WO2023284186A1 - 一种钢轨焊接接头的熔覆强韧化处理方法及其应用 - Google Patents

一种钢轨焊接接头的熔覆强韧化处理方法及其应用 Download PDF

Info

Publication number
WO2023284186A1
WO2023284186A1 PCT/CN2021/128970 CN2021128970W WO2023284186A1 WO 2023284186 A1 WO2023284186 A1 WO 2023284186A1 CN 2021128970 W CN2021128970 W CN 2021128970W WO 2023284186 A1 WO2023284186 A1 WO 2023284186A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
cladding
filled
welded
strengthening
Prior art date
Application number
PCT/CN2021/128970
Other languages
English (en)
French (fr)
Inventor
曾晓雁
刘旭
胡乾午
孟丽
王邓志
Original Assignee
武汉瀚海智能激光工程有限公司
武汉新瑞达激光工程有限责任公司
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉瀚海智能激光工程有限公司, 武汉新瑞达激光工程有限责任公司, 华中科技大学 filed Critical 武汉瀚海智能激光工程有限公司
Publication of WO2023284186A1 publication Critical patent/WO2023284186A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B31/00Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
    • E01B31/02Working rail or other metal track components on the spot
    • E01B31/18Reconditioning or repairing worn or damaged parts on the spot, e.g. applying inlays, building-up rails by welding; Heating or cooling of parts on the spot, e.g. for reducing joint gaps, for hardening rails
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B11/00Rail joints
    • E01B11/44Non-dismountable rail joints; Welded joints
    • E01B11/48Joints made by flame welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of railway rail maintenance, and more specifically relates to a cladding strengthening and toughening treatment method for welded rail joints and an application thereof.
  • the main connection processes between rails include flash welding, gas pressure welding, thermite welding and arc welding.
  • flash welding due to the large heat input during welding, there are obvious differences between the internal structure of the weld zone and the heat-affected zone in the joint and the base metal of the rail, which is specifically reflected in the hardness and wear resistance of each zone and the base metal.
  • the heat-affected zone is particularly obvious, and its hardness is much lower than that of the base material, so that there is a softening zone in the welded joint of the rail, and its wear resistance is lower than that of the rail matrix.
  • the softening zone of the rail welded joint can be eliminated by technical means, so that the service life of the rail welded joint is the same as that of the normal part of the rail, it will undoubtedly save a large amount of railway operating costs and effectively improve the transport capacity of the railway line.
  • the purpose of the present invention is to provide a cladding and toughening treatment method for welded rail joints and its application, aiming at solving the problems of large loss and seriously reducing the service life of the rails in the existing treatment methods for welded joints of rails .
  • a cladding strengthening and toughening treatment method for welded rail joints is provided, the method specifically includes:
  • S3 machining makes the welded joint of the rail basically the same as the original shape of the rail, so as to complete the cladding strengthening and toughening treatment of the welded joint of the rail.
  • the cladding in step S2 adopts laser cladding, plasma cladding, induction cladding, laser-induction composite cladding, or laser-plasma composite cladding.
  • the area to be filled only includes the heat-affected zone; the preset value is usually 0-3HRC.
  • step S1 the maximum depth of the area to be filled is 1.5 mm to 25 mm, and the value range of the angle ⁇ between the hypotenuse and the bottom edge on the left and right sides of the area to be filled is 90° ⁇ 170°.
  • step S1 ensure that the length of the top surface of the region to be filled is greater than 30 mm.
  • step S1 the area to be filled is formed by milling or grinding.
  • the present invention proposes to remove the part of the rail structure below the tread of the welded joint of the rail to form an area to be filled, and then cladding is repaired with the same wear resistance as the rail base material Layer, so as to ensure that the rail welded joint and the rail base material have the same wear resistance, so as to achieve the purpose of synchronous wear of the joint area and the rail base material, thereby radically eliminating the common low joint phenomenon of the welded joint, and significantly reducing the breakage rate of the rail welded joint. Extend the service life of rails and improve the utilization rate of railway resources;
  • the present invention can ensure that the cladding layer completely covers the heat-affected zone and/or weld area, avoiding the potential risk of low collapse, and at the same time ensuring that the cladding layer has Better working strength, improve the service life of the rail.
  • Fig. 1 is a three-dimensional schematic diagram of the cladding strengthening and toughening treatment of a rail welded joint provided by a preferred embodiment of the present invention
  • Fig. 2 is a two-dimensional schematic diagram of the cladding strengthening and toughening treatment of the rail welded joint provided by the preferred embodiment of the present invention
  • Fig. 3 is the U75V rail flash welding joint structure and hardness curve in the preferred embodiment of the present invention, wherein 1 is the structure diagram of the base metal (rail base material) area, 2 is the structure diagram of the heat-affected zone, and 3 is the structure of the weld zone Fig. 4 is the tissue diagram of the weld zone;
  • Fig. 4 is a schematic diagram of the area to be filled in the U75V rail flash welding joint in the preferred embodiment of the present invention (flash welding: weld seam area+heat affected area);
  • Fig. 5 is a schematic diagram of cladding strengthening of U75V rail flash welding joints in a preferred embodiment of the present invention (flash welding: weld zone + heat-affected zone);
  • Fig. 6 is the microstructure and hardness curve (aluminothermic welding) of the U75V rail aluminothermic welded joint in the preferred embodiment of the present invention, wherein 1 is the microstructure diagram of the base metal zone, 2 is the microstructure diagram of the heat-affected zone, and 3 is the microstructure diagram of the weld seam zone Organizational Chart;
  • Fig. 7 is a schematic diagram of the area to be filled in the U75V rail aluminothermic welded joint in a preferred embodiment of the present invention (aluminothermic welding: weld zone + heat-affected zone);
  • Fig. 8 is a schematic diagram of laser cladding strengthening of U75V rail aluminothermic welded joints in a preferred embodiment of the present invention (aluminothermic welding: weld zone + heat-affected zone);
  • Fig. 9 is a three-dimensional schematic diagram of the heat-affected zone of the cladding strengthening and toughening treatment of the rail welded joint provided by the preferred embodiment of the present invention.
  • Fig. 10 is a two-dimensional schematic diagram of the heat-affected zone of the cladding strengthening and toughening treatment of the rail welded joint provided by the preferred embodiment of the present invention.
  • Fig. 11 is a schematic diagram of filling the heat-affected zone in the U75V rail flash welded joint in the preferred embodiment of the present invention (flash welding: only the heat-affected zone);
  • Fig. 12 is a schematic diagram of cladding enhanced heat-affected zone of U75V rail flash welded joint in a preferred embodiment of the present invention (flash welding: only heat-affected zone);
  • Fig. 13 is a schematic diagram of filling the heat-affected zone in the aluminothermic welded joint of U75V rail in the preferred embodiment of the present invention (thermite welding: only the heat-affected zone);
  • Fig. 14 is a schematic diagram of the heat-affected zone enhanced by laser cladding of the aluminothermic welded joint of U75V rail in a preferred embodiment of the present invention (thermite welding: only the heat-affected zone).
  • 1-rail 1.1-base metal area, 1.2-heat-affected zone, 1.3-weld area, 1.4-welding bar, 1.4.1-welding bar centerline, 2-area to be filled, 3-strengthening layer, 5-rail top.
  • the preferred embodiment of the present invention provides a cladding strengthening and toughening treatment method for welded rail joints, which specifically includes:
  • the technical goal of traditional cladding technology is mainly to improve the wear resistance of materials, and wear-resistant coatings are usually clad on the surface of materials to be strengthened.
  • the present invention breaks through this technical idea and proposes the technical concept of equal or substantially equal wear resistance, and prepares the wear resistance of the welded joint of the rail in the weld zone 1.3 and the heat-affected zone 1.2 to be consistent with the base metal
  • the cladding layer can achieve the same wear resistance of the rail welded joint and the base metal, so that the joint area (including the weld zone 1.3 and the heat-affected zone 1.2) and the base metal area 1.1 can wear synchronously during service, and The number of times of grinding, the amount of grinding and the maintenance cost of the weld zone 1.3 can be significantly reduced.
  • This method can be applied to welded joints formed by methods such as flash welding, gas pressure welding, thermite welding, and arc welding. Online toughening treatment after laying is completed.
  • the maximum depth H 1 of the area to be filled 2 is determined according to the maximum axle load T of vehicles allowed to pass on the rail service line and the annual cargo volume M, 1.5mm ⁇ H 1 ⁇ 25mm, so as to ensure the strengthening effect While avoiding damage to the original steel structure, to prevent the occurrence of rail breaking accidents.
  • the maximum longitudinal length of the reinforcement layer 3 is determined to be 30mm to ensure that the cladding layer completely covers the weld zone 1.3 and the heat-affected zone 1.2, avoiding potential low risk of collapse.
  • the value range of the angle ⁇ between the hypotenuse and the bottom edge on the left and right sides of the area to be filled 2 is 90° ⁇ 170°, so that a certain slope appears on the longitudinal sides of the groove-shaped area to be filled, which is convenient for cladding normal execution of the job.
  • step S2 laser cladding technology, plasma cladding, induction cladding, or laser-induction cladding technology, or laser-plasma composite cladding is used to prepare the strengthening layer 3, wherein the laser cladding technology includes coaxial powder feeding Laser cladding technology and side-axis powder feeding laser cladding technology.
  • the alloy powder is melted by a high-energy laser beam, and the strengthening layer is prepared layer by layer.
  • the microstructure and hardness curves of U75V rail flash welding joints are shown in Figure 3.
  • the large heat input of rail flash welding causes the spheroidization of cementite in the pearlitic rail, resulting in the appearance of granular pearlite in the heat-affected zone and making its hardness and wear resistance
  • the resistance is lower than that of the base metal, and it is easy to produce low joint phenomenon due to the asynchronous wear of the welded joint area and the base material area during service, which endangers the safe operation of the railway.
  • the longitudinal distribution range of the weld zone 1.3 and the heat-affected zone 1.2 of this type of joint can be determined, and then the joint strengthening plan can be formulated.
  • the reinforced layer is filled layer by layer by melting the alloy powder with a high-energy laser beam until it is flush with the tread surface of the rail parent material in the vertical direction, and the contour after filling and repair is consistent with the rail parent material before material reduction.
  • the microstructure and hardness curve of U75V rail aluminothermic welded joints are shown in Figure 6.
  • the principle of aluminothermic welding is to release a large amount of hot molten steel through the aluminothermic reaction and then pour it into the reserved joint seam to realize rail welding. Similar to the formation mechanism of the flash welding softening zone, a large amount of heat input causes the hardness and wear resistance of the heat-affected zone 1.2 to be lower than that of the base metal, and the asynchronous wear of the joint and the base metal area after service results in a low joint.
  • the longitudinal distribution range of weld zone 1.3 and heat-affected zone 1.2 of this type of joint can be determined, and then the joint strengthening scheme can be formulated.
  • the reinforced layer is filled layer by layer by melting the alloy powder with a high-energy laser beam until it is flush with the tread surface of the rail parent material in the vertical direction, and the contour after filling and repair is consistent with the rail parent material before material reduction.
  • the reinforced layer is filled layer by layer by melting the alloy powder with a high-energy laser beam until it is flush with the tread surface of the rail parent material in the vertical direction, and the contour after filling and repair is consistent with the rail parent material before material reduction.
  • the reinforced layer is filled layer by layer by melting the alloy powder with a high-energy laser beam until it is flush with the tread surface of the rail parent material in the vertical direction, and the contour after filling and repair is consistent with the rail parent material before material reduction.
  • the area to be filled only includes the heat-affected zone, and the preset value is usually 0 to 3HRC. It is illustrated by the following examples The strengthening and toughening treatment of welded rail joints in the heat-affected zone only.
  • the longitudinal lengths L 1 and L 2 of the strengthening layer are 65mm and 60mm respectively.
  • the lengths L 1 and L 2 of the upper side of the area to be filled are 65mm and 60mm respectively, and the angle ⁇ between the hypotenuse and the bottom edge is 95°;
  • the reinforced layer is filled layer by layer by melting the alloy powder with a high-energy laser beam until it is flush with the tread surface of the rail parent material in the vertical direction, and the contour after filling and repair is consistent with the rail parent material before material reduction.
  • the longitudinal lengths L 1 and L 2 of the strengthening layer are 35mm and 35mm respectively.
  • the lengths L 1 and L 2 of the upper side of the area to be filled are 35mm and 35mm respectively, and the angle ⁇ between the hypotenuse and the bottom edge is 120°;
  • the reinforced layer is filled layer by layer by melting the alloy powder with a high-energy laser beam until it is flush with the tread surface of the rail parent material in the vertical direction, and the contour after filling and repair is consistent with the rail parent material before material reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种钢轨(1)焊接接头的熔覆强韧化处理方法及其应用,该方法为:将钢轨(1)焊接接头的热影响区(1.2)和/或焊缝区(1.3)中预设深度的钢轨结构去除,以形成凹槽型的待填补区(2);在待填补区(2)熔覆与钢轨基材耐磨性一致的强化层(3),填充满待填补区(2);机加工使钢轨(1)焊接接头与钢轨(1)原有形貌基本相同,以此完成钢轨(1)焊接接头的熔覆强韧化处理。该方法能够保证钢轨(1)焊接接头热影响区(1.2)与钢轨基材耐磨性差值满足需求,以达到接头区域与钢轨母材同步磨损的目的,降低钢轨(1)焊接接头的断头率,延长钢轨(1)服役寿命,提升铁路资源的利用率。

Description

一种钢轨焊接接头的熔覆强韧化处理方法及其应用 [技术领域]
本发明属于铁路钢轨养护领域,更具体地,涉及一种钢轨焊接接头的熔覆强韧化处理方法及其应用。
[背景技术]
近年来,随着铁路轨道交通不断向高密度、重载荷以及高速度方向发展,钢轨表面的损伤问题越来越突出。焊接接头作为铁道线路三大薄弱环节之一,已成为威胁钢轨安全的主要病害之一。特别是随着高速铁路和重载铁路快速发展,传统的鱼尾板连接钢轨的方式已经无法满足运输需求,取而代之的是通过焊接技术由标准长度钢轨连接成的无缝钢轨。无缝钢轨的出现,不仅缓和了轮轨的相互冲击,延长了轮轨服役寿命,而且提高了轨道的平稳性、舒适性、可靠性,使火车能够以更高的速度运行。
目前,钢轨之间的主要连接工艺包括闪光焊、气压焊、铝热焊以及电弧焊等。以闪光焊为例,由于焊接时热输入较大,导致接头中焊缝区和热影响区的内在组织与钢轨母材存在明显差异,具体体现在各区的硬度和耐磨性同母材之间存在较大差别。其中,热影响区尤为明显,其硬度远低于基材,使得钢轨焊接接头中存在软化区,其耐磨性低于钢轨基体。随着服役时间的不断延长,接头外观上会出现类似“马鞍”形磨耗(俗称钢轨低接头)。若不及时采取补救措施,会使得轮轨冲击日趋明显并加剧轮轨破损,严重的甚至可能导致钢轨焊接接头处断裂,发生灾难性事故。
根据2004年铁道科学研究院金属及化学研究对2000年全国铁路焊接接头数量及断头数统计结果,在线钢轨焊接接头总量中闪光焊、气压焊、铝热焊接头数量占比86.75%、9.13%、4.12%,对应的断头率分别为0.0073%、0.1421%、0.4177%。2020年8月我国铁路营业里程达到14.14万公里,如果 按照100米标准长度焊接,接头数量达到283万之巨,钢轨焊接接头潜在断头数量达到1000余个。这些危险的接头“潜伏”在铁路网上,一旦因为种种原因导致钢轨最后断裂,则会产生车毁人亡的重大事故,给我国国民经济和人民生活带来灾难性的影响。因此,对于安全重于泰山的铁路运营而言,克服钢轨低接头问题刻不容缓。
当前对于无缝钢轨焊接接头处“马鞍”形磨耗处理常见方式有两种:一种是采用大型打磨车(如GMC-96x)整体维护性打磨,虽然可以消除接头塌陷,但是为了保证钢轨的平顺性,在打磨接头塌陷区域的同时,也会对钢轨其它部位产生很大的消耗,并因此显著降低了线路上钢轨的服役年限;另一种式则是对接头处磨耗严重的钢轨进行更换。该方法简单快速,但存在巨大的资源浪费。因此,如果能够通过技术手段消除钢轨焊接接头软化区,使得钢轨焊接接头的服役寿命与钢轨正常部位相同,无疑将节省一大笔铁路运营成本,并且有效提升铁路线的运能。
[发明内容]
针对现有技术的缺陷,本发明的目的在于提供一种钢轨焊接接头的熔覆强韧化处理方法及其应用,旨在解决现有钢轨焊接接头处理方法损耗大、严重降低钢轨服役年限的难题。
为实现上述目的,按照本发明的一方面,提供了一种钢轨焊接接头的熔覆强韧化处理方法,该方法具体为:
S1将钢轨焊接接头的热影响区和/或焊缝区中预设深度的钢轨结构去除,以形成凹槽型的待填补区;
S2在所述待填补区熔覆与钢轨基材耐磨性一致的强化层,填充满所述待填补区;
S3机加工使钢轨焊接接头与钢轨原有形貌基本相同,以此完成钢轨焊接接头的熔覆强韧化处理。
作为进一步优选的,步骤S2中的熔覆采用激光熔覆,等离子熔覆,感应熔覆,激光-感应复合熔覆,或激光-等离子复合熔覆。
作为进一步优选的,当焊缝区与钢轨基材的硬度值的差值在预设值以内时待填补区只包括热影响区;所述预设值通常为0~3HRC。
作为进一步优选的,步骤S1中,所述待填补区的最大深度为1.5mm~25mm,所述待填补区左右两侧斜边与底边的夹角β的取值范围为90°<β<170°。
作为进一步优选的,步骤S1中,保证所述待填补区顶面的长度大于30mm。
作为进一步优选的,步骤S1中,采用铣削或者打磨的方式形成待填补区。
按照本发明的另一方面,提供了上述熔覆强韧化处理方法在钢轨养护中的应用
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
1.本发明考虑到焊缝区和热影响区与钢轨基材的硬度不同,提出将钢轨焊接接头踏面以下部分钢轨结构去掉形成待填补区,然后熔覆与钢轨基材耐磨性一致的修复层,从而保证钢轨焊接接头与钢轨基材具有等耐磨性,以达到接头区域与钢轨母材同步磨损的目的,从而根治焊接接头常见的低接头现象,显著降低钢轨焊接接头的断头率,延长钢轨的服役寿命,提升铁路资源的利用率;
2.尤其是,当焊缝区与钢轨基材的硬度值相差不大时(通常是小于等于3HRC),可以不对焊缝区进行强化处理,可进一步提高加工效率,降低加工成本;
3.本发明通过对待填补区的深度、长度以及凹槽的角度进行优化,能够保证熔覆层完全覆盖热影响区和/或焊缝区,规避潜在的低塌风险,同时保证 熔覆层具有较好的工作强度,提高钢轨的服役寿命。
[附图说明]
图1是本发明优选实施例提供的钢轨焊接接头的熔覆强韧化处理三维示意图;
图2是本发明优选实施例提供的钢轨焊接接头的熔覆强韧化处理二维示意图;
图3是本发明优选实施例中U75V钢轨闪光焊接头组织及硬度曲线,其中①为母材(钢轨基材)区的组织图,②为热影响区的组织图,③为焊缝区的组织图,④为焊缝区的组织图;
图4是本发明优选实施例中U75V钢轨闪光焊接接头中待填补区的示意图(闪光焊:焊缝区+热影响区);
图5是本发明优选实施例中U75V钢轨闪光焊接接头熔覆强化的示意图(闪光焊:焊缝区+热影响区);
图6是本发明优选实施例中U75V钢轨铝热焊接接头组织及硬度曲线(铝热焊),其中①为母材区的组织图,②为热影响区的组织图,③为焊缝区的组织图;
图7是本发明优选实施例中U75V钢轨铝热焊接接头中待填补区的示意图(铝热焊:焊缝区+热影响区);
图8是本发明优选实施例中U75V钢轨铝热焊接接头激光熔覆强化的示意图(铝热焊:焊缝区+热影响区);
图9是本发明优选实施例提供的钢轨焊接接头的熔覆强韧化处理热影响区的三维示意图;
图10是本发明优选实施例提供的钢轨焊接接头的熔覆强韧化处理热影响区的二维示意图;
图11是本发明优选实施例中U75V钢轨闪光焊接接头中热影响区填补示 意图(闪光焊:仅热影响区);
图12是本发明优选实施例中U75V钢轨闪光焊接接头熔覆强化热影响区的示意图(闪光焊:仅热影响区);
图13是本发明优选实施例中U75V钢轨铝热焊接接头中热影响区填补示意图(铝热焊:仅热影响区);
图14是本发明优选实施例中U75V钢轨铝热焊接接头激光熔覆强化热影响区示意图(铝热焊:仅热影响区)。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-钢轨,1.1-母材区,1.2-热影响区,1.3-焊缝区,1.4-焊筋,1.4.1-焊筋中心线,2-待填补区,3-强化层,5-轨顶。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1~2所示,本发明优选实施例提供了一种钢轨焊接接头的熔覆强韧化处理方法,该方法具体为:
S1采用机械铣削或者打磨的方式将钢轨焊接接头的焊缝区1.3和热影响区1.2中预设深度的钢轨结构去掉,以形成凹槽型的待填补区2;
S2在待填补区2熔覆与钢轨1基材部分耐磨性一致的强化层3,并保证强化层3的顶面与轨顶5平齐,强化层3的外廓尺寸恢复到与钢轨1基材部分尺寸基本相同,以此完成钢轨焊接接头的熔覆强韧化处理。
传统熔覆技术的技术目标主要是提高材料的耐磨性,通常会在待加强材料表面熔覆耐磨涂层。本发明根据钢轨的实际应用场景,突破这一技术思路,提出耐磨性相等或基本相等的技术理念,通过在钢轨焊接接头的焊缝区1.3和热影响区1.2制备耐磨性与母材一致的熔覆层,能够实现钢轨焊接接头与母材 具有同等耐磨性,从而在服役过程中达到接头区域(包括焊缝区1.3和热影响区1.2)与母材区1.1同步磨耗的目的,并且能够显著减少焊缝区1.3的打磨次数、打磨量和维护成本。该方法可以适用于闪光焊、气压焊、铝热焊、电弧焊等方法形成的焊接接头,实现方式灵活可行,不仅适用于在焊轨厂完成的焊接接头强韧化处理,还能够适用于钢轨铺设完成后的在线强韧化处理。
进一步,步骤S1中,根据钢轨服役线路上允许通行车辆的最大轴重T和年运货量M进行确定待填补区2的最大深度H 1,1.5mm≤H 1≤25mm,从而在保证强化效果的同时避免破坏原有钢结构,以杜绝断轨事故的发生。同时,以焊筋中心线1.4.1位置为纵向对称中心,确定强化层3的纵向最大长度30mm,以保证熔覆层完全覆盖焊缝区1.3和热影响区1.2,规避潜在的低塌风险。此外,待填补区2左右两侧斜边与底边的夹角β的取值范围为90°<β<170°,从而使凹槽型待填补区的纵向两侧出现一定坡度,便于熔覆作业的正常实施。
进一步,步骤S2中,采用激光熔覆技术、等离子熔覆、感应熔覆,或者激光-感应熔覆技术,或者激光-等离子复合熔覆制备强化层3,其中激光熔覆技术包括同轴送粉激光熔覆技术和旁轴送粉激光熔覆技术。工作时,通过高能量激光束熔融合金粉末,逐层制备强化层。根据钢轨焊接接头所属钢的牌号确定强化层中合金粉末成分含量及激光熔覆工艺参数,因此该技术可用于各种型号钢轨(诸如50kg/m、60kg/m、75kg/m等)的焊接接头强韧化处理,并且对所用钢轨的牌号如U71Mn、U75V、U78CrV等)没有限制。
下面根据具体实施例对本发明提供的技术方案作进一步说明。
实施例1
U75V钢轨闪光焊接头组织及硬度曲线如图3所示,钢轨闪光焊的大量热输入引起珠光体钢轨中渗碳体的球化,导致热影响区出现粒状珠光体组织并使得其硬度和耐磨性低于母材,在服役过程中容易因为焊接接头区域与基材 区域不同步磨耗而产生低接头现象,危害铁路安全运行。同时,通过硬度曲线分析,可以确定该类型接头焊缝区1.3、热影响区1.2的纵向分布范围,继而制定接头强化方案。
如图4、5所示,具体强化步骤如下:
(1)根据待强化钢轨服役线路的允许通行车辆的最大轴重T和年货运量M,计算修复层3最大深度H 1,H 1取5mm;
(2)以钢轨焊接接头焊筋1.4位置为纵向对称中心,根据硬度曲线变化,确定强化层纵向长度L 0=140mm;利用砂轮或铣刀等减材加工工具制备匹配的待填补区,待填补区上边长度L 0为140mm,斜边与底边方向的夹角β为135°(参见图4);
(3)通过高能量激光束熔融合金粉末逐层填补强化层直到在垂直方向与钢轨母材踏面平齐,且填补修复后的轮廓与减材前的钢轨母材一致。
实施例2
U75V钢轨铝热焊接头组织及硬度曲线如图6所示,铝热焊的原理是通过铝热反应释放出大量的热熔化钢水后浇注于预留的接头缝,从而实现钢轨焊接。同闪光焊焊接软化区形成机理类似,大量热输入导致热影响区1.2硬度与耐磨性低于母材,服役后接头与母材区域的不同步磨耗而产生低接头。通过分析硬度曲线,可以确定该类型接头焊缝区1.3、热影响区1.2的纵向分布范围,继而制定接头强化方案。
如图7、8所示,具体强化步骤如下:
(1)根据待强化钢服役线路的允许通行车辆的最大轴重T和年货运量M计算修复层3最大深度H 1,H 1取5mm;
(2)以钢轨焊接接头焊筋位置为纵向对称中心,根据硬度曲线变化,确定强化层纵向最大长度L 0=160mm;利用砂轮或铣刀等减材加工器具制备匹配的待填补区,待填补区上边长度L 0为160mm,斜边与底边方向的夹角β为 135°(参见图7);
(3)通过高能量激光束熔融合金粉末逐层填补强化层直到在垂直方向与钢轨母材踏面平齐,且填补修复后的轮廓与减材前的钢轨母材一致。
实施例3
(1)对于U71Mn钢轨闪光焊接头,根据待强化钢轨服役线路的允许通行车辆的最大轴重T和年货运量M,计算强化层最大深度H 1,H 1取1.5mm;
(2)以钢轨焊接接头焊筋位置为纵向对称中心,根据硬度曲线变化,确定强化层纵向长度L 0=170mm;利用砂轮或铣刀等减材加工工具制备匹配的待填补区,待填补区上边长度L 0为170mm,斜边与底边方向的夹角β为95°;
(3)通过高能量激光束熔融合金粉末逐层填补强化层直到在垂直方向与钢轨母材踏面平齐,且填补修复后的轮廓与减材前的钢轨母材一致。
实施例4
(1)对于U71Mn钢轨铝热焊接头,根据待强化钢轨服役线路的允许通行车辆的最大轴重T和年货运量M,计算强化层最大深度H 1,H 1取25mm;
(2)以钢轨焊接接头焊筋位置为纵向对称中心,根据硬度曲线变化,确定强化层纵向长度L 0=150mm;利用砂轮或铣刀等减材加工工具制备匹配的待填补区,待填补区上边长度L 0为150mm,斜边与底边方向的夹角β为165°;
(3)通过高能量激光束熔融合金粉末逐层填补强化层直到在垂直方向与钢轨母材踏面平齐,且填补修复后的轮廓与减材前的钢轨母材一致。
参阅图9、图10,当焊缝区与钢轨基材的硬度值的差值在预设值以内时待填补区只包括热影响区,预设值通常为0~3HRC,通过以下实施例说明仅强化热影响区的钢轨焊接接头强韧化处理方式。
实施例5
参阅图11、图12,具体强化步骤如下:
(1)对于U75V钢轨闪光焊接头,根据待强化钢轨服役线路的允许通行 车辆的最大轴重T和年货运量M,计算强化层最大深度H 1,H 1取5mm;
(2)以钢轨焊接接头焊筋位置为纵向对称中心,根据硬度曲线变化,确定焊缝区与钢轨基材的硬度值的差值在预设值3HRC以内,因此仅需强化焊筋两侧的热影响区,强化层纵向长度L 1、L 2分别为65mm、60mm。利用砂轮或铣刀等减材加工工具制备匹配的待填补区,待填补区上边长度L 1、L 2分别为65mm、60mm,斜边与底边方向的夹角β为95°;
(3)通过高能量激光束熔融合金粉末逐层填补强化层直到在垂直方向与钢轨母材踏面平齐,且填补修复后的轮廓与减材前的钢轨母材一致。
实施例6
参阅图13、图14,具体强化步骤如下:
(1)对于U75V钢轨铝热焊接头,根据待强化钢轨服役线路的允许通行车辆的最大轴重T和年货运量M,计算强化层最大深度H 1,H 1取5mm;
(2)以钢轨焊接接头焊筋位置为纵向对称中心,根据硬度曲线变化,确定焊缝区与钢轨基材的硬度值的差值在预设值3HRC以内,因此仅需强化焊筋两侧的热影响区,强化层纵向长度L 1、L 2分别为35mm、35mm。利用砂轮或铣刀等减材加工工具制备匹配的待填补区,待填补区上边长度L 1、L 2分别为35mm、35mm,斜边与底边方向的夹角β为120°;
(3)通过高能量激光束熔融合金粉末逐层填补强化层直到在垂直方向与钢轨母材踏面平齐,且填补修复后的轮廓与减材前的钢轨母材一致。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种钢轨焊接接头的熔覆强韧化处理方法,其特征在于,该方法具体为:
    S1将钢轨焊接接头的热影响区和/或焊缝区中预设深度的钢轨结构去除,以形成凹槽型的待填补区;
    S2在所述待填补区熔覆与钢轨基材耐磨性一致的强化层,填充满所述待填补区;
    S3机加工使钢轨焊接接头与钢轨原有形貌基本相同,以此完成钢轨焊接接头的熔覆强韧化处理。
  2. 如权利要求1所述的钢轨焊接接头的熔覆强韧化处理方法,其特征在于,步骤S2中的熔覆采用激光熔覆,等离子熔覆,感应熔覆,激光-感应复合熔覆,或激光-等离子复合熔覆。
  3. 如权利要求1所述的钢轨焊接接头的熔覆强韧化处理方法,其特征在于,当焊缝区与钢轨基材硬度值的差值在预设值以内时,所述待填补区只包括热影响区。
  4. 如权利要求1、2或3所述的钢轨焊接接头的熔覆强韧化处理方法,其特征在于,步骤S1中,所述待填补区的最大深度为1.5mm~25mm。
  5. 如权利要求1、2或3所述的钢轨焊接接头的熔覆强韧化处理方法,其特征在于,所述待填补区左右两侧斜边与底边的夹角β的取值范围为90°<β<170°。
  6. 如权利要求1、2或3所述的钢轨焊接接头的熔覆强韧化处理方法,其特征在于,步骤S1中,保证所述待填补区顶面的长度大于30mm。
  7. 如权利要求1、2或3所述的钢轨焊接接头的熔覆强韧化处理方法,其特征在于,步骤S1中,采用铣削或者打磨的方式形成待填补区。
  8. 如权利要求3所述的钢轨焊接接头的熔覆强韧化处理方法,其特征在于,所述预设值为0~3HRC。
  9. 如权利要求1、2或3所述的钢轨焊接接头的激光熔覆强韧化处理方法,其特征在于,步骤S3中,所述机加工为打磨或铣削。
  10. 如权利要求1~9任一项所述的熔覆强韧化处理方法在钢轨养护中的应用。
PCT/CN2021/128970 2021-07-12 2021-11-05 一种钢轨焊接接头的熔覆强韧化处理方法及其应用 WO2023284186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110786723.9A CN113584971B (zh) 2021-07-12 2021-07-12 一种钢轨焊接接头的熔覆强韧化处理方法及其应用
CN202110786723.9 2021-07-12

Publications (1)

Publication Number Publication Date
WO2023284186A1 true WO2023284186A1 (zh) 2023-01-19

Family

ID=78247125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128970 WO2023284186A1 (zh) 2021-07-12 2021-11-05 一种钢轨焊接接头的熔覆强韧化处理方法及其应用

Country Status (2)

Country Link
CN (1) CN113584971B (zh)
WO (1) WO2023284186A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113584971B (zh) * 2021-07-12 2023-05-09 武汉新瑞达激光工程有限责任公司 一种钢轨焊接接头的熔覆强韧化处理方法及其应用
CN115216618B (zh) * 2022-06-08 2023-03-10 西南交通大学 一种铁路钢轨焊缝接头磨耗的控制方法及装置
CN115747786A (zh) * 2022-09-17 2023-03-07 兰州城市学院 一种x80钢焊接接头处激光熔覆超厚材料的增强处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166766A1 (en) * 2012-12-17 2014-06-19 Tuskegee University Railroad rail head repair
CN108456879A (zh) * 2018-01-23 2018-08-28 华中科技大学 一种激光-辅助热源高效复合熔覆强化钢轨的方法
CN112853345A (zh) * 2021-01-06 2021-05-28 北京工业大学 一种提高钢轨焊缝强度的材料的激光制备方法
CN113584971A (zh) * 2021-07-12 2021-11-02 武汉新瑞达激光工程有限责任公司 一种钢轨焊接接头的熔覆强韧化处理方法及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144160B (zh) * 2007-09-03 2010-08-18 德阳中轨科技股份有限公司 钢轨表面熔覆防锈耐磨合金的方法
CN103341695A (zh) * 2013-06-27 2013-10-09 西安交通大学 一种改善调质低合金高强钢gmaw接头力学性能的方法
CN103866317B (zh) * 2014-03-04 2016-03-02 航天材料及工艺研究所 一种提高铝合金焊接接头强度的表面熔敷方法
CN106884087B (zh) * 2017-01-25 2019-03-12 中国人民解放军空军工程大学 一种不锈钢焊接接头激光冲击强化变形控制方法
CN109175656A (zh) * 2018-10-30 2019-01-11 南昌航空大学 一种电子束熔块修复高强钢缺陷的方法
CN111593343B (zh) * 2020-06-10 2022-03-15 中国航发北京航空材料研究院 采用激光熔覆修复襟翼滑轨镀铬表面掉块缺陷的工艺方法
CN111996525A (zh) * 2020-07-08 2020-11-27 北京航空航天大学 一种提高高碳钢构件表面质量与性能的激光表面强化方法
CN112458243B (zh) * 2020-11-06 2021-12-21 上海交通大学 改善超高强度qp钢弧焊热影响区软化区软化的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166766A1 (en) * 2012-12-17 2014-06-19 Tuskegee University Railroad rail head repair
CN108456879A (zh) * 2018-01-23 2018-08-28 华中科技大学 一种激光-辅助热源高效复合熔覆强化钢轨的方法
CN112853345A (zh) * 2021-01-06 2021-05-28 北京工业大学 一种提高钢轨焊缝强度的材料的激光制备方法
CN113584971A (zh) * 2021-07-12 2021-11-02 武汉新瑞达激光工程有限责任公司 一种钢轨焊接接头的熔覆强韧化处理方法及其应用

Also Published As

Publication number Publication date
CN113584971A (zh) 2021-11-02
CN113584971B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2023284186A1 (zh) 一种钢轨焊接接头的熔覆强韧化处理方法及其应用
Tzanakakis The railway track and its long term behaviour: a handbook for a railway track of high quality
CN110153634B (zh) 一种管道环焊缝再焊接修复方法
Grossoni et al. Observed failures at railway turnouts: Failure analysis, possible causes and links to current and future research
US10550524B2 (en) Beveled-end steel railroad
CN104741499A (zh) 一种夹心层锻模及锻模夹心层堆焊的制备方法
CN106624612A (zh) 一种厚壁螺旋钢管高速埋弧焊工艺
CN201908237U (zh) 适用于磨耗型车轮的铁路60kg/m钢轨
CN2487620Y (zh) 一种激光强化的铁道车辆车轮
CN110725164A (zh) 嵌入式固定型无缝高锰钢辙叉结构
CN1515743A (zh) 一种激光强化的铁路道岔辙叉
Usoltsev et al. Analysis of rail welding methods for mine rail access with the use of modern technologies
CN106825930A (zh) 一种激光电弧焊复合熔覆再制造铁道列车车轮的装置
CN211256509U (zh) 嵌入式固定型无缝高锰钢辙叉结构
CN210766200U (zh) 一种具有堆焊结构的菱形交叉道岔用槽型轨
Lawrence et al. Reliability of improved thermite welds
CN1233900C (zh) 用复合部件制造的固定式铁路辙叉翼轨
RU219047U1 (ru) Железнодорожный рельс
CN212560941U (zh) 一种强化翼轨合金钢辙叉
RU224546U1 (ru) Железнодорожный рельс
CN212560940U (zh) 一种强化翼轨合金钢辙叉
CN218643081U (zh) 一种翼轨加强型组合辙叉
US20230234623A1 (en) Railway vehicle coupler having robust knuckle
CN207748750U (zh) 一种卸船机小车轨道辅助接头结构
CN114941102B (zh) 一种高锰钢辙叉激光熔覆修复用的材料及修复方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE