WO2023284194A1 - 室外机的管内油污回收控制方法 - Google Patents

室外机的管内油污回收控制方法 Download PDF

Info

Publication number
WO2023284194A1
WO2023284194A1 PCT/CN2021/129795 CN2021129795W WO2023284194A1 WO 2023284194 A1 WO2023284194 A1 WO 2023284194A1 CN 2021129795 W CN2021129795 W CN 2021129795W WO 2023284194 A1 WO2023284194 A1 WO 2023284194A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
recovery
preset
outdoor
controlling
Prior art date
Application number
PCT/CN2021/129795
Other languages
English (en)
French (fr)
Inventor
罗荣邦
崔俊
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023284194A1 publication Critical patent/WO2023284194A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the invention relates to the technical field of self-cleaning of air conditioners, in particular to a method for controlling the recovery and control of oil pollution in pipes of outdoor machines.
  • the refrigerating machine oil will participate in the cycle along with the refrigerant during use.
  • the refrigerating machine oil will have carbon and impurities, and these oils will flow to the hairpin tube of the outdoor heat exchanger along with the refrigerant.
  • the hairpin tube is an internally threaded copper tube, which affects the flow of refrigeration oil. Coupled with the centrifugal force of the refrigerant flow, the oil and oil cannot return to the inside of the compressor in time, and stay on the inner wall of the threaded copper tube, hindering the connection between the refrigerant and the coil. The heat transfer between them reduces the heat transfer temperature difference and makes the heating effect of the air conditioner worse.
  • the application provides a control method for oil pollution recovery in the pipe of the outdoor machine, which is applied to an air conditioner, and the air conditioner It includes a compressor, a four-way valve, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger connected in sequence through a refrigerant pipeline.
  • the air conditioner also includes a recovery pipeline, a first on-off valve, and a second on-off valve.
  • the first on-off valve is set on the refrigerant pipeline between the indoor heat exchanger and the throttling device, and one end of the recovery pipeline is set on the first on-off valve and the throttling device.
  • the other end of the recovery pipeline communicates with the suction port of the compressor, the second on-off valve is arranged on the recovery pipeline,
  • control methods include:
  • the first on-off valve is controlled to be closed, the second on-off valve is opened, and the throttling The flow device opens to a preset opening.
  • the air conditioner further includes a third on-off valve, and the third on-off valve is arranged between the four-way valve and the indoor heat exchanger
  • the step of "controlling the air conditioner to switch to cooling operation when the coil temperature is less than or equal to the preset temperature and lasts for a first preset time" further includes:
  • the air conditioner After the compressor and the outdoor fan stop for a first preset delay time, the air conditioner is controlled to switch to cooling operation.
  • the method further includes:
  • the first on-off valve, the second on-off valve and the third on-off valve are controlled to be opened;
  • the step of "controlling the throttling device to close to a minimum opening degree" further includes:
  • the throttling device is controlled to close to a minimum opening.
  • the second recovery frequency is the highest limit frequency corresponding to the outdoor ambient temperature.
  • control method for oil pollution recovery in pipes of the above-mentioned outdoor unit before the step of "adjusting the opening degree of the throttling device", the control method also includes:
  • control method further includes:
  • the fan in the control room stops running.
  • the step of "adjusting the opening degree of the throttling device" further includes:
  • the opening degree of the throttling device is adjusted according to the preset exhaust gas temperature.
  • control method for oil pollution recovery in pipes of the above-mentioned outdoor unit further includes:
  • the outdoor anti-freezing protection function and the outdoor ambient temperature frequency limiting function are turned off.
  • control method for oil pollution recovery in pipes of the outdoor unit, in the "controlling the closing of the first on-off valve, the opening of the second on-off valve, and the opening of the throttling device to a preset opening degree" After the step, the control method also includes:
  • the second on-off valve is opened, and the throttling device is opened to a preset opening for a fourth preset period of time, the oil pollution recovery mode in the pipe of the outdoor unit is exited.
  • the step of "exiting the oil pollution recovery mode in the pipe of the outdoor machine" further includes:
  • control the throttling device After controlling the throttling device to maintain the preset opening for a fifth preset period of time, control the throttling device to return to the opening before entering the oil pollution recovery mode in the pipe of the outdoor unit;
  • the step of "exiting the oil pollution recovery mode in the pipe of the outdoor machine” further includes:
  • the indoor fan is controlled to start running.
  • the air conditioner includes a compressor, a four-way valve, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger that are sequentially connected through a refrigerant pipeline.
  • pipeline, the first on-off valve and the second on-off valve, the first on-off valve is set on the refrigerant pipeline between the indoor heat exchanger and the throttling device, and one end of the recovery pipeline is set on the first on-off valve and the throttling device.
  • the other end of the recovery pipeline communicates with the suction port of the compressor, and the second on-off valve is arranged on the recovery pipeline.
  • the control method includes: responding to the received Oil recovery command, enter the oil recovery mode in the pipe of the outdoor unit; control the heating operation of the air conditioner; control the compressor to adjust to the preset first recovery frequency; adjust the opening of the throttling device so that the coil of the outdoor heat exchanger The temperature is less than or equal to the preset temperature; when the coil temperature is less than or equal to the preset temperature and lasts for the first preset time, the air conditioner is controlled to switch to cooling operation; the throttling device is controlled to close to the minimum opening; it is obtained every first interval The discharge pressure and the suction pressure of the compressor; when the ratio of the discharge pressure to the suction pressure is greater than or equal to the preset threshold and lasts for a second preset time, control the first on-off valve to close, the second on-off valve to open, The throttling device opens to a preset opening.
  • the method of the present application can realize the recovery of the oil in the pipe of the outdoor unit, and solve the problem of dirty blockage in the pipe of the outdoor heat exchanger. Specifically, by controlling the air conditioner to run on heating first, and adjusting the opening of the throttling device so that the coil temperature of the outdoor heat exchanger is less than or equal to the preset temperature, due to the high viscosity of the oil stain, the freezing point is higher than that of the refrigerant. During the process of temperature drop, the oil stain first solidifies and precipitates from the refrigerant circulation, and adheres to the inner wall of the coil of the outdoor heat exchanger.
  • the oil stain in the refrigerant is separated and temporarily stored inside the coil of the outdoor heat exchanger.
  • control the heat exchanger of the air conditioner to switch to cooling operation, and control the throttling device to close to the minimum opening, so that the temperature and pressure of the refrigerant discharged by the compressor stay Accumulates in the coils of the outdoor heat exchanger.
  • the first on-off valve When the ratio between the discharge pressure and the suction pressure is greater than the preset threshold, the first on-off valve is closed, the second on-off valve and the throttling device are opened, and the rapid flow of high-temperature and high-pressure refrigerant can be used to impact the outdoor heat exchanger Inside the coil, the oil temporarily stored inside the coil is melted by high temperature and returns directly to the inside of the compressor along with the refrigerant through the recovery pipeline to realize the oil recovery of the outdoor heat exchanger.
  • Fig. 1 is the system diagram of the air conditioner of the present application in heating mode
  • Fig. 2 is the system diagram of the air conditioner of the present application in cooling mode
  • Fig. 3 is the flow chart of the oil pollution recovery control method in the pipe of the outdoor unit of the present application.
  • Fig. 4 is a logic diagram of a possible implementation process of the method for controlling oil pollution recovery in pipes of outdoor units of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • FIG. 1 is a system diagram of the air conditioner of the present application in a heating mode.
  • the air conditioner includes a compressor 1 , a four-way valve 2 , an indoor heat exchanger 5 , a throttling device 4 , an outdoor heat exchanger 3 and a liquid accumulator 11 .
  • the exhaust port of the compressor 1 is connected with the P port of the four-way valve 2 through the refrigerant pipeline 6, and the E port of the four-way valve 2 is connected with the inlet of the indoor heat exchanger 5 through the refrigerant pipeline 6.
  • the outlet communicates with one port of the throttling device 4 through the refrigerant pipeline 6, and the other port of the throttling device 4 communicates with the inlet of the outdoor heat exchanger 3 through the refrigerant pipeline 6, and the outlet of the outdoor heat exchanger 3 passes through the refrigerant pipeline 6 is connected with the C port of the four-way valve 2, the S port of the four-way valve 2 is connected with the inlet of the accumulator 11 through the refrigerant pipeline 6, and the outlet of the accumulator 11 is connected with the suction port of the compressor 1 through the pipeline .
  • the throttling device 4 is preferably an electronic expansion valve, and a filter is provided in the liquid reservoir 11.
  • the liquid reservoir 11 can store refrigerant, separate gas and liquid of refrigerant, filter oil, eliminate noise, and buffer refrigerant.
  • the air conditioner also includes a first on-off valve 8, a second on-off valve 9 and a recovery pipeline 7, the first on-off valve 8 and the second on-off valve 9 are preferably electromagnetic valves, and the first on-off valve 8 is Normally open valve, which is arranged on the refrigerant pipeline 6 between the throttling device 4 and the indoor heat exchanger 5, the second on-off valve 9 is a normally closed valve, which is arranged on the recovery pipeline 7, and the recovery pipeline 7 A copper tube with a smooth inner wall is used. The first end of the copper tube is set on the refrigerant pipeline 6 between the throttling device 4 and the first on-off valve 8, and the second end of the copper tube is set on the S of the four-way valve 2.
  • Both the first on-off valve 8 and the second on-off valve 9 are communicatively connected with the controller of the air conditioner, so as to receive opening and closing signals issued by the controller.
  • the controller of the air conditioner so as to receive opening and closing signals issued by the controller.
  • one or more of the above-mentioned on-off valves can also be replaced by electronically controlled valves such as electronic expansion valves.
  • the method for controlling the recovery of oil pollution in the pipe of the outdoor unit in this embodiment will be described in conjunction with the structure of the above-mentioned air conditioner, but those skilled in the art can understand that the specific structural composition of the air conditioner is not static, and those skilled in the art can carry it out. Adjustment, for example, can add or delete parts etc. on the basis of the structure of the above-mentioned air conditioner.
  • Fig. 2 is a system diagram of the air conditioner of the present application in cooling mode
  • Fig. 3 is a flow chart of the control method for oil pollution recovery in pipes of the outdoor unit of the present application.
  • the oil pollution recovery control method in the pipe of the outdoor machine of the present application includes:
  • the user can initiate an instruction to recover the oil pollution in the pipe of the outdoor unit, such as sending an instruction to the air conditioner through a button on the remote control, or sending an instruction through a terminal connected to the air conditioner through communication, wherein the terminal It can be the APP installed on the smart device, and the APP can send instructions to the air conditioner directly or through the cloud.
  • smart devices include but are not limited to mobile phones, tablet computers, smart speakers, smart watches, etc.
  • the ways of communication and connection between smart devices and air conditioners or the cloud include but not limited to wifi, bluetooth, infrared, 3G/4G/5G, etc.
  • the air conditioner After the air conditioner receives the command to recover the oil in the pipe of the outdoor unit, it switches the operation mode to the oil recovery mode in the pipe of the outdoor unit, and starts to recover the oil in the pipe of the outdoor unit.
  • the oil pollution recovery mode in the pipe can be a computer program, which is pre-stored in the air conditioner. When this mode is operated, the air conditioner controls the operation of each component of the air conditioner according to the steps set by the program.
  • the oil pollution recovery command in the pipe of the outdoor unit can also be automatically issued when the air conditioner meets certain entry conditions.
  • it can be 20h-40h.
  • the switching between heating and cooling of the air conditioner is controlled by controlling the power on and off of the four-way valve. For example, when the four-way valve is powered off, the air When powered on, the air conditioner runs in heating mode. In this embodiment, after entering the oil pollution recovery mode in the outdoor unit pipe, if the air conditioner is running in the heating mode, no adjustment is required, and the air conditioner is controlled to continue running; if the air conditioner is running in the non-heating mode, the air conditioner is controlled to switch to Heating operation.
  • the first recovery frequency is a frequency determined in advance through experiments, for example, it may be determined based on the correspondence between the outdoor ambient temperature and the first recovery frequency in Table 1 below.
  • the compressor operates at the first recovery frequency, it facilitates the implementation of the subsequent control process.
  • the highest frequency limit value of the outer ring temperature is the maximum limit frequency of the compressor corresponding to the outdoor ambient temperature.
  • the temperature of the coil of the outdoor heat exchanger can be detected by a temperature sensor installed on the coil of the outdoor heat exchanger, and the opening of the electronic expansion valve can be adjusted to make the temperature of the outdoor heat exchanger
  • the coil temperature is less than or equal to the preset temperature. Since the freezing point of the refrigerant is much lower than the freezing point of the oil stain, the oil stain can be solidified and precipitated first when the coil temperature is less than or equal to the preset temperature.
  • the preset temperature in this application can be set at -5°C to -25°C, and in this application, the preset temperature can be -15°C.
  • the coil temperature of the outdoor heat exchanger is less than or equal to the preset temperature as the control purpose, and the coil temperature of the outdoor heat exchanger is always in a state of being less than or equal to the preset temperature by adjusting the opening degree of the electronic expansion valve.
  • the opening degree of the throttling device can be adjusted according to the preset exhaust gas temperature.
  • the preset exhaust temperature may be determined based on the correspondence between the outdoor ambient temperature and the preset exhaust temperature in Table 1 above.
  • the target exhaust gas in the table is the target exhaust gas temperature of the compressor corresponding to the outdoor ambient temperature, and the determination of the target exhaust gas temperature is a conventional method in the field, and will not be repeated here. The applicant found through experiments that when the expansion valve is adjusted according to the preset discharge temperature, the temperature of the outdoor coil can be quickly dropped below the preset temperature.
  • the coil temperature of the outdoor heat exchanger can also be lower than or equal to the preset temperature by adjusting the opening degree of the electronic expansion valve to a fixed opening degree.
  • the first preset duration may be any value in 5-15 minutes.
  • the first preset time length in this embodiment is 10 minutes.
  • the switch between the operation modes of the air conditioner is controlled by controlling the power on and off of the four-way valve, for example, the power off of the four-way valve is controlled, and the air conditioner operates in cooling.
  • the throttling device is controlled to close to a minimum opening degree, that is, a state where the opening degree is 0, and the throttling device realizes complete throttling, and the refrigerant cannot flow through.
  • a minimum opening degree that is, a state where the opening degree is 0, and the throttling device realizes complete throttling, and the refrigerant cannot flow through.
  • the refrigerant in the indoor heat exchanger and the refrigerant pipeline is discharged by the compressor and accumulated in the outdoor heat exchanger.
  • the discharge pressure of the compressor can be obtained by setting a pressure sensor at the discharge port of the compressor, and the suction pressure can be obtained by setting a pressure sensor at the suction port of the compressor.
  • the first interval time can be any value from 1s to 10s, and the selection of this value is related to the change speed of the exhaust pressure and the suction pressure and the control precision to be achieved in this application.
  • the first interval time can be selected as 1s, 2s or shorter time, otherwise if The first recovery frequency is relatively small, the change speed of the exhaust pressure and the suction pressure is slow, or the control method of this application does not need to achieve high precision, then the first interval time can be selected as 9s, 10s or longer.
  • the first interval time is selected as 5s, that is, after the first on-off valve is controlled to be closed, the discharge pressure and the suction pressure of the compressor are acquired every 5s.
  • the way to obtain the exhaust pressure and the suction pressure is not unique, and those skilled in the art can adjust them. This adjustment does not deviate from the principle of this application.
  • a pressure sensor is installed on the coil of the heat exchanger to obtain the exhaust pressure
  • a pressure sensor is installed on the coil of the indoor heat exchanger to obtain the suction pressure.
  • the ratio between the exhaust pressure and the suction pressure is calculated, and the ratio is compared with the preset threshold and the duration of the ratio being less than the preset threshold.
  • the preset threshold can be any value in 6-10, and in this application it is 8, and the second preset duration can be any value in 3-10s, and in this application it is 5s.
  • the first on-off valve is controlled to be closed, the second on-off valve is opened, and the throttling device is opened to a preset opening degree.
  • the high-temperature and high-pressure refrigerant discharged from the compressor quickly impacts the coil of the outdoor heat exchanger, and the oil stain temporarily stored inside the coil is melted, and the high-temperature refrigerant directly flows back to the liquid storage through the recovery pipeline
  • the filter is intercepted and filtered by the filter inside the reservoir to achieve the purpose of oil recovery.
  • the preset opening is the maximum opening of the throttling device, so that the high-temperature and high-pressure refrigerant can pass quickly, reduce the pressure drop during the flow of the refrigerant, and improve the oil recovery effect in the pipe.
  • the first on-off valve When the ratio between the discharge pressure and the suction pressure is greater than the preset threshold, the first on-off valve is closed, the second on-off valve and the throttling device are opened, and the rapid flow of high-temperature and high-pressure refrigerant can be used to impact the outdoor heat exchanger Inside the coil, the oil temporarily stored inside the coil is melted by high temperature and returns directly to the inside of the compressor along with the refrigerant through the recovery pipeline to realize the oil recovery of the outdoor heat exchanger.
  • the application can use the recovery pipeline to realize the recovery of oil pollution in the process of recovering the oil pollution in the pipe of the outdoor heat exchanger, so as to realize the flushing of the outdoor heat exchanger by the high-temperature and high-pressure refrigerant. Afterwards, it does not need to go through the indoor heat exchanger again, but directly brings the oil back to the liquid receiver for recovery and filtration, and then it is compressed and discharged by the compressor again, which reduces the flow stroke of high-temperature refrigerant, reduces the pressure drop along the way, and improves the internal pressure of the pipe. Oil recovery effect.
  • the air conditioner also includes a third on-off valve 10, the third on-off valve 10 is preferably a solenoid valve, the third on-off valve 10 is a normally open valve, which is set at On the refrigerant pipeline 6 between the four-way valve 2 and the indoor heat exchanger 5 , the third on-off valve 10 is communicatively connected with the controller of the air conditioner to receive opening and closing signals issued by the controller.
  • the third on-off valve 10 can also be replaced by an electronically controlled valve such as an electronic expansion valve.
  • step S109 further includes: when the coil temperature is less than or equal to the preset temperature and lasts for a first preset time length, controlling the first on-off valve and the third on-off valve to close; The compressor and the outdoor fan stop; after the compressor and the outdoor fan stop for the first preset delay time, the air conditioner is controlled to switch to cooling operation.
  • the first preset delay time may be any value from 1 min to 5 min, and 3 min is selected in this application.
  • the first on-off valve and the third on-off valve are controlled to close, and at this time, part of the refrigerant discharged from the compressor is accumulated in the outdoor heat exchanger, that is, Between the first on-off valve and the third on-off valve.
  • control the compressor and outdoor fan to stop, and maintain this state for 3 minutes. Since the temperature of the refrigerant at this time is low, the coil of the outdoor heat exchanger can be fully cooled, and the oil and refrigerant can be completely separated. After 3 minutes, the air conditioner will switch to cooling operation, which can improve the oil recovery effect.
  • the method further includes: controlling the first on-off valve, the second on-off valve, and the third on-off valve to open when controlling the air conditioner to switch to cooling operation; Adjust to the preset second recovery frequency; the step of "controlling the throttling device to close to the minimum opening degree” further includes: after the compressor runs at the second recovery frequency for a third preset time period, controlling the throttle device to close to the minimum opening degree Spend.
  • the second recovery frequency is preferably the highest limit frequency corresponding to the outdoor ambient temperature.
  • the operating frequency of the compressor is affected by the outdoor ambient temperature and cannot be increased indefinitely, otherwise the phenomenon of high temperature protection shutdown of the compressor will easily occur, which will have a negative impact on the life of the compressor. Therefore, the compressors are all equipped with a protection mechanism. Under different outdoor ambient temperatures, the highest limit frequency is correspondingly set.
  • the second recovery frequency of this application is the highest limit frequency of the compressor at the current outdoor ambient temperature.
  • the compressor can increase the temperature and pressure of the refrigerant in the shortest time.
  • the manner of obtaining the outdoor ambient temperature is a conventional means in the field, and will not be repeated here.
  • the third preset duration can be any value from 10s to 1min. In this application, it is 30s.
  • the method before the step of "adjusting the opening degree of the throttling device", the method further includes: controlling the outdoor fan to stop running, and controlling the indoor fan to run at a preset speed.
  • the outdoor fan is firstly controlled to stop running, so as to reduce the heat exchange effect between the outdoor heat exchanger and the air, so as to speed up the temperature reduction of the indoor coil and reduce oil pollution. recycling efficiency.
  • the heat exchange effect between the refrigerant in the indoor heat exchanger and the environment can be improved, thereby reducing the temperature and pressure of the refrigerant, and improving the outdoor exchange rate of the refrigerant.
  • the evaporative effect in the heater causes the outdoor coil to cool down to the preset temperature more quickly.
  • the set speed can be 600r/min-800r/min, and the speed should not be too high, because the indoor unit is in a heating state, if the speed is too high, it will easily cause a sudden change in the indoor environment temperature, which will bring a bad experience to the user.
  • the method further includes: after controlling the air conditioner to switch to cooling operation, controlling the indoor fan to run for a sixth preset time period and then stop running.
  • the sixth preset duration may be any value in 10s-1min, and may be 30s in this application.
  • the method further includes: when entering the oil pollution recovery mode in the pipe of the outdoor unit, turning off the outdoor anti-freezing protection function and the outdoor ambient temperature frequency limiting function. Since the coil temperature of the outdoor heat exchanger needs to be lowered to a lower value, in order to reach this condition as soon as possible, the compressor needs to run at high frequency. function to ensure the smooth execution of this method. But other protection functions are turned on as usual, such as compressor exhaust protection and current overload protection, and other functions remain turned on to prevent adverse effects on the life of the air conditioner.
  • the specific control process of the oil pollution recovery mode in the outdoor unit pipe is not unique. After ensuring that the coil temperature is less than or equal to the preset temperature in the heating operation, it is switched to the cooling operation and the throttling device is turned off for throttling.
  • the suction pressure ratio controls the closing of the first on-off valve and the opening of the second on-off valve and the throttling device
  • those skilled in the art can adjust the control method.
  • the coil temperature of the outdoor heat exchanger can be kept at or below the preset temperature
  • the operating frequency of the compressor, the opening degree of the electronic expansion valve, and the opening of the third on-off valve can be controlled in the above-mentioned control mode.
  • One or more of the off, the speed of the indoor fan and the speed of the outdoor fan are omitted.
  • the method further includes: exiting the outdoor unit after the first on-off valve is closed, the second on-off valve is opened, and the throttling device is opened to a preset opening for a fourth preset period of time.
  • the fourth preset duration can be any value in 30s-120s, and in this application, it is preferably 60s.
  • the step of exiting the oil pollution recovery mode in the outdoor unit pipe further includes: controlling the air conditioner to return to the operating mode before entering the oil pollution recovery mode in the outdoor machine pipe, controlling the compressor to return to the frequency before entering the oil pollution recovery mode in the outdoor machine pipe, controlling the After the flow device maintains the preset opening for the fifth preset time, it returns to the opening before entering the oil pollution recovery mode in the outdoor unit pipe, controls the outdoor fan to turn on, and the coil temperature of the indoor heat exchanger reaches the anti-cold air temperature At this time, the indoor fan is controlled to start running, the first on-off valve is controlled to open, and the second on-off valve is controlled to close.
  • the air conditioner needs to return to the operation mode before the oil pollution recovery in the pipe, so as to continue to adjust the indoor temperature.
  • the heating operation of the air conditioner before entering the oil pollution recovery mode in the outdoor unit pipe as an example, after the oil pollution recovery mode in the outdoor unit pipe is executed, it is necessary to switch back to the heating mode.
  • control the four-way valve to restore the heating mode control the compressor to return from the second recovery frequency to the frequency before entering the oil pollution recovery mode in the outdoor unit pipe, control the outdoor fan to turn on, and when the coil temperature of the indoor heat exchanger reaches the anti-
  • the indoor fan is controlled to turn on, the electronic expansion valve is controlled to maintain the maximum opening, and the first on-off valve is opened and the second on-off valve is closed, so that the refrigerant flows in the normal heating mode.
  • the throttling device maintains the maximum opening. Since the refrigerant circulates between the compressor and the outdoor heat exchanger during the operation of the oil pollution recovery mode in the outdoor unit pipe, resulting in the lack of refrigerant in the indoor heat exchanger, the throttling device is opened to the maximum opening. , so that the refrigerant quickly fills the indoor heat exchanger, so as to realize the normal circulation of the refrigerant as soon as possible.
  • the throttling device is controlled to maintain the maximum opening for the fifth preset period of time, the throttling device is controlled to return to the opening before entering the oil pollution recovery mode in the pipe of the outdoor unit.
  • the fifth preset duration can be any value within 1min-5min, and it is preferably 3min in this application.
  • the electronic expansion valve maintains the maximum opening and operates for 3min, the refrigerant circulation has tended to be stable.
  • the electronic expansion valve is controlled to return to The opening degree before entering the oil pollution recovery mode in the outdoor unit pipe, so that the air conditioner can completely restore the heating parameters before entering the oil pollution recovery mode in the outdoor unit pipe and continue to operate.
  • the way of exiting the oil pollution recovery mode in the outdoor unit pipe is not limited to the above one, and those skilled in the art can freely choose specific control methods on the premise that the air conditioner can be restored to the operating state before entering the oil pollution recovery mode in the outdoor unit pipe way, this choice does not depart from the principles of the present application.
  • the indoor fan can be controlled to start and run while controlling the air deflector to blow upward, and then control the air deflector to blow air downward after a certain period of time.
  • FIG. 4 is a logic diagram of a possible implementation process of the oil pollution recovery control method in pipes of outdoor units of the present application.
  • step S201 is executed, the air conditioner enters the oil pollution recovery mode in the outdoor unit tube, that is, the air conditioner is controlled to maintain the heating mode operation, the compressor is controlled to adjust to the first recovery frequency, the outdoor fan is controlled to stop running, and the indoor fan is controlled to run at a preset speed.
  • step S203 is executed to determine the preset exhaust temperature according to the current outdoor ambient temperature, adjust the opening degree of the throttling device according to the preset exhaust temperature, and obtain the coil temperature Tp of the outdoor heat exchanger.
  • step S205 is executed to determine whether the coil temperature Tp of the outdoor heat exchanger ⁇ -15°C and the duration t1 ⁇ 10min are simultaneously established, and if both conditions are established, execute step S207, otherwise, when the two conditions are not simultaneously established, return Execute step S203.
  • step S209 is executed to judge whether the compressor and outdoor fan shutdown duration t2 ⁇ 3min is established, and if established, execute step S211; otherwise, when not established, return to execute step S209.
  • step S213 is executed to determine whether the duration t3 ⁇ 30s of the compressor running at the maximum frequency is established; if the judgment result is true, then step S215 is executed; otherwise, when the judgment result is not established, then return to continue to execute step S213.
  • execute S217 to determine whether the ratio Pd/Ps ⁇ 8 of the exhaust pressure Pd to the intake pressure Ps and the duration t4 ⁇ 5s are established. If yes, execute step S219; otherwise, if not, return to execute step S217.
  • step S221 is executed to determine whether the first on-off valve is closed and the throttling device is opened to the maximum opening time t5 ⁇ 60s. If true, execute step S223; otherwise, if not, return to execute step S221.
  • S223 exit the oil pollution recovery mode in the pipe of the outdoor unit, specifically, control the heating operation of the air conditioner, control the electronic expansion valve to maintain the maximum opening, control the indoor fan to turn on when the coil temperature of the indoor heat exchanger reaches the anti-cold air temperature, and control the outdoor Turn on the fan, control the compressor to return to the frequency before entering the oil recovery mode in the outdoor unit pipe, control the opening of the first on-off valve and the closing of the second on-off valve.
  • control the electronic expansion valve to return to the opening before entering the oil pollution recovery mode in the outdoor unit pipe, and then the air conditioner returns to the control mode before entering the oil pollution recovery mode in the outdoor unit pipe. Hot mode operation.
  • the above air conditioner also includes some other known structures, such as a processor, a controller, a memory, etc.
  • the memory includes but not limited to random access memory, flash memory, read-only memory, programmable read-only memory, Volatile memory, non-volatile memory, serial memory, parallel memory or registers, etc.
  • processors include but not limited to CPLD/FPGA, DSP, ARM processors, MIPS processors, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Human Computer Interaction (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空调自清洁技术领域,具体涉及一种室外机的管内油污回收控制方法。本申请旨在解决如何实现室外机的管内油污回收的问题。为此目的,本申请的空调器包括回收管路、第一通断阀和第二通断阀。方法包括:控制空调器制热运行、压缩机调整至预设的第一回收频率;调节节流装置的开度使得室外换热器的盘管温度小于等于预设温度;当盘管温度小于等于预设温度且持续第一预设时长后,控制空调器转换为制冷运行;控制节流装置关闭至最小开度;当压缩机排气压力与吸气压力的比值大于预设阈值且持续第二预设时长时,关闭第一通断阀、打开第二通断阀和节流装置。本申请能够实现对室外机的管内油污回收。

Description

室外机的管内油污回收控制方法 技术领域
本发明涉及空调自清洁技术领域,具体涉及一种室外机的管内油污回收控制方法。
背景技术
对于空调室外机来说,使用过程中冷冻机油会随着冷媒一同参与循环,在循环过程中,冷冻机油会出现结碳和杂质,这些油污伴随冷媒流动到室外换热器的发卡管,由于目前发卡管为内螺纹铜管,影响冷冻机油的流动,再加上冷媒流动的离心力作用,导致机油和油污不能及时返回压缩机内部,停留在螺纹状的铜管内壁,阻碍了冷媒与盘管之间的传热,降低了传热温差,使空调制热效果变差。
相应地,本领域需要一种新的室外机的管内油污回收控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述至少一个问题,即为了解决如何实现室外机的管内油污回收的问题,本申请提供了一种室外机的管内油污回收控制方法,应用于空调器,所述空调器包括通过冷媒管路依次连接的压缩机、四通阀、室内换热器、节流装置、室外换热器,所述空调器还包括回收管路、第一通断阀和第二通断阀,所述第一通断阀设置于所述室内换热器与所述节流装置之间的冷媒管路上,所述回收管路的一端设置于所述第一通断阀与所述节流装置之间的冷媒管路上,所述回收管路的另一端与所述压缩机的吸气口连通,所述第二通断阀设置于所述回收管路上,
所述控制方法包括:
响应于接收到的对所述室外机进行管内油污回收的指令,进入室外机管内油污回收模式;
控制所述空调器制热运行;
控制所述压缩机调整至预设的第一回收频率;
调节所述节流装置的开度,以使得所述室外换热器的盘管温度小于等于预设温度;
当所述盘管温度小于等于所述预设温度且持续第一预设时长后,控制所述空调器转换为制冷运行;
控制所述节流装置关闭至最小开度;
每隔第一间隔时间获取所述压缩机的排气压力和吸气压力;
在所述排气压力与所述吸气压力的比值大于等于预设阈值并且持续第二预设时长时,控制所述第一通断阀关闭、所述第二通断阀打开、所述节流装置打开至预设开度。
在上述室外机的管内油污回收控制方法的优选技术方案中,所述空调器还包括第三通断阀,所述第三通断阀设置于所述四通阀与所述室内换热器之间的冷媒管路上,“当所述盘管温度小于等于所述预设温度且持续第一预设时长后,控制所述空调器转换为制冷运行”的步骤进一步包括:
当所述盘管温度小于等于所述预设温度且持续所述第一预设时长后,控制所述第一通断阀和所述第三通断阀关闭;
控制所述压缩机和室外风机停机;
在所述压缩机和所述室外风机停机并持续第一预设延迟时间后,控制所述空调器转换为制冷运行。
在上述室外机的管内油污回收控制方法的优选技术方案中,在“控制所述节流装置关闭至最小开度”的步骤之前,所述方法还包括:
在控制所述空调器转换为制冷运行时,控制所述第一通断阀、所述第二通断阀和所述第三通断阀打开;
控制所述压缩机调整至预设的第二回收频率;
“控制所述节流装置关闭至最小开度”的步骤进一步包括:
在所述压缩机以所述第二回收频率运行第三预设时长后,控制所述节流装置关闭至最小开度。
在上述室外机的管内油污回收控制方法的优选技术方案中,所述第二回收频率为室外环境温度对应的最高限值频率。
在上述室外机的管内油污回收控制方法的优选技术方案中,在“调节 所述节流装置的开度”的步骤之前,所述控制方法还包括:
控制室外风机停止运行,控制室内风机以预设转速运行;
在“控制所述空调器转换为制冷运行”的步骤之后,所述控制方法还包括:
控制室内风机停止运行。
在上述室外机的管内油污回收控制方法的优选技术方案中,“调节所述节流装置的开度”的步骤进一步包括:
根据预设排气温度调节所述节流装置的开度。
在上述室外机的管内油污回收控制方法的优选技术方案中,所述控制方法还包括:
进入所述室外机管内油污回收模式时,关闭室外防冻结保护功能和室外环境温度限频功能。
在上述室外机的管内油污回收控制方法的优选技术方案中,在“控制所述所述第一通断阀关闭、第二通断阀打开、所述节流装置打开至预设开度”的步骤之后,所述控制方法还包括:
在所述所述第一通断阀关闭、第二通断阀打开、所述节流装置打开至预设开度的状态持续第四预设时长后,退出所述室外机管内油污回收模式。
在上述室外机的管内油污回收控制方法的优选技术方案中,“退出所述室外机管内油污回收模式”的步骤进一步包括:
控制所述空调器恢复至进入所述室外机管内油污回收模式之前的运行模式;
控制所述压缩机恢复至进入所述室外机管内油污回收模式之前的频率;
控制所述节流装置保持所述预设开度并持续第五预设时长后,控制所述节流装置恢复至进入所述室外机管内油污回收模式之前的开度;
控制所述第一通断阀打开、所述第二通断阀关闭。
在上述室外机的管内油污回收控制方法的优选技术方案中,“退出所述室外机管内油污回收模式”的步骤还包括:
当所述室内换热器的盘管温度达到防冷风温度时,控制所述室内风机启动运行。
需要说明的是,在本申请的优选技术方案中,空调器包括通过冷媒管路依次连接的压缩机、四通阀、室内换热器、节流装置、室外换热器,空调器还包括回收管路、第一通断阀和第二通断阀,第一通断阀设置于室内换热器与节流装置之间的冷媒管路上,回收管路的一端设置于第一通断阀与节流装置之间的冷媒管路上,回收管路的另一端与压缩机的吸气口连通,第二通断阀设置于回收管路上,控制方法包括:响应于接收到的对室外机进行管内油污回收的指令,进入室外机管内油污回收模式;控制空调器制热运行;控制压缩机调整至预设的第一回收频率;调节节流装置的开度,以使得室外换热器的盘管温度小于等于预设温度;当盘管温度小于等于预设温度且持续第一预设时长后,控制空调器转换为制冷运行;控制节流装置关闭至最小开度;每隔第一间隔时间获取压缩机的排气压力和吸气压力;在排气压力与吸气压力的比值大于等于预设阈值并且持续第二预设时长时,控制第一通断阀关闭、第二通断阀打开、节流装置打开至预设开度。
通过上述控制方式,本申请的方法能够实现对室外机的管内油污回收,解决室外换热器的管内脏堵问题。具体地,通过控制空调器先制热运行,并调节节流装置的开度使得室外换热器的盘管温度小于等于预设温度,由于油污的粘性很大,凝固点比冷媒要高,因此在冷媒温度下降过程中油污率先从冷媒循环中凝固析出,附着在室外换热器的盘管内壁上,这样就把冷媒中的油污分离出来暂时储存在室外换热器的盘管内部。当盘管温度小于等于预设温度且持续第一预设时长之后,控制空调换热器转换为制冷运行,并控制节流装置关闭至最小开度,使得被压缩机排出的冷媒升温升压停留聚积在室外换热器的盘管中。当基于排气压力与吸气压力之间的比值大于预设阈值时,关闭第一通断阀、打开第二通断阀和节流装置,能够利用高温高压冷媒的快速流动冲击室外换热器的盘管内部,暂存于盘管内部的油污被高温融化掉并随冷媒一起由回收管路直接返回至压缩机内部,实现对室外换热器的油污回收。此外,通过设置回收管路,能够在油污回收过程中实现直接将油污带回压缩机中进行回收,减少高温冷媒的流动行程、减少冷媒的压降,提高油污回收效果,节约油污回收时间,保证用户体验。
附图说明
下面参照附图来描述本申请的室外机的管内油污回收控制方法。附图中:
图1为本申请的空调器在制热模式下的系统图;
图2为本申请的空调器在制冷模式下的系统图;
图3为本申请的室外机的管内油污回收控制方法的流程图;
图4为本申请的室外机的管内油污回收控制方法的一种可能的实施过程的逻辑图。
附图标记列表
1、压缩机;2、四通阀;3、室外换热器;4、节流装置;5、室内换热器;6、冷媒管路;7、回收管路;8、第一通断阀;9、第二通断阀;10、第三通断阀;11、储液器。
具体实施方式
下面参照附图来描述本申请的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。例如,尽管下文详细描述了本申请方法的详细步骤,但是,在不偏离本申请的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本申请的基本构思,因此也落入本申请的保护范围之内。
需要说明的是,在本申请的描述中,术语“第一”、“第二”、“第三”、“第四”、“第五”、“第六”仅用于描述目的,而不能理解为指示或暗示相对重要性。
还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
首先参照图1,对本申请的空调器的结构进行描述。其中,图1为本申请的空调器在制热模式下的系统图。
如图1所示,在一种可能的实施方式中,空调器包括压缩机1、四通阀2、室内换热器5、节流装置4、室外换热器3和储液器11。压缩机1的排气口通过冷媒管路6与四通阀2的P接口连通,四通阀2的E接口通过冷媒管路6与室内换热器5的进口连通,室内换热器5的出口通过冷媒管路6与节流装置4的一端口连通,节流装置4的另一端口通过冷媒管路6与室外换热器3的进口连通,室外换热器3的出口通过冷媒管路6与四通阀2的C接口连通,四通阀2的S接口通过冷媒管路6与储液器11的进口连通,储液器11的出口通过管路与压缩机1的吸气口连通。节流装置4优选地为电子膨胀阀,储液器11内设置有过滤网,储液器11能够起到贮藏冷媒、冷媒气液分离、油污过滤、消音和冷媒缓冲等作用。
空调器还包括第一通断阀8、第二通断阀9和回收管路7,第一通断阀8和第二通断阀9优选地均为电磁阀,第一通断阀8为常开阀,其设置在节流装置4与室内换热器5之间的冷媒管路6上,第二通断阀9为常闭阀,其设置在回收管路7上,回收管路7采用内壁光滑的铜管,该铜管的第一端设置在节流装置4与第一通断阀8之间的冷媒管路6上,铜管的第二端设置在四通阀2的S接口与储液器11的进口之间的冷媒管路6上。第一通断阀8、第二通断阀9均与空调器的控制器通信连接,以接收控制器下发的开启和关闭信号。当然,上述通断阀中的一个或多个也可以选择电子膨胀阀等电控阀替代。
以下本实施例的室外机的管内油污回收控制方法将结合上述空调器的结构进行描述,但本领域技术人员可以理解的是,空调器的具体结构组成并非一成不变,本领域技术人员可以对其进行调整,例如,可以在上述空调器的结构的基础上增加或删除部件等。
下面结合图1、图2和图3,对本申请的室外机的管内油污回收控制方法进行介绍。其中,图2为本申请的空调器在制冷模式下的系统图;图3为本申请的室外机的管内油污回收控制方法的流程图。
如图3所示,为了解决如何实现室外机的管内油污回收的问题,本申请的室外机的管内油污回收控制方法包括:
S101、响应于接收到的对室外机进行管内油污回收的指令,进入室外机管内油污回收模式。
一种可能的实施方式中,对室外机进行管内油污回收的指令可以由用户主动发出,如通过遥控器上的按键向空调器发送指令,或者通过与空调器通信连接的终端发送指令,其中终端可以为智能设备上安装的APP,APP直接或通过向云端向空调器发送指令。其中,智能设备包括但不限于手机、平板电脑、智能音箱、智能手表等,智能设备与空调器或云端通讯连接的方式包括但不限于wifi、蓝牙、红外、3G/4G/5G等。空调器在接收到对室外机进行管内油污回收的指令后,切换运行模式到室外机管内油污回收模式,开始对室外机的盘管进行管内油污回收。其中,管内油污回收模式可以为计算机程序,其预先存储于空调器中,当运行该模式时,空调器按照程序设定好的步骤对空调器各部件的运行进行控制。
当然,室外机管内油污回收指令也可以在空调器达到某些进入条件时自动发出,如空调器的累计工作时长达到预设时长时发出对室外机进行管内油污回收的指令等,其中预设时长例如可以是20h-40h。
S103、控制空调器制热运行。
一种可能的实施方式中,通过控制四通阀的通断电来控制空调器的制热/制冷之间的切换,例如,在四通阀断电时,空调器制冷运行,在四通阀上电时,空调器制热运行。本实施例中,在进入室外机管内油污回收模式后,如果空调器正在运行制热模式,则无需调整,控制空调器继续运行;如果空调器正在运行非制热模式,则控制空调器切换至制热运行。
S105、控制压缩机调整至预设的第一回收频率。
一种可能的实施方式中,第一回收频率为预先通过试验确定的频率,例如,可以基于如下表1中室外环境温度与第一回收频率之间的对应关系确定。当压缩机在第一回收频率运行时,其有利于后续控制过程的实施。其中,外环温限频最高值即为室外环境温度对应的压缩机的最高限值频率。
表1 室外环境温度与第一回收频率和预设排气温度对照表
室外环境温度(℃) 第一回收频率(Hz) 预设排气温度(℃)
Tao≤-20 外环温限频最高值-5 目标排气-20
-20<Tao≤-10 外环温限频最高值-5 目标排气-10
-10<Tao≤-5 外环温限频最高值-5 目标排气-5
-5<Tao≤0 外环温限频最高值 目标排气
0<Tao≤5 外环温限频最高值 目标排气
5<Tao≤10 外环温限频最高值+5 目标排气+5
10<Tao≤16 外环温限频最高值+5 目标排气+5
Tao>16 外环温限频最高值+5 目标排气+10
S107、控制节流装置的开度,以使得室外换热器的盘管温度小于等于预设温度。
一种可能的实施方式中,可以通过设置在室外换热器的盘管上的温度传感器来检测室外换热器的盘管温度,并通过调节电子膨胀阀的开度,使得室外换热器的盘管温度小于等于预设温度。由于冷媒的凝固点均远低于油污的凝固点,因此可以在盘管温度小于等于预设温度时,首先令油污凝固析出。本申请的预设温度可以设置为-5℃至-25℃,本申请中,预设温度可以为-15℃。也就是说,将室外换热器的盘管温度小于等于预设温度作为控制目的,通过调节电子膨胀阀的开度,使得室外换热器的盘管温度始终处于小于等于预设温度的状态。
一种可能的实施方式中,可以根据预设排气温度调节节流装置的开度。其中,预设排气温度可以基于如上表1中室外环境温度与预设排气温度之间的对应关系确定。表格中的目标排气即为室外环境温度所对应的的压缩机的目标排气温度,该目标排气温度的确定为本领域常规手段,不再赘述。申请人经试验发现,在按照上述预设排气温度对膨胀阀进行调节时,可以令室外盘管温度快速下降至预设温度以下。
参照图1,在空调器制热运行时,将室外换热器的盘管温度保持在小于等于-15℃的状态,此时室外换热器中的油污就从冷媒循环中剥离出来,附着在室外换热器的盘管内壁上。
当然,在其他实施方式中,也可以通过调整电子膨胀阀的开度至一固定开度的方式使室外换热器的盘管温度小于等于预设温度。
S109、当盘管温度小于等于预设温度且持续第一预设时长后,控制空调器转换为制冷运行。
一种可能的实施方式中,第一预设时长可以为5-15min中的任意值。优选地,本实施例中第一预设时长为10min,当盘管温度处于小于等于-15℃且持续10min后,室外换热器中的油污已经剥离,此时可以对剥离出的油污进行回收操作。此时,通过控制四通阀的通断电来控制空调器的运行模式之间的切换,例如,控制四通阀断电,空调器制冷运行。
S111、控制节流装置关闭至最小开度。
在一种可能的实施方式中,控制节流装置关闭至最小开度,即开度为0的状态,节流装置实现完全节流,冷媒无法流过。此时,如图2所示,室内换热器和冷媒管路中的冷媒被压缩机排出并积聚在室外换热器中。
S113、每隔第一间隔时间获取压缩机的排气压力和吸气压力。
一种可能的实施方式中,压缩机的排气压力可以通过在压缩机的排气口设置压力传感器获取,吸气压力可以通过在压缩机的吸气口设置压力传感器获取。第一间隔时间可以为1s-10s中的任意值,该值的选取与排气压力、吸气压力的变化速度以及本申请要达到的控制精度相关。如果第一回收频率相对较大,排气压力和吸气压力的变化速度较快,或者本申请需要达到较高的控制精度,则第一间隔时间可以选取1s、2s或更短时间,反之如果第一回收频率相对较小,排气压力和吸气压力的变化速度较慢,或者本申请的控制方法无需达到很高的精度,则第一间隔时间可以选择9s、10s或更长时间。
本申请中,优选地选取第一间隔时间为5s,也就是说,在控制第一通断阀关闭后,每隔5s获取压缩机的排气压力和吸气压力。
在其他非优选的实施方式中,排气压力、吸气压力的获取方式并非唯一,本领域技术人员可以对其进行调整,这种调整并未偏离本申请的原理,例如,可以通过在室外换热器的盘管上设置压力传感器等来获取排气压力,在室内换热器的盘管上设置压力传感器来获取吸气压力等。
S115、在排气压力与吸气压力的比值大于等于预设阈值并且持续第二预设时长时,控制第一通断阀关闭、第二通断阀打开、节流装置打开至预设开度。
当获取到上述参数后,计算排气压力与吸气压力之间的比值,并比较该比值与预设阈值的大小以及比值小于预设阈值的持续时间。本申请 中,预设阈值可以为6-10中的任意值,本申请中为8,第二预设时长可以为3-10s中的任意值,本申请为5s。当排气压力与吸气压力之间的比值大于等于预设阈值且持续第二预设时长时,冷媒已经积聚到室外换热器中并且此时压缩机的排气口压力升高至较高值,符合油污回收条件,可以进行油污回收操作。在上述条件成立时,控制第一通断阀关闭、第二通断阀打开、节流装置打开至预设开度。此时,如图2中箭头所示,压缩机排出高温高压冷媒快速冲击室外换热器的盘管,暂存在盘管内部的油污被熔化,随着高温冷媒直接通过回收管路回流到储液器,被储液器内部的过滤网拦截过滤,达到油污回收的目的。较为优选地,预设开度为节流装置的最大开度,如此一来,能够使高温高压冷媒迅速通过,减少冷媒流动过程中的压降,提高管内油污回收效果。
可以看出,通过控制空调器先制热运行,并调节节流装置的开度使得室外换热器的盘管温度小于等于预设温度,由于油污的粘性很大,凝固点比冷媒要高,因此在冷媒温度下降过程中油污率先从冷媒循环中凝固析出,附着在室外换热器的盘管内壁上,这样就把冷媒中的油污分离出来暂时储存在室外换热器的盘管内部。当盘管温度小于等于预设温度且持续第一预设时长之后,控制空调换热器转换为制冷运行,并控制节流装置关闭至最小开度,使得被压缩机排出的冷媒升温升压停留聚积在室外换热器的盘管中。当基于排气压力与吸气压力之间的比值大于预设阈值时,关闭第一通断阀、打开第二通断阀和节流装置,能够利用高温高压冷媒的快速流动冲击室外换热器的盘管内部,暂存于盘管内部的油污被高温融化掉并随冷媒一起由回收管路直接返回至压缩机内部,实现对室外换热器的油污回收。
此外,通过在空调器中设置回收管路,本申请能够在对室外换热器执行管内油污回收过程中,利用回收管路实现对油污的回收,实现高温高压冷媒在对室外换热器进行冲刷后,无需再次经过室内换热器,而是直接将油污带回储液器中进行回收过滤,然后再次经压缩机压缩排出循环,减少了高温冷媒的流动行程、减少沿程压降,提高管内油污回收效果。
参照图1,在一种可能的实施方式中,空调器还包括第三通断阀10,第三通断阀10优选地为电磁阀,第三通断阀10为常开阀,其设置在四 通阀2与室内换热器5之间的冷媒管路6上,第三通断阀10与空调器的控制器通信连接,以接收控制器下发的开启和关闭信号。显然,第三通断阀10也可以选择电子膨胀阀等电控阀替代。
在设置有第三通断阀的基础上,步骤S109进一步包括:当盘管温度小于等于预设温度且持续第一预设时长后,控制第一通断阀和第三通断阀关闭;控制压缩机和室外风机停机;在压缩机和室外风机停机并持续第一预设延迟时间后,控制空调器转换为制冷运行。
具体地,第一预设延迟时间可以为1min-5min中的任意值,本申请中选取3min。当盘管温度小于等于预设温度且持续第一预设时长后,控制第一通断阀和第三通断阀关闭,此时部分压缩机排出的冷媒聚积在室外换热器中,也即第一通断阀与第三通断阀之间。此时控制压缩机和室外风机停机,并保持该状态3min,由于此时的冷媒温度较低,因此可使得室外换热器的盘管充分冷却,油污和冷媒分离彻底。待持续3min后,空调器转为制冷运行,能够提高油污回收效果。
一种可能的实施方式中,在步骤S111之前,方法还包括:在控制空调器转换为制冷运行时,控制第一通断阀、第二通断阀和第三通断阀打开;控制压缩机调整至预设的第二回收频率;“控制节流装置关闭至最小开度”的步骤进一步包括:在压缩机以第二回收频率运行第三预设时长后,控制节流装置关闭至最小开度。
具体地,在空调器转换为制冷运行时,首先控制第一通断阀、第二通断阀和第三通断阀打开,此时如图2所示,冷媒主要在压缩机、室外换热器和回收管路之间循环。第二回收频率优选的为室外环境温度对应的最高限值频率。通常,压缩机的运行频率受室外环境温度影响,不能无限制地上升,否则容易出现压缩机高温保护停机的现象,对压缩机的寿命造成不良影响。因此,压缩机均设置有保护机制,在不同室外环境温度下,对应设置有最高限值频率,本申请的第二回收频率即为压缩机在当前室外环境温度下的最高限值频率,在该频率限值下,压缩机能够以最短的时间提高冷媒的温度和压力。其中,室外环境温度的获取方式为本领域常规手段,在此不再赘述。第三预设时长可以为10s-1min中的任意值,本申请中为30s,当压缩机以第二回收频率运行第三预设时长后, 冷媒在压缩机、室外换热器和回收管路中实现循环,已经为油污回收做好准备,此时控制节流装置关闭至最小开度。
在一种可能的实施方式中,在“调节节流装置的开度”的步骤之前,方法还包括:控制室外风机停止运行,控制室内风机以预设转速运行。具体地,在调节节流装置的开度之前,首先控制室外风机停止运行,以减小室外换热器与空气之间的换热效果,从而能够加快室内盘管的温度的降低速度,提升油污回收效率。在调节节流装置的开度之前,通过控制室内风机以设定转速运行,能够提高室内换热器中冷媒与环境之间的换热效果,从而降低冷媒的温度和压力,提高冷媒在室外换热器中的蒸发效果,使室外盘管以更快的速度降低至预设温度。其中,设定转速可以为600r/min-800r/min,该转速不宜过高,由于室内机处于制热状态,如果转速过高容易导致室内环境温度突变,给用户带来不好的使用体验。
在一种可能的实施方式中,方法还包括:在控制空调器转换为制冷运行后,控制室内风机运行第六预设时长后停止运行。具体地,第六预设时长可以为10s-1min中的任意值,本申请中可以为30s。在运行制冷模式时,室内机的出风温度逐渐降低,会给用户带来不好的使用体验。此时,控制室内风机运行30s后停止运行,可以避免出风温度过低,影响用户体验。
在一种可能的实施方式中,方法还包括:进入室外机管内油污回收模式时,关闭室外防冻结保护功能和室外环境温度限频功能。由于室外换热器的盘管温度需要降低至较低的值,因此为尽快达到该条件,需要压缩机高频运行,在制热运行过程中,关闭室外防冻结保护功能和室外环境温度限频功能,以保证本方法的顺利执行。但是其他保护功能照常开启,如压缩机排气保护和电流过载保护等功能保持开启,防止对空调器的寿命带来不良影响。
当然,室外机管内油污回收模式的具体控制过程并非唯一,在保证先制热运行使盘管温度小于等于预设温度,再转换为制冷运行并关闭节流装置进行节流,并通过排气压力与吸气压力比控制第一通断阀关闭、第二通断阀和节流装置打开的前提下,本领域技术人员可以对其控制方式进行调整。例如,在能够使室外换热器的盘管温度保持在小于等于预设温度的前提下,可以对上述控制方式的压缩机的运行频率、电子膨胀 阀的开度、第三通断阀的开闭、室内风机的转速和室外风机的转速中的一个或多个进行省略。
在一种可能的实施方式中,方法还包括:在第一通断阀关闭、第二通断阀打开、节流装置打开至预设开度的状态持续第四预设时长后,退出室外机管内油污回收模式。其中,第四预设时长可以为30s-120s中的任意值,本申请优选为60s。当第一通断阀关闭、第二通断阀打开、节流装置打开至预设开度的时间持续60s时,高温高压冷媒已经循环若干次,足以产生较佳的管内油污回收效果,因此在第一通断阀关闭、第二通断阀打开、节流装置打开至预设开度的状态持续60s时,退出室外机管内油污回收模式。
具体地,退出室外机管内油污回收模式的步骤进一步包括:控制空调器恢复至进入室外机管内油污回收模式之前的运行模式、控制压缩机恢复至进入室外机管内油污回收模式之前的频率、控制节流装置保持预设开度并持续第五预设时长后,恢复至进入所述室外机管内油污回收模式之前的开度、控制室外风机开启、在室内换热器的盘管温度达到防冷风温度时控制室内风机启动运行、控制第一通断阀打开、第二通断阀关闭。在管内油污回收过程执行完毕后,空调器需要恢复到管内油污回收之前的运行模式,以继续调节室内温度。以进入室外机管内油污回收模式之前空调器制热运行为例,在执行完室外机管内油污回收模式后,需要切换回制热模式运行。此时,控制四通阀通电恢复制热模式,控制压缩机由第二回收频率恢复至进入室外机管内油污回收模式之前的频率,控制室外风机开启,在室内换热器的盘管温度达到防冷风温度时控制室内风机开启,控制电子膨胀阀保持最大开度,并控制第一通断阀打开、第二通断阀关闭,使得冷媒以正常制热模式的流向流动。
其中,当室内换热器的盘管温度达到防冷风温度时,此时启动室内风机运行已经不会向外吹冷风,因此可以控制室内风机启动运行,以满足用户的制热需求。其中,节流装置保持最大开度,由于室外机管内油污回收模式运行时冷媒在压缩机和室外换热器之间循环,导致室内换热器中冷媒缺失,因此节流装置打开至最大开度,使得冷媒迅速充满室内换热器,以尽快实现冷媒的正常循环。
相应地,在控制节流装置保持最大开度并持续第五预设时长后,控制节流装置恢复至进入室外机管内油污回收模式之前的开度。其中,第五预设时长可以为1min-5min内的任意值,本申请优选为3min,当电子膨胀阀保持最大开度运行3min后,冷媒循环已经趋于稳定,此时控制电子膨胀阀恢复至进入室外机管内油污回收模式之前的开度,从而使空调器完全恢复进入室外机管内油污回收之前的制热参数继续运行。
当然,退出室外机管内油污回收模式的方式并非只限于上述一种,在能够使空调器恢复至进入室外机管内油污回收模式之前的运行状态的前提下,本领域技术人员可以自由选择具体的控制方式,这种选择并未偏离本申请的原理。例如,可以先控制室内风机启动运行同时控制导风板向上吹,在间隔一定时长后再控制导风板向下送风。
下面参照图4,对本申请的一种可能的实施过程进行描述。其中,图4为本申请的室外机的管内油污回收控制方法的一种可能的实施过程的逻辑图。
如图4所示,在一种可能的实施过程中,空调器制热运行时,用户通过遥控器按键向空调器发送对室外机进行管内油污回收的指令:
首先执行步骤S201,空调器进入室外机管内油污回收模式,即控制空调器保持制热模式运行、控制压缩机调整至第一回收频率、控制室外风机停止运行、控制室内风机以预设转速运行。
接下来执行步骤S203,根据当前室外环境温度确定预设排气温度,根据预设排气温度调节节流装置的开度,并获取室外换热器的盘管温度Tp。
接下来执行步骤S205,判断室外换热器的盘管温度Tp≤-15℃且持续时间t1≥10min是否同时成立,当同时成立时,执行步骤S207,否则,当两条件未同时成立时,返回执行步骤S203。
S207,控制第一通断阀和第三通断阀关闭,同时关闭压缩机和室外风机。
接下来执行步骤S209,判断压缩机和室外风机关闭的持续时间t2≥3min是否成立,当成立时,执行步骤S211;否则,当不成立时,返回执行步骤S209。
S211,控制空调制冷运行、控制压缩机启动并调整至室外环境温度对应的最高限值频率、控制第一通断阀、第二通断阀和第三通断阀同时打开。
接下来执行步骤S213,判断压缩机以最高限值频率运行的持续时间t3≥30s是否成立;如果判断结果为成立,则执行步骤S215,否则,当判断结果不成立,则返回继续执行步骤S213。
S215,关闭节流装置和室内风机,并且每隔5s检测排气压力Pd和吸气压力Ps,并计算二者的比值。
接下来执行S217,判断排气压力Pd与吸气压力Ps的比值Pd/Ps≥8且持续时间t4≥5s是否成立,如果成立,则执行步骤S219,否则,如果不成立,则返回执行步骤S217。
S219,关闭第一通断阀,节流装置打开至最大开度。
接下来执行步骤S221,判断第一通断阀关闭、节流装置打开至最大开度的时长t5≥60s是否成立,如果成立,则执行步骤S223,否则,如果不成立,则返回执行步骤S221。
S223,退出室外机管内油污回收模式,具体地,控制空调器制热运行、控制电子膨胀阀保持最大开度、在室内换热器的盘管温度达到防冷风温度时控制室内风机开启、控制室外风机开启、控制压缩机恢复至进入室外机管内油污回收模式前的频率、控制第一通断阀打开、第二通断阀关闭。
进一步,在节流装置保持最大开度的持续时间达到3min时,控制电子膨胀阀恢复至进入室外机管内油污回收模式前的开度,至此空调器恢复至进入室外机管内油污回收模式前的制热模式运行。
本领域技术人员可以理解,上述充空调器还包括一些其他公知结构,例如处理器、控制器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的 步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本申请的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本申请的技术方案,但是,本领域技术人员容易理解的是,本申请的保护范围显然不局限于这些具体实施方式。在不偏离本申请的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本申请的保护范围之内。

Claims (10)

  1. 一种室外机的管内油污回收控制方法,应用于空调器,其特征在于,所述空调器包括通过冷媒管路依次连接的压缩机、四通阀、室内换热器、节流装置、室外换热器,所述空调器还包括回收管路、第一通断阀和第二通断阀,所述第一通断阀设置于所述室内换热器与所述节流装置之间的冷媒管路上,所述回收管路的一端设置于所述第一通断阀与所述节流装置之间的冷媒管路上,所述回收管路的另一端与所述压缩机的吸气口连通,所述第二通断阀设置于所述回收管路上,
    所述控制方法包括:
    响应于接收到的对所述室外机进行管内油污回收的指令,进入室外机管内油污回收模式;
    控制所述空调器制热运行;
    控制所述压缩机调整至预设的第一回收频率;
    调节所述节流装置的开度,以使得所述室外换热器的盘管温度小于等于预设温度;
    当所述盘管温度小于等于所述预设温度且持续第一预设时长后,控制所述空调器转换为制冷运行;
    控制所述节流装置关闭至最小开度;
    每隔第一间隔时间获取所述压缩机的排气压力和吸气压力;
    在所述排气压力与所述吸气压力的比值大于等于预设阈值并且持续第二预设时长时,控制所述第一通断阀关闭、所述第二通断阀打开、所述节流装置打开至预设开度。
  2. 根据权利要求1所述的室外机的管内油污回收控制方法,其特征在于,所述空调器还包括第三通断阀,所述第三通断阀设置于所述四通阀与所述室内换热器之间的冷媒管路上,“当所述盘管温度小于等于所述预设温度且持续第一预设时长后,控制所述空调器转换为制冷运行”的步骤进一步包括:
    当所述盘管温度小于等于所述预设温度且持续所述第一预设时长后,控制所述第一通断阀和所述第三通断阀关闭;
    控制所述压缩机和室外风机停机;
    在所述压缩机和所述室外风机停机并持续第一预设延迟时间后,控制所述空调器转换为制冷运行。
  3. 根据权利要求2所述的室外机的管内油污回收控制方法,其特征在于,在“控制所述节流装置关闭至最小开度”的步骤之前,所述方法还包括:
    在控制所述空调器转换为制冷运行时,控制所述第一通断阀、所述第二通断阀和所述第三通断阀打开;
    控制所述压缩机调整至预设的第二回收频率;
    “所述节流装置关闭至最小开度”的步骤进一步包括:
    在所述压缩机以所述第二回收频率运行第三预设时长后,控制所述节流装置关闭至最小开度。
  4. 根据权利要求3所述的室外机的管内油污回收控制方法,其特征在于,所述第二回收频率为室外环境温度对应的最高限值频率。
  5. 根据权利要求1所述的室外机的管内油污回收控制方法,其特征在于,在“调节所述节流装置的开度”的步骤之前,所述控制方法还包括:
    控制室外风机停止运行,控制室内风机以预设转速运行;
    在“控制所述空调器转换为制冷运行”的步骤之后,所述控制方法还包括:
    控制室内风机停止运行。
  6. 根据权利要求1所述的室外机的管内油污回收控制方法,其特征在于,“调节所述节流装置的开度”的步骤进一步包括:
    根据预设排气温度调节所述节流装置的开度。
  7. 根据权利要求1所述的室外机的管内油污回收控制方法,其特征在于,所述控制方法还包括:
    进入所述室外机管内油污回收模式时,关闭室外防冻结保护功能和 室外环境温度限频功能。
  8. 根据权利要求5所述的室外机的管内油污回收控制方法,其特征在于,在“控制所述第一通断阀关闭、所述第二通断阀打开、所述节流装置打开至预设开度”的步骤之后,所述控制方法还包括:
    在所述所述第一通断阀关闭、第二通断阀打开、所述节流装置打开至预设开度的状态持续第四预设时长后,退出所述室外机管内油污回收模式。
  9. 根据权利要求8所述的室外机的管内油污回收控制方法,其特征在于,“退出所述室外机管内油污回收模式”的步骤进一步包括:
    控制所述空调器恢复至进入所述室外机管内油污回收模式之前的运行模式;
    控制所述压缩机恢复至进入所述室外机管内油污回收模式之前的频率;
    控制所述节流装置保持所述预设开度并持续第五预设时长后,控制所述节流装置恢复至进入所述室外机管内油污回收模式之前的开度;
    控制室外风机启动运行;
    控制所述第一通断阀打开、所述第二通断阀关闭。
  10. 根据权利要求9所述的室外机的管内油污回收控制方法,其特征在于,“退出所述室外机管内油污回收模式”的步骤还包括:
    当所述室内换热器的盘管温度达到防冷风温度时,控制所述室内风机启动运行。
PCT/CN2021/129795 2021-07-15 2021-11-10 室外机的管内油污回收控制方法 WO2023284194A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110802935.1 2021-07-15
CN202110802935.1A CN113483477B (zh) 2021-07-15 2021-07-15 室外机的管内油污回收控制方法

Publications (1)

Publication Number Publication Date
WO2023284194A1 true WO2023284194A1 (zh) 2023-01-19

Family

ID=77938920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129795 WO2023284194A1 (zh) 2021-07-15 2021-11-10 室外机的管内油污回收控制方法

Country Status (2)

Country Link
CN (1) CN113483477B (zh)
WO (1) WO2023284194A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483475B (zh) * 2021-07-09 2022-10-28 青岛海尔空调器有限总公司 室外机的管内油污回收控制方法
CN113483477B (zh) * 2021-07-15 2023-09-19 青岛海尔空调器有限总公司 室外机的管内油污回收控制方法
CN114440392B (zh) * 2022-02-25 2023-10-27 海信空调有限公司 空调器和空调器控制方法
CN115930397B (zh) * 2022-11-21 2024-09-24 珠海格力电器股份有限公司 一种制冷剂回收控制方法、装置及空调

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280789A (ja) * 1996-04-09 1997-10-31 Nippon P-Mac Kk 空気熱交換器、及びフィン付コイルの洗浄方法
JP2013257121A (ja) * 2012-06-14 2013-12-26 Mitsubishi Electric Corp 冷凍装置
CN105299956A (zh) * 2015-10-16 2016-02-03 珠海格力电器股份有限公司 压缩机回油控制装置、方法及具有该装置的空调器
CN110822620A (zh) * 2018-08-14 2020-02-21 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN111426102A (zh) * 2020-04-13 2020-07-17 宁波奥克斯电气股份有限公司 一种提升变频空调回油可靠性的系统、方法及装置
CN113483477A (zh) * 2021-07-15 2021-10-08 青岛海尔空调器有限总公司 室外机的管内油污回收控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303456A (ja) * 1997-08-19 2002-10-18 Mitsubishi Electric Corp 冷凍空調装置
CN1752669A (zh) * 2004-09-24 2006-03-29 乐金电子(天津)电器有限公司 中央空调器及其控制方法
JP2008190790A (ja) * 2007-02-05 2008-08-21 Daikin Ind Ltd 冷凍装置
KR101369568B1 (ko) * 2011-09-09 2014-03-04 엘지전자 주식회사 공기조화기 및 그 제어방법
CN102767926A (zh) * 2012-07-03 2012-11-07 海尔集团公司 一种低温冰箱毛细管防堵结构组件及其控制方法
CN203671981U (zh) * 2012-12-21 2014-06-25 三菱电机株式会社 制冷循环装置
CN104807229A (zh) * 2015-04-27 2015-07-29 广东美的暖通设备有限公司 一种多联机空调及控制方法
KR20190079278A (ko) * 2017-12-27 2019-07-05 엘지전자 주식회사 공기조화기
CN109095551A (zh) * 2018-10-09 2018-12-28 山东名流餐处装备股份有限公司 冷凝式油水分离方法
CN111207453B (zh) * 2020-01-09 2021-03-23 珠海格力电器股份有限公司 空调外机、空调设备及冷冻油回收控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280789A (ja) * 1996-04-09 1997-10-31 Nippon P-Mac Kk 空気熱交換器、及びフィン付コイルの洗浄方法
JP2013257121A (ja) * 2012-06-14 2013-12-26 Mitsubishi Electric Corp 冷凍装置
CN105299956A (zh) * 2015-10-16 2016-02-03 珠海格力电器股份有限公司 压缩机回油控制装置、方法及具有该装置的空调器
CN110822620A (zh) * 2018-08-14 2020-02-21 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN111426102A (zh) * 2020-04-13 2020-07-17 宁波奥克斯电气股份有限公司 一种提升变频空调回油可靠性的系统、方法及装置
CN113483477A (zh) * 2021-07-15 2021-10-08 青岛海尔空调器有限总公司 室外机的管内油污回收控制方法

Also Published As

Publication number Publication date
CN113483477A (zh) 2021-10-08
CN113483477B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2023284194A1 (zh) 室外机的管内油污回收控制方法
WO2023279617A1 (zh) 室外换热器的管内自清洁控制方法
CN113531778B (zh) 室外换热器的管外自清洁控制方法
WO2023279608A1 (zh) 室外机的管内油污回收控制方法
WO2023279609A1 (zh) 室外机回油控制方法
WO2023284197A1 (zh) 室外换热器的管内自清洁控制方法
WO2023279616A1 (zh) 室内机回油控制方法
WO2023279612A1 (zh) 室内换热器的管外自清洁控制方法
WO2023284193A1 (zh) 室外换热器的管外自清洁控制方法
WO2023284199A1 (zh) 室内机的管内油污回收方法
WO2023279614A1 (zh) 室内换热器的管内自清洁控制方法
WO2023279615A1 (zh) 室内机的管内油污回收方法
WO2023284195A1 (zh) 室外换热器的管内自清洁控制方法
WO2023284200A1 (zh) 室内换热器的管内自清洁控制方法
WO2023279610A1 (zh) 室内换热器的管内自清洁控制方法
WO2023284196A1 (zh) 室内换热器的管外自清洁控制方法
WO2023279613A1 (zh) 室外换热器的管内自清洁控制方法
WO2023284198A1 (zh) 室内换热器的管内自清洁控制方法
CN114440507A (zh) 一种热泵系统的除霜控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949966

Country of ref document: EP

Kind code of ref document: A1