WO2023284560A1 - 辅助火电机组agc调频超级电容器组的电压均衡装置和方法 - Google Patents

辅助火电机组agc调频超级电容器组的电压均衡装置和方法 Download PDF

Info

Publication number
WO2023284560A1
WO2023284560A1 PCT/CN2022/103143 CN2022103143W WO2023284560A1 WO 2023284560 A1 WO2023284560 A1 WO 2023284560A1 CN 2022103143 W CN2022103143 W CN 2022103143W WO 2023284560 A1 WO2023284560 A1 WO 2023284560A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
frequency modulation
supercapacitor
thermal power
Prior art date
Application number
PCT/CN2022/103143
Other languages
English (en)
French (fr)
Inventor
薛磊
兀鹏越
孙钢虎
于在松
杨沛豪
赵亮
柴琦
张立松
王小辉
寇水潮
李志鹏
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023284560A1 publication Critical patent/WO2023284560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors

Definitions

  • the present disclosure relates to the technical field of electric power system automation, and in particular to a voltage equalization device and method for AGC frequency modulation supercapacitor banks of auxiliary thermal power units.
  • Supercapacitors have outstanding advantages such as long cycle life, high power density, strong high-current discharge capability, rapid charging, wide operating temperature range, safety, reliability, cleanliness and environmental protection, etc., and are very suitable for assisting thermal power units to respond to AGC frequency modulation commands.
  • the voltage value of a single supercapacitor is low, generally less than 3V, and it needs to be connected in series to achieve a higher working voltage, and further connected to the plant power system through a converter and a transformer.
  • the most widely used supercapacitor voltage equalization method is the flying capacitor method. Its principle is to transfer part of the energy in the high-voltage cell to the low-voltage cell, which can realize dynamic and static voltage equalization.
  • the multi-flying capacitance method has to pass through other monomers during the energy transfer process, resulting in increased loss and a decrease in voltage equalization speed, while the single-flying capacitance method has The number of components required is large, the switch network is complex, and the control algorithm is cumbersome, which are not suitable for high-power applications.
  • the capacity of supercapacitor banks used to assist AGC frequency modulation of thermal power units is mostly MW level, so the flying capacitor method cannot be used to balance the voltage.
  • supercapacitors need to be connected to the grid for a long time when they are used to respond to frequency modulation commands, and the number of charging and discharging times is as many as hundreds of times per day, so a dynamic voltage equalization method can be used to achieve voltage equalization.
  • the purpose of the present disclosure is to provide a voltage equalization device and method for an auxiliary thermal power unit AGC frequency modulation supercapacitor bank.
  • the present disclosure is realized by adopting the following technical solutions.
  • An embodiment of the present disclosure proposes a voltage equalization device for an auxiliary thermal power unit AGC frequency modulation supercapacitor bank, which includes 64 identical units, each unit includes a main capacitor, an auxiliary capacitor, a low voltage comparator, a high voltage comparator, a discharge MOSFET switch and charging MOSFET switch;
  • the positive terminal of the main capacitor of each unit is connected to the source of the discharge MOSFET switch and the drain of the charge MOSFET switch, the voltage input terminal of the low voltage comparator is connected to the positive terminal of the main capacitor, and the output terminal of the low voltage comparator is connected to the discharge MOSFET
  • the gate of the switch the voltage input terminal of the high-voltage comparator is connected to the positive terminal of the main capacitor, the output terminal of the high-voltage comparator is connected to the gate of the charge MOSFET switch, and the drain of the discharge MOSFET switch is connected to the source of the charge MOSFET switch , and connected to the positive terminal of the auxiliary capacitor, and the negative terminal of the auxiliary capacitor is connected to the negative terminal of the main capacitor.
  • the comparison voltage U1 of the low voltage comparator is equal to the minimum working voltage Umin of the supercapacitor.
  • the comparison voltage Uh of the high voltage comparator is equal to the maximum working voltage Umax of the supercapacitor.
  • the typical capacitance of the auxiliary capacitor is equal to one-tenth of the main capacitor.
  • Another embodiment of the present disclosure provides a voltage equalization method for an auxiliary thermal power unit AGC frequency modulation super capacitor bank, the method is based on the voltage equalization device for an auxiliary thermal power unit AGC frequency modulation super capacitor bank, comprising the following steps:
  • Step 1 The thermal power unit receives the frequency modulation command to adjust the power downward, the supercapacitor bank detects the difference between the current power of the unit and the frequency modulation command, starts the charging process, and the voltage equalization device enables the high voltage comparator of each unit;
  • Step 2 When any unit of the supercapacitor bank is charged to the maximum working voltage, the high-voltage comparator of this unit outputs a high-level signal, and triggers the charging MOSFET switch of this unit to turn on, and starts to charge the auxiliary capacitor of this unit;
  • Step 3 After the high-voltage comparators of more than half of all units in the supercapacitor bank output high-level signals, the charging process is stopped, and the high-voltage comparators of each unit are blocked;
  • Step 4 The thermal power unit receives the frequency modulation command to adjust the power upward, the supercapacitor bank detects the difference between the current power of the unit and the frequency modulation command, and starts the discharge process, and the voltage equalization device enables the low voltage comparator of each unit;
  • Step 5 When the discharge of any unit of the supercapacitor bank reaches the minimum working voltage, the low-voltage comparator of this unit outputs a high-level signal, and triggers the discharge MOSFET switch of this unit to turn on, and the auxiliary capacitor starts to discharge;
  • Step 6 after the low-voltage comparators of more than half of all units in the supercapacitor bank output high-level signals, the discharge process is stopped, and the low-voltage comparators of each unit are blocked;
  • Step 7 The supercapacitor repeats the above charging and discharging process according to the frequency regulation command sent by the power grid to the unit.
  • step 3 and step 6 an FPGA is used to process output signals of multiple high-voltage comparators or low-voltage comparators in parallel to improve response speed.
  • the comparison voltage U1 of the low voltage comparator is equal to the minimum working voltage Umin of the supercapacitor.
  • the comparison voltage Uh of the high voltage comparator is equal to the maximum working voltage Umax of the supercapacitor.
  • the typical capacitance of the auxiliary capacitor is equal to one-tenth of the main capacitor.
  • the comparison logic of the voltage comparator can be implemented by combining analog devices, or by integrating digital devices.
  • the auxiliary capacitor is used to compensate the individual capacitance of the supercapacitor bank connected in series, and by controlling the on-off of the auxiliary capacitor, the compensation is realized on demand, so as to realize the balanced control of the voltage.
  • the embodiment of the present disclosure uses a MOSFET switch to control the on and off of the auxiliary capacitor, which can realize frequent on and off with little power loss.
  • the embodiment of the present disclosure adopts FPGA to process the output signals of multiple comparators in parallel, which can improve the response speed of the system and greatly reduce the complexity of the control circuit.
  • the embodiment of the present disclosure adopts a modular structure, which is very easy to realize the construction of a high-power super capacitor bank, and is easy to maintain. If a unit is damaged, only the damaged unit capacitor needs to be replaced.
  • the present disclosure has the following significant advantages:
  • the embodiment of the present disclosure proposes a voltage equalization device for auxiliary thermal power unit AGC frequency modulation supercapacitor device group. Compared with the flying capacitor method, the hardware circuit is simpler, no complicated switching network is required, and the control algorithm is simpler. Simple.
  • the voltage equalization device proposed by the embodiment of the present disclosure for auxiliary thermal power unit AGC frequency modulation supercapacitor device group has a modular structure, which can easily realize the series connection of a large number of supercapacitors, and is suitable for engineering applications.
  • Fig. 1 is a circuit diagram of a voltage equalization device of an auxiliary thermal power unit AGC frequency modulation supercapacitor bank according to an embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram according to an embodiment of the disclosure.
  • the voltage equalization device of the auxiliary thermal power unit AGC frequency modulation supercapacitor bank includes 40 ⁇ 5 identical units, each unit includes a main capacitor 1, an auxiliary capacitor 2, and a low voltage comparator 3 , high voltage comparator 4, discharge MOSFET switch 5 and charge MOSFET switch (6); the main capacitor positive terminal of each unit is connected with discharge MOSFET switch source and charge MOSFET switch drain, the voltage input of low voltage comparator The output terminal of the low voltage comparator is connected to the gate of the discharge MOSFET switch, the voltage input terminal of the high voltage comparator is connected to the positive terminal of the main capacitor, and the output terminal of the high voltage comparator is connected to the charging MOSFET The gate of the switch, the drain of the discharge MOSFET switch are connected to the source of the charge MOSFET switch, and connected to the positive terminal of the auxiliary capacitor, and the negative terminal of the auxiliary capacitor is connected to the negative terminal of the main capacitor.
  • Step 1 The thermal power unit receives the frequency modulation command to adjust the power downward, the supercapacitor bank detects the difference between the current power of the unit and the frequency modulation command, starts the charging process, and the voltage equalization device enables the high voltage comparator of each unit;
  • Step 2 When any unit of the supercapacitor bank is charged to the maximum working voltage, the high-voltage comparator of this unit outputs a high-level signal, and triggers the charging MOSFET switch of this unit to turn on, and starts to charge the auxiliary capacitor of this unit;
  • Step 3 After the high-voltage comparators of more than half of all units in the supercapacitor bank output high-level signals, the charging process is stopped, and the high-voltage comparators of each unit are blocked;
  • Step 4 The thermal power unit receives the frequency modulation command to adjust the power upward, the supercapacitor bank detects the difference between the current power of the unit and the frequency modulation command, and starts the discharge process, and the voltage equalization device enables the low voltage comparator of each unit;
  • Step 5 When the discharge of any unit of the supercapacitor bank reaches the minimum working voltage, the low-voltage comparator of this unit outputs a high-level signal, and triggers the discharge MOSFET switch of this unit to turn on, and the auxiliary capacitor starts to discharge;
  • Step 6 after the low-voltage comparators of more than half of all units in the supercapacitor bank output high-level signals, the discharge process is stopped, and the low-voltage comparators of each unit are blocked;
  • Step 7 The supercapacitor repeats the above charging and discharging process according to the frequency regulation command sent by the power grid to the unit.
  • the basic principle of the technical solution of this embodiment is the same as the claims, and the voltage balance of the supercapacitor bank is realized by controlling the conduction of the auxiliary capacitor through the high voltage comparator and the low voltage comparator.
  • the difference is that the on-trigger pulses of the high-voltage comparator, low-voltage comparator, and auxiliary capacitor are all implemented by FPGA, thereby realizing the integration of the entire system and improving the consistency and reliability of the components in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Amplifiers (AREA)

Abstract

一种辅助火电机组AGC调频超级电容器组的电压均衡装置和方法,装置包括64个相同单元,每个单元包括主电容、辅助电容、低电压比较器、高电压比较器、放电MOSFET开关和充电MOSFET开关;方法包括:开始启动充电过程,电压均衡装置使能各单元的高电压比较器;超级电容器组的任一单元充电达到最大工作电压,开始向本单元辅助电容充电;超级电容器组的所有单元中超过一半的单元高电压比较器输出高电平信号后,则停止充电过程;超级电容器组检测到机组当前功率和调频指令的差值,开始启动放电过程;触发本单元放电MOSFET开关导通,辅助电容开始放电;停止放电过程,并闭锁各单元的低电压比较器;重复上述充电和放电过程。

Description

辅助火电机组AGC调频超级电容器组的电压均衡装置和方法
相关申请的交叉引用
本申请基于申请号为202110801209.8、申请日为2021年7月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电力系统自动化技术领域,具体涉及一种辅助火电机组AGC调频超级电容器组的电压均衡装置和方法。
背景技术
超级电容器具有循环寿命长、功率密度大、大电流放电能力强、充电迅速、工作温度范围宽、安全可靠、清洁环保等突出的优点,非常适合用来辅助火电机组响应AGC调频指令。但是,超级电容器单体电压值较低,一般小于3V,需要通过串联来实现较高的工作电压,并进一步通过换流器和变压器接入厂用电系统。
然而,由于生产工艺的限制,超级电容器单体的等效串联电阻、漏电流、电容容量不能做到完全相同,从而导致工作中串联电容器电压相差较大,在充电过程中部分电容器出现过电压状态,在放电过程中部分电容器出现欠电压,影响超级电容器组整体的利用率和使用寿命。
相关技术中,应用较多的超级电容器电压均衡方法是飞渡电容法,其原理是将电压高的单体中的部分能量转移到电压低的单体中,可以实现动态和静态 均压。根据文献《超级电容器模块化技术的研究》(李海东)的结论,多飞渡电容法在能量转移过程中不得不经过其它单体,导致损耗增加,均压速度下降,而单飞渡电容法所需元器件数量多,开关网络复杂,控制算法繁琐,均不适用于大功率场合。
用于辅助火电机组AGC调频的超级电容器组容量多为MW级,因此无法使用飞渡电容法来均衡电压。但是,因为超级电容器用于响应调频指令时,需要长时间并到电网上,且每天充放电次数多达几百次,因此可以采用动态均压方法来实现电压均衡。
发明内容
本公开的目的在于提供了一种辅助火电机组AGC调频超级电容器组的电压均衡装置和方法。
本公开采用如下技术方案来实现。
本公开一方面实施例提出了一种辅助火电机组AGC调频超级电容器组的电压均衡装置,包括64个相同单元,每个单元包括主电容、辅助电容、低电压比较器、高电压比较器、放电MOSFET开关和充电MOSFET开关;
每个单元的主电容正极性端与放电MOSFET开关源极和充电MOSFET开关漏极相连接,低电压比较器的电压输入端连接主电容的正极性端,低电压比较器的输出端连接放电MOSFET开关的栅极,高电压比较器的电压输入端连接主电容的正极性端,高电压比较器的输出端连接充电MOSFET开关的栅极,放电MOSFET开关的漏极和充电MOSFET开关的源极相连,并连接辅助电容的正极性端,辅助电容的负极性端与主电容的负极性端相连。
在本公开实施例中,所述低电压比较器的比较电压Ul等于超级电容器的最 小工作电压Umin。
在本公开实施例中,所述高电压比较器的比较电压Uh等于超级电容器的最大工作电压Umax。
在本公开实施例中,辅助电容的典型电容值等于主电容的十分之一。
本公开另一方面实施例提供了一种辅助火电机组AGC调频超级电容器组的电压均衡方法,该方法基于所述的辅助火电机组AGC调频超级电容器组的电压均衡装置,包括以下步骤:
步骤1:火电机组接收到向下调节功率的调频指令,超级电容器组检测到机组当前功率和调频指令的差值,开始启动充电过程,电压均衡装置使能各单元的高电压比较器;
步骤2:超级电容器组的任一单元充电达到最大工作电压,则本单元高电压比较器输出高电平信号,并触发本单元充电MOSFET开关导通,开始向本单元辅助电容充电;
步骤3:超级电容器组的所有单元中超过一半的单元高电压比较器输出高电平信号后,则停止充电过程,并闭锁各单元的高电压比较器;
步骤4:火电机组接收到向上调节功率的调频指令,超级电容器组检测到机组当前功率和调频指令的差值,开始启动放电过程,电压均衡装置使能各单元的低电压比较器;
步骤5:超级电容器组的任一单元放电达到最小工作电压,则本单元低电压比较器输出高电平信号,并触发本单元放电MOSFET开关导通,辅助电容开始放电;
步骤6:超级电容器组的所有单元中超过一半的单元低电压比较器输出高电平信号后,则停止放电过程,并闭锁各单元的低电压比较器;和
步骤7:超级电容器根据电网向机组发出的调频指令,重复上述充电和放电过程。
在本公开实施例中,步骤3和步骤6中,采用FPGA来并行处理多路高电压比较器或低电压比较器的输出信号,提升响应速度。
在本公开实施例中,所述低电压比较器的比较电压Ul等于超级电容器的最小工作电压Umin。
在本公开实施例中,所述高电压比较器的比较电压Uh等于超级电容器的最大工作电压Umax。
在本公开实施例中,辅助电容的典型电容值等于主电容的十分之一。
在本公开实施例中,电压比较器的比较逻辑可通过模拟器件组合实现,也可通过数字器件集成实现。
本公开的实施方案至少具有如下有益的技术效果:
1、本公开实施例采用辅助电容对串联超级电容器组的单体电容进行补偿,并且通过控制辅助电容的通断,实现按需补偿,从而实现电压的均衡控制。
2、本公开实施例采用MOSFET开关控制辅助电容的导通和关断,可以实现频繁通断,且功率损耗很小。
3、本公开实施例采用FPGA并行处理多个比较器的输出信号,可提升系统的响应速度,大幅降低控制电路的复杂程度。
4、本公开实施例采用模块化结构,非常易于实现大功率超级电容器组的搭建,并且易于维护,如果发生单元损坏,则只需要更换损坏的单元电容器即可。
本公开对比相关技术具有以下显著优点:
1、本公开实施例提出的一种用于辅助火电机组AGC调频超级电容装置组的电压均衡装置,相比于飞渡电容法,硬件电路更简单,不需要复杂的开关网 络,控制算法也更简单。
2、本公开实施例提出的一种用于辅助火电机组AGC调频超级电容装置组的电压均衡装置,为模块化结构,可以很容易实现大量超级电容器的串联,适合工程应用。
附图说明
图1为根据本公开实施例的辅助火电机组AGC调频超级电容器组的电压均衡装置的电路图。
图2为根据本公开实施例的电路图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
如图1所示,本公开实施例提供的辅助火电机组AGC调频超级电容器组的电压均衡装置,包括40±5个相同单元,每个单元包括主电容1、辅助电容2、低电压比较器3、高电压比较器4、放电MOSFET开关5和充电MOSFET开关(6);每个单元的主电容正极性端与放电MOSFET开关源极和充电MOSFET开关漏极相连接,低电压比较器的电压输入端连接主电容的正极性端,低电压比较器的输出端连接放电MOSFET开关的栅极,高电压比较器的电压输入端连 接主电容的正极性端,高电压比较器的输出端连接充电MOSFET开关的栅极,放电MOSFET开关的漏极和充电MOSFET开关的源极相连,并连接辅助电容的正极性端,辅助电容的负极性端与主电容的负极性端相连。
本公开实施例提供的辅助火电机组AGC调频超级电容器组的电压均衡方法,包括以下步骤:
步骤1:火电机组接收到向下调节功率的调频指令,超级电容器组检测到机组当前功率和调频指令的差值,开始启动充电过程,电压均衡装置使能各单元的高电压比较器;
步骤2:超级电容器组的任一单元充电达到最大工作电压,则本单元高电压比较器输出高电平信号,并触发本单元充电MOSFET开关导通,开始向本单元辅助电容充电;
步骤3:超级电容器组的所有单元中超过一半的单元高电压比较器输出高电平信号后,则停止充电过程,并闭锁各单元的高电压比较器;
步骤4:火电机组接收到向上调节功率的调频指令,超级电容器组检测到机组当前功率和调频指令的差值,开始启动放电过程,电压均衡装置使能各单元的低电压比较器;
步骤5:超级电容器组的任一单元放电达到最小工作电压,则本单元低电压比较器输出高电平信号,并触发本单元放电MOSFET开关导通,辅助电容开始放电;
步骤6:超级电容器组的所有单元中超过一半的单元低电压比较器输出高电平信号后,则停止放电过程,并闭锁各单元的低电压比较器;和
步骤7:超级电容器根据电网向机组发出的调频指令,重复上述充电和放电过程。
实施例1
如图2所示,本实施例的技术方案基本原理与权利要求书相同,通过高电压比较器和低电压比较器控制辅助电容的导通来实现超级电容器组的电压均衡。不同之处在于,高电压比较器、低电压比较器以及辅助电容的导通触发脉冲均通过FPGA实现,从而实现了整个系统的集成化,并且提高了串联各元件的一致性和可靠性。
虽然,上文中已经用一般性说明及具体实施方案对本公开作了详尽的描述,但在本公开基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。

Claims (10)

  1. 一种辅助火电机组AGC调频超级电容器组的电压均衡装置,其特征在于,包括64个相同单元,每个单元包括主电容(1)、辅助电容(2)、低电压比较器(3)、高电压比较器(4)、放电MOSFET开关(5)和充电MOSFET开关(6);
    每个单元的主电容正极性端与放电MOSFET开关源极和充电MOSFET开关漏极相连接,低电压比较器的电压输入端连接主电容的正极性端,低电压比较器的输出端连接放电MOSFET开关的栅极,高电压比较器的电压输入端连接主电容的正极性端,高电压比较器的输出端连接充电MOSFET开关的栅极,放电MOSFET开关的漏极和充电MOSFET开关的源极相连,并连接辅助电容的正极性端,辅助电容的负极性端与主电容的负极性端相连。
  2. 根据权利要求1所述的辅助火电机组AGC调频超级电容器组的电压均衡装置,其特征在于,所述低电压比较器的比较电压Ul等于超级电容器的最小工作电压Umin。
  3. 根据权利要求1或2所述的辅助火电机组AGC调频超级电容器组的电压均衡装置,其特征在于,所述高电压比较器的比较电压Uh等于超级电容器的最大工作电压Umax。
  4. 根据权利要求1至3中任一项所述的辅助火电机组AGC调频超级电容器组的电压均衡装置,其特征在于,辅助电容的典型电容值等于主电容的十分之一。
  5. 一种辅助火电机组AGC调频超级电容器组的电压均衡方法,其特征在于,所述方法基于权利要求1所述的辅助火电机组AGC调频超级电容器组的电 压均衡装置,包括以下步骤:
    步骤1:火电机组接收到向下调节功率的调频指令,超级电容器组检测到机组当前功率和调频指令的差值,开始启动充电过程,电压均衡装置使能各单元的高电压比较器;
    步骤2:超级电容器组的任一单元充电达到最大工作电压,则本单元高电压比较器输出高电平信号,并触发本单元充电MOSFET开关导通,开始向本单元辅助电容充电;
    步骤3:超级电容器组的所有单元中超过一半的单元高电压比较器输出高电平信号后,则停止充电过程,并闭锁各单元的高电压比较器;
    步骤4:火电机组接收到向上调节功率的调频指令,超级电容器组检测到机组当前功率和调频指令的差值,开始启动放电过程,电压均衡装置使能各单元的低电压比较器;
    步骤5:超级电容器组的任一单元放电达到最小工作电压,则本单元低电压比较器输出高电平信号,并触发本单元放电MOSFET开关导通,辅助电容开始放电;
    步骤6:超级电容器组的所有单元中超过一半的单元低电压比较器输出高电平信号后,则停止放电过程,并闭锁各单元的低电压比较器;和
    步骤7:超级电容器根据电网向机组发出的调频指令,重复上述充电和放电过程。
  6. 根据权利要求5所述的辅助火电机组AGC调频超级电容器组的电压均衡方法,其特征在于,步骤3和步骤6中,采用FPGA来并行处理多路高电压比较器或低电压比较器的输出信号,提升响应速度。
  7. 根据权利要求5或6所述的辅助火电机组AGC调频超级电容器组的电 压均衡方法,其特征在于,所述低电压比较器的比较电压Ul等于超级电容器的最小工作电压Umin。
  8. 根据权利要求5至7中任一项所述的辅助火电机组AGC调频超级电容器组的电压均衡方法,其特征在于,所述高电压比较器的比较电压Uh等于超级电容器的最大工作电压Umax。
  9. 根据权利要求5至8中任一项所述的辅助火电机组AGC调频超级电容器组的电压均衡方法,其特征在于,辅助电容的典型电容值等于主电容的十分之一。
  10. 根据权利要求5至9中任一项所述的辅助火电机组AGC调频超级电容器组的电压均衡方法,其特征在于,电压比较器的比较逻辑可通过模拟器件组合实现,也可通过数字器件集成实现。
PCT/CN2022/103143 2021-07-15 2022-06-30 辅助火电机组agc调频超级电容器组的电压均衡装置和方法 WO2023284560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110801209.8 2021-07-15
CN202110801209.8A CN113555883B (zh) 2021-07-15 2021-07-15 辅助火电机组agc调频超级电容器组的电压均衡装置和方法

Publications (1)

Publication Number Publication Date
WO2023284560A1 true WO2023284560A1 (zh) 2023-01-19

Family

ID=78103273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103143 WO2023284560A1 (zh) 2021-07-15 2022-06-30 辅助火电机组agc调频超级电容器组的电压均衡装置和方法

Country Status (2)

Country Link
CN (1) CN113555883B (zh)
WO (1) WO2023284560A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555883B (zh) * 2021-07-15 2023-02-24 西安热工研究院有限公司 辅助火电机组agc调频超级电容器组的电压均衡装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764422A (zh) * 2010-01-15 2010-06-30 浙江大学 一种串联充放电单元的均压电路
CN103441556A (zh) * 2013-09-17 2013-12-11 电子科技大学 一种超级电容器组充放电均衡装置及均衡方法
US20170310128A1 (en) * 2014-10-08 2017-10-26 The Hong Kong Polytechnic University Voltage balancing circuit
CN111564886A (zh) * 2020-06-01 2020-08-21 李砚泉 基于电容网络的均衡装置、可级联均衡电池组及控制方法
CN113555883A (zh) * 2021-07-15 2021-10-26 西安热工研究院有限公司 辅助火电机组agc调频超级电容器组的电压均衡装置和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145755A (ja) * 1997-11-12 1999-05-28 Kenwood Corp 自動等化器
KR101727830B1 (ko) * 2015-10-22 2017-04-17 주식회사 포스코아이씨티 개방단자전압을 이용하여 soc 평형 제어를 수행하는 전력 조절 장치, 이를 포함하는 에너지 저장 시스템, 및 개방단자전압을 이용한 배터리 랙 그룹들의 soc 평형 제어 방법
CN106253381B (zh) * 2016-08-10 2019-05-07 渤海大学 超级电容串联模组均压电路及均压方法
CN106505672A (zh) * 2016-11-15 2017-03-15 电子科技大学 一种串联超级电容组充电均衡电路及其均衡方法
CN206650492U (zh) * 2017-04-17 2017-11-17 中国矿业大学 一种远控式隔爆兼本安型不间断供电电源
CN110299717B (zh) * 2019-07-11 2022-04-29 东南大学 一种基于模型预测控制的分布式混合储能系统能量均衡控制策略
CN110474354B (zh) * 2019-08-13 2021-02-05 南瑞集团有限公司 含锂电池和超级电容的微电网孤岛运行模式协调控制方法
CN112104021A (zh) * 2020-08-28 2020-12-18 苏州腾冉电气设备股份有限公司 用于超级电容储能系统的单体电压均衡控制系统、方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764422A (zh) * 2010-01-15 2010-06-30 浙江大学 一种串联充放电单元的均压电路
CN103441556A (zh) * 2013-09-17 2013-12-11 电子科技大学 一种超级电容器组充放电均衡装置及均衡方法
US20170310128A1 (en) * 2014-10-08 2017-10-26 The Hong Kong Polytechnic University Voltage balancing circuit
CN111564886A (zh) * 2020-06-01 2020-08-21 李砚泉 基于电容网络的均衡装置、可级联均衡电池组及控制方法
CN113555883A (zh) * 2021-07-15 2021-10-26 西安热工研究院有限公司 辅助火电机组agc调频超级电容器组的电压均衡装置和方法

Also Published As

Publication number Publication date
CN113555883B (zh) 2023-02-24
CN113555883A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN107732954B (zh) 一种电压源换流器单元在线投入控制方法及装置
CN204046183U (zh) 一种多元复合储能装置
CN109494752B (zh) 一种集中式电阻耗能装置及其控制方法
CN105958823A (zh) 一种电流连续型高增益开关升压准z源变换器电路
CN107592017B (zh) 一种dc-dc变换器及控制方法
CN109546672B (zh) 一种直流耗能装置、系统以及控制方法
CN107196312B (zh) Lc网络开关并联型统一电能质量控制器及其控制方法
CN106505672A (zh) 一种串联超级电容组充电均衡电路及其均衡方法
CN103973094A (zh) 一种模块化多电平变流器的快速预充电电路
WO2023284560A1 (zh) 辅助火电机组agc调频超级电容器组的电压均衡装置和方法
CN209088560U (zh) 一种含反激变换器的电池主动均衡装置
CN109039044A (zh) 基于柔性直流输电系统的mmc冗余功率模块控制方法
CN103825328A (zh) 高效大功率超级电容器模组电压均衡装置及方法
CN108471228A (zh) 一种dc/dc变换模块输出电压快速泄放电路及其实现方法
CN106169885A (zh) 一种级联式六开关多电平逆变器
CN105656339A (zh) 一种提高直流输电换相能力的大容量半控型子模块
CN106655402A (zh) 一种电压主动均衡电路及蓄电系统
CN112491077B (zh) 一种分布式串联补偿器的控制方法及装置
CN108879651B (zh) 基于dab的大功率双重模块化混合储能系统及并网方法
CN102891617A (zh) 一种无源均压控制电路
CN113489359B (zh) 一种具备直流故障清除能力的子模块拓扑
CN201667540U (zh) 一种电磁电抗动态无功补偿装置
CN109039072A (zh) 一种双极双向直流变换器及其控制方法和控制装置
CN205355881U (zh) 基于三谐振状态LC变换的Adjacent Cell-to-Cell均衡电路
CN110635683B (zh) 二端口子模块、自耦式直流变压器及其调制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE