WO2023007525A1 - Aerosol generation system - Google Patents

Aerosol generation system Download PDF

Info

Publication number
WO2023007525A1
WO2023007525A1 PCT/JP2021/027441 JP2021027441W WO2023007525A1 WO 2023007525 A1 WO2023007525 A1 WO 2023007525A1 JP 2021027441 W JP2021027441 W JP 2021027441W WO 2023007525 A1 WO2023007525 A1 WO 2023007525A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
hollow member
generating system
susceptor
induction heating
Prior art date
Application number
PCT/JP2021/027441
Other languages
French (fr)
Japanese (ja)
Inventor
泰弘 小野
玲二朗 川崎
寛 手塚
和俊 芹田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/027441 priority Critical patent/WO2023007525A1/en
Publication of WO2023007525A1 publication Critical patent/WO2023007525A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating

Definitions

  • the present invention relates to an aerosol generation system.
  • the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component.
  • a user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
  • the action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
  • Patent Literature 1 discloses a technique in which a blade-shaped susceptor is inserted into a substrate, and the susceptor is induction-heated by a coil arranged to surround the substrate and the susceptor to generate an aerosol. .
  • an object of the present invention is to provide a mechanism that enables efficient generation of aerosol in an induction heating suction device. .
  • an induction heating unit that heats an aerosol-generating article to generate an aerosol and a power supply unit that supplies power to the induction heating unit
  • the induction heating unit has a hollow member configured to be hollow and inserted into the aerosol-generating article, and an induction coil arranged inside the hollow member, and is heated by a fluctuating magnetic field generated from the induction coil.
  • the hollow member may be a first susceptor that generates heat when the fluctuating magnetic field penetrates.
  • the induction heating unit has a second susceptor that is arranged inside the induction coil and generates heat when the fluctuating magnetic field enters, and the hollow member is heated by heat transfer from the second susceptor.
  • the second susceptor may contact the inner wall of the hollow member at least at one point.
  • the tip of the second susceptor may contact the inner wall of the tip of the hollow member.
  • At least one protrusion may be provided on the side surface of the second susceptor, and the induction coil may be arranged on a portion of the side surface of the second susceptor where the protrusion is not provided.
  • the projection may be spirally provided.
  • the projection may contact the inner wall of the hollow member.
  • the protrusion may generate heat when the fluctuating magnetic field penetrates.
  • the projection may be a heat-conducting member.
  • the protrusion may be provided with a through-hole in which a wiring connecting one end of the induction coil and the power supply unit is arranged.
  • a heat transfer layer having heat transfer properties may be arranged on the inner wall of the hollow member, and the second susceptor may be in contact with the inner wall of the hollow member at least one point via the heat transfer layer.
  • the induction coil may be coated with a member having insulation and heat resistance.
  • the aerosol-generating system further comprises a storage unit having an internal space and an opening communicating the internal space with the outside, and capable of containing the aerosol-generating article inserted into the internal space through the opening; may be arranged to protrude into the internal space from a bottom portion of the accommodating portion opposite to the opening.
  • a distal end of the hollow member that is inserted into the aerosol-generating article may be tapered.
  • the hollow member may be a cylindrical column, an elliptical column, or a rectangular column that is hollow.
  • the induction coil may be wound at an angle of 10° or more with respect to a direction perpendicular to the longitudinal direction of the induction heating section.
  • the aerosol-generating system may include the aerosol-generating article.
  • the aerosol-generating article may contain an aerosol source in the portion into which the induction heating section is inserted.
  • a mechanism is provided that enables efficient aerosol generation in an induction heating suction device.
  • FIG. 1 is a see-through perspective view of an induction heating section according to an embodiment of the present invention
  • FIG. It is a sectional view of an induction heating part concerning this embodiment.
  • FIG. 11 is a cross-sectional view of an induction heating unit according to a second modified example
  • FIG. 11 is a cross-sectional view of an induction heating unit according to a third modified example;
  • Configuration example of suction device The suction device according to this configuration example generates an aerosol by heating a substrate including an aerosol source from inside the substrate. This configuration example will be described below with reference to FIG.
  • FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device.
  • the suction device 100 includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, an induction heating unit 121, and a storage unit 140. including.
  • the suction is performed by the user while the stick-shaped base material 150 is accommodated in the accommodation section 140 .
  • Each component will be described in order below.
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the suction device 100 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like.
  • the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
  • the sensor unit 112 detects various information regarding the suction device 100 .
  • the sensor unit 112 then outputs the detected information to the control unit 116 .
  • the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor.
  • the sensor unit 112 detects a numerical value associated with the user's suction
  • the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 .
  • the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user.
  • sensor unit 112 may include a button for instructing start/stop of aerosol generation.
  • the sensor unit 112 then outputs the information input by the user to the control unit 116 .
  • the sensor section 112 is configured by a temperature sensor that detects the temperature of the induction heating section 121 .
  • a temperature sensor detects the temperature of the induction heating part 121 based on the electrical resistance value of the conductive track of the induction heating part 121, for example.
  • the sensor unit 112 may detect the temperature of the stick-shaped substrate 150 housed in the housing unit 140 based on the temperature of the induction heating unit 121 .
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode).
  • the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like.
  • the light emission pattern here is a concept including color, timing of lighting/lighting out, and the like.
  • the notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device.
  • the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that the suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by the induction heating unit 121 reaches a predetermined temperature.
  • the storage unit 114 stores various information for the operation of the suction device 100 .
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116.
  • FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
  • the communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices.
  • the communication unit 115 performs communication conforming to any wired or wireless communication standard.
  • a communication standard for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user.
  • the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate.
  • the suction device 100 executes various processes under the control of the controller 116 .
  • the housing part 140 has an internal space 141 and holds the stick-shaped base material 150 while housing a part of the stick-shaped base material 150 in the internal space 141 .
  • the accommodating portion 140 has an opening 142 that communicates the internal space 141 with the outside, and accommodates the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 .
  • the housing portion 140 is a cylindrical body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 .
  • the accommodating part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and the stick-shaped base material 150 inserted into the inner space 141 is held in the container.
  • the stick-shaped substrate 150 can be held by pressing from the outer periphery.
  • the containment portion 140 also functions to define a flow path for air through the stick-shaped substrate 150 .
  • An air inlet hole which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 .
  • the air outflow hole which is the exit of air from such a channel, is the opening 142 .
  • the stick-shaped base material 150 is a stick-shaped member.
  • the stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
  • the base material portion 151 includes an aerosol source.
  • the aerosol source is atomized by heating to produce an aerosol.
  • the aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient.
  • the aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least a portion of the base material portion 151 is accommodated in the internal space 141 of the accommodation portion 140 while the stick-shaped substrate 150 is held in the accommodation portion 140.
  • the mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held in the housing 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 in his/her mouth and sucks, air flows into the housing 140 through an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the housing portion 140 , that is, through the base portion 151 and reaches the inside of the user's mouth together with the aerosol generated from the base portion 151 .
  • the induction heating unit 121 heats the aerosol source by induction heating to atomize the aerosol source and generate an aerosol.
  • Induction heating is a process of causing a susceptor to generate heat by penetrating a varying magnetic field into the susceptor.
  • the induction heating part 121 is arranged so as to protrude from the bottom part 143 of the housing part 140 into the internal space 141 of the housing part 140 . Therefore, when the stick-shaped substrate 150 is inserted into the housing portion 140, the portion of the induction heating portion 121 that protrudes into the internal space 141 is pierced into the substrate portion 151 of the stick-shaped substrate 150 so that the stick-shaped substrate 150 is inserted. It is inserted inside the substrate 150 .
  • the induction heating unit 121 includes an induction coil 20 as an electromagnetic induction source for generating a varying magnetic field and a susceptor pin 30 as a susceptor.
  • the susceptor pin 30 is induction-heated by a fluctuating magnetic field (more specifically, an alternating magnetic field) generated from the induction coil 20 to generate heat. As a result, the temperature of the induction heating unit 121 is increased.
  • power may be supplied and an aerosol may be generated when the sensor unit 112 detects that a predetermined user input has been performed.
  • the temperature of the stick-shaped substrate 150 heated by the induction heating unit 121 reaches a predetermined temperature, the suction by the user becomes possible. After that, when the sensor unit 112 detects that a predetermined user input has been performed, the power supply may be stopped.
  • power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
  • the power supply unit 111 is an example of a power supply unit that supplies power to the induction heating unit 121 (more specifically, the induction coil 20).
  • Stick-type substrate 150 is an example of an aerosol-generating article containing an aerosol source.
  • the stick-shaped substrate 150 contains an aerosol source in the portion where the induction heating portion 121 is inserted, that is, the substrate portion 151 .
  • the suction device 100 and stick-shaped substrate 150 cooperate to generate an aerosol that is inhaled by the user. As such, the combination of suction device 100 and stick-type substrate 150 may be viewed as an aerosol generating system.
  • FIG. 2 is a see-through perspective view of the induction heating section 121 according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the induction heating section 121 according to this embodiment.
  • the induction heating unit 121 includes a hollow member 10, an induction coil 20, and a susceptor pin 30. Then, as described above with reference to FIG. 1 , the induction heating part 121 is arranged so as to protrude from the bottom part 143 into the internal space 141 .
  • the direction of the tip side where the induction heating part 121 is inserted inside the stick-shaped base material 150 (that is, the direction of the opening 142) is also referred to as the upward direction.
  • the direction opposite to the upward direction is also referred to as the downward direction.
  • the vertical direction corresponds to the longitudinal direction of the induction heating section 121 , the housing section 140 and the internal space 141 .
  • the hollow member 10 is a hollow member. As shown in FIGS. 2 and 3, the hollow member 10 may be a hollow column.
  • the hollow member 10 is made of a member having heat resistance and heat conductivity.
  • hollow member 10 is made of one or more materials selected from a group of materials including, for example, aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel.
  • the hollow member 10 is inserted into the stick-shaped base material 150 .
  • the tip 19 that is, the upward end
  • the hollow member 10 inserted into the stick-shaped substrate 150 may be tapered.
  • tip 19 of hollow member 10 may be configured as a cone or as a truncated cone. By forming the tip 19 of the hollow member 10 into a sharp shape in this manner, the induction heating section 121 can be more easily inserted into the stick-shaped base material 150 .
  • an induction coil 20 is arranged inside the hollow member 10 .
  • a susceptor pin 30 is arranged inside the induction coil 20 .
  • the induction coil 20 is a solenoid type coil.
  • the induction coil 20 generates a varying magnetic field (ie, alternating magnetic field) when an alternating current is applied.
  • the induction coil 20 is arranged to wrap around the susceptor pin 30 .
  • an alternating current is applied to the induction coil 20 , a fluctuating magnetic field is generated that circulates between the space inside and outside the induction coil 20 .
  • the induction coil 20 is coated with a member having insulation and heat resistance.
  • the induction coil 20 is coated with an insulating and heat-resistant resin or ceramic. With such a configuration, it is possible to prevent damage to the induction coil 20 due to heat transfer from the susceptor pin 30 .
  • the induction coil 20 is desirably wound at an angle of 10° or more with respect to the direction orthogonal to the longitudinal direction of the induction heating section 121 . That is, it is desirable that the angle ⁇ shown in FIG. 3 is 10° or more.
  • the diameter of the induction coil 20 such as the need to keep the diameter of the induction coil 20 below a predetermined value. Even in that case, the number of turns of the induction coil 20 can be ensured while satisfying the constraint by increasing the angle ⁇ .
  • there may be restrictions on the space inside the hollow member 10 such as the space inside the hollow member 10 being narrow due to the thickness of the hollow member 10 . Even in that case, the number of turns of the induction coil 20 can be ensured while satisfying the constraint by increasing the angle ⁇ .
  • the power supply unit 111 may be a DC (Direct Current) power supply.
  • the power supply unit 111 supplies AC power to the induction coil 20 via a DC/AC (Alternate Current) inverter.
  • the induction coil 20 can generate a varying magnetic field to raise the temperature of the susceptor pin 30 .
  • the susceptor pin 30 is a susceptor (corresponding to a second susceptor) that generates heat when a fluctuating magnetic field penetrates. As shown in FIG. 2, the susceptor pin 30 may be cylindrical. The susceptor pin 30 is arranged inside the induction coil 20 where the fluctuating magnetic field generated from the induction coil 20 is concentrated. Therefore, the susceptor pin 30 receives most of the fluctuating magnetic field generated from the induction coil 20, and can efficiently, ie rapidly generate heat.
  • the susceptor is made of a conductive material.
  • a fluctuating magnetic field penetrates a susceptor made of a conductive material, eddy currents are induced and the susceptor is heated according to the electrical resistance of the susceptor.
  • Such a heating mechanism is also called resistive heating.
  • Magnetic hysteresis heating is the process of heating a magnetic material with the reorientation of the magnetic dipoles in response to the penetration of a varying magnetic field.
  • Induction heating in the present invention includes at least resistance heating and may include magnetic hysteresis heating.
  • the susceptor is made of one or more materials selected from a group of materials including, for example, aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel.
  • the induction heating unit 121 is heated by the fluctuating magnetic field generated from the induction coil 20 .
  • the fluctuating magnetic field generated by the induction coil 20 penetrates the susceptor pin 30 arranged in the space inside the induction coil 20, and the susceptor pin 30 generates heat.
  • the temperature of the hollow member 10 rises due to heat transfer from the susceptor pin 30 .
  • the susceptor pin 30 is induction-heated to raise the temperature of the hollow member 10, thereby heating the stick-shaped base material 150 from the inside to generate an aerosol. becomes possible.
  • the susceptor pin 30 contacts the inner wall of the hollow member 10 at least at one point. Such a configuration facilitates heat transfer from the susceptor pin 30 to the hollow member 10, making it possible to raise the temperature of the hollow member 10 efficiently.
  • the tip 39 (that is, the upward end) of the susceptor pin 30 may contact the inner wall of the tip 19 of the hollow member 10 .
  • the temperature of the tip 19 of the hollow member 10 can be most efficiently raised.
  • the tip 19 of the hollow member 10 is inserted deepest into the base material portion 151 . Therefore, it is possible to efficiently raise the temperature of the base material portion 151 and efficiently generate the aerosol.
  • a fixing part is provided on the rear end side (that is, downward side) of the induction heating part 121 .
  • a fixing part (not shown) is a structural member that fixes the hollow member 10 to the housing of the suction device 100 . It is desirable that the fixed part is made of a heat-resistant material such as PEEK (Poly Ether Ether Ketone). According to such a configuration, even if the induction heating part 121 generates high heat, the induction heating part 121 can be kept fixed.
  • the induction coil 20 and the susceptor pin 30 are arranged inside the hollow member 10, and the temperature of the hollow member 10 is raised by heat transfer from the induction-heated susceptor pin 30.
  • the stick-shaped base material 150 into which the induction heating part 121 (more specifically, the hollow member 10) is inserted is heated from the inside to generate an aerosol.
  • the susceptor pin 30 is arranged inside the induction coil 20 where the fluctuating magnetic field generated from the induction coil 20 is concentrated. Therefore, the susceptor pin 30 receives most of the fluctuating magnetic field generated from the induction coil 20, and can efficiently, ie rapidly generate heat.
  • Such a configuration enables efficient generation of aerosol. That is, it is possible to improve power usage efficiency.
  • FIG. 4 is a cross-sectional view of an induction heating unit 121 according to a first modification.
  • an induction heating section 121 according to this modification includes a hollow member 10 , an induction coil 20 and a susceptor pin 30 .
  • the configurations of the hollow member 10 and the induction coil 20 are as described in the above embodiment.
  • At least one protrusion 31 is provided on the side surface of the susceptor pin 30 .
  • the induction coil 20 is arranged on the side surface of the susceptor pin 30 where the protrusion 31 is not provided.
  • the projection 31 may be spirally provided.
  • the induction coil 20 is arranged in the groove 32 sandwiched between the spirally provided projections 31 .
  • the induction coil 20 is arranged so as to be buried in the groove 32 on the side surface of the susceptor pin 30, so it is possible to prevent the induction coil 20 from being displaced.
  • the projection 31 provided on the side surface of the susceptor pin 30 contacts the inner wall of the hollow member 10.
  • the hollow member 10 and the susceptor pin 30 are in contact with each other in addition to the tip 39 of the susceptor pin 30 .
  • the protrusion 31 is provided in a spiral shape, the hollow member 10 and the susceptor pin 30 are in contact with each other over the entire vertical direction. Therefore, heat can be more easily transferred from the susceptor pin 30 to the hollow member 10, and the temperature of the hollow member 10 can be raised more efficiently.
  • the protrusion 31 provided on the side surface of the susceptor pin 30 generates heat when a fluctuating magnetic field penetrates. That is, the protrusion 31 is also a susceptor.
  • the susceptor pin 30 may be configured as a screw-like member having a spirally provided projection 31 . According to such a configuration, since the projection 31 itself that contacts the inner wall of the hollow member 10 generates heat, it is possible to raise the temperature of the hollow member 10 more efficiently.
  • the susceptor pin 30 is provided with a through hole in which a wiring connecting one end of the induction coil 20 and the power supply section 111 is arranged.
  • a protrusion 31 provided on the side surface of the susceptor pin 30 may be provided with a through hole 33 in which a wiring 21 connecting one end of the induction coil 20 and the power supply unit 111 is arranged.
  • a through hole 33 penetrating in the vertical direction may be provided in each of the projections 31 forming each spiral step. Then, the wire 21 on the tip side of the induction coil 20 passes through the through hole 33 and is pulled out of the hollow member 10 from the lower end side and connected to the power supply section 111 .
  • the rear end of the induction coil 20 is also pulled out of the hollow member 10 from the lower end and connected to the power supply section 111 . With such a configuration, it becomes possible to apply power from the power supply unit 111 to the induction coil 20 .
  • the protrusion 31 provided on the side surface of the susceptor pin 30 may be a heat-conducting member. That is, a heat-conducting member configured as the protrusion 31 may be arranged on the side surface of the susceptor pin 30 .
  • Materials having thermal conductivity include metals such as copper and fine ceramics such as silicon carbide.
  • the projection 31 may be provided on the inner wall of the hollow member 10 instead of the susceptor pin 30 .
  • the projections 31 provided on the inner wall of the hollow member 10 come into contact with the side surfaces of the susceptor pins 30 .
  • FIG. 5 is a cross-sectional view of an induction heating unit 121 according to a second modification.
  • an induction heating section 121 according to this modification includes a hollow member 10, an induction coil 20, a susceptor pin 30, and a heat transfer layer 40.
  • This modification is an example in which a heat transfer layer 40 is added to the first modification.
  • the heat transfer layer 40 is a member having heat transfer properties.
  • the thermal conductivity here is a concept including thermal conductivity and thermal radiation.
  • the heat transfer layer 40 is made of one or more materials selected from a group of materials including, for example, copper, graphite, and aluminum.
  • the heat transfer layer 40 is arranged on the inner wall of the hollow member 10 .
  • the heat transfer layer 40 is formed in the form of a film and arranged so as to be in close contact with the entire side surface of the inner wall of the hollow member 10 .
  • the susceptor pin 30 is in contact with the inner wall of the hollow member 10 through the heat transfer layer 40 at at least one point. Specifically, as shown in FIG. 5, the spiral projections 31 provided on the side surfaces of the susceptor pins 30 are in contact with the heat transfer layer 40 arranged on the inner wall of the hollow member 10 . With such a configuration, the heat transfer layer 40 can diffuse the heat received from the spiral projections 31 provided on the side surfaces of the susceptor pins 30 to the entire area of the hollow member 10 .
  • FIG. 6 is a cross-sectional view of an induction heating section 121 according to a third modified example.
  • a ring-shaped protrusion 31 is provided in the central portion of the side surface of the susceptor pin 30, and the internal space of the hollow member 10 is divided into upper and lower spaces.
  • An induction coil 20A is arranged in the upper space, and an induction coil 20B is arranged in the lower space.
  • the protrusion 31 is provided with a through-hole 33 in which a wiring 21A connecting one end of the induction coil 20A and the power supply section 111 is arranged.
  • the induction heating part 121 may have a plurality of induction coils 20, and the induction coils 20 may be arranged in each of a plurality of portions of the side surface of the susceptor pin 30 where the projections 31 are not provided. .
  • the induction heating section 121 can be manufactured easily, and the occurrence of manufacturing defects can be suppressed.
  • the number of protrusions 31 may be appropriately designed according to the desired rate of temperature increase.
  • the heat transfer layer 40 may be provided as in the second modified example.
  • the hollow member 10 may be a susceptor (corresponding to a first susceptor) that generates heat when a fluctuating magnetic field penetrates.
  • the fluctuating magnetic field generated by the induction coil 20 penetrates the hollow member 10 outside the induction coil 20, causing the hollow member 10 to generate heat. According to such a configuration, it is possible to directly raise the temperature of the hollow member 10 in contact with the stick-shaped base material 150 and efficiently heat the stick-shaped base material 150 .
  • the induction heating section 121 does not have to have the susceptor pin 30 . In that case, the induction heating unit 121 heats only the hollow member 10 .
  • the induction heating part 121 may have the susceptor pin 30 as the susceptor together with the hollow member 10 as the susceptor. In that case, more susceptors can receive the varying magnetic field, so that the stick-shaped substrate 150 can be heated more efficiently.
  • the hollow member 10 was a hollow cylinder, but the present invention is not limited to this example.
  • the hollow member 10 may be an elliptical cylinder configured to be hollow.
  • the hollow member 10 may be a hollow prism.
  • the hollow member 10 may be configured as a quadrangular prism, and the tip of the quadrangular prism may be configured in a quadrangular pyramid shape.
  • a cross-sectional view in that case is similar to the cross-sectional view shown in FIG.
  • the shape of the susceptor pin 30 is also not limited to a cylinder.
  • the susceptor pin 30 may be prismatic or elliptical.
  • an induction heating section for heating an aerosol-generating article to generate an aerosol
  • a power supply section for supplying power to the induction heating section
  • the induction heating unit is a hollow member configured to be hollow and inserted into the aerosol-generating article; an induction coil disposed inside the hollow member; and is heated by a fluctuating magnetic field generated from the induction coil, Aerosol generation system.
  • the hollow member is a first susceptor that generates heat when the fluctuating magnetic field penetrates, The aerosol generating system according to (1) above.
  • the induction heating unit has a second susceptor that is arranged inside the induction coil and generates heat when the fluctuating magnetic field enters, The hollow member is heated by heat transfer from the second susceptor.
  • the aerosol generating system according to (1) or (2) above.
  • the second susceptor is in contact with the inner wall of the hollow member at least at one point;
  • the tip of the second susceptor is in contact with the inner wall of the tip of the hollow member;
  • the induction coil is arranged on a portion of the side surface of the second susceptor where the projection is not provided;
  • the aerosol generating system according to any one of (3) to (5) above. (7) wherein the projection is spirally provided;
  • the aerosol generating system according to (6) above. wherein the protrusion is in contact with the inner wall of the hollow member;
  • the aerosol generating system according to (6) or (7) above. (9) the projection generates heat when the fluctuating magnetic field penetrates;
  • the protrusion is a member having heat conductivity, The aerosol generating system according to any one of (6) to (8) above.
  • the protrusion is provided with a through-hole in which a wiring connecting one end of the induction coil and the power supply unit is arranged,
  • the aerosol generating system according to any one of (6) to (10).
  • a heat transfer layer having heat transfer properties is disposed on the inner wall of the hollow member, The second susceptor is in contact with the inner wall of the hollow member at least one place through the heat transfer layer.
  • the aerosol generating system according to any one of (3) to (11).
  • the induction coil is coated with a member having insulation and heat resistance, The aerosol generating system according to any one of (1) to (12) above.
  • the aerosol generating system comprises: further comprising a storage unit having an internal space and an opening that communicates the internal space with the outside, and capable of containing the aerosol-generating article inserted into the internal space through the opening;
  • the induction heating unit is arranged so as to protrude into the internal space from a bottom portion of the housing portion on the opposite side of the opening,
  • the aerosol generating system according to any one of (1) to (13) above.
  • the tip of the hollow member that is inserted into the aerosol-generating article is tapered.
  • the aerosol generating system according to any one of (1) to (14) above.
  • the hollow member is a cylinder, an elliptical cylinder, or a prism configured to be hollow, The aerosol generating system according to any one of (1) to (15) above.
  • the induction coil is wound at an angle of 10° or more with respect to a direction orthogonal to the longitudinal direction of the induction heating unit, The aerosol generating system according to any one of (1) to (16) above.
  • the aerosol-generating system comprises the aerosol-generating article;
  • the aerosol-generating article contains an aerosol source in a portion into which the induction heating element is inserted.
  • suction device 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 121 induction heating unit 140 storage unit 141 internal space 142 opening 143 bottom 150 stick-shaped substrate 151 substrate 152 mouthpiece 10 hollow member REFERENCE SIGNS LIST 19 tip of hollow member 20 induction coil 30 susceptor pin 31 projection 32 groove 49 tip of susceptor pin 40 heat transfer layer

Abstract

[Problem] To provide a mechanism that enables efficient aerosol generation in an induction heating-type suction device. [Solution] An aerosol generation system comprises: an induction heating unit that heats an aerosol-generating article to generate an aerosol; and a power supply unit that supplies power to the induction heating unit, wherein the induction heating unit has a hollow member configured to be hollow and is inserted into the aerosol-generating article, and an induction coil disposed inside the hollow member, and the temperature is raised by the fluctuating magnetic field generated from the induction coil.

