WO2023284826A1 - 一种双磁动力多功能悬浮式电动-发电机 - Google Patents

一种双磁动力多功能悬浮式电动-发电机 Download PDF

Info

Publication number
WO2023284826A1
WO2023284826A1 PCT/CN2022/105696 CN2022105696W WO2023284826A1 WO 2023284826 A1 WO2023284826 A1 WO 2023284826A1 CN 2022105696 W CN2022105696 W CN 2022105696W WO 2023284826 A1 WO2023284826 A1 WO 2023284826A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
magnetic
permanent magnet
cutting
Prior art date
Application number
PCT/CN2022/105696
Other languages
English (en)
French (fr)
Inventor
许占欣
Original Assignee
许占欣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许占欣 filed Critical 许占欣
Publication of WO2023284826A1 publication Critical patent/WO2023284826A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines

Definitions

  • the invention relates to the technical field of electric motors, in particular to a dual-magnetodynamic multifunctional suspension motor-generator.
  • a generator is a mechanical device that converts other forms of energy into electrical energy.
  • a generator generally generates electrical energy by electromagnetic induction between a magnetically conductive material and a conductive material.
  • the current generator includes a rotor and a stator. The rotation of the rotor drives the coil to move relative to each other, cutting the magnetic Inductive lines, and then generate current, to achieve the purpose of energy replacement, in the process of rotor rotation, a rotating shaft must be needed.
  • Ordinary rotating shafts are connected by bearings, which are vulnerable to a series of problems such as impact, wear, and heat dissipation during the work process, resulting in the rotor being damaged. The resistance becomes larger, which affects the rotating speed of the rotor, and then limits the power generated, resulting in poor power generation capacity. Therefore, it is necessary to improve the existing technology to solve the above technical problems.
  • the present invention provides a dual-magnetism multifunctional suspension motor-generator, which is specifically realized through the following technical solutions:
  • a double magnetic power multifunctional suspension motor-generator including a base, a rotor and a casing, a circular groove is arranged in the center of the base, the rotor is suspended in the circular groove, and the rotating shaft of the rotor is the same as
  • the shaft is rotatably connected in a circular groove, and the base is evenly provided with multiple sets of coils arranged around the axis of the rotor, and the coil axis is vertically directed to the shaft, and the base at the end of the coil away from the rotor shaft is equipped with a circumferential boost magnetic group.
  • a plurality of groups of cutting magnets for cutting magnetic induction lines are evenly arranged on the rotor around its circumferential direction, and the circumferential boosting magnetic groups are opposite to the magnetic poles of the corresponding cutting magnets.
  • the circumferential boosting magnetic group includes a first permanent magnet arranged horizontally, a second permanent magnet is fixed on the left side of the first permanent magnet, the first permanent magnet and the second permanent magnet are located on the same circumference, and the second permanent magnet
  • the size of the magnet is smaller than that of the first permanent magnet, the first permanent magnet is opposite to the magnetic pole of the same name of the cutting magnet, and the second permanent magnet is opposite to the magnetic pole of the different name of the cutting magnet.
  • a third permanent magnet is fixed on the rotor on the right side of the cutting magnet, and the third permanent magnet is opposite to the first permanent magnet with different poles.
  • the internal magnetic field lines of the second permanent magnet are perpendicular to the magnetic field lines inside the first permanent magnet in the same horizontal plane, and the end of the second permanent magnet away from the first permanent magnet is the same as the magnetic pole of the first permanent magnet inner circle;
  • the inner magnetic induction lines of the third permanent magnet are perpendicular to the magnetic induction lines of the cutting magnet, and the end of the third permanent magnet away from the cutting magnet has the same magnetic pole as the inner circle of the cutting magnet.
  • multiple sets of supporting and boosting magnetic groups for rotor suspension are provided between the rotor and the base around the rotor axis, and the supporting and boosting magnetic groups include an upper magnet arranged at the bottom of the rotor
  • the lower magnet is arranged on the base directly below the upper magnet in the vertical direction.
  • the upper magnet and the lower magnet have the same magnetic poles. magnet, and the lower left magnet is oppositely arranged with the opposite name magnetic pole of the upper magnet.
  • an upper right magnet is fixed on the rotor on the right side of the circumference of the upper magnet, and the upper right magnet and the lower magnet have different poles facing each other.
  • the magnetic induction line of the upper right magnet is perpendicular to the inner magnetic induction line of the upper magnet in the same vertical plane, and the end of the upper right magnet away from the upper magnet is the same as the upper magnetic pole of the upper magnet;
  • the magnetic induction line of the magnet is perpendicular to the inner magnetic induction line of the lower magnet, and the end of the lower left magnet away from the lower magnet is the same as the upper magnetic pole of the lower magnet.
  • the supporting and boosting magnetic group includes an outer magnet wrapped on the side wall of the lower rotating shaft of the rotor and a sleeve-shaped inner magnet embedded in the base, the inner magnet and the outer magnet are coaxially arranged with a gap, and the inner magnet It is set opposite to the magnetic pole with the same name as the outer magnet.
  • an outer magnet is provided on the lower end side wall of the rotor shaft, and a sleeve-shaped inner magnet for placing the shaft is coaxially arranged on the outer base of the shaft. It is in direct contact with the base, and is equipped with a support to boost the support of the magnetic group, so that the entire rotor shaft maintains a stable suspension state under the joint action of gravity and magnetic force, which greatly reduces the wear of the shaft and reduces friction. At the same time, it has a certain ability to resist impact, and then increases the speed of the rotor by reducing friction, thereby improving the efficiency of power generation; in turn, when applied to motor equipment, it will save more effort when the current drives the motor to rotate;
  • the present invention sets the rotor to drive the magnetic induction line to rotate, and the coil is fixed on the base to realize the action of the coil cutting the magnetic induction line relatively.
  • the cooperation of the magnet, the second permanent magnet and the third permanent magnet realizes the acceleration of the cutting magnet being circulated during the rotation process, and realizes that when the cutting magnet is close to the circumferential boosting magnetic group, it will gradually attract acceleration, balance, and then leave the boosting magnetic group under the action of the magnetic field.
  • the rotor speed is faster, the energy consumption is less, and the power generation efficiency is higher;
  • the circumferential boosting magnetic group of the present invention realizes the suspension function of the rotor under the cooperation of the upper magnet and the lower magnet, reduces friction, and at the same time of supporting, sets the lower left magnet and the lower right magnet to realize attraction acceleration during the rotation of the upper magnet
  • This structure can also be reversely used in the motor, which can reduce the driving force, reduce energy consumption, and have higher power.
  • Fig. 1 is a structural representation of the present invention
  • Fig. 2 is a top view of the present invention
  • Fig. 3 is a schematic cross-sectional view at A in Fig. 2;
  • Fig. 4 is a schematic structural diagram of the circumferential boost magnetic group
  • Fig. 5 is the installation schematic diagram of the 3rd permanent magnet
  • Fig. 6 is a schematic cross-sectional view at B in Fig. 3;
  • Fig. 7 is a schematic structural diagram of the first embodiment of the upper right magnet
  • Fig. 8 is a schematic structural diagram of the second embodiment of the upper right magnet.
  • the present invention includes a base 1, a rotor 2 and a housing.
  • a circular groove 11 is centrally provided on the base 1.
  • the circular groove 11 provides a turning space for the cylindrical rotor 2.
  • the rotor 2 It includes a coaxially arranged cylindrical turntable and a rotating shaft 21.
  • the rotating shaft 21 inside the rotor 2 is coaxially connected to the circular groove 11.
  • On the base 1, a plurality of sets of coils 3 arranged around the circumference of the rotor 2 are uniformly arranged. And the axis of the coil 3 is perpendicular to the rotating shaft 21.
  • the coil 3 is an induction coil.
  • the cutting magnet 5 When the permanent magnet on the rotor 2, that is, the cutting magnet 5 rotates, the magnetic field moves, and the coil 3 cuts the magnetic induction line and then generates a current, which is wound on the rotor 2 in its circumferential direction.
  • a plurality of sets of cutting magnets 5 for cutting magnetic induction lines are evenly arranged, and a circumferential boost magnetic group 4 is installed on the base 1 at the end of the coil 3 away from the rotating shaft 21 of the rotor 2, and the circumferential boost magnetic group 4 is composed of a plurality of permanent magnets , through the arrangement of its internal permanent magnets, the cutting magnet 5 on the rotor 2 will attract, balance and then boost the process with the circumferential boosting magnetic group 4 when rotating, and accelerate the rotation rate of the rotor 2, thereby increasing the power generation.
  • the circumferential boost magnetic group 4 and the base 1 circumference located at the outer end of the coil 3 are relatively stationary and will not affect the power generation, and the circumferential boost magnetic group 4 and the magnetic pole of the corresponding cutting magnet 5
  • the magnetic pole of magnet has N and S two poles, and the direction of its internal magnetic induction line is directed to N pole by S pole, and the magnetic pole relative of saying here refers to that the magnetic poles in the circumferential boosting magnetic group 4 and the cutting magnet 5 are corresponding, also That is, the magnetic field lines inside the two are parallel to or coincident with each other, and the circumferential boost magnetic group 4 and the cutting magnet 5 are located on the same horizontal plane.
  • the circumferential boost magnetic group 4 includes a first permanent magnet 41 arranged horizontally, and a second permanent magnet 42 is fixed on the left side of the first permanent magnet 41.
  • the first permanent magnet 41 and the second permanent magnet Magnets 42 are positioned on the same circumference, and the second permanent magnet 42 size is smaller than the first permanent magnet 41, and the first permanent magnet 41 is opposite to the magnetic pole of the same name of the cutting magnet 5, and the second permanent magnet 42 is opposite to the magnetic pole of the different name of the cutting magnet 5, so in the rotor 2.
  • the last cutting magnet 5 rotates to a group of circumferential boosting magnetic groups 4 on the base 1, it will be subjected to two kinds of forces of different sizes.
  • the second permanent magnet 42 is attracted by the magnetic pole of the different name, accelerates and approaches, and then reaches the magnetic field junction of the first permanent magnet 41 and the second permanent magnet 42, and the force reaches a balance.
  • the rotor 2 continues to move under the action of inertia, and the cutting magnet 5 Enter the main action area of the first permanent magnet 41, and accelerate the rotation to leave the first permanent magnet 41 area under the repulsive force of the two magnetic poles with the same name.
  • the first permanent magnet 41 can also be set to tilt slightly towards the rotation direction of the rotor 2, and the acceleration effect is better.
  • this is a process in which a group of cutting magnets 5 and circumferential boosting magnetic groups 4 boost each other.
  • This method can also be applied to the motor equipment in reverse, and it will save more labor when the current drives the motor to rotate.
  • the inner side of the second permanent magnet 42 is inclined away from the first permanent magnet 41 .
  • the rotor 2 on the right side of the cutting magnet 5 is fixed with a third permanent magnet 51, the cutting magnet 5 and the third permanent magnet 51 are also located on the same circumference, the third permanent magnet 51 and The first permanent magnet 41 different name poles are opposite, the effect of adding the third permanent magnet 51 here is that when the rotor 2 rotates, because the first permanent magnet 41 is greater than the second permanent magnet 42, first the magnetic force of the first permanent magnet 41 crosses The second permanent magnet 42 directly attracts the third permanent magnet 51, and the rotor 2 rotates at an accelerated speed.
  • the internal magnetic field lines of the second permanent magnet 42 are perpendicular to the magnetic field lines inside the first permanent magnet 41 in the same horizontal plane, and the second permanent magnet 42 is far away from the first permanent magnet
  • One end of 41 is identical with the magnetic pole of first permanent magnet 41 inner circles;
  • the inner magnetic field line of the 3rd permanent magnet 51 is perpendicular to the magnetic field line of cutting magnet 5, and the 3rd permanent magnet 51 is away from an end of cutting magnet 5
  • the rotor 2 drives the cutting magnet 5 to rotate.
  • the second permanent magnet 42 attracts the third permanent magnet 51 to rotate.
  • the rotor 2 continues to rotate under the action of inertia.
  • the magnetic poles of cutting magnet 5 start its main function, and the magnetic poles of the same name repel each other, accelerate away under the action of inertia, and drive the rotor 2 to rotate.
  • the third permanent magnet 51 of this group and the second permanent magnet 42 of the lower group are attracted, and then the rotor is accelerated 2
  • the speed of rotation makes it easier for the rotor 2 to rotate, and the rotation is more stable, thereby improving the efficiency of power generation, and vice versa, the power of the motor is increased.
  • multiple groups of supporting and boosting magnetic groups 6 for the suspension of the rotor 2 can be provided around the axis of the rotor 2 between the rotor 2 and the base 1.
  • the supporting and boosting magnetic groups 6 are used to reduce friction and provide assistance for the rotor 2.
  • the thrust makes the rotor 2 speed up; as shown in Figure 6, the supporting and boosting magnetic group 6 includes an upper magnet 61 vertically arranged at the bottom of the rotor 2 and a lower magnet 61 vertically arranged on the base 1 just below the upper magnet 61.
  • Magnets 62, upper magnets 61 and lower magnets 62 have the same poles opposite to each other.
  • Upper magnets 61 form a ring at the bottom of rotor 2
  • lower magnets 62 form lower magnets 62 on the base 1 directly below the ring formed by upper magnets 61.
  • the magnetic poles of the same name of the upper magnet 61 and the lower magnet 62 repel each other and remain suspended, which reduces the friction of the rotor 2, and is arranged side by side on the left side of the lower magnet 62 along the circumferential direction of the rotor 2.
  • the lower left magnet 63 There is a lower left magnet 63, the left side here is only used to distinguish the right side, not specifically, to keep the circumferential boost magnetic group 4 and the acceleration direction of the lower left magnet 63 consistent, the size of the lower left magnet 63 is smaller than that of the lower magnet 62, and The lower left magnet 63 is opposite to the upper magnet 61 with different names, and is similar to the working principle of the above-mentioned circumferential boosting magnetic group 4 and the cutting magnet 5.
  • the lower left magnet 63 and the lower magnet 62 are located on the same circle, and the lower left magnet 63 is located on the upper magnet 61.
  • the rotor 2 on the right side of the upper magnet 61 is fixed with an upper right magnet 64, and the upper right magnet 64 and the lower magnet 62 have different magnetic poles.
  • the upper right magnet 64 is attracted by the lower magnet 62 with a large volume and strong magnetic force, so that the upper magnet 61 and the lower magnet 62 approach each other, then reach a balance, and then under the action of inertia, the upper magnet 61 and the lower magnet 62 repel each other and accelerate away , and then the upper right magnet 64 and the lower left magnet 63 repel each other and accelerate again, further reduce losses, increase the rotating speed, and then improve efficiency.
  • One end of the magnet 61 is the same as the upper magnetic pole of the upper magnet 61; the magnetic field lines of the lower left magnet 63 are perpendicular to the inner magnetic field lines of the lower magnet 62 in the same vertical plane, and the lower left magnet 63 is far away from the end of the lower magnet 62 and the lower magnetic field.
  • the magnetic poles on the upper part of the magnet 62 are the same, so at first the upper magnet 61 and the lower magnet 62 are repelled to ensure suspension, and secondly, the upper right magnet 64 and the lower left magnet 63 are attracted during the rotation process to accelerate the rotation of the rotor 2, and then similar to the above mentioned
  • the principle is that under the action of inertia, the upper magnet 61 and the lower magnet 62 repel each other and accelerate away, so that the acceleration effect is better, the loss is smaller, and the power generation efficiency is higher.
  • the supporting and boosting magnetic group 6 includes an outer magnet 72 that is also wrapped on the side wall of the lower rotating shaft 21 of the rotor 2 and an inner magnet 71 that is embedded in a sleeve shape on the base 1.
  • the inner magnet 71 The coaxial gap with the outer magnet 72 is set, and the inner magnet 71 and the outer magnet 72 are arranged opposite to each other with the same magnetic poles. Through the mutual repulsion of the magnetic poles of the same name, the lower part of the rotor 2 rotating shaft 21 does not contact the base 1 during the rotation process, reducing friction, and then improving Speed, increase power generation.
  • the rotor 2 When the present invention is in use, the rotor 2 is rotated, and the rotor 2 is in a suspended state under the action of the supporting and boosting magnetic group 6 during the rotation process, and the rotating shaft 21 of the rotor 2 is suspended under the mutually repulsive magnetic poles of the inner magnet 71 and the outer magnet 72 , not in contact with the wall of the base 1, the friction force received during the rotation process is reduced, and it has a certain ability to buffer impacts, and the heat generated by wear is reduced.
  • the boosting directions of the circumferential boosting magnetic group 4 and the supporting boosting magnetic group 6 are consistent.
  • the rotor 2 accelerates towards its direction of rotation, reducing the energy consumption of the rotor 2 during start-up and during operation, the rotation speed of the rotor 2 is improved, and the magnetic group 4 and the supporting boost are boosted in the circumferential direction
  • the cutting magnet 5 and the upper right magnet 64 on the rotor 2 drive the rotor 2 to rotate at an accelerated speed, and the power generation efficiency is greatly improved.

Abstract

本发明属于电机领域,特别是一种双磁动力多功能悬浮式电动-发电机,其包括底座、转子和壳体,在底座上居中设有圆形凹槽,转子内部的转轴同轴转动连接于圆形凹槽内,在底座上均匀设有多组绕转子轴线设置的线圈,且线圈轴线垂直指向转轴,在线圈远离转子转轴一端的底座上均安装有周向助推磁组,在转子上绕其轴线方向均匀设有多组用于切割磁感线的切割磁体,周向助推磁组与对应切割磁体的磁极相对,本发明通过周向助推磁组和支撑助推磁组减小转子转动过程中的能耗,进而大大提高发电效率。

Description

一种双磁动力多功能悬浮式电动-发电机 技术领域
本发明涉及电机技术领域,特别涉及一种双磁动力多功能悬浮式电动-发电机。
背景技术
发电机是将其他形式的能源转换成电能的机械设备,目前发电机一般由导磁材料和导电材料相互电磁感应产生电能,目前的发电机包括转子和定子,转子转动带动线圈相对运动,切割磁感线,进而产生电流,达到能量装换的目的,在转子转动的过程中必然需要转轴,普通的转轴通过轴承连接,在工作过程中易受到冲击、磨损、散热等一系列问题,导致转子受到的阻力变大,影响转子的转速,进而对发电的功率进行限制,发电能力较差,因此,有必要对现有技术改进以解决上述技术问题。
发明内容
为解决上述技术问题,本发明提供了一种双磁动力多功能悬浮式电动-发电机,具体而言通过以下技术方案实现:
一种双磁动力多功能悬浮式电动-发电机,包括底座、转子和壳体,在底座上居中设有圆形凹槽,所述转子悬置于圆形凹槽内,且转子的转轴同轴转动连接于圆形凹槽内,在底座上均匀设有多组绕转子轴线设置的线圈,且线圈轴线垂直指向转轴,在线圈远离转子转轴一端的底座上均安装有周向助推磁组,在转子上绕其周向方向均匀设有多组用于切割磁感线的切割磁体,周向助推磁组与对应切割磁体的磁极相对。
优选的,所述周向助推磁组包括水平设置的第一永磁体,在第一永磁体左侧固设有第二永磁体,第一永磁体和第二永磁体位于同一圆周上,第二永磁体尺寸小于第一永磁体,所述第一永磁体和切割磁体同名磁极相对,第二永磁体和切割磁体异名磁极相对。
优选的,在切割磁体右侧的转子上均固设有第三永磁体,第三永磁体和第一永磁体异名磁极相对。
优选的,在同一水平面内第二永磁体的内部磁感线与第一永磁体内部的磁感线垂直,且第二永磁体远离第一永磁体的一端与第一永磁体内圈磁极相同;在同一水平面内第三永磁体的内部磁感线与切割磁体的磁感线垂直,且第三永磁体远离切割磁体的一端与切割磁体内圈磁极相同。
优选的,在转子和底座之间绕转子轴线方向设有多组用于转子悬浮的支撑助推磁组,所述支撑助推磁组包括沿竖直方向设置于转子底部的上磁体和沿竖直方向设于上磁体正下方底座上的下磁体,所述上磁体和下磁体同名磁极相对设置,沿着转子周向方向在下磁体左侧均 并排设有下左磁体,下左磁体尺寸小于下磁体,且下左磁体与上磁体异名磁极相对设置。
优选的,在上磁体同圆周右侧的转子上均固设有上右磁体,上右磁体和下磁体异名磁极相对。
优选的,在同一竖直面内上右磁体的磁感线与上磁体的内部磁感线垂直,且上右磁体远离上磁体的一端与上磁体上部磁极相同;在同一竖直面内下左磁体的磁感线与下磁体的内部磁感线垂直,且下左磁体远离下磁体的一端与下磁体上部磁极相同。
优选的,所述支撑助推磁组包括还包裹设于转子下部转轴侧壁上的外磁体和内嵌设于底座上套状的内磁体,内磁体和外磁体同轴间隙设置,且内磁体和外磁体同名磁极相对设置。
本发明的有益效果:
1.本发明首先通过在转子转轴的下端侧壁设有外磁体,转轴外围底座上同轴设有放置转轴的套状的内磁体,通过内磁体和外磁体同名磁极相互排斥作用,整个转轴不与底座发生直接的接触,在配个支撑助推磁组的支撑,使整个转子转轴在重力和磁力的共同作用下保持平稳悬浮的状态,大大减小了转轴的磨损,减小了摩擦力,同时具备一定的抗冲击的能力,进而从减小摩擦的途径提高转子的转速,进而提高发电效率;反过来应用于电动机设备,电流驱动电机转动时会更加的省力;
2.本发明设置转子带动磁感线转动,线圈固定于底座上不动的方式实现线圈相对切割磁感线的动作,在此过程中,在底座上设有周向助推磁组,通过第一永磁体、第二永磁体和第三永磁体的配合,实现切割磁体在转动过程中被循环的加速,实现切割磁体靠近周向助推磁组时逐步在磁场作用下,吸引加速,平衡,再到离开助推加速的过程,转子转速更快,能量消耗更少,发电效率更高;
3.本发明周向助推磁组在上磁体和下磁体的配合下实现转子的悬浮功能,减小摩擦,在支撑的同时,设置下左磁体和下右磁体,在上磁体转动过程中实现吸引加速靠近,平衡,加速助推离开的过程,与周向助推磁组助推力合成共同助推,使转子向着同一方向加速旋转,转子耗能减小,转子转速得以提高,进而发电功率大大提高,同时,此结构也可以反向用于电动机,能减小驱动力,减小耗能,功率更高,本发明的其他有益效果将结合下文具体实施例进行进一步的说明。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1为本发明结构示意图;
图2为本发明俯视图;
图3为图2中A处剖面示意图;
图4为周向助推磁组结构示意图;
图5为第三永磁体安装示意图;
图6为图3中B处剖面示意图;
图7为上右磁体第一实施例结构示意图;
图8为上右磁体第二实施例结构示意图。
具体实施方式
如图1-8所示:本发明包括底座1、转子2和壳体,在底座1上居中设有圆形凹槽11,圆形凹槽11为圆柱型的转子2提供回转空间,转子2包括同轴设置的圆柱型的转盘和转轴21,转子2内部的转轴21同轴转动连接于圆形凹槽11内,在底座1上均匀设有多组绕转子2周向设置的线圈3,且线圈3轴线垂直指向转轴21,线圈3为感应线圈,当转子2上的永磁体即切割磁体5转动时磁场运动,线圈3切割磁感线进而产生电流,在转子2上绕其周向方向均匀设有多组用于切割磁感线的切割磁体5,在线圈3远离转子2转轴21一端的底座1上均安装有周向助推磁组4,周向助推磁组4内由多个永磁体组成,通过其内部永磁体的排布,使转子2上的切割磁体5在转动时与周向助推磁组4产生吸引、平衡再到助推的过程,加速转子2的转动速率,进而提高发电量,此过程中由于周向助推磁组4与位于线圈3的外端的底座1圆周上,周向助推磁组4与线圈3相对静止不会对发电产生影响,周向助推磁组4与对应切割磁体5的磁极相对,磁铁的磁极有N和S两极,其内部磁感线方向由S极指向N极,此处说的磁极相对指的是周向助推磁组4和切割磁体5内的磁极端相对应,也就是二者内部磁感线相互平行或是重合,周向助推磁组4与切割磁体5位于同一水平面上。
具体的,如图4所示,周向助推磁组4包括水平设置的第一永磁体41,在第一永磁体41左侧固设有第二永磁体42,第一永磁体41和第二永磁体42位于同一圆周上,第二永磁体42尺寸小于第一永磁体41,第一永磁体41和切割磁体5同名磁极相对,第二永磁体42和切割磁体5异名磁极相对,如此在转子2上一个切割磁体5转动至底座1上一组周向助推磁组4时会受到大小不同的两种作用力作用,在配合转子2惯性的作用,转子2上的一组切割磁体5会受到初步的第二永磁体42异名磁极的吸引,加速靠近,随之到达第一永磁体41和第二永磁体42的磁场交界处,受力达到平衡,转子2在惯性作用继续运动,切割磁体5进入第一永磁体41主要作用区域,在二者同名磁极的排斥力的作用下加速转动离开第一永磁体41区域,也可以设置第一永磁体41略微向着转子2转动方向倾斜,加速效果更好,此为众多切割磁体5和周向助推磁组4中的一组相互助推的过程,在底座1和转子2上设有多 组切割磁体5和周向助推磁组4,周向助推磁组4绕转子2沿圆周方向均匀分布,可以沿着圆周方对切割磁体5分段加速,多组切割磁体5绕着转子2周向均匀分布,使得周向助推磁组4可以对多组切割磁体5进行加速,进而提高转子2的转动速率,提高感应发电的发电功率,此种方式也可以反过来应用于电动机设备,电流驱动电机转动时会更加的省力。同时为了达到更好的助推效果,第二永磁体42内侧远离第一永磁体41方向倾斜设置。
优选的,如图4所示,在切割磁体5右侧的转子2上均固设有第三永磁体51,切割磁体5和第三永磁体51也位于同一圆周上,第三永磁体51和第一永磁体41异名磁极相对,此处加上第三永磁体51的作用在于当转子2转动时,由于第一永磁体41大于第二永磁体42,首先第一永磁体41的磁力越过第二永磁体42直接对第三永磁体51产生吸引,转子2加速转动,当第二永磁体42和第三永磁体51磁极相对时在惯性的作用下和同名磁极排斥的作用下再次加速转动,随后和第一永磁体41和切割磁体5磁极相对再次加速,双重加速,细化加速过程,加速效果更好,发电效率更高,反之作为电动机,其转速也更高;同时为了达到更好的助推效果,第三永磁体51内侧远离切割磁体5方向倾斜设置。
作为另一个实施例,如图5所示,在同一水平面内第二永磁体42的内部磁感线与第一永磁体41内部的磁感线垂直,且第二永磁体42远离第一永磁体41的一端与第一永磁体41内圈磁极相同;在同一水平面内第三永磁体51的内部磁感线与切割磁体5的磁感线垂直,且第三永磁体51远离切割磁体5的一端与切割磁体5内圈磁极相同,改变了第二永磁体42和第三永磁体51内部磁感线的方向,磁极的方向得到了调整,如此在一个运动周期内,在外部传动机构的带动下,转子2带动切割磁体5转动,首先,第二永磁体42吸引第三永磁体51转动,当其共同位于底座1同一半径上时,在惯性作用下转子2继续转动,第一永磁体41和切割磁体5磁极开始其主要作用,同名磁极相互排斥,在惯性作用下加速远离,带动转子2转动,同时本组的第三永磁体51与下组的第二永磁体42发生吸引,进而加速转子2转动速率,使转子2更容易转动起来,且转动更加平稳,进而提高发电效率,同理反之则提高电动机功率。
同时还可以在转子2和底座1之间绕转子2轴线方向设有多组用于转子2悬浮的支撑助推磁组6,支撑助推磁组6用于减小摩擦和为转子2提供助推力使转子2提速;如图6所示,支撑助推磁组6包括沿竖直方向设置于转子2底部的上磁体61和沿竖直方向设于上磁体61正下方底座1上的下磁体62,上磁体61和下磁体62同名磁极相对设置,上磁体61在转子2底部围成一圆环,下磁体62在上磁体61形成的圆环正下方的底座1上围成下磁体62圆环,在转动过程中,由于上磁体61和下磁体62同名磁极相互排斥,保持悬浮,减小 了转子2受到的摩擦,在所述沿着转子2周向方向在下磁体62左侧并排设有下左磁体63,此处的左侧仅用于区分右侧,并非特指,要保持周向助推磁组4和下左磁体63加速的转向一致,下左磁体63尺寸小于下磁体62,且下左磁体63与上磁体61异名磁极相对设置,与上述周向助推磁组4和切割磁体5工作原理相似,下左磁体63与下磁体62位于同一圆周上,下左磁体63位于上磁体61转来的方向,下左磁体63磁极吸引上磁体61加速靠近,随之在惯性作用下上磁体61转逐步进入下磁体62上方,经过磁极排斥作用后上磁体61加速离开,支撑助推磁组6完成了转子2悬浮和转子2加速助推的过程。
优选的,如图7所示,在上磁体61同圆周右侧的转子2上均固设有上右磁体64,上右磁体64和下磁体62异名磁极相对,如此,其工作原理变为首先由体积大磁力强的下磁体62对上右磁体64产生吸引,使得上磁体61和下磁体62相互靠近,接着达到平衡,随后在惯性作用下,上磁体61和下磁体62相斥加速离开,再到上右磁体64和下左磁体63相互排斥再次加速,进一步减小损耗,提高转速,进而提高效率,此为上右磁体第一实施例。
作为安装过程中上右磁体第二实施例,如图8所示,在同一竖直面内上右磁体64的磁感线与上磁体61的内部磁感线垂直,且上右磁体64远离上磁体61的一端与上磁体61上部磁极相同;在同一竖直面内下左磁体63的磁感线与下磁体62的内部磁感线垂直,且下左磁体63远离下磁体62的一端与下磁体62上部磁极相同,如此,首先由上磁体61和下磁体62排斥保证悬浮,其次,在转动过程中由上右磁体64与下左磁体63发生吸引,加速转子2转动,接着类似上面讲过的原理在惯性作用下,上磁体61和下磁体62相互排斥加速远离,如此加速效果更好,损耗更小,发电效率更高。
具体的,如图3所示,支撑助推磁组6包括还包裹设于转子2下部转轴21侧壁上的外磁体72和内嵌设于底座1上套状的内磁体71,内磁体71和外磁体72同轴间隙设置,且内磁体71和外磁体72同名磁极相对设置,通过同名磁极相互排斥使得转子2转轴21下部在转动过程中与底座1不接触,减小摩擦,进而为提高转速,提高发电功率。
本发明在使用时,转动转子2,转子2在转动过程中在支撑助推磁组6的作用下处于悬浮状态,转子2的转轴21在内磁体71和外磁体72同名磁极相互排斥下悬置,不与底座1壁接触,转动过程中受到的摩擦力减小,且具备一定缓冲撞击的能力,磨损发热量减小,同时,周向助推磁组4和支撑助推磁组6助推方向一致,在其共同作用下,转子2朝着其转动方向加速转动,减小了转子2启动耗能和运行过程中的能耗,转子2转动速率得以提升,在周向助推磁组4和支撑助推磁组6的共同作用下,转子2上的切割磁体5和上右磁体64带动转子2加速转动,发电效率大大提高。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (8)

  1. 一种双磁动力多功能悬浮式电动-发电机,包括底座、转子和壳体,其特征在于:在底座上居中设有圆形凹槽,所述转子悬置于圆形凹槽内,且转子的转轴同轴转动连接于圆形凹槽内,在底座上均匀设有多组绕转子轴线设置的线圈,且线圈轴线垂直指向转轴,在线圈远离转子转轴一端的底座上均安装有周向助推磁组,在转子上绕其周向方向均匀设有多组用于切割磁感线的切割磁体,周向助推磁组与对应切割磁体的磁极相对。
  2. 根据权利要求1所述的双磁动力多功能悬浮式电动-发电机,其特征在于:所述周向助推磁组包括水平设置的第一永磁体,在第一永磁体左侧固设有第二永磁体,第一永磁体和第二永磁体位于同一圆周上,第二永磁体尺寸小于第一永磁体,所述第一永磁体和切割磁体同名磁极相对,第二永磁体和切割磁体异名磁极相对。
  3. 根据权利要求2所述的双磁动力多功能悬浮式电动-发电机,其特征在于:在切割磁体右侧的转子上均固设有第三永磁体,第三永磁体和第一永磁体异名磁极相对。
  4. 根据权利要求1所述的双磁动力多功能悬浮式电动-发电机,其特征在于:在同一水平面内第二永磁体的内部磁感线与第一永磁体内部的磁感线垂直,且第二永磁体远离第一永磁体的一端与第一永磁体内圈磁极相同;在同一水平面内第三永磁体的内部磁感线与切割磁体的磁感线垂直,且第三永磁体远离切割磁体的一端与切割磁体内圈磁极相同。
  5. 根据权利要求1-4中任一所述的双磁动力多功能悬浮式电动-发电机,其特征在于:在转子和底座之间绕转子轴线方向设有多组用于转子悬浮的支撑助推磁组,所述支撑助推磁组包括沿竖直方向设置于转子底部的上磁体和沿竖直方向设于上磁体正下方底座上的下磁体,所述上磁体和下磁体同名磁极相对设置,沿着转子周向方向在下磁体左侧均并排设有下左磁体,下左磁体尺寸小于下磁体,且下左磁体与上磁体异名磁极相对设置。
  6. 根据权利要求5所述的双磁动力多功能悬浮式电动-发电机,其特征在于:在上磁体同圆周右侧的转子上均固设有上右磁体,上右磁体和下磁体异名磁极相对。
  7. 根据权利要求6所述的双磁动力多功能悬浮式电动-发电机,其特征在于:在同一竖直面内上右磁体的磁感线与上磁体的内部磁感线垂直,且上右磁体远离上磁体的一端与上磁体上部磁极相同;在同一竖直面内下左磁体的磁感线与下磁体的内部磁感线垂直,且下左磁体远离下磁体的一端与下磁体上部磁极相同。
  8. 根据权利要求7所述的双磁动力多功能悬浮式电动-发电机,其特征在于:所述支撑助推磁组包括还包裹设于转子下部转轴侧壁上的外磁体和内嵌设于底座上套状的内磁体,内磁体和外磁体同轴间隙设置,且内磁体和外磁体同名磁极相对设置。
PCT/CN2022/105696 2021-07-16 2022-07-14 一种双磁动力多功能悬浮式电动-发电机 WO2023284826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110806735.3 2021-07-16
CN202110806735.3A CN113595445A (zh) 2021-07-16 2021-07-16 一种双磁动力多功能悬浮式电动-发电机

Publications (1)

Publication Number Publication Date
WO2023284826A1 true WO2023284826A1 (zh) 2023-01-19

Family

ID=78248133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105696 WO2023284826A1 (zh) 2021-07-16 2022-07-14 一种双磁动力多功能悬浮式电动-发电机

Country Status (2)

Country Link
CN (1) CN113595445A (zh)
WO (1) WO2023284826A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595445A (zh) * 2021-07-16 2021-11-02 河南博善发电设备制造有限公司 一种双磁动力多功能悬浮式电动-发电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287103A (ja) * 2004-03-26 2005-10-13 Ceremo:Kk 動力発生装置
CN101534031A (zh) * 2008-03-14 2009-09-16 刘新广 悬浮叶轮式直流电机
CN102148592A (zh) * 2010-02-08 2011-08-10 国能风力发电有限公司 一种用于垂直轴盘式电机的磁悬浮支撑结构
CN104389741A (zh) * 2014-10-17 2015-03-04 山东科技大学 一种竖直轴外转子磁悬浮风力发电机
CN206164401U (zh) * 2016-10-20 2017-05-10 周建平 电磁控制永磁磁能动力机
CN113595446A (zh) * 2021-07-16 2021-11-02 河南博善发电设备制造有限公司 一种磁助推悬浮式电动发电机高速转子
CN113595445A (zh) * 2021-07-16 2021-11-02 河南博善发电设备制造有限公司 一种双磁动力多功能悬浮式电动-发电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050604A (ja) * 1998-07-23 2000-02-18 Shicoh Eng Co Ltd 軸方向空隙型ブラシレス軸流ファンモータ
CN201185369Y (zh) * 2008-04-15 2009-01-21 林修鹏 磁浮减重力摩擦力垂直轴风力发电机
CN108494118A (zh) * 2018-04-19 2018-09-04 李亚兵 节能发电机和动力系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287103A (ja) * 2004-03-26 2005-10-13 Ceremo:Kk 動力発生装置
CN101534031A (zh) * 2008-03-14 2009-09-16 刘新广 悬浮叶轮式直流电机
CN102148592A (zh) * 2010-02-08 2011-08-10 国能风力发电有限公司 一种用于垂直轴盘式电机的磁悬浮支撑结构
CN104389741A (zh) * 2014-10-17 2015-03-04 山东科技大学 一种竖直轴外转子磁悬浮风力发电机
CN206164401U (zh) * 2016-10-20 2017-05-10 周建平 电磁控制永磁磁能动力机
CN113595446A (zh) * 2021-07-16 2021-11-02 河南博善发电设备制造有限公司 一种磁助推悬浮式电动发电机高速转子
CN113595445A (zh) * 2021-07-16 2021-11-02 河南博善发电设备制造有限公司 一种双磁动力多功能悬浮式电动-发电机

Also Published As

Publication number Publication date
CN113595445A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN107222131B (zh) 一种转子重力卸载型磁轴承复合电机
CN103911815B (zh) 洗衣机及洗衣机驱动方法
CN105782242A (zh) 一种飞轮储能系统及其五自由度磁悬浮支承结构
CN105471212B (zh) 一种旋转直线永磁电机
WO2023284826A1 (zh) 一种双磁动力多功能悬浮式电动-发电机
US20160036310A1 (en) Magnetic Levitation Electrical Generator
US9577500B2 (en) Rotary continuous permanent magnet motor
CN113595446A (zh) 一种磁助推悬浮式电动发电机高速转子
CN206559150U (zh) 一种稀土永磁磁悬浮电机
WO2022233189A1 (zh) 一种大型永磁电动机
CN107707069B (zh) 惯性储能发电机
CN101162880A (zh) 动力源的产生方法
CN206830478U (zh) 一种磁悬浮双进风无刷风机
CN102042302A (zh) 高速混合磁悬浮轴承
US20210110955A1 (en) Magnetic levitation electrical generator
CN209233689U (zh) 一种磁通量变换式发电机
US20180375418A1 (en) Magnetic levitation electrical generator
CN208285177U (zh) 一种悬浮力可调的错齿双凸极电机
CN111600458A (zh) 一种磁力循环发电系统
CN103762803A (zh) 一种以飞轮体为转子的平面电机
CN103915978A (zh) 一种筒形转盘永磁耦合器
CN204361833U (zh) 无轴承电机
CN203883639U (zh) 一种以飞轮体为转子的平面电机
CN219181335U (zh) 一种发电机
CN102170253A (zh) 一种磁动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE