電磁誘導源162への給電を制御する。詳しくは、制御部116は、応答部119の温度に基づいて推定されたサセプタ161の温度を、吸引装置100の動作履歴に基づいて補正し、補正後のサセプタ161の温度に基づいて電磁誘導源162への給電を制御する。一例として、制御部116は、吸引装置100の実際の動作履歴と標準環境における動作履歴との乖離から、サセプタ161の実温度が想定より高くなることが予測される場合に、サセプタ161の温度をより高く補正する。他方、制御部116は、吸引装置100の実際の動作履歴と標準環境における動作履歴との乖離から、サセプタ161の実温度が想定より低くなることが予測される場合に、サセプタ161の温度をより低く補正する。
-Operating history Another example of the disturbance element is the operating history of the suction device 100 . The control unit 116 controls power supply to the electromagnetic induction source 162 based on the operation history of the suction device 100 . Specifically, the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the operation history of the suction device 100, and calculates the temperature of the electromagnetic induction source based on the corrected temperature of the susceptor 161. 162 is controlled. As an example, when the actual temperature of the susceptor 161 is predicted to be higher than expected due to the difference between the actual operation history of the suction device 100 and the operation history in the standard environment, the control unit 116 adjusts the temperature of the susceptor 161. Correct higher. On the other hand, when the actual temperature of the susceptor 161 is predicted to be lower than expected due to the difference between the actual operation history of the suction device 100 and the operation history in the standard environment, the control unit 116 increases the temperature of the susceptor 161. Correct low.
 かかる構成によれば、吸引装置100の動作履歴に起因する、サセプタ161の温度の推定誤差を軽減することができる。これにより、好適なエアロゾルの生成を実現することが可能となる。 According to this configuration, it is possible to reduce an error in estimating the temperature of the susceptor 161 due to the operation history of the suction device 100. This makes it possible to achieve the generation of suitable aerosol.
 吸引装置100の動作履歴は、記憶部114に記憶されていてもよい。制御部116は、加熱プロファイルに基づくスティック型基材150の誘導加熱を実行する度に、記憶部114に記憶された動作履歴を更新する。 The operation history of the suction device 100 may be stored in the storage unit 114. The control unit 116 updates the operation history stored in the storage unit 114 each time the stick-type substrate 150 is induction-heated based on the heating profile.
 吸引装置100の動作履歴の一例は、電磁誘導源162への給電回数である。ここでの電磁誘導源162への給電回数とは、加熱プロファイルに基づく誘導加熱を実行した回数である。制御部116は、電磁誘導源162への給電回数に基づいて、電磁誘導源162への給電を制御する。詳しくは、制御部116は、応答部119の温度に基づいて推定されたサセプタ161の温度を、電磁誘導源162への給電回数に基づいて補正し、補正後のサセプタ161の温度に基づいて電磁誘導源162への給電を制御する。電磁誘導源162への給電回数が増えるほど、DC/ACインバータ等を含む回路要素及び電磁誘導源162が劣化して電気抵抗値が上昇し、同じ給電量に対するサセプタ161の実温度が低下すると考えられる。つまり、実際の給電回数が標準環境における給電回数よりも少ない場合、サセプタ161の実温度が目標温度より高くなることが予測される。その場合、制御部116は、サセプタ161の温度をより高く補正する。他方、実際の給電回数が標準環境における給電回数よりも多い場合、サセプタ161の実温度が目標温度より低くなることが予測される。その場合、制御部116は、サセプタ161の温度をより低く補正する。 An example of the operation history of the suction device 100 is the number of times power is supplied to the electromagnetic induction source 162 . Here, the number of times power is supplied to the electromagnetic induction source 162 is the number of times induction heating is performed based on the heating profile. The control unit 116 controls power supply to the electromagnetic induction source 162 based on the number of times power is supplied to the electromagnetic induction source 162 . Specifically, the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the number of times power is supplied to the electromagnetic induction source 162, Controls power supply to inductive source 162 . It is thought that as the number of times power is supplied to the electromagnetic induction source 162 increases, circuit elements including the DC/AC inverter and the like and the electromagnetic induction source 162 deteriorate, increasing the electrical resistance value and lowering the actual temperature of the susceptor 161 for the same amount of power supply. be done. In other words, if the actual number of times of power feeding is less than the number of times of power feeding in the standard environment, it is predicted that the actual temperature of the susceptor 161 will be higher than the target temperature. In that case, the controller 116 corrects the temperature of the susceptor 161 to be higher. On the other hand, if the actual number of times of power supply is greater than the number of times of power supply under the standard environment, it is predicted that the actual temperature of the susceptor 161 will be lower than the target temperature. In that case, the controller 116 corrects the temperature of the susceptor 161 to be lower.
 かかる構成によれば、電磁誘導源162への給電回数に起因する、サセプタ161の温度の推定誤差を軽減することができる。これにより、好適なエアロゾルの生成を実現することが可能となる。 According to such a configuration, it is possible to reduce an error in estimating the temperature of the susceptor 161 due to the number of times power is supplied to the electromagnetic induction source 162 . This makes it possible to achieve the generation of suitable aerosol.
 吸引装置100の動作履歴の他の一例は、電磁誘導源162への給電間隔である。ここでの電磁誘導源162への給電間隔とは、加熱プロファイルに基づく誘導加熱を前回実行してから今回実行するまでの間の時間長である。制御部116は、電磁誘導源162への給電間隔に基づいて、電磁誘導源162への給電を制御する。詳しくは、制御部116は、応答部119の温度に基づいて推定されたサセプタ161の温度を、電磁誘導源162への給電間隔に基づいて補正し、補正後のサセプタ161の温度に基づいて電磁誘導源162への給電を制御する。電磁誘導源162への給電間隔が狭いほど、前回の誘導加熱時の熱が残存しており、同じ給電量に対するサセプタ161の実温度が高まると考えられる。つまり、実際の給電間隔が標準環境における給電間隔よりも狭い場合、サセプタ161の実温度が目標温度より高くなることが予測される。その場合、制御部116は、サセプタ161の温度をより高く補正する。他方、実際の給電間隔が標準環境における給電間隔よりも広い場合に、サセプタ161の実温度が目標温度より低くなることが予測される。その場合、制御部116は、サセプタ161の温度をより低く補正する。 Another example of the operation history of the suction device 100 is the power supply interval to the electromagnetic induction source 162 . Here, the power supply interval to the electromagnetic induction source 162 is the length of time from the previous execution of the induction heating based on the heating profile to the current execution. The control unit 116 controls power supply to the electromagnetic induction source 162 based on the power supply interval to the electromagnetic induction source 162 . Specifically, the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the power supply interval to the electromagnetic induction source 162, Controls power supply to inductive source 162 . It is considered that the shorter the interval of power supply to the electromagnetic induction source 162, the more heat remains from the previous induction heating, and the higher the actual temperature of the susceptor 161 for the same amount of power supply. That is, when the actual power supply interval is narrower than the power supply interval in the standard environment, it is predicted that the actual temperature of the susceptor 161 will be higher than the target temperature. In that case, the controller 116 corrects the temperature of the susceptor 161 to be higher. On the other hand, when the actual power supply interval is wider than the power supply interval in the standard environment, it is predicted that the actual temperature of the susceptor 161 will be lower than the target temperature. In that case, the controller 116 corrects the temperature of the susceptor 161 to be lower.
 かかる構成によれば、電磁誘導源162への給電間隔に起因する、サセプタ161の温度の推定誤差を軽減することができる。これにより、好適なエアロゾルの生成を実現することが可能となる。 According to this configuration, it is possible to reduce an error in estimating the temperature of the susceptor 161 due to the power supply interval to the electromagnetic induction source 162 . This makes it possible to achieve the generation of suitable aerosol.
 -基材の種類
 外乱要素の一例は、スティック型基材150の種類である。スティック型基材150の種類によって、サセプタ161の素材、形状、含有量、及び分布、並びにエアロゾル源の種類が異なり得る。そこで、制御部116は、保持部140に保持されたスティック型基材150の種類に基づいて、電磁誘導源162への給電を制御する。詳しくは、制御部116は、応答部119の温度に基づいて推定されたサセプタ161の温度を、スティック型基材150の種類に基づいて補正し、補正後のサセプタ161の温度に基づいて電磁誘導源162への給電を制御する。一例として、保持部140に保持されたスティック型基材150の種類と、標準環境におけるスティック型基材150の種類との相違から、サセプタ161の実温度が想定より高くなることが予測される場合がある。その場合、制御部116は、サセプタ161の温度をより高く補正する。他方、保持部140に保持されたスティック型基材150の種類と、標準環境におけるスティック型基材150の種類との相違から、サセプタ161の実温度が想定より低くなることが予測される場合がある。その場合、制御部116は、サセプタ161の温度をより低く補正する。
- Type of substrate An example of a disturbance factor is the type of stick-type substrate 150 . Depending on the type of stick-type substrate 150, the material, shape, content and distribution of the susceptor 161 and the type of aerosol source may differ. Therefore, control unit 116 controls power supply to electromagnetic induction source 162 based on the type of stick-shaped base material 150 held by holding unit 140 . Specifically, the control unit 116 corrects the temperature of the susceptor 161 estimated based on the temperature of the response unit 119 based on the type of the stick-shaped base material 150, and based on the corrected temperature of the susceptor 161, the electromagnetic induction control the power supply to the source 162; As an example, when it is predicted that the actual temperature of the susceptor 161 will be higher than expected due to the difference between the type of the stick-shaped base material 150 held by the holding part 140 and the type of the stick-shaped base material 150 in the standard environment. There is In that case, the controller 116 corrects the temperature of the susceptor 161 to be higher. On the other hand, it may be predicted that the actual temperature of the susceptor 161 will be lower than expected due to the difference between the type of the stick-shaped substrate 150 held by the holding portion 140 and the type of the stick-shaped substrate 150 in the standard environment. be. In that case, the controller 116 corrects the temperature of the susceptor 161 to be lower.
 かかる構成によれば、保持部140に保持されたスティック型基材150の種類に起因する、サセプタ161の温度の推定誤差を軽減することができる。これにより、好適なエアロゾルの生成を実現することが可能となる。 According to this configuration, it is possible to reduce an error in estimating the temperature of the susceptor 161 due to the type of the stick-shaped base material 150 held by the holding part 140 . This makes it possible to achieve the generation of suitable aerosol.
 なお、保持部140に保持されたスティック型基材150の種類は、様々な手法により識別可能である。一例として、スティック型基材150の種類を示す二次元コード等の識別情報がスティック型基材150に付与されていてもよい。その場合、保持部140に保持されたスティック型基材150に付与された識別情報を画像認識等することで、スティック型基材150の種類を識別することができる。他の一例として、スティック型基材150の種類ごとに、含有されるサセプタ161の種類が異なっていてもよい。電磁誘導源162に給電した際の、電源部111及び電磁誘導源162を含む閉回路の電気抵抗値は、保持部140に保持されたスティック型基材150に含有されたサセプタ161の種類に応じて異なる場合がある。その場合、電源部111及び電磁誘導源162を含む閉回路の電気抵抗値に基づいて、スティック型基材150の種類を識別することができる。 The type of stick-shaped base material 150 held by the holding portion 140 can be identified by various methods. As an example, identification information such as a two-dimensional code indicating the type of stick-shaped base material 150 may be given to stick-shaped base material 150 . In this case, the type of the stick-shaped base material 150 can be identified by performing image recognition or the like on the identification information given to the stick-shaped base material 150 held by the holding unit 140 . As another example, the type of susceptor 161 contained may be different for each type of stick-shaped substrate 150 . The electrical resistance value of the closed circuit including the power supply unit 111 and the electromagnetic induction source 162 when power is supplied to the electromagnetic induction source 162 depends on the type of the susceptor 161 contained in the stick-shaped substrate 150 held by the holding unit 140. may vary. In that case, the type of the stick-shaped substrate 150 can be identified based on the electrical resistance value of the closed circuit including the power source 111 and the electromagnetic induction source 162 .
 -補足
 なお、制御部116は、使用する加熱プロファイルを切り替えてもよい。応答部119の温度に基づいてサセプタ161の温度を推定するために使用される温度推定アルゴリズムは、使用する加熱プロファイルごとに異なっていてもよい。例えば、応答部119の温度に基づいて推定されたサセプタ161の温度に対する外乱要素に基づく補正量は、使用する加熱プロファイルごとに異なっていてもよい。即ち、吸引装置100の動作環境の温度、吸引装置100の動作履歴、及び/又は保持部140に保持されたスティック型基材150の種類に基づく補正量は、使用する加熱プロファイルごとに異なっていてもよい。加熱プロファイルごとに目標温度が異なり、それに応じて外乱要素に起因する推定誤差が異なり得るためである。かかる構成によれば、加熱プロファイルを切り替えた場合であっても、サセプタ161の温度を正確に推定することができる。これにより、好適なエアロゾルの生成を実現することが可能となる。
- Supplement Note that the control unit 116 may switch the heating profile to be used. The temperature estimation algorithm used to estimate the temperature of the susceptor 161 based on the temperature of the responder 119 may differ for each heating profile used. For example, the amount of correction based on the disturbance factor for the temperature of the susceptor 161 estimated based on the temperature of the response section 119 may differ for each heating profile used. That is, the correction amount based on the temperature of the operating environment of the suction device 100, the operation history of the suction device 100, and/or the type of the stick-shaped substrate 150 held by the holding section 140 differs for each heating profile used. good too. This is because the target temperature differs for each heating profile, and the estimation error caused by the disturbance element may differ accordingly. With such a configuration, the temperature of the susceptor 161 can be accurately estimated even when the heating profile is switched. This makes it possible to achieve the generation of suitable aerosol.
 <5.補足>
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<5. Supplement>
Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 例えば、上記実施形態では、電磁誘導源162による誘導加熱により応答部119が到達可能な温度の範囲内において、応答部119に磁気相転移が発生しない例を説明したが、本発明はかかる例に限定されない。電磁誘導源162による誘導加熱により応答部119が到達可能な温度の範囲内において、応答部119に磁気相転移が発生してもよい。即ち、応答部119のキュリー点は、電磁誘導源162による誘導加熱により応答部119が到達可能な最高温度よりも低くてもよい。その場合、応答部119のキュリー点の前後で、応答部119の温度とサセプタ161の温度との間の対応関係が変化する。そこで、制御部116は、応答部119のキュリー点の前後で異なる温度推定アルゴリズムを使用して、サセプタ161の温度を推定する。かかる構成によれば、図4を参照しながら上記説明した例と同様の理由で、応答部119の磁気相転移に伴う応答部119の昇温速度の鈍化に起因する、サセプタ161の温度推定精度の低下を軽減することが可能となる。 For example, in the above embodiment, an example in which magnetic phase transition does not occur in the response section 119 within the temperature range that the response section 119 can reach due to induction heating by the electromagnetic induction source 162 has been described. Not limited. A magnetic phase transition may occur in the response section 119 within a temperature range that the response section 119 can reach due to induction heating by the electromagnetic induction source 162 . That is, the Curie point of the response section 119 may be lower than the maximum temperature that the response section 119 can reach by induction heating by the electromagnetic induction source 162 . In that case, the correspondence relationship between the temperature of the response section 119 and the temperature of the susceptor 161 changes before and after the Curie point of the response section 119 . Therefore, the control unit 116 uses different temperature estimation algorithms before and after the Curie point of the response unit 119 to estimate the temperature of the susceptor 161 . According to this configuration, for the same reason as the example described above with reference to FIG. It is possible to reduce the decrease in
 例えば、上記実施形態では、温度センサ118がサーミスタである例を説明したが、本発明は係る例に限定されない。一例として、応答部119は、温度に応じて電気抵抗値が変化するよう構成され、電源部111から電力が供給されていてもよい。その場合、温度センサ118は、電源部111及び応答部119を含む閉回路の電気抵抗値に基づいて、応答部119の温度を推定する。温度センサ118は応答部119と離隔して配置されていてもよいし、制御部116が温度センサ118としての機能を兼ねていてもよい。 For example, in the above embodiment, the temperature sensor 118 is a thermistor, but the present invention is not limited to this example. As an example, the response unit 119 may be configured to change its electrical resistance value according to temperature, and may be supplied with power from the power supply unit 111 . In that case, the temperature sensor 118 estimates the temperature of the response section 119 based on the electrical resistance value of the closed circuit including the power supply section 111 and the response section 119 . The temperature sensor 118 may be arranged separately from the response section 119 , or the control section 116 may also function as the temperature sensor 118 .
 例えば、上記実施形態では、基材部151にサセプタ161が含有される例を説明したが、本発明はかかる例に限定されない。即ち、サセプタ161は、サセプタ161がエアロゾル源に熱的に近接する任意の位置に配置され得る。一例として、サセプタ161は、ブレード状に構成されて保持部140の底部143から内部空間141に突出するように配置されてもよい。そして、スティック型基材150が保持部140に挿入された際に、スティック型基材150の挿入方向の端部から基材部151に、ブレード状のサセプタ161が突き刺さるように挿入されてもよい。他の一例として、サセプタ161は、内部空間141を形成する保持部140の内壁に配置されてもよい。 For example, in the above embodiment, an example in which the base material portion 151 contains the susceptor 161 has been described, but the present invention is not limited to this example. That is, the susceptor 161 can be placed at any location where the susceptor 161 is in thermal proximity to the aerosol source. As an example, the susceptor 161 may be configured in a blade shape and arranged to protrude from the bottom portion 143 of the holding portion 140 into the internal space 141 . Then, when the stick-shaped base material 150 is inserted into the holding part 140, the blade-shaped susceptor 161 may be inserted so as to pierce the base part 151 from the end of the stick-shaped base material 150 in the insertion direction. . As another example, the susceptor 161 may be arranged on the inner wall of the holding part 140 forming the inner space 141 .
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、本明細書において説明した各装置を制御するコンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。上記記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A series of processes by each device described in this specification may be implemented using software, hardware, or a combination of software and hardware. Programs that make up the software are stored in advance in, for example, recording media (non-transitory media) provided inside or outside each device. Each program, for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 Also, the processes described using the flowcharts and sequence diagrams in this specification do not necessarily have to be executed in the illustrated order. Some processing steps may be performed in parallel. Also, additional processing steps may be employed, and some processing steps may be omitted.
 なお、以下のような構成も本発明の技術的範囲に属する。
(1)
 吸引装置であって、
 電力を供給する電源部と、
 前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、
 前記電磁誘導源への給電を制御する制御部と、
 内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された、エアロゾル源を含有する基材を保持する保持部と、
 前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、
 前記応答部の温度を検出する温度センサと、
 を備え、
 前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、
 前記サセプタは、前記変動磁場が侵入した場合に発熱し、
 前記制御部は、前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御する、
 吸引装置。
(2)
 前記サセプタのキュリー点と前記応答部のキュリー点とは、実質的に同一である、
 前記(1)に記載の吸引装置。
(3)
 前記応答部のキュリー点は、前記電磁誘導源による誘導加熱により前記応答部が到達可能な最高温度よりも高い、
 前記(1)又は(2)に記載の吸引装置。
(4)
 前記応答部は、前記電磁誘導源による誘導加熱により前記応答部が到達可能な温度の範囲内において常磁性である素材により構成される、
 前記(1)に記載の吸引装置。
(5)
 前記サセプタのキュリー点は、前記電磁誘導源による誘導加熱により前記サセプタが到達可能な最高温度よりも低く、
 前記制御部は、前記サセプタのキュリー点の前後で異なる温度推定アルゴリズムを使用して、前記サセプタの温度を推定する、
 前記(1)~(4)のいずれか一項に記載の吸引装置。
(6)
 前記サセプタ及び前記応答部の各々は、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼を含む素材群から選択される1以上の素材により構成される、
 前記(1)~(5)のいずれか一項に記載の吸引装置。
(7)
 前記応答部は、前記電磁誘導源と前記保持部との間に配置される、
 前記(1)~(6)のいずれか一項に記載の吸引装置。
(8)
 前記応答部は、前記保持部の外周の少なくとも一部を覆う筒状部材である、
 前記(1)~(7)のいずれか一項に記載の吸引装置。
(9)
 前記応答部は、前記保持部の少なくとも一部である、
 前記(1)~(6)のいずれか一項に記載の吸引装置。
(10)
 前記吸引装置は、磁場を遮断する磁気シールドをさらに備え、
 前記磁気シールドは、前記吸引装置の再外殻を構成するハウジングと前記電磁誘導源との間に配置され、
 前記応答部は、前記磁気シールドの一部である、
 前記(1)~(6)のいずれか一項に記載の吸引装置。
(11)
 前記制御部は、前記応答部の温度に基づいて前記サセプタの温度を推定し、推定した前記サセプタの温度に基づいて前記電磁誘導源への給電を制御する、
 前記(1)~(10)のいずれか一項に記載の吸引装置。
(12)
 前記制御部は、推定した前記サセプタの温度と前記温度センサにより検出された前記応答部の温度とに基づいて、前記電磁誘導源への給電を制御する、
 前記(11)に記載の吸引装置。
(13)
 前記制御部は、前記サセプタの温度の目標値である目標温度の時系列推移が規定された情報である加熱プロファイルに基づいて、前記電磁誘導源への給電を制御する、
 前記(11)又は(12)に記載の吸引装置。
(14)
 前記制御部は、使用する前記加熱プロファイルを切り替え、
 前記応答部の温度に基づいて前記サセプタの温度を推定するために使用される温度推定アルゴリズムは、使用する前記加熱プロファイルごとに異なる、
 前記(13)に記載の吸引装置。
(15)
 前記制御部は、前記吸引装置の動作環境の温度に基づいて、前記電磁誘導源への給電を制御する、
 前記(1)~(14)のいずれか一項に記載の吸引装置。
(16)
 前記制御部は、前記保持部に保持された前記基材の種類に基づいて、前記電磁誘導源への給電を制御する、
 前記(1)~(15)のいずれか一項に記載の吸引装置。
(17)
 前記制御部は、前記吸引装置の動作履歴に基づいて、前記電磁誘導源への給電を制御する、
 前記(1)~(16)のいずれか一項に記載の吸引装置。
(18)
 前記制御部は、前記電磁誘導源への給電回数、及び/又は前記電磁誘導源への給電間隔に基づいて、前記電磁誘導源への給電を制御する、
 前記(17)に記載の吸引装置。
(19)
 前記電磁誘導源への給電を制御することは、前記電磁誘導源への給電を停止することを含む、
 前記(1)~(18)のいずれか一項に記載の吸引装置。
(20)
 吸引装置を制御するコンピュータに実行させるためのプログラムであって、
 前記吸引装置は、
  電力を供給する電源部と、
  前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、
  内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された、エアロゾル源を含有する基材を保持する保持部と、
  前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、
  前記応答部の温度を検出する温度センサと、
  を備え、
  前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、
  前記サセプタは、前記変動磁場が侵入した場合に発熱し、
 前記プログラムは、
  前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御すること、
 を実行させるプログラム。
(21)
 吸引装置と基材とを備えるシステムであって、
 前記基材は、エアロゾル源を含有し、
 前記吸引装置は、
  電力を供給する電源部と、
  前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、
  前記電磁誘導源への給電を制御する制御部と、
  内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記基材を保持する保持部と、
  前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、
  前記応答部の温度を検出する温度センサと、
  を備え、
  前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、
  前記サセプタは、前記変動磁場が侵入した場合に発熱し、
  前記制御部は、前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御する、
 システム。
(22)
 前記サセプタは、前記基材に含有される、
 前記(21)に記載のシステム。
The following configuration also belongs to the technical scope of the present invention.
(1)
a suction device,
a power supply unit that supplies electric power;
an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply;
a control unit that controls power supply to the electromagnetic induction source;
a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds a substrate containing an aerosol source that is inserted into the internal space through the opening;
a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates;
a temperature sensor that detects the temperature of the response unit;
with
The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit. is placed in
the susceptor generates heat when the fluctuating magnetic field penetrates;
The control unit controls power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor.
suction device.
(2)
the Curie point of the susceptor and the Curie point of the responder are substantially the same;
The suction device according to (1) above.
(3)
The Curie point of the response unit is higher than the maximum temperature that the response unit can reach by induction heating by the electromagnetic induction source.
The suction device according to (1) or (2) above.
(4)
The response unit is made of a material that is paramagnetic within a temperature range that the response unit can reach due to induction heating by the electromagnetic induction source,
The suction device according to (1) above.
(5)
the Curie point of the susceptor is lower than the maximum temperature that the susceptor can reach by induction heating by the electromagnetic induction source;
The control unit estimates the temperature of the susceptor using different temperature estimation algorithms before and after the Curie point of the susceptor.
The suction device according to any one of (1) to (4) above.
(6)
each of the susceptor and the response unit is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel;
The suction device according to any one of (1) to (5) above.
(7)
The response unit is arranged between the electromagnetic induction source and the holding unit,
The suction device according to any one of (1) to (6) above.
(8)
The responsive part is a cylindrical member that covers at least part of the outer circumference of the holding part,
The suction device according to any one of (1) to (7) above.
(9)
The response unit is at least part of the holding unit,
The suction device according to any one of (1) to (6) above.
(10)
The suction device further comprises a magnetic shield that blocks the magnetic field,
The magnetic shield is disposed between a housing that constitutes the outer shell of the suction device and the electromagnetic induction source,
the responsive unit is part of the magnetic shield,
The suction device according to any one of (1) to (6) above.
(11)
The control unit estimates the temperature of the susceptor based on the temperature of the response unit, and controls power supply to the electromagnetic induction source based on the estimated temperature of the susceptor.
The suction device according to any one of (1) to (10) above.
(12)
The control unit controls power supply to the electromagnetic induction source based on the estimated temperature of the susceptor and the temperature of the response unit detected by the temperature sensor.
The suction device according to (11) above.
(13)
The control unit controls power supply to the electromagnetic induction source based on a heating profile that is information that defines a time-series transition of a target temperature that is a target value of the temperature of the susceptor.
The suction device according to (11) or (12) above.
(14)
The control unit switches the heating profile to be used,
the temperature estimation algorithm used to estimate the temperature of the susceptor based on the temperature of the responsive section is different for each of the heating profiles used;
The suction device according to (13) above.
(15)
The control unit controls power supply to the electromagnetic induction source based on the temperature of the operating environment of the suction device.
The suction device according to any one of (1) to (14) above.
(16)
The control unit controls power supply to the electromagnetic induction source based on the type of the base material held by the holding unit.
The suction device according to any one of (1) to (15) above.
(17)
The control unit controls power supply to the electromagnetic induction source based on the operation history of the suction device.
The suction device according to any one of (1) to (16) above.
(18)
The control unit controls power supply to the electromagnetic induction source based on the number of times power is supplied to the electromagnetic induction source and/or the interval at which power is supplied to the electromagnetic induction source.
The suction device according to (17) above.
(19)
controlling power supply to the electromagnetic induction source includes stopping power supply to the electromagnetic induction source;
The suction device according to any one of (1) to (18) above.
(20)
A program to be executed by a computer that controls a suction device,
The suction device is
a power supply unit that supplies electric power;
an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply;
a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds a substrate containing an aerosol source that is inserted into the internal space through the opening;
a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates;
a temperature sensor that detects the temperature of the response unit;
with
The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit. is placed in
the susceptor generates heat when the fluctuating magnetic field penetrates;
Said program
controlling power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor;
program to run.
(21)
A system comprising a suction device and a substrate,
the substrate contains an aerosol source;
The suction device is
a power supply unit that supplies electric power;
an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply;
a control unit that controls power supply to the electromagnetic induction source;
a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds the base material inserted into the internal space through the opening;
a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates;
a temperature sensor that detects the temperature of the response unit;
with
The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit. is placed in
the susceptor generates heat when the fluctuating magnetic field penetrates;
The control unit controls power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor.
system.
(22)
The susceptor is contained in the base material,
The system according to (21) above.
 100  吸引装置
 101  ハウジング
 111  電源部
 112  センサ部
 113  通知部
 114  記憶部
 115  通信部
 116  制御部
 118  温度センサ
 119  応答部
 140  保持部
 141  内部空間
 142  開口
 143  底部
 150  スティック型基材
 151  基材部
 152  吸口部
 161  サセプタ
 162  電磁誘導源
 170  空気流路
 171  空気取込孔
100 suction device 101 housing 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 118 temperature sensor 119 response unit 140 holding unit 141 internal space 142 opening 143 bottom 150 stick-shaped substrate 151 substrate 152 mouthpiece Part 161 Susceptor 162 Electromagnetic induction source 170 Air flow path 171 Air intake hole

Claims (20)

  1.  吸引装置であって、
     電力を供給する電源部と、
     前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、
     前記電磁誘導源への給電を制御する制御部と、
     内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された、エアロゾル源を含有する基材を保持する保持部と、
     前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、
     前記応答部の温度を検出する温度センサと、
     を備え、
     前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、
     前記サセプタは、前記変動磁場が侵入した場合に発熱し、
     前記制御部は、前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御する、
     吸引装置。
    a suction device,
    a power supply unit that supplies electric power;
    an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply;
    a control unit that controls power supply to the electromagnetic induction source;
    a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds a substrate containing an aerosol source that is inserted into the internal space through the opening;
    a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates;
    a temperature sensor that detects the temperature of the response unit;
    with
    The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit. is placed in
    the susceptor generates heat when the fluctuating magnetic field penetrates;
    The control unit controls power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor.
    suction device.
  2.  前記サセプタのキュリー点と前記応答部のキュリー点とは、実質的に同一である、
     請求項1に記載の吸引装置。
    the Curie point of the susceptor and the Curie point of the responder are substantially the same;
    A suction device according to claim 1 .
  3.  前記応答部は、前記電磁誘導源による誘導加熱により前記応答部が到達可能な温度の範囲内において常磁性である素材により構成される、
     請求項1に記載の吸引装置。
    The response unit is made of a material that is paramagnetic within a temperature range that the response unit can reach due to induction heating by the electromagnetic induction source,
    A suction device according to claim 1 .
  4.  前記サセプタのキュリー点は、前記電磁誘導源による誘導加熱により前記サセプタが到達可能な最高温度よりも低く、
     前記制御部は、前記サセプタのキュリー点の前後で異なる温度推定アルゴリズムを使用して、前記サセプタの温度を推定する、
     請求項1~3のいずれか一項に記載の吸引装置。
    the Curie point of the susceptor is lower than the maximum temperature that the susceptor can reach by induction heating by the electromagnetic induction source;
    The control unit estimates the temperature of the susceptor using different temperature estimation algorithms before and after the Curie point of the susceptor.
    A suction device according to any one of claims 1 to 3.
  5.  前記サセプタ及び前記応答部の各々は、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼を含む素材群から選択される1以上の素材により構成される、
     請求項1~4のいずれか一項に記載の吸引装置。
    each of the susceptor and the response unit is made of one or more materials selected from a group of materials including aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel;
    A suction device according to any one of claims 1 to 4.
  6.  前記応答部は、前記電磁誘導源と前記保持部との間に配置される、
     請求項1~5のいずれか一項に記載の吸引装置。
    The response unit is arranged between the electromagnetic induction source and the holding unit,
    A suction device according to any one of claims 1-5.
  7.  前記応答部は、前記保持部の外周の少なくとも一部を覆う筒状部材である、
     請求項1~6のいずれか一項に記載の吸引装置。
    The responsive part is a cylindrical member that covers at least part of the outer circumference of the holding part,
    A suction device according to any one of claims 1-6.
  8.  前記応答部は、前記保持部の少なくとも一部である、
     請求項1~5のいずれか一項に記載の吸引装置。
    The response unit is at least part of the holding unit,
    A suction device according to any one of claims 1-5.
  9.  前記吸引装置は、磁場を遮断する磁気シールドをさらに備え、
     前記磁気シールドは、前記吸引装置の再外殻を構成するハウジングと前記電磁誘導源との間に配置され、
     前記応答部は、前記磁気シールドの一部である、
     請求項1~5のいずれか一項に記載の吸引装置。
    The suction device further comprises a magnetic shield that blocks the magnetic field,
    The magnetic shield is disposed between a housing that constitutes the outer shell of the suction device and the electromagnetic induction source,
    the responsive unit is part of the magnetic shield,
    A suction device according to any one of claims 1-5.
  10.  前記制御部は、前記応答部の温度に基づいて前記サセプタの温度を推定し、推定した前記サセプタの温度に基づいて前記電磁誘導源への給電を制御する、
     請求項1~9のいずれか一項に記載の吸引装置。
    The control unit estimates the temperature of the susceptor based on the temperature of the response unit, and controls power supply to the electromagnetic induction source based on the estimated temperature of the susceptor.
    A suction device according to any one of claims 1-9.
  11.  前記制御部は、推定した前記サセプタの温度と前記温度センサにより検出された前記応答部の温度とに基づいて、前記電磁誘導源への給電を制御する、
     請求項10に記載の吸引装置。
    The control unit controls power supply to the electromagnetic induction source based on the estimated temperature of the susceptor and the temperature of the response unit detected by the temperature sensor.
    11. A suction device according to claim 10.
  12.  前記制御部は、前記サセプタの温度の目標値である目標温度の時系列推移が規定された情報である加熱プロファイルに基づいて、前記電磁誘導源への給電を制御する、
     請求項10又は11に記載の吸引装置。
    The control unit controls power supply to the electromagnetic induction source based on a heating profile that is information that defines a time-series transition of a target temperature that is a target value of the temperature of the susceptor.
    A suction device according to claim 10 or 11.
  13.  前記制御部は、使用する前記加熱プロファイルを切り替え、
     前記応答部の温度に基づいて前記サセプタの温度を推定するために使用される温度推定アルゴリズムは、使用する前記加熱プロファイルごとに異なる、
     請求項12に記載の吸引装置。
    The control unit switches the heating profile to be used,
    the temperature estimation algorithm used to estimate the temperature of the susceptor based on the temperature of the responsive section is different for each of the heating profiles used;
    13. A suction device according to claim 12.
  14.  前記制御部は、前記吸引装置の動作環境の温度に基づいて、前記電磁誘導源への給電を制御する、
     請求項1~13のいずれか一項に記載の吸引装置。
    The control unit controls power supply to the electromagnetic induction source based on the temperature of the operating environment of the suction device.
    A suction device according to any one of claims 1-13.
  15.  前記制御部は、前記保持部に保持された前記基材の種類に基づいて、前記電磁誘導源への給電を制御する、
     請求項1~14のいずれか一項に記載の吸引装置。
    The control unit controls power supply to the electromagnetic induction source based on the type of the base material held by the holding unit.
    A suction device according to any one of claims 1-14.
  16.  前記制御部は、前記吸引装置の動作履歴に基づいて、前記電磁誘導源への給電を制御する、
     請求項1~15のいずれか一項に記載の吸引装置。
    The control unit controls power supply to the electromagnetic induction source based on the operation history of the suction device.
    Suction device according to any one of claims 1-15.
  17.  前記制御部は、前記電磁誘導源への給電回数、及び/又は前記電磁誘導源への給電間隔に基づいて、前記電磁誘導源への給電を制御する、
     請求項16に記載の吸引装置。
    The control unit controls power supply to the electromagnetic induction source based on the number of times power is supplied to the electromagnetic induction source and/or the interval at which power is supplied to the electromagnetic induction source.
    17. A suction device according to claim 16.
  18.  前記電磁誘導源への給電を制御することは、前記電磁誘導源への給電を停止することを含む、
     請求項1~17のいずれか一項に記載の吸引装置。
    controlling power supply to the electromagnetic induction source includes stopping power supply to the electromagnetic induction source;
    A suction device according to any one of the preceding claims.
  19.  吸引装置を制御するコンピュータに実行させるためのプログラムであって、
     前記吸引装置は、
      電力を供給する電源部と、
      前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、
      内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された、エアロゾル源を含有する基材を保持する保持部と、
      前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、
      前記応答部の温度を検出する温度センサと、
      を備え、
      前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、
      前記サセプタは、前記変動磁場が侵入した場合に発熱し、
     前記プログラムは、
      前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御すること、
     を実行させるプログラム。
    A program to be executed by a computer that controls a suction device,
    The suction device is
    a power supply unit that supplies electric power;
    an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply;
    a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds a substrate containing an aerosol source that is inserted into the internal space through the opening;
    a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates;
    a temperature sensor that detects the temperature of the response unit;
    with
    The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit. is placed in
    the susceptor generates heat when the fluctuating magnetic field penetrates;
    Said program
    controlling power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor;
    program to run.
  20.  吸引装置と基材とを備えるシステムであって、
     前記基材は、エアロゾル源を含有し、
     前記吸引装置は、
      電力を供給する電源部と、
      前記電源部から供給された電力を使用して変動磁場を発生させる電磁誘導源と、
      前記電磁誘導源への給電を制御する制御部と、
      内部空間、及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記基材を保持する保持部と、
      前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、前記変動磁場が侵入した場合に発熱する応答部と、
      前記応答部の温度を検出する温度センサと、
      を備え、
      前記電磁誘導源は、前記保持部により保持された前記基材に含有された前記エアロゾル源に熱的に近接して配置されたサセプタに、前記電磁誘導源から発生した前記変動磁場が侵入する位置に配置され、
      前記サセプタは、前記変動磁場が侵入した場合に発熱し、
      前記制御部は、前記温度センサにより検出された前記応答部の温度に基づいて、前記電磁誘導源への給電を制御する、
     システム。
     
    A system comprising a suction device and a substrate,
    the substrate contains an aerosol source;
    The suction device is
    a power supply unit that supplies electric power;
    an electromagnetic induction source that generates a varying magnetic field using power supplied from the power supply;
    a control unit that controls power supply to the electromagnetic induction source;
    a holding part that has an internal space and an opening that communicates the internal space with the outside, and that holds the base material inserted into the internal space through the opening;
    a response unit disposed at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates and generates heat when the fluctuating magnetic field penetrates;
    a temperature sensor that detects the temperature of the response unit;
    with
    The electromagnetic induction source is located at a position where the fluctuating magnetic field generated from the electromagnetic induction source penetrates a susceptor disposed in thermal proximity to the aerosol source contained in the base material held by the holding unit. is placed in
    the susceptor generates heat when the fluctuating magnetic field penetrates;
    The control unit controls power supply to the electromagnetic induction source based on the temperature of the response unit detected by the temperature sensor.
    system.
PCT/JP2021/006193 2021-02-18 2021-02-18 Inhalation device, program, and system WO2022176129A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21926564.2A EP4226788A1 (en) 2021-02-18 2021-02-18 Inhalation device, program, and system
JP2023500243A JPWO2022176129A1 (en) 2021-02-18 2021-02-18
PCT/JP2021/006193 WO2022176129A1 (en) 2021-02-18 2021-02-18 Inhalation device, program, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006193 WO2022176129A1 (en) 2021-02-18 2021-02-18 Inhalation device, program, and system

Publications (1)

Publication Number Publication Date
WO2022176129A1 true WO2022176129A1 (en) 2022-08-25

Family

ID=82930407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006193 WO2022176129A1 (en) 2021-02-18 2021-02-18 Inhalation device, program, and system

Country Status (3)

Country Link
EP (1) EP4226788A1 (en)
JP (1) JPWO2022176129A1 (en)
WO (1) WO2022176129A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323175B2 (en) 1987-09-14 1991-03-28 Boc Group Inc
JP2016525341A (en) * 2014-05-21 2016-08-25 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generating article with multi-material susceptor
JP2019524079A (en) * 2016-06-29 2019-09-05 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Articles for use with a device for heating smoking material
JP2020505011A (en) * 2017-01-25 2020-02-20 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Equipment for heating smoking material
JP2020526865A (en) * 2017-04-17 2020-08-31 ロト・ラブス・インコーポレイテッドLoto Labs, Inc. Devices, systems, and methods for detecting temperature in an induction heating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323175B2 (en) 1987-09-14 1991-03-28 Boc Group Inc
JP2016525341A (en) * 2014-05-21 2016-08-25 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generating article with multi-material susceptor
JP2019524079A (en) * 2016-06-29 2019-09-05 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Articles for use with a device for heating smoking material
JP2020505011A (en) * 2017-01-25 2020-02-20 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Equipment for heating smoking material
JP2020526865A (en) * 2017-04-17 2020-08-31 ロト・ラブス・インコーポレイテッドLoto Labs, Inc. Devices, systems, and methods for detecting temperature in an induction heating system

Also Published As

Publication number Publication date
JPWO2022176129A1 (en) 2022-08-25
EP4226788A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP7323600B2 (en) Aerosol generating system and device
JP2024001098A (en) Electromagnetic induction heating assembly for vapor generating device
WO2021260894A1 (en) Inhaling device, control method, and program
WO2022176129A1 (en) Inhalation device, program, and system
WO2022176126A1 (en) Inhalation device, program, and system
US20230000152A1 (en) Inhaling device, control method, and non-transitory computer readable medium
WO2022176112A1 (en) Suction device, program, and system
WO2022195771A1 (en) Suction device, program, and system
WO2022195770A1 (en) Inhalation device, program, and system
WO2022224318A1 (en) Control device, base material, system, control method, and program
US20230371602A1 (en) Inhalation device, base material, control method, and non-transitory computer readable medium
WO2023026408A1 (en) Inhalation device, substrate, and control method
WO2023170958A1 (en) Aerosol generation system, control method, and program
EP4074200A1 (en) Inhalation device, control method, and program
WO2022195769A1 (en) Suction device, program, and system
WO2022195868A1 (en) Inhalation device and system
WO2023157276A1 (en) Induction heating system, control method, and program
WO2023007525A1 (en) Aerosol generation system
WO2022190211A1 (en) Inhalation device and program
WO2023157275A1 (en) Induction heating system, control method, and program
WO2023042362A1 (en) Aerosol generation system, control method, and program
WO2023042360A1 (en) Suction device and suction system
WO2023286116A1 (en) Inhalation device, substrate, and control method
EP4353106A1 (en) Inhalation device, base material, and control method
WO2023042361A1 (en) Aerosol generation system, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500243

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021926564

Country of ref document: EP

Effective date: 20230509

NENP Non-entry into the national phase

Ref country code: DE