Description

エアロゾル生成システムAerosol generation system
 本発明は、エアロゾル生成システムに関する。 The present invention relates to an aerosol generation system.
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。ユーザがエアロゾルを吸引する動作を、以下ではパフ又はパフ動作とも称する。 Inhalation devices, such as electronic cigarettes and nebulizers, that produce substances that are inhaled by the user are widespread. For example, the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device. The action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
 これまでは、電気抵抗により発熱するヒータを用いて基材を加熱する方式の吸引装置が主流であった。しかし近年では、コイルとして構成された電磁誘導源を用いてサセプタを誘導加熱することでエアロゾルを生成する、誘導加熱式の吸引装置が注目を集めている。例えば、下記特許文献1では、ブレード状のサセプタを基材に挿入し、基材とサセプタとを取り囲むように配置されたコイルによりサセプタを誘導加熱して、エアロゾルを生成する技術が開示されている。 Until now, suction devices that heat the substrate using a heater that generates heat due to electrical resistance have been the mainstream. However, in recent years, attention has been focused on an induction heating suction device that generates an aerosol by induction heating a susceptor using an electromagnetic induction source configured as a coil. For example, Patent Literature 1 below discloses a technique in which a blade-shaped susceptor is inserted into a substrate, and the susceptor is induction-heated by a coil arranged to surround the substrate and the susceptor to generate an aerosol. .
国際公開第2018/220558号WO2018/220558
 しかし、上記特許文献1に記載された技術では、コイルから発生した磁場がサセプタに侵入することなく漏れ出てしまい、サセプタを効率よく昇温させることが困難な場合があった。 However, with the technique described in Patent Document 1, the magnetic field generated by the coil leaks out without penetrating into the susceptor, making it difficult to efficiently raise the temperature of the susceptor.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、誘導加熱式の吸引装置における効率的なエアロゾルの生成を可能にする仕組みを提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a mechanism that enables efficient generation of aerosol in an induction heating suction device. .
 上記課題を解決するために、本発明のある観点によれば、エアロゾル生成物品を加熱してエアロゾルを生成する誘導加熱部と前記誘導加熱部に電力を供給する電力供給部と、を備え、前記誘導加熱部は、中空に構成され前記エアロゾル生成物品に挿入される中空部材と、前記中空部材の内側に配置される誘導コイルと、を有し、前記誘導コイルから発生した変動磁場により昇温する、エアロゾル生成システムが提供される。 In order to solve the above problems, according to an aspect of the present invention, an induction heating unit that heats an aerosol-generating article to generate an aerosol and a power supply unit that supplies power to the induction heating unit, The induction heating unit has a hollow member configured to be hollow and inserted into the aerosol-generating article, and an induction coil arranged inside the hollow member, and is heated by a fluctuating magnetic field generated from the induction coil. , an aerosol generating system is provided.
 前記中空部材は、前記変動磁場が侵入した場合に発熱する第1のサセプタであってもよい。 The hollow member may be a first susceptor that generates heat when the fluctuating magnetic field penetrates.
 前記誘導加熱部は、前記誘導コイルの内側に配置され、前記変動磁場が侵入した場合に発熱する第2のサセプタを有し、前記中空部材は、前記第2のサセプタからの伝熱により昇温してもよい。 The induction heating unit has a second susceptor that is arranged inside the induction coil and generates heat when the fluctuating magnetic field enters, and the hollow member is heated by heat transfer from the second susceptor. You may
 前記第2のサセプタは、前記中空部材の内壁と少なくとも一か所で接してもよい。 The second susceptor may contact the inner wall of the hollow member at least at one point.
 前記第2のサセプタの先端は、前記中空部材の先端の内壁に接してもよい。 The tip of the second susceptor may contact the inner wall of the tip of the hollow member.
 前記第2のサセプタの側面に、少なくとも1つの突起が設けられ、前記第2のサセプタの側面のうち前記突起が設けられていない部分に前記誘導コイルが配置されてもよい。 At least one protrusion may be provided on the side surface of the second susceptor, and the induction coil may be arranged on a portion of the side surface of the second susceptor where the protrusion is not provided.
 前記突起は、螺旋状に設けられてもよい。 The projection may be spirally provided.
 前記突起は、前記中空部材の内壁に接してもよい。 The projection may contact the inner wall of the hollow member.
 前記突起は、前記変動磁場が侵入した場合に発熱してもよい。 The protrusion may generate heat when the fluctuating magnetic field penetrates.
 前記突起は、伝熱性を有する部材であってもよい。 The projection may be a heat-conducting member.
 前記突起には、前記誘導コイルの一端と前記電力供給部とを接続する配線が配置される貫通孔が設けられてもよい。 The protrusion may be provided with a through-hole in which a wiring connecting one end of the induction coil and the power supply unit is arranged.
 前記中空部材の内壁には、伝熱性を有する伝熱層が配置され、前記第2のサセプタは、前記伝熱層を介して前記中空部材の内壁と少なくとも一か所で接してもよい。 A heat transfer layer having heat transfer properties may be arranged on the inner wall of the hollow member, and the second susceptor may be in contact with the inner wall of the hollow member at least one point via the heat transfer layer.
 前記誘導コイルは、絶縁性及び耐熱性を有する部材によりコーティングされてもよい。 The induction coil may be coated with a member having insulation and heat resistance.
 前記エアロゾル生成システムは、内部空間及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記エアロゾル生成物品を収容可能な収容部をさらに備え、前記誘導加熱部は、前記収容部のうち前記開口の反対側にある底部から前記内部空間に突出するように配置されてもよい。 The aerosol-generating system further comprises a storage unit having an internal space and an opening communicating the internal space with the outside, and capable of containing the aerosol-generating article inserted into the internal space through the opening; may be arranged to protrude into the internal space from a bottom portion of the accommodating portion opposite to the opening.
 前記中空部材のうち、前記エアロゾル生成物品に挿入される先端は、テーパ状に構成されてもよい。 A distal end of the hollow member that is inserted into the aerosol-generating article may be tapered.
 前記中空部材は、中空に構成された円柱、楕円柱、又は角柱であってもよい。 The hollow member may be a cylindrical column, an elliptical column, or a rectangular column that is hollow.
 前記誘導コイルは、前記誘導加熱部の長手方向に直交する方向に対して10°以上の角度で傾斜して巻回されてもよい。 The induction coil may be wound at an angle of 10° or more with respect to a direction perpendicular to the longitudinal direction of the induction heating section.
 前記エアロゾル生成システムは、前記エアロゾル生成物品を含んでもよい。 The aerosol-generating system may include the aerosol-generating article.
 前記エアロゾル生成物品は、前記誘導加熱部が挿入される部分に、エアロゾル源を含有してもよい。 The aerosol-generating article may contain an aerosol source in the portion into which the induction heating section is inserted.
 以上説明したように本発明によれば、誘導加熱式の吸引装置における効率的なエアロゾルの生成を可能にする仕組みが提供される。 As described above, according to the present invention, a mechanism is provided that enables efficient aerosol generation in an induction heating suction device.
吸引装置の構成例を模式的に示す模式図である。It is a schematic diagram which shows the structural example of a suction device typically. 本発明の一実施形態に係る誘導加熱部の透過斜視図である。1 is a see-through perspective view of an induction heating section according to an embodiment of the present invention; FIG. 本実施形態に係る誘導加熱部の断面図である。It is a sectional view of an induction heating part concerning this embodiment. 第1の変形例に係る誘導加熱部の断面図である。It is a sectional view of the induction heating part concerning the 1st modification. 第2の変形例に係る誘導加熱部の断面図である。FIG. 11 is a cross-sectional view of an induction heating unit according to a second modified example; 第3の変形例に係る誘導加熱部の断面図である。FIG. 11 is a cross-sectional view of an induction heating unit according to a third modified example;
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
 <1.吸引装置の構成例>
 本構成例に係る吸引装置は、エアロゾル源を含む基材を基材内部から加熱することでエアロゾルを生成する。以下、図1を参照しながら、本構成例を説明する。
<1. Configuration example of suction device>
The suction device according to this configuration example generates an aerosol by heating a substrate including an aerosol source from inside the substrate. This configuration example will be described below with reference to FIG.
 図1は、吸引装置の構成例を模式的に示す模式図である。図1に示すように、本構成例に係る吸引装置100は、電源部111、センサ部112、通知部113、記憶部114、通信部115、制御部116、誘導加熱部121、及び収容部140を含む。収容部140にスティック型基材150が収容された状態で、ユーザによる吸引が行われる。以下、各構成要素について順に説明する。 FIG. 1 is a schematic diagram schematically showing a configuration example of a suction device. As shown in FIG. 1, the suction device 100 according to this configuration example includes a power supply unit 111, a sensor unit 112, a notification unit 113, a storage unit 114, a communication unit 115, a control unit 116, an induction heating unit 121, and a storage unit 140. including. The suction is performed by the user while the stick-shaped base material 150 is accommodated in the accommodation section 140 . Each component will be described in order below.
 電源部111は、電力を蓄積する。そして、電源部111は、吸引装置100の各構成要素に、電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。電源部111は、USB(Universal Serial Bus)ケーブル等により外部電源に接続されることで、充電されてもよい。また、電源部111は、ワイヤレス電力伝送技術により送電側のデバイスに非接続な状態で充電されてもよい。他にも、電源部111のみを吸引装置100から取り外すことができてもよく、新しい電源部111と交換することができてもよい。 The power supply unit 111 accumulates power. The power supply unit 111 supplies electric power to each component of the suction device 100 . The power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery. The power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like. Also, the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be detached from the suction device 100 or may be replaced with a new power supply unit 111 .
 センサ部112は、吸引装置100に関する各種情報を検出する。そして、センサ部112は、検出した情報を制御部116に出力する。一例として、センサ部112は、コンデンサマイクロホン等の圧力センサ、流量センサ又は温度センサにより構成される。そして、センサ部112は、ユーザによる吸引に伴う数値を検出した場合に、ユーザによる吸引が行われたことを示す情報を制御部116に出力する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。とりわけ、センサ部112は、エアロゾルの生成開始/停止を指示するボタンを含み得る。そして、センサ部112は、ユーザにより入力された情報を制御部116に出力する。他の一例として、センサ部112は、誘導加熱部121の温度を検出する温度センサにより構成される。かかる温度センサは、例えば、誘導加熱部121の導電トラックの電気抵抗値に基づいて誘導加熱部121の温度を検出する。センサ部112は、誘導加熱部121の温度に基づいて、収容部140に収容されたスティック型基材150の温度を検出してもよい。 The sensor unit 112 detects various information regarding the suction device 100 . The sensor unit 112 then outputs the detected information to the control unit 116 . As an example, the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor. When the sensor unit 112 detects a numerical value associated with the user's suction, the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 . As another example, the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user. Among other things, sensor unit 112 may include a button for instructing start/stop of aerosol generation. The sensor unit 112 then outputs the information input by the user to the control unit 116 . As another example, the sensor section 112 is configured by a temperature sensor that detects the temperature of the induction heating section 121 . Such a temperature sensor detects the temperature of the induction heating part 121 based on the electrical resistance value of the conductive track of the induction heating part 121, for example. The sensor unit 112 may detect the temperature of the stick-shaped substrate 150 housed in the housing unit 140 based on the temperature of the induction heating unit 121 .
 通知部113は、情報をユーザに通知する。一例として、通知部113は、LED(Light Emitting Diode)などの発光装置により構成される。その場合、通知部113は、電源部111の状態が要充電である場合、電源部111が充電中である場合、及び吸引装置100に異常が発生した場合等に、それぞれ異なる発光パターンで発光する。ここでの発光パターンとは、色、及び点灯/消灯のタイミング等を含む概念である。通知部113は、発光装置と共に、又は代えて、画像を表示する表示装置、音を出力する音出力装置、及び振動する振動装置等により構成されてもよい。他にも、通知部113は、ユーザによる吸引が可能になったことを示す情報を通知してもよい。ユーザによる吸引が可能になったことを示す情報は、誘導加熱部121により加熱されたスティック型基材150の温度が所定の温度に達した場合に、通知される。 The notification unit 113 notifies the user of information. As an example, the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode). In this case, the notification unit 113 emits light in different light emission patterns when the power supply unit 111 is in a charging required state, when the power supply unit 111 is being charged, when an abnormality occurs in the suction device 100, and the like. . The light emission pattern here is a concept including color, timing of lighting/lighting out, and the like. The notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device. In addition, the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that the suction by the user is enabled is notified when the temperature of the stick-shaped base material 150 heated by the induction heating unit 121 reaches a predetermined temperature.
 記憶部114は、吸引装置100の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114に記憶される情報の一例は、制御部116による各種構成要素の制御内容等の、吸引装置100のOS(Operating System)に関する情報である。記憶部114に記憶される情報の他の一例は、吸引回数、吸引時刻、吸引時間累計等の、ユーザによる吸引に関する情報である。 The storage unit 114 stores various information for the operation of the suction device 100 . The storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory. An example of the information stored in the storage unit 114 is information regarding the OS (Operating System) of the suction device 100, such as control details of various components by the control unit 116. FIG. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
 通信部115は、吸引装置100と他の装置との間で情報を送受信するための、通信インタフェースである。通信部115は、有線又は無線の任意の通信規格に準拠した通信を行う。かかる通信規格としては、例えば、無線LAN(Local Area Network)、有線LAN、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。一例として、通信部115は、ユーザによる吸引に関する情報をスマートフォンに表示させるために、ユーザによる吸引に関する情報をスマートフォンに送信する。他の一例として、通信部115は、記憶部114に記憶されているOSの情報を更新するために、サーバから新たなOSの情報を受信する。 The communication unit 115 is a communication interface for transmitting and receiving information between the suction device 100 and other devices. The communication unit 115 performs communication conforming to any wired or wireless communication standard. As such a communication standard, for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted. As an example, the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user. As another example, the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従って吸引装置100内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。他に、制御部116は、使用するプログラム及び演算パラメータ等を記憶するROM(Read Only Memory)、並びに適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。吸引装置100は、制御部116による制御に基づいて、各種処理を実行する。電源部111から他の各構成要素への給電、電源部111の充電、センサ部112による情報の検出、通知部113による情報の通知、記憶部114による情報の記憶及び読み出し、並びに通信部115による情報の送受信は、制御部116により制御される処理の一例である。各構成要素への情報の入力、及び各構成要素から出力された情報に基づく処理等、吸引装置100により実行されるその他の処理も、制御部116により制御される。 The control unit 116 functions as an arithmetic processing device and a control device, and controls the general operations within the suction device 100 according to various programs. The control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor. In addition, the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate. The suction device 100 executes various processes under the control of the controller 116 . Power supply from power supply unit 111 to other components, charging of power supply unit 111, detection of information by sensor unit 112, notification of information by notification unit 113, storage and reading of information by storage unit 114, and communication unit 115 Transmission and reception of information is an example of processing controlled by the control unit 116 . Other processes executed by the suction device 100, such as information input to each component and processing based on information output from each component, are also controlled by the control unit 116. FIG.
 収容部140は、内部空間141を有し、内部空間141にスティック型基材150の一部を収容しながらスティック型基材150を保持する。収容部140は、内部空間141を外部に連通する開口142を有し、開口142から内部空間141に挿入されたスティック型基材150を収容する。例えば、収容部140は、開口142及び底部143を底面とする筒状体であり、柱状の内部空間141を画定する。収容部140は、筒状体の高さ方向の少なくとも一部において、内径がスティック型基材150の外径よりも小さくなるように構成され、内部空間141に挿入されたスティック型基材150を外周から圧迫するようにしてスティック型基材150を保持し得る。収容部140は、スティック型基材150を通る空気の流路を画定する機能も有する。かかる流路内への空気の入り口である空気流入孔は、例えば底部143に配置される。他方、かかる流路からの空気の出口である空気流出孔は、開口142である。 The housing part 140 has an internal space 141 and holds the stick-shaped base material 150 while housing a part of the stick-shaped base material 150 in the internal space 141 . The accommodating portion 140 has an opening 142 that communicates the internal space 141 with the outside, and accommodates the stick-shaped substrate 150 inserted into the internal space 141 through the opening 142 . For example, the housing portion 140 is a cylindrical body having an opening 142 and a bottom portion 143 as a bottom surface, and defines a columnar internal space 141 . The accommodating part 140 is configured such that the inner diameter is smaller than the outer diameter of the stick-shaped base material 150 at least in part in the height direction of the cylindrical body, and the stick-shaped base material 150 inserted into the inner space 141 is held in the container. The stick-shaped substrate 150 can be held by pressing from the outer periphery. The containment portion 140 also functions to define a flow path for air through the stick-shaped substrate 150 . An air inlet hole, which is an inlet for air into the flow path, is arranged, for example, in the bottom portion 143 . On the other hand, the air outflow hole, which is the exit of air from such a channel, is the opening 142 .
 スティック型基材150は、スティック型の部材である。スティック型基材150は、基材部151、及び吸口部152を含む。 The stick-shaped base material 150 is a stick-shaped member. The stick-type substrate 150 includes a substrate portion 151 and a mouthpiece portion 152 .
 基材部151は、エアロゾル源を含む。エアロゾル源は、加熱されることで霧化され、エアロゾルが生成される。エアロゾル源は、例えば、刻みたばこ又はたばこ原料を、粒状、シート状、又は粉末状に成形した加工物などの、たばこ由来のものであってもよい。また、エアロゾル源は、たばこ以外の植物(例えばミント及びハーブ等)から作られた、非たばこ由来のものを含んでいてもよい。一例として、エアロゾル源は、メントール等の香料成分を含んでいてもよい。吸引装置100が医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。なお、エアロゾル源は固体に限られるものではなく、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体であってもよい。基材部151の少なくとも一部は、スティック型基材150が収容部140に保持された状態において、収容部140の内部空間141に収容される The base material portion 151 includes an aerosol source. The aerosol source is atomized by heating to produce an aerosol. The aerosol source may be tobacco-derived, such as, for example, a processed product of cut tobacco or tobacco material formed into granules, sheets, or powder. Aerosol sources may also include non-tobacco sources made from plants other than tobacco, such as mints and herbs. By way of example, the aerosol source may contain perfume ingredients such as menthol. If the inhalation device 100 is a medical inhaler, the aerosol source may contain a medicament for inhalation by the patient. The aerosol source is not limited to solids, and may be, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. At least a portion of the base material portion 151 is accommodated in the internal space 141 of the accommodation portion 140 while the stick-shaped substrate 150 is held in the accommodation portion 140.
 吸口部152は、吸引の際にユーザに咥えられる部材である。吸口部152の少なくとも一部は、スティック型基材150が収容部140に保持された状態において、開口142から突出する。そして、開口142から突出した吸口部152をユーザが咥えて吸引すると、図示しない空気流入孔から収容部140の内部に空気が流入する。流入した空気は、収容部140の内部空間141を通過して、すなわち、基材部151を通過して、基材部151から発生するエアロゾルと共に、ユーザの口内に到達する。 The mouthpiece 152 is a member held by the user when inhaling. At least part of the mouthpiece 152 protrudes from the opening 142 when the stick-shaped base material 150 is held in the housing 140 . Then, when the user holds the mouthpiece 152 protruding from the opening 142 in his/her mouth and sucks, air flows into the housing 140 through an air inlet hole (not shown). The air that has flowed in passes through the internal space 141 of the housing portion 140 , that is, through the base portion 151 and reaches the inside of the user's mouth together with the aerosol generated from the base portion 151 .
 誘導加熱部121は、誘導加熱によりエアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。誘導加熱とは、変動磁場をサセプタに侵入させることでサセプタを発熱させるプロセスである。例えば、誘導加熱部121は、収容部140の底部143から収容部140の内部空間141に突出するようにして配置される。そのため、収容部140にスティック型基材150が挿入されると、誘導加熱部121のうち内部空間141に突出する部分は、スティック型基材150の基材部151に突き刺さるようにして、スティック型基材150の内部に挿入される。そして、誘導加熱部121が発熱すると、スティック型基材150に含まれるエアロゾル源がスティック型基材150の内部から加熱されて霧化され、エアロゾルが生成される。図2及び図3を参照しながら後に詳しく説明するように、誘導加熱部121は、変動磁場を発生させる電磁誘導源としての誘導コイル20、及びサセプタとしてのサセプタピン30を含む。そして、誘導コイル20に交流電流が供給された場合に誘導コイル20から発生する変動磁場(より詳しくは、交番磁場)により、サセプタピン30が誘導加熱され、発熱する。これにより、誘導加熱部121が昇温する。一例として、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、給電され、エアロゾルが生成されてもよい。誘導加熱部121により加熱されたスティック型基材150の温度が所定の温度に達した場合に、ユーザによる吸引が可能となる。その後、所定のユーザ入力が行われたことがセンサ部112により検出された場合に、給電が停止されてもよい。他の一例として、ユーザによる吸引が行われたことがセンサ部112により検出されている期間において、給電され、エアロゾルが生成されてもよい。 The induction heating unit 121 heats the aerosol source by induction heating to atomize the aerosol source and generate an aerosol. Induction heating is a process of causing a susceptor to generate heat by penetrating a varying magnetic field into the susceptor. For example, the induction heating part 121 is arranged so as to protrude from the bottom part 143 of the housing part 140 into the internal space 141 of the housing part 140 . Therefore, when the stick-shaped substrate 150 is inserted into the housing portion 140, the portion of the induction heating portion 121 that protrudes into the internal space 141 is pierced into the substrate portion 151 of the stick-shaped substrate 150 so that the stick-shaped substrate 150 is inserted. It is inserted inside the substrate 150 . Then, when the induction heating part 121 generates heat, the aerosol source contained in the stick-shaped substrate 150 is heated from inside the stick-shaped substrate 150 and atomized to generate an aerosol. 2 and 3, the induction heating unit 121 includes an induction coil 20 as an electromagnetic induction source for generating a varying magnetic field and a susceptor pin 30 as a susceptor. When an alternating current is supplied to the induction coil 20, the susceptor pin 30 is induction-heated by a fluctuating magnetic field (more specifically, an alternating magnetic field) generated from the induction coil 20 to generate heat. As a result, the temperature of the induction heating unit 121 is increased. As an example, power may be supplied and an aerosol may be generated when the sensor unit 112 detects that a predetermined user input has been performed. When the temperature of the stick-shaped substrate 150 heated by the induction heating unit 121 reaches a predetermined temperature, the suction by the user becomes possible. After that, when the sensor unit 112 detects that a predetermined user input has been performed, the power supply may be stopped. As another example, power may be supplied and aerosol may be generated during a period in which the sensor unit 112 detects that the user has inhaled.
 電源部111は、誘導加熱部121(より詳しくは、誘導コイル20)に電力を供給する電力供給部の一例である。スティック型基材150は、エアロゾル源を含有したエアロゾル生成物品の一例である。スティック型基材150は、誘導加熱部121が挿入される部分、即ち基材部151に、エアロゾル源を含有する。吸引装置100とスティック型基材150とは協働してユーザにより吸引されるエアロゾルを生成する。そのため、吸引装置100とスティック型基材150との組み合わせは、エアロゾル生成システムとして捉えられてもよい。 The power supply unit 111 is an example of a power supply unit that supplies power to the induction heating unit 121 (more specifically, the induction coil 20). Stick-type substrate 150 is an example of an aerosol-generating article containing an aerosol source. The stick-shaped substrate 150 contains an aerosol source in the portion where the induction heating portion 121 is inserted, that is, the substrate portion 151 . The suction device 100 and stick-shaped substrate 150 cooperate to generate an aerosol that is inhaled by the user. As such, the combination of suction device 100 and stick-type substrate 150 may be viewed as an aerosol generating system.
 <2.誘導加熱部の詳細な構成>
 図2は、本発明の一実施形態に係る誘導加熱部121の透過斜視図である。図3は、本実施形態に係る誘導加熱部121の断面図である。
<2. Detailed Configuration of Induction Heating Unit>
FIG. 2 is a see-through perspective view of the induction heating section 121 according to one embodiment of the present invention. FIG. 3 is a cross-sectional view of the induction heating section 121 according to this embodiment.
 図2及び図3に示すように、本実施形態に係る誘導加熱部121は、中空部材10、誘導コイル20、及びサセプタピン30を含む。そして、図1を参照しながら上記説明したように、誘導加熱部121は、底部143から内部空間141に突出するようにして、配置される。 As shown in FIGS. 2 and 3, the induction heating unit 121 according to this embodiment includes a hollow member 10, an induction coil 20, and a susceptor pin 30. Then, as described above with reference to FIG. 1 , the induction heating part 121 is arranged so as to protrude from the bottom part 143 into the internal space 141 .
 これらの図において、誘導加熱部121がスティック型基材150の内部に挿入される先端側の方向(即ち、開口142の方向)を上方向とも称する。他方、上方向と反対側の方向(即ち、底部143の方向)を下方向とも称する。上下方向は、誘導加熱部121、収容部140、及び内部空間141の長手方向に対応する。 In these figures, the direction of the tip side where the induction heating part 121 is inserted inside the stick-shaped base material 150 (that is, the direction of the opening 142) is also referred to as the upward direction. On the other hand, the direction opposite to the upward direction (that is, the direction of the bottom portion 143) is also referred to as the downward direction. The vertical direction corresponds to the longitudinal direction of the induction heating section 121 , the housing section 140 and the internal space 141 .
 以下、誘導加熱部121に関する各構成要素について詳細に説明する。 Each component of the induction heating unit 121 will be described in detail below.
 中空部材10は、中空に構成された部材である。図2及び図3に示すように、中空部材10は、中空に構成された円柱であってもよい。中空部材10は、耐熱性及び伝熱性を有する部材により構成される。例えば、中空部材10は、例えば、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼などを含む材料群から選択される1以上の材料により構成される。 The hollow member 10 is a hollow member. As shown in FIGS. 2 and 3, the hollow member 10 may be a hollow column. The hollow member 10 is made of a member having heat resistance and heat conductivity. For example, hollow member 10 is made of one or more materials selected from a group of materials including, for example, aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel.
 中空部材10は、スティック型基材150に挿入される。図2及び図3に示すように、中空部材10のうち、スティック型基材150の内部に挿入される先端19(即ち、上方向の端部)は、テーパ状に構成されてもよい。例えば、中空部材10の先端19は、円錐として構成されてもよいし、円錐台として構成されてもよい。このように、中空部材10の先端19を鋭利な形状とすることで、スティック型基材150の内部への誘導加熱部121の挿入をより容易に行うことができるようになる。 The hollow member 10 is inserted into the stick-shaped base material 150 . As shown in FIGS. 2 and 3, the tip 19 (that is, the upward end) of the hollow member 10 inserted into the stick-shaped substrate 150 may be tapered. For example, tip 19 of hollow member 10 may be configured as a cone or as a truncated cone. By forming the tip 19 of the hollow member 10 into a sharp shape in this manner, the induction heating section 121 can be more easily inserted into the stick-shaped base material 150 .
 図2及び図3に示すように、中空部材10の内側に、誘導コイル20が配置される。そして、誘導コイル20の内側に、サセプタピン30が配置される。 As shown in FIGS. 2 and 3, an induction coil 20 is arranged inside the hollow member 10 . A susceptor pin 30 is arranged inside the induction coil 20 .
 誘導コイル20は、ソレノイド型のコイルである。誘導コイル20は、交流電流が印可された場合に、変動磁場(即ち、交番磁場)を発生させる。誘導コイル20は、サセプタピン30に巻き付くように配置される。誘導コイル20に交流電流が印可された場合、誘導コイル20の内側の空間と外側の空間とを循環する変動磁場が発生する。 The induction coil 20 is a solenoid type coil. The induction coil 20 generates a varying magnetic field (ie, alternating magnetic field) when an alternating current is applied. The induction coil 20 is arranged to wrap around the susceptor pin 30 . When an alternating current is applied to the induction coil 20 , a fluctuating magnetic field is generated that circulates between the space inside and outside the induction coil 20 .
 誘導コイル20は、絶縁性及び耐熱性を有する部材によりコーディングされる。一例として、誘導コイル20は、絶縁性及び耐熱性を有する樹脂又はセラミックによりコーティングされる。かかる構成によれば、サセプタピン30からの伝熱に起因する誘導コイル20の損傷を防止することが可能となる。 The induction coil 20 is coated with a member having insulation and heat resistance. As an example, the induction coil 20 is coated with an insulating and heat-resistant resin or ceramic. With such a configuration, it is possible to prevent damage to the induction coil 20 due to heat transfer from the susceptor pin 30 .
 誘導コイル20は、誘導加熱部121の長手方向に直交する方向に対して10°以上の角度で傾斜して巻回されることが望ましい。つまり、図3に示す角度θが10°以上であることが望ましい。誘導コイル20の直径を所定値以下にする必要がある等、誘導コイル20の直径には制約があり得る。その場合であっても、角度θを大きくすることで、制約を満たしつつ誘導コイル20の巻き数を確保することができる。他にも、中空部材10の厚みの関係で中空部材10の内側の空間が狭い等、中空部材10の内側の空間には制約があり得る。その場合であっても、角度θを大きくすることで、制約を満たしつつ誘導コイル20の巻き数を確保することができる。 The induction coil 20 is desirably wound at an angle of 10° or more with respect to the direction orthogonal to the longitudinal direction of the induction heating section 121 . That is, it is desirable that the angle θ shown in FIG. 3 is 10° or more. There may be restrictions on the diameter of the induction coil 20, such as the need to keep the diameter of the induction coil 20 below a predetermined value. Even in that case, the number of turns of the induction coil 20 can be ensured while satisfying the constraint by increasing the angle θ. In addition, there may be restrictions on the space inside the hollow member 10 , such as the space inside the hollow member 10 being narrow due to the thickness of the hollow member 10 . Even in that case, the number of turns of the induction coil 20 can be ensured while satisfying the constraint by increasing the angle θ.
 ここで、電源部111は、DC(Direct Current)電源であってもよい。その場合、電源部111は、DC/AC(Alternate Current)インバータを介して、交流電力を誘導コイル20に供給する。これにより、誘導コイル20は、変動磁場を発生させてサセプタピン30を昇温させることができる。 Here, the power supply unit 111 may be a DC (Direct Current) power supply. In that case, the power supply unit 111 supplies AC power to the induction coil 20 via a DC/AC (Alternate Current) inverter. Thereby, the induction coil 20 can generate a varying magnetic field to raise the temperature of the susceptor pin 30 .
 サセプタピン30は、変動磁場が侵入した場合に発熱するサセプタ(第2のサセプタに相当)である。図2に示すように、サセプタピン30は、円柱であってもよい。サセプタピン30は、誘導コイル20から発生した変動磁場が密集する、誘導コイル20の内側に配置される。そのため、サセプタピン30は、誘導コイル20から発生した変動磁場の多くを受け取り、効率的に、即ち急速に発熱することが可能となる。 The susceptor pin 30 is a susceptor (corresponding to a second susceptor) that generates heat when a fluctuating magnetic field penetrates. As shown in FIG. 2, the susceptor pin 30 may be cylindrical. The susceptor pin 30 is arranged inside the induction coil 20 where the fluctuating magnetic field generated from the induction coil 20 is concentrated. Therefore, the susceptor pin 30 receives most of the fluctuating magnetic field generated from the induction coil 20, and can efficiently, ie rapidly generate heat.
 サセプタは、導電性の材料により構成される。導電性の材料により構成されたサセプタに変動磁場が浸入すると、渦電流が誘起され、サセプタの電気抵抗に応じてサセプタが加熱される。このような加熱の仕組みは、抵抗加熱とも称される。さらに、サセプタは、強磁性を有する材料により構成されることが望ましい。抵抗加熱と磁気ヒステリシス加熱との組み合わせにより、加熱効率を高めることが可能なためである。磁気ヒステリシス加熱とは、変動磁場の侵入に応じた磁気双極子の再配向に伴い、磁性体を加熱するプロセスである。本発明における誘導加熱は、少なくとも抵抗加熱を含み、さらには磁気ヒステリシス加熱を含み得る。サセプタは、例えば、アルミニウム、鉄、ニッケル、コバルト、導電性炭素、銅、及びステンレス鋼などを含む材料群から選択される1以上の材料により構成される。 The susceptor is made of a conductive material. When a fluctuating magnetic field penetrates a susceptor made of a conductive material, eddy currents are induced and the susceptor is heated according to the electrical resistance of the susceptor. Such a heating mechanism is also called resistive heating. Furthermore, it is desirable that the susceptor be made of a ferromagnetic material. This is because a combination of resistance heating and magnetic hysteresis heating can increase the heating efficiency. Magnetic hysteresis heating is the process of heating a magnetic material with the reorientation of the magnetic dipoles in response to the penetration of a varying magnetic field. Induction heating in the present invention includes at least resistance heating and may include magnetic hysteresis heating. The susceptor is made of one or more materials selected from a group of materials including, for example, aluminum, iron, nickel, cobalt, conductive carbon, copper, and stainless steel.
 誘導加熱部121は、誘導コイル20から発生した変動磁場により昇温する。詳しくは、誘導コイル20から発生した変動磁場は、誘導コイル20の内側の空間に配置されたサセプタピン30に侵入し、サセプタピン30が発熱する。そして、中空部材10は、サセプタピン30からの伝熱により昇温する。誘導加熱部121がスティック型基材150に挿入された状態で、サセプタピン30を誘導加熱して中空部材10を昇温させることで、スティック型基材150を内側から加熱して、エアロゾルを生成することが可能となる。 The induction heating unit 121 is heated by the fluctuating magnetic field generated from the induction coil 20 . Specifically, the fluctuating magnetic field generated by the induction coil 20 penetrates the susceptor pin 30 arranged in the space inside the induction coil 20, and the susceptor pin 30 generates heat. The temperature of the hollow member 10 rises due to heat transfer from the susceptor pin 30 . In a state in which the induction heating part 121 is inserted into the stick-shaped base material 150, the susceptor pin 30 is induction-heated to raise the temperature of the hollow member 10, thereby heating the stick-shaped base material 150 from the inside to generate an aerosol. becomes possible.
 サセプタピン30は、中空部材10の内壁と少なくとも一か所で接する。かかる構成により、サセプタピン30から中空部材10への伝熱を容易にし、中空部材10を効率的に昇温させることが可能となる。 The susceptor pin 30 contacts the inner wall of the hollow member 10 at least at one point. Such a configuration facilitates heat transfer from the susceptor pin 30 to the hollow member 10, making it possible to raise the temperature of the hollow member 10 efficiently.
 とりわけ、図3に示すように、サセプタピン30の先端39(即ち、上方向の端部)が、中空部材10の先端19の内壁に接していてもよい。かかる構成によれば、中空部材10の先端19を最も効率的に昇温させることができる。スティック型基材150が内部空間141に挿入された際には、中空部材10の先端19が、基材部151の最も奥深くに挿入される。そのため、基材部151を効率的に昇温させて、エアロゾルを効率的に生成することが可能となる。 In particular, as shown in FIG. 3, the tip 39 (that is, the upward end) of the susceptor pin 30 may contact the inner wall of the tip 19 of the hollow member 10 . With such a configuration, the temperature of the tip 19 of the hollow member 10 can be most efficiently raised. When the stick-shaped base material 150 is inserted into the internal space 141 , the tip 19 of the hollow member 10 is inserted deepest into the base material portion 151 . Therefore, it is possible to efficiently raise the temperature of the base material portion 151 and efficiently generate the aerosol.
 誘導加熱部121の後端側(即ち、下方向側)には、図示しない固定部が設けられる。図示しない固定部は、中空部材10を吸引装置100のハウジングに固定する構造部材である。固定部は、PEEK(Poly Ether Ether Ketone)等の耐熱性を有する材料により構成されることが望ましい。かかる構成によれば、誘導加熱部121が高熱を発しても、誘導加熱部121を固定し続けることが可能となる。 A fixing part (not shown) is provided on the rear end side (that is, downward side) of the induction heating part 121 . A fixing part (not shown) is a structural member that fixes the hollow member 10 to the housing of the suction device 100 . It is desirable that the fixed part is made of a heat-resistant material such as PEEK (Poly Ether Ether Ketone). According to such a configuration, even if the induction heating part 121 generates high heat, the induction heating part 121 can be kept fixed.
 以上説明したように、本実施形態によれば、中空部材10の内側に誘導コイル20及びサセプタピン30が配置され、誘導加熱されたサセプタピン30からの伝熱により中空部材10が昇温する。これにより、誘導加熱部121(より詳しくは、中空部材10)が挿入されたスティック型基材150が内側から加熱され、エアロゾルが生成される。ここで、サセプタピン30は、誘導コイル20から発生した変動磁場が密集する、誘導コイル20の内側に配置される。そのため、サセプタピン30は、誘導コイル20から発生した変動磁場の多くを受け取り、効率的に、即ち急速に発熱することが可能となる。かかる構成により、エアロゾルを効率的に生成することが可能となる。即ち、電力使用効率を向上させることが可能となる。 As described above, according to the present embodiment, the induction coil 20 and the susceptor pin 30 are arranged inside the hollow member 10, and the temperature of the hollow member 10 is raised by heat transfer from the induction-heated susceptor pin 30. As a result, the stick-shaped base material 150 into which the induction heating part 121 (more specifically, the hollow member 10) is inserted is heated from the inside to generate an aerosol. Here, the susceptor pin 30 is arranged inside the induction coil 20 where the fluctuating magnetic field generated from the induction coil 20 is concentrated. Therefore, the susceptor pin 30 receives most of the fluctuating magnetic field generated from the induction coil 20, and can efficiently, ie rapidly generate heat. Such a configuration enables efficient generation of aerosol. That is, it is possible to improve power usage efficiency.
 <3.変形例>
 (1)第1の変形例
 図4は、第1の変形例に係る誘導加熱部121の断面図である。図4に示すように、本変形例に係る誘導加熱部121は、中空部材10、誘導コイル20、及びサセプタピン30を含む。中空部材10及び誘導コイル20の構成は、上記実施形態において説明した通りである。
<3. Variation>
(1) First Modification FIG. 4 is a cross-sectional view of an induction heating unit 121 according to a first modification. As shown in FIG. 4 , an induction heating section 121 according to this modification includes a hollow member 10 , an induction coil 20 and a susceptor pin 30 . The configurations of the hollow member 10 and the induction coil 20 are as described in the above embodiment.
 サセプタピン30の側面には、少なくとも1つの突起31が設けられる。そして、サセプタピン30の側面のうち突起31が設けられていない部分に誘導コイル20が配置される。具体的には、図4に示すように、突起31は、螺旋状に設けられてもよい。その場合、螺旋状に設けられた突起31に挟まれた溝32に誘導コイル20が配置される。かかる構成によれば、誘導コイル20がサセプタピン30側面の溝32に埋没するように配置されるので、誘導コイル20の位置ずれを防止することが可能となる。 At least one protrusion 31 is provided on the side surface of the susceptor pin 30 . The induction coil 20 is arranged on the side surface of the susceptor pin 30 where the protrusion 31 is not provided. Specifically, as shown in FIG. 4, the projection 31 may be spirally provided. In that case, the induction coil 20 is arranged in the groove 32 sandwiched between the spirally provided projections 31 . According to such a configuration, the induction coil 20 is arranged so as to be buried in the groove 32 on the side surface of the susceptor pin 30, so it is possible to prevent the induction coil 20 from being displaced.
 図4に示すように、サセプタピン30の側面に設けられた突起31は、中空部材10の内壁に接する。かかる構成によれば、サセプタピン30の先端39以外にも中空部材10とサセプタピン30とが接することとなる。さらに、突起31が螺旋状に設けられる場合には、中空部材10とサセプタピン30とが、上下方向の全体にわたって接することとなる。そのため、サセプタピン30から中空部材10への伝熱をより容易にし、中空部材10をより効率的に昇温させることが可能となる。 As shown in FIG. 4, the projection 31 provided on the side surface of the susceptor pin 30 contacts the inner wall of the hollow member 10. As shown in FIG. According to such a configuration, the hollow member 10 and the susceptor pin 30 are in contact with each other in addition to the tip 39 of the susceptor pin 30 . Furthermore, when the protrusion 31 is provided in a spiral shape, the hollow member 10 and the susceptor pin 30 are in contact with each other over the entire vertical direction. Therefore, heat can be more easily transferred from the susceptor pin 30 to the hollow member 10, and the temperature of the hollow member 10 can be raised more efficiently.
 サセプタピン30の側面に設けられた突起31は、変動磁場が侵入した場合に発熱する。即ち、突起31もまた、サセプタである。一例として、サセプタピン30が、螺旋状に設けられた突起31を有するネジ状の部材として構成されてもよい。かかる構成によれば、中空部材10の内壁に接する突起31自体が発熱するので、中空部材10をより効率的に昇温させることが可能となる。 The protrusion 31 provided on the side surface of the susceptor pin 30 generates heat when a fluctuating magnetic field penetrates. That is, the protrusion 31 is also a susceptor. As an example, the susceptor pin 30 may be configured as a screw-like member having a spirally provided projection 31 . According to such a configuration, since the projection 31 itself that contacts the inner wall of the hollow member 10 generates heat, it is possible to raise the temperature of the hollow member 10 more efficiently.
 サセプタピン30には、誘導コイル20の一端と電源部111とを接続する配線が配置される、貫通孔が設けられる。例えば、図4に示すように、サセプタピン30の側面に設けられた突起31に、誘導コイル20の一端と電源部111とを接続する配線21が配置される、貫通孔33が設けられてもよい。具体的には、螺旋状の各段を構成する突起31の各々に、上下方向に貫通する貫通孔33が設けられてもよい。そして、誘導コイル20の先端側の配線21がかかる貫通孔33を貫通して下端側から中空部材10の外に引き出され、電源部111に接続される。他方、誘導コイル20の後端側の端部もまた、下端側から中空部材10の外に引き出され、電源部111に接続される。かかる構成により、電源部111からの電力を誘導コイル20に印可することが可能となる。 The susceptor pin 30 is provided with a through hole in which a wiring connecting one end of the induction coil 20 and the power supply section 111 is arranged. For example, as shown in FIG. 4, a protrusion 31 provided on the side surface of the susceptor pin 30 may be provided with a through hole 33 in which a wiring 21 connecting one end of the induction coil 20 and the power supply unit 111 is arranged. . Specifically, a through hole 33 penetrating in the vertical direction may be provided in each of the projections 31 forming each spiral step. Then, the wire 21 on the tip side of the induction coil 20 passes through the through hole 33 and is pulled out of the hollow member 10 from the lower end side and connected to the power supply section 111 . On the other hand, the rear end of the induction coil 20 is also pulled out of the hollow member 10 from the lower end and connected to the power supply section 111 . With such a configuration, it becomes possible to apply power from the power supply unit 111 to the induction coil 20 .
 なお、上記では、サセプタピン30の側面に設けられた突起31がサセプタである例を説明したが、本発明はかかる例に限定されない。サセプタピン30の側面に設けられた突起31は、伝熱性を有する部材であってもよい。即ち、サセプタピン30の側面に、突起31として構成された伝熱性を有する部材が配置されてもよい。伝熱性を有する部材として、銅等の金属、及び炭化ケイ素等のファインセラミックスが挙げられる。かかる構成によっても、サセプタピン30から中空部材10への効率的な伝熱を実現し、中空部材10を効率的に昇温させることが可能となる。 In the above description, an example in which the projections 31 provided on the side surfaces of the susceptor pin 30 are susceptors has been described, but the present invention is not limited to such an example. The protrusion 31 provided on the side surface of the susceptor pin 30 may be a heat-conducting member. That is, a heat-conducting member configured as the protrusion 31 may be arranged on the side surface of the susceptor pin 30 . Materials having thermal conductivity include metals such as copper and fine ceramics such as silicon carbide. With such a configuration as well, efficient heat transfer from the susceptor pin 30 to the hollow member 10 can be achieved, and the temperature of the hollow member 10 can be efficiently raised.
 また、突起31は、サセプタピン30ではなく、中空部材10の内壁に設けられていてもよい。その場合、中空部材10の内壁に設けられた突起31が、サセプタピン30の側面に接する。かかる構成によっても、サセプタピン30から中空部材10への効率的な伝熱を実現し、中空部材10を効率的に昇温させることが可能となる。 Also, the projection 31 may be provided on the inner wall of the hollow member 10 instead of the susceptor pin 30 . In that case, the projections 31 provided on the inner wall of the hollow member 10 come into contact with the side surfaces of the susceptor pins 30 . With such a configuration as well, efficient heat transfer from the susceptor pin 30 to the hollow member 10 can be achieved, and the temperature of the hollow member 10 can be efficiently raised.
 (2)第2の変形例
 図5は、第2の変形例に係る誘導加熱部121の断面図である。図5に示すように、本変形例に係る誘導加熱部121は、中空部材10、誘導コイル20、サセプタピン30、及び伝熱層40を含む。本変形例は、第1の変形例に、伝熱層40が追加された例である。
(2) Second Modification FIG. 5 is a cross-sectional view of an induction heating unit 121 according to a second modification. As shown in FIG. 5, an induction heating section 121 according to this modification includes a hollow member 10, an induction coil 20, a susceptor pin 30, and a heat transfer layer 40. As shown in FIG. This modification is an example in which a heat transfer layer 40 is added to the first modification.
 伝熱層40は、伝熱性を有する部材である。ここでの伝熱性とは、熱伝導性、及び熱放射性を含む概念である。伝熱層40は、例えば、銅、グラファイト、及びアルミニウムなどを含む材料群から選択される1以上の材料により構成される。 The heat transfer layer 40 is a member having heat transfer properties. The thermal conductivity here is a concept including thermal conductivity and thermal radiation. The heat transfer layer 40 is made of one or more materials selected from a group of materials including, for example, copper, graphite, and aluminum.
 伝熱層40は、中空部材10の内壁に配置される。例えば、伝熱層40は、膜状に形成され、中空部材10の内壁の側面全体にわたって密着するように配置される。 The heat transfer layer 40 is arranged on the inner wall of the hollow member 10 . For example, the heat transfer layer 40 is formed in the form of a film and arranged so as to be in close contact with the entire side surface of the inner wall of the hollow member 10 .
 そして、サセプタピン30は、伝熱層40を介して中空部材10の内壁と少なくとも一か所で接する。詳しくは、図5に示すように、サセプタピン30の側面に設けられた螺旋状の突起31が、中空部材10の内壁に配置された伝熱層40に接する。かかる構成によれば、伝熱層40は、サセプタピン30の側面に設けられた螺旋状の突起31から受けた熱を、中空部材10の全域に拡散することができる。よって、中空部材10のうち、螺旋状の突起31に対応する(即ち、伝熱層40を挟んで接する)部分と、螺旋状の突起31に挟まれた溝32の部分に対応する部分と、の間に生じる温度差を軽減して、中空部材10をより均一且つ効率的に昇温させることが可能となる。 The susceptor pin 30 is in contact with the inner wall of the hollow member 10 through the heat transfer layer 40 at at least one point. Specifically, as shown in FIG. 5, the spiral projections 31 provided on the side surfaces of the susceptor pins 30 are in contact with the heat transfer layer 40 arranged on the inner wall of the hollow member 10 . With such a configuration, the heat transfer layer 40 can diffuse the heat received from the spiral projections 31 provided on the side surfaces of the susceptor pins 30 to the entire area of the hollow member 10 . Therefore, of the hollow member 10, a portion corresponding to the helical projection 31 (that is, contacting with the heat transfer layer 40 interposed therebetween), a portion corresponding to the portion of the groove 32 sandwiched between the helical projections 31, It is possible to reduce the temperature difference that occurs between and raise the temperature of the hollow member 10 more uniformly and efficiently.
 (3)第3の変形例
 第1の変形例及び第2の変形例では、突起31が螺旋状に設けられる例を説明したが、本発明はかかる例に限定されない。突起31の他の構成例を、図6を参照しながら説明する。
(3) Third Modification In the first modification and the second modification, an example in which the projection 31 is spirally provided has been described, but the present invention is not limited to this example. Another configuration example of the projection 31 will be described with reference to FIG.
 図6は、第3の変形例に係る誘導加熱部121の断面図である。図6に示した例では、サセプタピン30の側面の中央部分に、リング状に構成された突起31が設けられており、中空部材10の内部空間が上下2つの空間に分割されている。そして、上方の空間に誘導コイル20Aが配置され、下方の空間に誘導コイル20Bが配置されている。突起31には、誘導コイル20Aの一端と電源部111とを接続する配線21Aが配置される、貫通孔33が設けられる。このように、誘導加熱部121は複数の誘導コイル20を有していてもよく、サセプタピン30の側面のうち突起31が設けられていない複数の部分の各々に誘導コイル20が配置されてもよい。 FIG. 6 is a cross-sectional view of an induction heating section 121 according to a third modified example. In the example shown in FIG. 6, a ring-shaped protrusion 31 is provided in the central portion of the side surface of the susceptor pin 30, and the internal space of the hollow member 10 is divided into upper and lower spaces. An induction coil 20A is arranged in the upper space, and an induction coil 20B is arranged in the lower space. The protrusion 31 is provided with a through-hole 33 in which a wiring 21A connecting one end of the induction coil 20A and the power supply section 111 is arranged. Thus, the induction heating part 121 may have a plurality of induction coils 20, and the induction coils 20 may be arranged in each of a plurality of portions of the side surface of the susceptor pin 30 where the projections 31 are not provided. .
 かかる構成によれば、少なくとも図2及び図3に示した例と比較して、サセプタピン30から中空部材10への伝熱をより容易にし、中空部材10をより効率的に昇温させることが可能となる。また、第1の変形例及び第2の変形例と比較して、誘導加熱部121の製造を容易にし、製造不良の発生を抑制することが可能となる。なお、突起31の数は、求める昇温速度に応じて適宜設計されればよい。 According to such a configuration, heat can be more easily transferred from the susceptor pin 30 to the hollow member 10 and the temperature of the hollow member 10 can be raised more efficiently than at least the examples shown in FIGS. becomes. Moreover, compared to the first modification and the second modification, the induction heating section 121 can be manufactured easily, and the occurrence of manufacturing defects can be suppressed. Note that the number of protrusions 31 may be appropriately designed according to the desired rate of temperature increase.
 本変形例においても、第2の変形例と同様に、伝熱層40が設けられてもよい。 Also in this modified example, the heat transfer layer 40 may be provided as in the second modified example.
 (4)第4の変形例
 上記実施形態では、誘導加熱部121のうち、サセプタピン30が誘導加熱される例を説明したが、本発明はかかる例に限定されない。
(4) Fourth Modification In the above embodiment, an example in which the susceptor pins 30 of the induction heating portion 121 are induction-heated has been described, but the present invention is not limited to this example.
 一例として、中空部材10が、変動磁場が侵入した場合に発熱するサセプタ(第1のサセプタに相当)であってもよい。その場合、誘導コイル20から発生した変動磁場が、誘導コイル20の外側において中空部材10に侵入し、中空部材10が発熱する。かかる構成によれば、スティック型基材150に接する中空部材10を直接昇温させて、効率的にスティック型基材150を加熱することが可能となる。 As an example, the hollow member 10 may be a susceptor (corresponding to a first susceptor) that generates heat when a fluctuating magnetic field penetrates. In this case, the fluctuating magnetic field generated by the induction coil 20 penetrates the hollow member 10 outside the induction coil 20, causing the hollow member 10 to generate heat. According to such a configuration, it is possible to directly raise the temperature of the hollow member 10 in contact with the stick-shaped base material 150 and efficiently heat the stick-shaped base material 150 .
 なお、中空部材10がサセプタである場合、誘導加熱部121は、サセプタピン30を有していなくてもよい。その場合、誘導加熱部121は、中空部材10のみを昇温させることとなる。 If the hollow member 10 is a susceptor, the induction heating section 121 does not have to have the susceptor pin 30 . In that case, the induction heating unit 121 heats only the hollow member 10 .
 もちろん、誘導加熱部121は、サセプタである中空部材10と共に、サセプタであるサセプタピン30を有していてもよい。その場合、変動磁場をより多くのサセプタにより受け取ることができるので、より効率的にスティック型基材150を加熱することが可能となる。 Of course, the induction heating part 121 may have the susceptor pin 30 as the susceptor together with the hollow member 10 as the susceptor. In that case, more susceptors can receive the varying magnetic field, so that the stick-shaped substrate 150 can be heated more efficiently.
 (5)第5の変形例
 上記実施形態では、中空部材10が中空に構成された円柱である例を説明したが、本発明はかかる例に限定されない。中空部材10は、中空に構成された楕円柱であってもよい。他にも、中空部材10は、中空に構成された角柱であってもよい。角柱の一例として、中空部材10は、四角柱として構成され、四角柱の先端が四角錐状に構成されてもよい。その場合の断面図は、図3に示した断面図と同様となる。
(5) Fifth Modification In the above-described embodiment, an example was described in which the hollow member 10 was a hollow cylinder, but the present invention is not limited to this example. The hollow member 10 may be an elliptical cylinder configured to be hollow. In addition, the hollow member 10 may be a hollow prism. As an example of a prism, the hollow member 10 may be configured as a quadrangular prism, and the tip of the quadrangular prism may be configured in a quadrangular pyramid shape. A cross-sectional view in that case is similar to the cross-sectional view shown in FIG.
 サセプタピン30の形状もまた、円柱に限定されない。例えば、サセプタピン30は、角柱又は楕円柱であってもよい。 The shape of the susceptor pin 30 is also not limited to a cylinder. For example, the susceptor pin 30 may be prismatic or elliptical.
 <4.補足>
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<4. Supplement>
Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 なお、以下のような構成も本発明の技術的範囲に属する。
(1)
 エアロゾル生成物品を加熱してエアロゾルを生成する誘導加熱部と
 前記誘導加熱部に電力を供給する電力供給部と、
 を備え、
 前記誘導加熱部は、
  中空に構成され前記エアロゾル生成物品に挿入される中空部材と、
  前記中空部材の内側に配置される誘導コイルと、
  を有し、前記誘導コイルから発生した変動磁場により昇温する、
 エアロゾル生成システム。
(2)
 前記中空部材は、前記変動磁場が侵入した場合に発熱する第1のサセプタである、
 前記(1)に記載のエアロゾル生成システム。
(3)
 前記誘導加熱部は、前記誘導コイルの内側に配置され、前記変動磁場が侵入した場合に発熱する第2のサセプタを有し、
 前記中空部材は、前記第2のサセプタからの伝熱により昇温する、
 前記(1)又は(2)に記載のエアロゾル生成システム。
(4)
 前記第2のサセプタは、前記中空部材の内壁と少なくとも一か所で接する、
 前記(3)に記載のエアロゾル生成システム。
(5)
 前記第2のサセプタの先端は、前記中空部材の先端の内壁に接する、
 前記(4)に記載のエアロゾル生成システム。
(6)
 前記第2のサセプタの側面に、少なくとも1つの突起が設けられ、
 前記第2のサセプタの側面のうち前記突起が設けられていない部分に前記誘導コイルが配置される、
 前記(3)~(5)のいずれか一項に記載のエアロゾル生成システム。
(7)
 前記突起は、螺旋状に設けられる、
 前記(6)に記載のエアロゾル生成システム。
(8)
 前記突起は、前記中空部材の内壁に接する、
 前記(6)又は(7)に記載のエアロゾル生成システム。
(9)
 前記突起は、前記変動磁場が侵入した場合に発熱する、
 前記(6)~(8)のいずれか一項に記載のエアロゾル生成システム。
(10)
 前記突起は、伝熱性を有する部材である、
 前記(6)~(8)のいずれか一項に記載のエアロゾル生成システム。
(11)
 前記突起には、前記誘導コイルの一端と前記電力供給部とを接続する配線が配置される貫通孔が設けられる、
 前記(6)~(10)のいずれか一項に記載のエアロゾル生成システム。
(12)
 前記中空部材の内壁には、伝熱性を有する伝熱層が配置され、
 前記第2のサセプタは、前記伝熱層を介して前記中空部材の内壁と少なくとも一か所で接する、
 前記(3)~(11)のいずれか一項に記載のエアロゾル生成システム。
(13)
 前記誘導コイルは、絶縁性及び耐熱性を有する部材によりコーティングされる、
 前記(1)~(12)のいずれか一項に記載のエアロゾル生成システム。
(14)
 前記エアロゾル生成システムは、
 内部空間及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記エアロゾル生成物品を収容可能な収容部をさらに備え、
 前記誘導加熱部は、前記収容部のうち前記開口の反対側にある底部から前記内部空間に突出するように配置される、
 前記(1)~(13)のいずれか一項に記載のエアロゾル生成システム。
(15)
 前記中空部材のうち、前記エアロゾル生成物品に挿入される先端は、テーパ状に構成される、
 前記(1)~(14)のいずれか一項に記載のエアロゾル生成システム。
(16)
 前記中空部材は、中空に構成された円柱、楕円柱、又は角柱である、
 前記(1)~(15)のいずれか一項に記載のエアロゾル生成システム。
(17)
 前記誘導コイルは、前記誘導加熱部の長手方向に直交する方向に対して10°以上の角度で傾斜して巻回される、
 前記(1)~(16)のいずれか一項に記載のエアロゾル生成システム。
(18)
 前記エアロゾル生成システムは、前記エアロゾル生成物品を含む、
 前記(1)~(17)のいずれか一項に記載のエアロゾル生成システム。
(19)
 前記エアロゾル生成物品は、前記誘導加熱部が挿入される部分に、エアロゾル源を含有する、
 前記(1)~(18)のいずれか一項に記載のエアロゾル生成システム。
The following configuration also belongs to the technical scope of the present invention.
(1)
an induction heating section for heating an aerosol-generating article to generate an aerosol; a power supply section for supplying power to the induction heating section;
with
The induction heating unit is
a hollow member configured to be hollow and inserted into the aerosol-generating article;
an induction coil disposed inside the hollow member;
and is heated by a fluctuating magnetic field generated from the induction coil,
Aerosol generation system.
(2)
The hollow member is a first susceptor that generates heat when the fluctuating magnetic field penetrates,
The aerosol generating system according to (1) above.
(3)
The induction heating unit has a second susceptor that is arranged inside the induction coil and generates heat when the fluctuating magnetic field enters,
The hollow member is heated by heat transfer from the second susceptor.
The aerosol generating system according to (1) or (2) above.
(4)
the second susceptor is in contact with the inner wall of the hollow member at least at one point;
The aerosol generating system according to (3) above.
(5)
the tip of the second susceptor is in contact with the inner wall of the tip of the hollow member;
The aerosol generating system according to (4) above.
(6)
at least one protrusion is provided on a side surface of the second susceptor;
the induction coil is arranged on a portion of the side surface of the second susceptor where the projection is not provided;
The aerosol generating system according to any one of (3) to (5) above.
(7)
wherein the projection is spirally provided;
The aerosol generating system according to (6) above.
(8)
wherein the protrusion is in contact with the inner wall of the hollow member;
The aerosol generating system according to (6) or (7) above.
(9)
the projection generates heat when the fluctuating magnetic field penetrates;
The aerosol generating system according to any one of (6) to (8) above.
(10)
The protrusion is a member having heat conductivity,
The aerosol generating system according to any one of (6) to (8) above.
(11)
The protrusion is provided with a through-hole in which a wiring connecting one end of the induction coil and the power supply unit is arranged,
The aerosol generating system according to any one of (6) to (10).
(12)
A heat transfer layer having heat transfer properties is disposed on the inner wall of the hollow member,
The second susceptor is in contact with the inner wall of the hollow member at least one place through the heat transfer layer.
The aerosol generating system according to any one of (3) to (11).
(13)
The induction coil is coated with a member having insulation and heat resistance,
The aerosol generating system according to any one of (1) to (12) above.
(14)
The aerosol generating system comprises:
further comprising a storage unit having an internal space and an opening that communicates the internal space with the outside, and capable of containing the aerosol-generating article inserted into the internal space through the opening;
The induction heating unit is arranged so as to protrude into the internal space from a bottom portion of the housing portion on the opposite side of the opening,
The aerosol generating system according to any one of (1) to (13) above.
(15)
The tip of the hollow member that is inserted into the aerosol-generating article is tapered.
The aerosol generating system according to any one of (1) to (14) above.
(16)
The hollow member is a cylinder, an elliptical cylinder, or a prism configured to be hollow,
The aerosol generating system according to any one of (1) to (15) above.
(17)
The induction coil is wound at an angle of 10° or more with respect to a direction orthogonal to the longitudinal direction of the induction heating unit,
The aerosol generating system according to any one of (1) to (16) above.
(18)
wherein the aerosol-generating system comprises the aerosol-generating article;
The aerosol generating system according to any one of (1) to (17) above.
(19)
The aerosol-generating article contains an aerosol source in a portion into which the induction heating element is inserted.
The aerosol generating system according to any one of (1) to (18) above.
 100  吸引装置
 111  電源部
 112  センサ部
 113  通知部
 114  記憶部
 115  通信部
 116  制御部
 121  誘導加熱部
 140  収容部
 141  内部空間
 142  開口
 143  底部
 150  スティック型基材
 151  基材部
 152  吸口部
 10  中空部材
 19  中空部材の先端
 20  誘導コイル
 30  サセプタピン
 31  突起
 32  溝
 49  サセプタピンの先端
 40  伝熱層
100 suction device 111 power supply unit 112 sensor unit 113 notification unit 114 storage unit 115 communication unit 116 control unit 121 induction heating unit 140 storage unit 141 internal space 142 opening 143 bottom 150 stick-shaped substrate 151 substrate 152 mouthpiece 10 hollow member REFERENCE SIGNS LIST 19 tip of hollow member 20 induction coil 30 susceptor pin 31 projection 32 groove 49 tip of susceptor pin 40 heat transfer layer

Claims (19)

  1.  エアロゾル生成物品を加熱してエアロゾルを生成する誘導加熱部と
     前記誘導加熱部に電力を供給する電力供給部と、
     を備え、
     前記誘導加熱部は、
      中空に構成され前記エアロゾル生成物品に挿入される中空部材と、
      前記中空部材の内側に配置される誘導コイルと、
      を有し、前記誘導コイルから発生した変動磁場により昇温する、
     エアロゾル生成システム。
    an induction heating section for heating an aerosol-generating article to generate an aerosol; a power supply section for supplying power to the induction heating section;
    with
    The induction heating unit is
    a hollow member configured to be hollow and inserted into the aerosol-generating article;
    an induction coil disposed inside the hollow member;
    and is heated by a fluctuating magnetic field generated from the induction coil,
    Aerosol generation system.
  2.  前記中空部材は、前記変動磁場が侵入した場合に発熱する第1のサセプタである、
     請求項1に記載のエアロゾル生成システム。
    The hollow member is a first susceptor that generates heat when the fluctuating magnetic field penetrates,
    2. The aerosol generating system of claim 1.
  3.  前記誘導加熱部は、前記誘導コイルの内側に配置され、前記変動磁場が侵入した場合に発熱する第2のサセプタを有し、
     前記中空部材は、前記第2のサセプタからの伝熱により昇温する、
     請求項1又は2に記載のエアロゾル生成システム。
    The induction heating unit has a second susceptor that is arranged inside the induction coil and generates heat when the fluctuating magnetic field enters,
    The hollow member is heated by heat transfer from the second susceptor.
    3. An aerosol generating system according to claim 1 or 2.
  4.  前記第2のサセプタは、前記中空部材の内壁と少なくとも一か所で接する、
     請求項3に記載のエアロゾル生成システム。
    the second susceptor is in contact with the inner wall of the hollow member at least at one point;
    4. The aerosol generating system of claim 3.
  5.  前記第2のサセプタの先端は、前記中空部材の先端の内壁に接する、
     請求項4に記載のエアロゾル生成システム。
    the tip of the second susceptor is in contact with the inner wall of the tip of the hollow member;
    5. The aerosol generating system of claim 4.
  6.  前記第2のサセプタの側面に、少なくとも1つの突起が設けられ、
     前記第2のサセプタの側面のうち前記突起が設けられていない部分に前記誘導コイルが配置される、
     請求項3~5のいずれか一項に記載のエアロゾル生成システム。
    at least one protrusion is provided on a side surface of the second susceptor;
    the induction coil is arranged on a portion of the side surface of the second susceptor where the projection is not provided;
    Aerosol generating system according to any one of claims 3-5.
  7.  前記突起は、螺旋状に設けられる、
     請求項6に記載のエアロゾル生成システム。
    wherein the projection is spirally provided;
    7. The aerosol generating system of claim 6.
  8.  前記突起は、前記中空部材の内壁に接する、
     請求項6又は7に記載のエアロゾル生成システム。
    wherein the protrusion is in contact with the inner wall of the hollow member;
    8. Aerosol generating system according to claim 6 or 7.
  9.  前記突起は、前記変動磁場が侵入した場合に発熱する、
     請求項6~8のいずれか一項に記載のエアロゾル生成システム。
    the projection generates heat when the fluctuating magnetic field penetrates;
    Aerosol generating system according to any one of claims 6-8.
  10.  前記突起は、伝熱性を有する部材である、
     請求項6~8のいずれか一項に記載のエアロゾル生成システム。
    The protrusion is a member having heat conductivity,
    Aerosol generating system according to any one of claims 6-8.
  11.  前記突起には、前記誘導コイルの一端と前記電力供給部とを接続する配線が配置される貫通孔が設けられる、
     請求項6~10のいずれか一項に記載のエアロゾル生成システム。
    The protrusion is provided with a through-hole in which a wiring connecting one end of the induction coil and the power supply unit is arranged,
    Aerosol generating system according to any one of claims 6-10.
  12.  前記中空部材の内壁には、伝熱性を有する伝熱層が配置され、
     前記第2のサセプタは、前記伝熱層を介して前記中空部材の内壁と少なくとも一か所で接する、
     請求項3~11のいずれか一項に記載のエアロゾル生成システム。
    A heat transfer layer having heat transfer properties is disposed on the inner wall of the hollow member,
    The second susceptor is in contact with the inner wall of the hollow member at least one place through the heat transfer layer.
    Aerosol generating system according to any one of claims 3-11.
  13.  前記誘導コイルは、絶縁性及び耐熱性を有する部材によりコーティングされる、
     請求項1~12のいずれか一項に記載のエアロゾル生成システム。
    The induction coil is coated with a member having insulation and heat resistance,
    Aerosol generating system according to any one of claims 1-12.
  14.  前記エアロゾル生成システムは、
     内部空間及び前記内部空間を外部に連通する開口を有し、前記開口から前記内部空間に挿入された前記エアロゾル生成物品を収容可能な収容部をさらに備え、
     前記誘導加熱部は、前記収容部のうち前記開口の反対側にある底部から前記内部空間に突出するように配置される、
     請求項1~13のいずれか一項に記載のエアロゾル生成システム。
    The aerosol generating system comprises:
    further comprising a storage unit having an internal space and an opening that communicates the internal space with the outside, and capable of containing the aerosol-generating article inserted into the internal space through the opening;
    The induction heating unit is arranged so as to protrude into the internal space from a bottom portion of the housing portion on the opposite side of the opening,
    Aerosol generating system according to any one of claims 1-13.
  15.  前記中空部材のうち、前記エアロゾル生成物品に挿入される先端は、テーパ状に構成される、
     請求項1~14のいずれか一項に記載のエアロゾル生成システム。
    The tip of the hollow member that is inserted into the aerosol-generating article is tapered.
    Aerosol generating system according to any one of claims 1-14.
  16.  前記中空部材は、中空に構成された円柱、楕円柱、又は角柱である、
     請求項1~15のいずれか一項に記載のエアロゾル生成システム。
    The hollow member is a cylinder, an elliptical cylinder, or a prism configured to be hollow,
    Aerosol generating system according to any one of claims 1-15.
  17.  前記誘導コイルは、前記誘導加熱部の長手方向に直交する方向に対して10°以上の角度で傾斜して巻回される、
     請求項1~16のいずれか一項に記載のエアロゾル生成システム。
    The induction coil is wound at an angle of 10° or more with respect to a direction orthogonal to the longitudinal direction of the induction heating unit,
    Aerosol generating system according to any one of claims 1-16.
  18.  前記エアロゾル生成システムは、前記エアロゾル生成物品を含む、
     請求項1~17のいずれか一項に記載のエアロゾル生成システム。
    wherein the aerosol-generating system comprises the aerosol-generating article;
    Aerosol generating system according to any one of claims 1-17.
  19.  前記エアロゾル生成物品は、前記誘導加熱部が挿入される部分に、エアロゾル源を含有する、
     請求項1~18のいずれか一項に記載のエアロゾル生成システム。
    The aerosol-generating article contains an aerosol source in a portion into which the induction heating element is inserted.
    Aerosol generating system according to any one of claims 1-18.
PCT/JP2021/027441 2021-07-26 2021-07-26 Aerosol generation system WO2023007525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027441 WO2023007525A1 (en) 2021-07-26 2021-07-26 Aerosol generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027441 WO2023007525A1 (en) 2021-07-26 2021-07-26 Aerosol generation system

Publications (1)

Publication Number Publication Date
WO2023007525A1 true WO2023007525A1 (en) 2023-02-02

Family

ID=85086356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027441 WO2023007525A1 (en) 2021-07-26 2021-07-26 Aerosol generation system

Country Status (1)

Country Link
WO (1) WO2023007525A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069532A (en) * 2011-12-26 2012-04-05 Shinko Sangyo Kk Fluid heating apparatus using induction heating
JP2017515461A (en) * 2014-05-21 2017-06-15 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Induction heating apparatus and system for aerosol generation
CN108617042A (en) * 2018-07-05 2018-10-02 湖北中烟工业有限责任公司 A kind of smoking apparatus of induced inside heating
JP2019075357A (en) * 2017-02-13 2019-05-16 トクデン株式会社 Induction heated roll apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069532A (en) * 2011-12-26 2012-04-05 Shinko Sangyo Kk Fluid heating apparatus using induction heating
JP2017515461A (en) * 2014-05-21 2017-06-15 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Induction heating apparatus and system for aerosol generation
JP2019075357A (en) * 2017-02-13 2019-05-16 トクデン株式会社 Induction heated roll apparatus
CN108617042A (en) * 2018-07-05 2018-10-02 湖北中烟工业有限责任公司 A kind of smoking apparatus of induced inside heating

Similar Documents

Publication Publication Date Title
US11896055B2 (en) Electronic aerosol provision systems
RU2736106C1 (en) Control device for aerosol delivery induction device
US20210315278A1 (en) Electronic aerosol provision systems
KR20200086744A (en) Electronic vapour provision system
WO2021260894A1 (en) Inhaling device, control method, and program
WO2023007525A1 (en) Aerosol generation system
WO2021260897A1 (en) Inhaling device, control method, and program
WO2023286143A1 (en) Aerosol generation system
WO2022195868A1 (en) Inhalation device and system
WO2023042364A1 (en) Aerosol generation system
WO2022195769A1 (en) Suction device, program, and system
WO2022176126A1 (en) Inhalation device, program, and system
EP4233594A1 (en) Suction device, electromagnetic induction source, electromagnetic induction source manufacturing method, and system
WO2023002633A1 (en) Aerosol generation system
WO2022176112A1 (en) Suction device, program, and system
WO2023275952A1 (en) Aerosol generation system
WO2023175864A1 (en) Aerosol generation system
WO2022176129A1 (en) Inhalation device, program, and system
WO2023275949A1 (en) Aerosol generation system
WO2023042362A1 (en) Aerosol generation system, control method, and program
WO2023275948A1 (en) Aerosol generation system
WO2023275951A1 (en) Aerosol generation system
WO2023042361A1 (en) Aerosol generation system, control method, and program
WO2024004214A1 (en) Aerosol generation device and aerosol generation system
WO2023157276A1 (en) Induction heating system, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE