WO2023284178A1 - 用于高温高矿度油藏驱油的表面活性剂组合物 - Google Patents

用于高温高矿度油藏驱油的表面活性剂组合物 Download PDF

Info

Publication number
WO2023284178A1
WO2023284178A1 PCT/CN2021/128317 CN2021128317W WO2023284178A1 WO 2023284178 A1 WO2023284178 A1 WO 2023284178A1 CN 2021128317 W CN2021128317 W CN 2021128317W WO 2023284178 A1 WO2023284178 A1 WO 2023284178A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
oil
polyoxyethylene
temperature
oil displacement
Prior art date
Application number
PCT/CN2021/128317
Other languages
English (en)
French (fr)
Inventor
徐立波
隋新光
丁伟
徐典平
赵新
贾世华
王屹岭
闫磊
Original Assignee
黑龙江信维源化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黑龙江信维源化工有限公司 filed Critical 黑龙江信维源化工有限公司
Publication of WO2023284178A1 publication Critical patent/WO2023284178A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • C09K8/604Polymeric surfactants

Definitions

  • the invention belongs to the technical field of chemical flooding and recovery, and in particular relates to a surfactant composition for oil flooding in high-temperature and high-minerality oil reservoirs and an application thereof.
  • the chemical composite flooding technology can greatly increase the oil recovery rate, and has already achieved a significant increase in oil production in China's Daqing Oilfield. Since its application in the field in 2014, the cumulative increase in crude oil production has exceeded 33 million tons.
  • the so-called chemical composite flooding technology includes ASP flooding, which is a strong base ASP flooding system composed of polymer-surfactant-sodium hydroxide and a weak base ASP flooding system composed of polymer-surfactant-sodium carbonate.
  • alkali In ASP flooding, the addition of alkali will increase the dispersion of fine particles such as clay and minerals in the formation, accelerate their migration, thereby blocking the rock pore throat, destroying the formation structure, causing secondary damage to the reservoir, and also causing Pipe string corrosion, production well scaling, pump jamming, rod breakage, and severe crude oil emulsification have brought great burdens to subsequent demulsification and dehydration processes.
  • the application of strong alkali ASP flooding has begun to be limited in oil fields. For high-temperature and high-salt reservoirs, the use of alkali will bring greater harm.
  • the development of three-component compound flooding towards alkali-free is an inevitable requirement of technological progress, and it is the development direction of compound oil displacement technology.
  • the alkali-free binary flooding system has almost no damage to the formation, but there is no report of large-scale mine application. .
  • the surfactants used in alkali-free binary composite flooding usually have a wide range of ultra-low interfacial tension and good stability.
  • the ubiquitous disadvantages are that the system has poor temperature resistance and salt resistance, and the range of enhanced oil recovery is relatively low, even for those with a temperature of 80°C or above and a high salinity, especially calcium and magnesium ions ( ⁇ 600mg/L).
  • the reservoir is completely out of reach for the application.
  • the present invention provides a surfactant composition for high-temperature and high-salt reservoir oil displacement agent, wherein, fatty amine polyoxypropylene polyoxyethylene ether sulfonate has a good interface as the main agent Active, can further reduce the interfacial tension of oil and water; in addition, adding quaternary ammonium salt as a synergist can form a supramolecular structure with the main agent with higher interfacial activity, which can stabilize the performance of the composition; Polyglyceryl ether of propylene ether and/or polyoxyethylene ether chain segment is a co-solvent, which has a strong solubilizing and emulsifying effect, and can fuse the main agent and the synergist to make the two interact and synergize, so that the organic The components and water are better compatible, and the system is uniform and stable, thus completing the present invention.
  • the object of the first aspect of the present invention is to provide a surfactant composition for high-temperature and high-salt reservoir oil displacement agent, which includes a main agent and a synergist.
  • the main agent is fatty amine polyoxypropylene polyoxyethylene ether sulfonate, which introduces polyoxypropylene segment and polyoxyethylene segment through the etherification of fatty amine;
  • the synergist is selected from quaternary ammonium salts, preferably selected from one or more of alkyl trimethyl quaternary ammonium salts, Gemini quaternary ammonium salts, quaternary ammonium salts containing polyoxyethylene ether blocks, more preferably One or more of fatty alcohol polyoxyethylene glycidyl ether quaternary ammonium salts.
  • the composition further includes a cosolvent selected from the group consisting of fatty alcohol polyoxyethylene polyglyceryl ether, fatty amine polyoxyethylene polyglyceryl ether, fatty alcohol polyoxypropylene polyoxyethylene polyglyceryl ether and fatty amine One or more of polyoxypropylene polyoxyethylene polyglyceryl ethers.
  • a cosolvent selected from the group consisting of fatty alcohol polyoxyethylene polyglyceryl ether, fatty amine polyoxyethylene polyglyceryl ether, fatty alcohol polyoxypropylene polyoxyethylene polyglyceryl ether and fatty amine
  • a cosolvent selected from the group consisting of fatty alcohol polyoxyethylene polyglyceryl ether, fatty amine polyoxyethylene polyglyceryl ether, fatty alcohol polyoxypropylene polyoxyethylene polyglyceryl ether and fatty amine
  • a cosolvent selected from the group consisting of fatty alcohol polyoxyethylene polyglyceryl ether, fatty amine poly
  • the co-solvent is prepared by substituting polyether with halogenated propylene oxide to obtain a glycidyl ether intermediate containing epoxy bonds, and then reacting with polyglycerol for ring-opening.
  • the fatty amine polyoxypropylene polyoxyethylene ether sulfonate is prepared by etherification, alkenylation and sulfonation of fatty amine.
  • the fatty alcohol polyoxyethylene ether reacts with the halogenated propylene oxide in the presence of a phase transfer catalyst in an aqueous alkali metal hydroxide solution to obtain the fatty alcohol polyoxyethylene glycidyl ether, and then adds trimethylamine and concentrated acid to react , to obtain fatty alcohol polyoxyethylene glycidyl ether quaternary ammonium salt.
  • the main agent is fatty amine polyoxypropylene polyoxyethylene ether sulfonate, which has the following structure:
  • R is an alkyl group or a substituted aryl group; m+n is greater than or equal to 2 and less than or equal to 20, m is 2-20, n is 2-20; i is 2-8; m, n, i are integers.
  • Described fatty alcohol polyoxyethylene glycidyl ether quaternary ammonium salt has following structure:
  • R 0 is an alkyl group or a substituted aryl group; p is 2-20; p is an integer.
  • the co-solvent has the following structure:
  • R1 is an alkyl group or a substituted aryl group
  • E is nitrogen or oxygen
  • a+b is greater than or equal to 2 and less than or equal to 20
  • a is 0-20
  • b is 1-20
  • c is 2, 3 or 4
  • a , b, c are integers.
  • the purpose of the second aspect of the present invention is to provide the application of the surfactant composition for high-temperature and high-salt reservoir oil displacement agent, and the composition is used for reservoir temperature higher than 70°C, preferably higher than 80°C, Crude oil with salinity higher than 15000mg/L is displaced.
  • aliphatic amine polyoxypropylene polyoxyethylene ether sulfonate is used as the main agent, which has good interfacial activity and can further reduce the oil-water interfacial tension.
  • quaternary ammonium salt as a synergist can synergize with the main agent, especially fatty alcohol polyoxyethylene glycidyl ether quaternary ammonium salt can form a supramolecular structure with higher interface activity with the main agent , play a role in stabilizing the performance of the composition.
  • Polyglyceryl ether containing polyoxypropylene ether and/or polyoxyethylene ether chain segment is used as a cosolvent, which has a strong solubilizing and emulsifying effect, and can fuse the main agent and the synergist to make the two interact , synergistic effect, so that the organic components and water are better miscible, the system is uniform and stable, and the oil displacement rate is effectively improved.
  • Fig. 1 shows the appearance diagram of the emulsification results of oil displacement agent I, comparative sample I, and comparative sample II in equal-volume simulated water and crude oil in Experimental Example 2 of the present invention
  • Fig. 2 shows the oil-water interfacial tension of the solutions of oil-displacing agent I, comparative sample I, comparative sample II and oil-displacing agent III in Experimental Example 3 of the present invention as a function of surfactant concentration.
  • the surfactant composition used in the high-temperature and high-salt oil reservoir oil displacement agent provided by the present invention utilizes the performance characteristics of the main agent, synergist and co-solvent to realize supramolecular action inside the oil displacement agent, enhance interfacial activity, and effectively reduce The interfacial tension of the oil-displacement agent, and the addition of synergists and co-solvents can improve the stability, temperature and salt resistance of the entire oil-displacement system, further improve the performance of the oil-displacement agent, and thus increase the oil displacement rate.
  • the invention provides a surfactant composition for high-temperature and high-salt reservoir oil displacement agent, which comprises a main agent and a synergist.
  • the main agent is fatty amine polyoxypropylene polyoxyethylene ether sulfonate, which introduces polyoxypropylene chain segment and polyoxyethylene chain segment through fatty amine etherification to improve its own lipophilicity, water solubility and salt tolerance. It has the following structure:
  • R is an alkyl group or a substituted aryl group, preferably a C 10 -C 25 alkyl group or a C 10 -C 25 alkylphenyl group, more preferably a C 12 -C 22 alkyl group, such as dodecyl, Tetradecyl, Hexadecyl, Octadecyl, Behenyl.
  • m+n is greater than or equal to 2 and less than or equal to 20, m is 2-20, n is 2-20, preferably, m is 2-16, n is 2-16, more preferably, m is 5-10, n is 5 to 10.
  • i is 2-8, preferably 2-6, more preferably 2-4, such as 3. m, n, and i are integers.
  • the R group in the main agent aliphatic amine polyoxypropylene polyoxyethylene ether sulfonate is an alkyl group and a substituted aromatic group
  • the interfacial performance of the oil displacement agent can be improved, and the alkyl group is more preferable. Reduce the pollution of oil flooding water and formation, and reduce the environmental burden.
  • m and n are the numbers of propoxyl groups (PO) and ethoxyl groups (EO) respectively, among which, polyoxypropylene (PPO) chain segments extend in the oil phase to ensure the lipophilicity of the molecule without destroying the water solubility of the molecule.
  • PPO polyoxypropylene
  • the polyoxyethylene (PEO) segment makes the surfactant molecule non-ionic, improving water solubility and water resistance.
  • the fatty amine polyoxypropylene polyoxyethylene ether sulfonate is prepared by etherification, alkenylation and sulfonation of fatty amine.
  • the fatty amine is a primary amine selected from alkylamines or substituted arylamines, preferably C 10 -C 25 alkylamines or C 10 -C 25 alkylphenylamines, more preferably C 12 -C 22 Alkylamines, such as 1-dodecylamine, 1-tetradecylamine, 1-hexadecylamine, 1-octadecylamine, docosane-1-amine.
  • the etherification is to carry out etherification with propylene oxide first, and then carry out etherification with ethylene oxide to obtain aliphatic amine polyoxypropylene polyoxyethylene ether.
  • the reaction is carried out under the protection gas condition, for example, under the protection of nitrogen, the reaction is carried out successively with propylene oxide and ethylene oxide.
  • the etherification reaction is carried out in the presence of a catalyst selected from organic bases or inorganic bases, preferably alkali metal hydroxides, such as KOH and NaOH.
  • a catalyst selected from organic bases or inorganic bases, preferably alkali metal hydroxides, such as KOH and NaOH.
  • the molar ratio of the fatty amine to propylene oxide is 1:(4-40), preferably 1:(4-32), more preferably 1:(5-20).
  • the molar ratio of the fatty amine to ethylene oxide is 1:(4-40), preferably 1:(4-32), more preferably 1:(5-20).
  • the etherification reaction temperature is 100-180°C, preferably 120-160°C.
  • the alkenylation is the alkenylation of aliphatic amine polyoxypropylene polyoxyethylene ether with halogenated olefin.
  • the halogenated olefin is selected from halogenated monoolefins, preferably a halogenated monoolefin containing C 2 -C 8 , more preferably 3-chloropropene.
  • the alkali metal hydride is added to the aliphatic amine polyoxypropylene polyoxyethylene ether for reaction, and after deoxygenation and dehydration, the halogenated olefin is added for reaction to obtain the alkenylated aliphatic amine polyoxypropylene polyoxyethylene ether.
  • Oxyethylene ether For example:
  • j is the number of methylene groups in the halogenated olefin, and j is an integer.
  • the molar ratio of the fatty amine polyoxypropylene polyoxyethylene ether to the halogenated olefin is 1:(2.0-5.5), preferably 1:(2.2-6.5), more preferably 1:(2.5-3.5).
  • the etherification reaction temperature is 60-110°C, preferably 70-90°C.
  • the sulfonation is the reaction of alkenylated fatty amine polyoxypropylene polyoxyethylene ether with a sulfonating agent to obtain fatty amine polyoxypropylene polyoxyethylene ether sulfonate.
  • the sulfonating agent is selected from bisulfite and/or sulfite, preferably sodium bisulfite and sodium sulfite, and the molar ratio of the two is 1:(0.8-3), preferably 1:(1.0-1.5).
  • the sulfonation reaction is carried out in the presence of catalyst nitrate, and the added amount of nitrate is 10%-40% of the molar amount of polyoxypropylene polyoxyethylene ether of alkenylated fatty amine.
  • the reaction is carried out in a solvent, and the solvent is selected from one or more of water and alcohol solvents, preferably one or more of water, methanol and ethanol, more preferably water and ethanol.
  • the temperature of the sulfonation reaction is 60°C-100°C, preferably 70°C-90°C.
  • the synergist is selected from quaternary ammonium salts, preferably selected from alkyl trimethyl quaternary ammonium salts, such as dodecyl trimethyl ammonium chloride, tetradecyl trimethyl ammonium chloride, hexadecyl Trimethylammonium Chloride, Octadecyltrimethylammonium Chloride, Dodecyltrimethylammonium Bromide, Tetradecyltrimethylammonium Bromide, Hexadecyltrimethylammonium Bromide , octadecyltrimethylammonium bromide, Gemini quaternary ammonium salts, such as ethyl/propylene/butylene bis(dodecyldimethylammonium chloride), ethyl/propylene/butylene bis(tetradecyl Alkyl dimethyl ammonium chloride), ethyl/propylene/butylene bis(he
  • R 0 is alkyl or substituted aryl, preferably C 10 -C 25 alkyl or C 10 -C 25 alkylphenyl, more preferably C 12 -C 22 alkyl, such as dodecyl, deca Tetraalkyl, Hexadecyl, Octadecyl, Behenyl.
  • p is 2-20, preferably 2-16, more preferably 5-9. p is an integer.
  • the synergist interacts with the main agent to form a supramolecular system, thereby enhancing the interfacial activity of the entire oil displacement system.
  • the R 0 in the synergist can affect the environmental friendliness of the oil displacement agent
  • the number of R 0 and EO can affect its salt tolerance and hydrophilic-lipophilic balance, and more importantly, it can affect the synergistic effect.
  • the formation of the supramolecular interaction between the synergist and the main agent can be determined through a large number of experiments. When the p value is 2-20, an effective supramolecular system can be formed between the synergist and the main agent. When it is 5-9, the system stability is good. At the same time, the resistance to temperature and salt can also be improved.
  • fatty alcohol polyoxyethylene ether reacts with halogenated propylene oxide in the presence of a phase transfer catalyst in aqueous alkali metal hydroxide solution to obtain fatty alcohol polyoxyethylene glycidyl ether, and then adds trimethylamine and concentrated acid reaction to obtain fatty alcohol polyoxyethylene glycidyl ether quaternary ammonium salt.
  • the concentrated acid is selected from concentrated hydrochloric acid or concentrated sulfuric acid, preferably concentrated hydrochloric acid.
  • the mass ratio of the main agent to the synergist is 100:(1-16), preferably 100:(1.5-8), more preferably 100:(2-5).
  • the surfactant composition for high-temperature and high-salt reservoir oil displacement agent also includes a cosolvent, and the cosolvent is selected from the group consisting of fatty alcohol polyoxyethylene polyglyceryl ether, fat One or more of amine polyoxyethylene polyglyceryl ether, fatty alcohol polyoxypropylene polyoxyethylene polyglyceryl ether and fatty amine polyoxypropylene polyoxyethylene polyglyceryl ether, preferably fatty amine polyoxypropylene polyoxyethylene polyglyceryl ether One or more of glyceryl ethers.
  • the cosolvent is selected from the group consisting of fatty alcohol polyoxyethylene polyglyceryl ether, fat One or more of amine polyoxyethylene polyglyceryl ether, fatty alcohol polyoxypropylene polyoxyethylene polyglyceryl ether and fatty amine polyoxypropylene polyoxyethylene polyglyceryl ether, preferably fatty amine polyoxypropylene polyoxyethylene polyglyceryl ether One or more
  • the co-solvent has the following structure:
  • R 1 is alkyl or substituted aryl, preferably C 10 -C 25 alkyl or C 10 -C 25 alkylphenyl, more preferably C 12 -C 22 alkyl, such as dodecyl, deca Tetraalkyl, Hexadecyl, Octadecyl, Behenyl.
  • E is nitrogen or oxygen, preferably nitrogen.
  • a+b is greater than or equal to 2 and less than or equal to 20.
  • a is 0-20, preferably 2-16, more preferably 5-8;
  • b is 1-20, preferably 2-16, more preferably 5-8.
  • c is 2, 3 or 4, preferably 2.
  • a, b, and c are integers.
  • the co-solvent can promote the dispersion of the main agent in the solution and improve the temperature and salt resistance of the oil displacement agent.
  • the co-solvent is prepared by substituting polyether with halogenated propylene oxide to obtain a glycidyl ether intermediate containing epoxy bonds, and then reacting with polyglycerol for ring-opening.
  • Described solubilizer is prepared by following method:
  • Step 1 preparing polyglycerol.
  • Polyglycerols were prepared according to classical methods. Mix glycerin and sodium hydroxide, and raise the temperature to 250°C under a nitrogen atmosphere. According to the refractive index, polyglycerols with a degree of polymerization of 2, 3, and 4 can be prepared respectively.
  • Step 2 adding the halogenated propylene oxide into the solvent containing the polyether, heating and reacting to obtain the glycidyl ether intermediate containing the epoxy chain segment.
  • the polyether is selected from one or more of fatty alcohol polyoxyethylene ether, fatty amine polyoxyethylene ether, fatty alcohol polyoxypropylene polyoxyethylene ether and fatty amine polyoxypropylene polyoxyethylene ether.
  • the molar ratio of the polyether to epichlorohydrin is 1:(1.5-4.5), preferably 1:(1.8-3.5), more preferably 1:(2.1-3).
  • the molar ratio of the phase transfer catalyst to the polyether is (0.01-0.08):1, preferably (0.02-0.05):1.
  • the reaction temperature is 40-65°C, preferably 45-60°C.
  • Step 3 adding the glycidyl ether intermediate containing the epoxy chain segment into the polyglycerol, and reacting with heat preservation to obtain a cosolvent.
  • polyglycerol is added to the sodium hydroxide alcohol solution, and the reaction is stirred. After the reaction is completed, ethanol and a small amount of water are removed, and a glycidyl ether intermediate containing epoxy bonds is added, and the reaction is continuously vacuumed, heated and kept warm. After the reaction, wash with alcohol, filter and dry to obtain co-solvent.
  • the mass concentration of the sodium hydroxide alcohol solution is 4%-15%, preferably 6%-12%, more preferably 8%-10%.
  • the alcohol is one or more of ethanol, propanol, butanol and isopropanol, preferably ethanol or propanol, more preferably ethanol.
  • the molar ratio of the glycidyl ether intermediate containing epoxy bonds to polyglycerol is 1:(1.5-5), preferably 1:(1.8-4), more preferably 1:(2.0-3.0).
  • the reaction temperature between the epoxy bond-containing glycidyl ether intermediate and polyglycerol is 100-180°C, preferably 120-170°C, more preferably 140-160°C.
  • the mass ratio of the main agent to the auxiliary solvent is 100:(2-25), preferably 100:(5-20), more preferably 100:(8-15).
  • the surfactant composition used for high-temperature and high-salt reservoir oil displacement agent is used in a solvent.
  • the solvent is selected from one or more of alcohol solvents and ether solvents, more preferably isopropanol, n-propanol, n-butanol, n-amyl alcohol, isoamyl alcohol, ethylene glycol monobutyl ether , propylene glycol monobutyl ether, one or more of ethylene glycol, diethylene glycol and triethylene glycol, more preferably ethylene glycol monobutyl ether, propylene glycol monobutyl ether and isopropyl One or more alcohols.
  • the solvent also includes water, and the water is selected from distilled water, deionized water, tap water, mineral water or ground water.
  • the mass-to-volume ratio of the surfactant composition and solvent used for high-temperature and high-salt reservoir oil displacement agents is (1-20) g: (100-150) mL, preferably (2-15) g: (100 ⁇ 150) mL.
  • the high-temperature high-salt oil reservoir flooding surfactant composition in the present invention uses the anionic nonionic surfactant tertiary amine polyoxypropylene polyoxyethylene ether sulfonate as the main agent, and the quaternary ammonium salt as the synergist, especially The fatty alcohol polyoxyethylene glycidyl ether quaternary ammonium salt is used as a synergist, and the polyglyceryl ether containing polyoxypropylene ether and/or polyoxyethylene ether chain segments is used as a co-solvent.
  • the system has excellent interfacial activity, which can further effectively reduce the interfacial tension of ultra-low oil and water, and can form a supramolecular structure with high interfacial activity.
  • the system is uniform and stable, and a surfactant composition with stable and long-lasting performance can be obtained, especially an oil displacement agent. Excellent and stable performance, can effectively improve oil displacement efficiency.
  • Behenyl alcohol polyoxyethylene glycidyl ether quaternary ammonium salt was prepared according to the method in Example 3, the only difference being that behenyl alcohol polyoxyethylene ether was replaced by equimolar amount of behenyl alcohol polyoxyethylene ether.
  • docosylamine polyoxypropylene polyoxyethylene polyglyceryl ether is prepared, the only difference is: replace dodecylamine polyoxypropylene polyoxyethylene ether with equimolar amount of docosylamine polyoxyethylene polyoxyethylene ether Alkylamine polyoxypropylene polyoxyethylene ether.
  • Dodecylamine polyoxypropylene polyoxyethylene ether sulfonate prepared in 2.64g embodiment 1 as main agent Take the dodecylamine polyoxypropylene polyoxyethylene ether sulfonate prepared in 2.64g embodiment 1 as main agent, the dodecyl alcohol polyoxyethylene glycidyl ether quaternary ammonium salt prepared in 0.06g embodiment 3 as synergistic Dodecylamine polyoxypropylene polyoxyethylene polyglyceryl ether prepared in 0.3g embodiment 5 is used as cosolvent, joins in the isopropanol of 15mL, disperses and dissolves evenly, adds deionized water and is mixed with 100g solution, mixes Disperse to obtain oil displacing agent I.
  • the dodecylamine polyoxypropylene polyoxyethylene ether sulfonate prepared in Example 1 is dissolved in isopropanol (the mass volume of dodecylamine polyoxypropylene polyoxyethylene ether sulfonate and isopropanol The ratio is 2.64g:15mL), and the oil displacing agent III is obtained.
  • Oil displacement agent IV and oil displacement agent V are prepared by adding water to the surfactant composition used for oil displacement in high temperature and high salinity reservoirs of the present invention.
  • the laurylamine polyoxypropylene polyoxyethylene ether sulfonate prepared in embodiment 1, the dodecylamine prepared in embodiment 3 and the dodecylamine prepared in embodiment 5 The mass ratio of polyoxypropylene polyoxyethylene polyglyceryl ether is 2.64:0.06:0.3, and it is composed of a surfactant composition used for oil flooding in high-temperature and high-minerality reservoirs.
  • the composition is first dissolved in isopropanol (twelve
  • the mass volume ratio of alkylamine polyoxypropylene polyoxyethylene ether sulfonate to isopropanol is 2.64g:15mL), and high salinity water is added to prepare oil displacing agent IV and oil displacing agent V.
  • the salinity in high salinity water is 16945mg/L, and the calcium and magnesium ions are 750mg/L
  • concentrations of the surfactant composition used for oil displacement in high temperature and high salinity reservoirs in the oil displacement agent IV and the oil displacement agent V are respectively 0.3 wt % and 0.2 wt %.
  • the oil displacing agent VI and the oil displacing agent VII are prepared by adding heavy alkylbenzene sulfonate and fatty alcohol polyoxyethylene ether sodium sulfate to the above-mentioned high salinity water.
  • the concentration of heavy alkylbenzene sulfonate is 0.3wt%
  • the concentration of fatty alcohol polyoxyethylene ether sodium sulfate is 0.3wt%.
  • Oil displacement agent IV, oil displacement agent VI and oil displacement agent VII in Experimental Example 4 and simple polymer polyacrylamide oil displacement agent VIII (polyacrylamide aqueous solution concentration is 1700mg/L), using natural cores from an oilfield in Russia, The length of the core is 12cm, the diameter is 3.0cm, and the hydraulic permeability is about 25 ⁇ 10 -3 ⁇ m 2 .
  • Physical simulation is carried out under the conditions of temperature 86°C and produced water (salinity 16945mg/L, calcium and magnesium ions 750mg/L) Oil displacement test The displacement test conditions are as follows:
  • oil displacement agent VIII has adopted identical slug (0.6PV) and concentration 1700mg/L, but chemical flooding recovery rate can only improve 7.45% OOIP than water flooding, shows that oil displacement agent IV in the present invention has good Synergistic effect, better oil displacement effect.
  • the results of physical simulation oil displacement experiments show that the oil displacement agent IV prepared by the surfactant composition for oil displacement in high-temperature and high-salinity reservoirs of the present invention can show high efficiency under the conditions of high temperature and high salinity reservoirs. oil displacement performance.

Abstract

一种用于高温高盐油藏驱油剂的表面活性剂组合物,包括主剂、增效剂和助溶剂。具有很好的界面活性,能够进一步降低油水界面张力,具有较强的增溶乳化作用,相互作用,协同增效,体系均一稳定,驱油性能持续稳定,能够有效提高驱油效率。

Description

一种用于高温高矿度油藏驱油的表面活性剂组合物 技术领域
本发明属于化学驱采油技术领域,具体涉及一种高温高矿度油藏驱油用表面活性剂组合物及其应用。
背景技术
随着油田的逐步开发,高温高盐油藏所存在的采出速度和程度低的问题日益凸显,而对耐温抗盐表面活性剂体系的研发有利于提高原油采收率。化学复合驱油技术可以大幅度提高原油采收率,已经在中国大庆油田取得了明显的增油效果,自2014年矿场应用以来,累计增产原油3300余万吨。所谓化学复合驱技术包括三元复合驱,是由聚合物-表面活性剂-氢氧化钠组成的强碱三元驱油体系和由聚合物-表面活性剂-碳酸钠组成的弱碱三元驱油体系;以及由聚合物-表面活性剂两种化学剂组成的无碱二元驱油体系。其复合驱油机理主要在于一是提高体系粘度,增加波及体积,主要由聚合物贡献;二是降低油水界面张力,产生乳化作用,提高驱油效率,这就对进一步降低表面活性剂的界面张力提出了更高的要求。
在三元复合驱中,碱的加入会提高地层中粘土和矿物等细颗粒的分散性,加速其迁移,从而堵塞岩石孔喉,破坏地层结构,会造成油藏二次伤害,另外还会造成管柱腐蚀、采出井结垢、卡泵、杆断现象以及原油乳化严重,给后续的破乳和脱水工艺带来很大负担。强碱三元复合驱在油田已经开始限制应用,对于高温高盐油藏,使用碱会带来更大的危害。三元复合驱逐步向无碱化发展是技术进步的必然要求,是复合驱油技术的发展方向,无碱二元驱油体系对地层几乎无伤害,但目前尚无大规模矿场应用的报道。
目前无碱二元复合驱油用表面活性剂通常都能够具有较宽的超低界面张力范围、稳定性好的优点。但普遍存在的缺点是体系耐温抗盐能力差,提高采收率幅度相对较低,甚至对于温度在80℃或以上,矿化度特别是钙、镁离子含量高(≥600mg/L)的油藏完全达不到应用要求。对于苛刻的高温高矿化度油藏而言,若采用无碱二元复合驱油技术,提高驱油用表面活性剂的稳定性和耐温抗盐性能尤为重要。
发明内容
为了解决上述问题,本发明提供一种用于高温高盐油藏驱油剂的表面活性剂组合物,其中,脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐作为主剂其具有很好的界面活性,能够进一步降低油水界面张力;另外,加入季铵盐作为增效剂,可以与主剂形成一种具有更高界面活性的超分子结构,起到稳定组合物性能的作用;以含有聚氧丙烯醚和/或聚氧乙烯醚链段的聚甘油醚为助溶剂,其具有较强的增溶乳化作用,能够融合主剂与增效剂,使二者相互作用,协同增效,使有机组分和水更好的相溶,体系均一稳定,从而完成本发明。
本发明第一方面的目的在于提供一种用于高温高盐油藏驱油剂的表面活性剂组合物,其包括主剂和增效剂。
所述主剂为脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐,其通过脂肪胺醚化引入聚氧丙烯链段和聚氧乙烯链段;
所述增效剂选自季铵盐,优选选自烷基三甲基季铵盐、Gemini季铵盐、含有聚氧乙烯醚嵌段的季铵盐中的一种或几种,更优选为脂肪醇聚氧乙烯基缩水甘油醚季铵盐中的一种或几种。
优选地,所述组合物还包括助溶剂,所述助溶剂选自脂肪醇聚氧乙烯聚甘油醚、脂肪胺聚氧乙烯聚甘油醚、脂肪醇聚氧丙烯聚氧乙烯聚甘油醚和脂肪胺聚氧丙烯聚氧乙烯聚甘油醚中的一种或几种。
所述助溶剂由聚醚与卤代环氧丙烷取代反应,得到含环氧键的缩水甘油醚中间体,再与聚甘油开环反应制备得到。
所述脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐通过脂肪胺经醚化、烯基化和磺化制备得到。
所述脂肪醇聚氧乙烯醚在碱金属氢氧化物水溶液中,在相转移催化剂存在下与卤代环氧丙烷反应,得到脂肪醇聚氧乙烯基缩水甘油醚,再加入三甲胺和浓酸反应,得到脂肪醇聚氧乙烯基缩水甘油醚季铵盐。
所述主剂为脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐,其具有以下结构:
Figure PCTCN2021128317-appb-000001
其中,R为烷基或取代芳香基;m+n为大于等于2小于等于20, m为2~20,n为2~20;i为2~8;m、n、i为整数。
所述脂肪醇聚氧乙烯基缩水甘油醚季铵盐具有如下结构:
Figure PCTCN2021128317-appb-000002
R 0为烷基或取代芳香基;p为2~20;p为整数。
所述助溶剂具有以下结构:
Figure PCTCN2021128317-appb-000003
其中,R 1为烷基或取代芳香基;E为氮或氧;a+b为大于等于2小于等于20;a为0~20;b为1~20;c为2、3或4;a、b、c为整数。
本发明第二方面的目的在于提供所述用于高温高盐油藏驱油剂的表面活性剂组合物的用途,所述组合物用于油藏温度高于70℃,优选高于80℃,矿化度高于15000mg/L的原油驱替。
本发明中提供的用于高温高盐油藏驱油剂的表面活性剂组合物具有以下有益效果:
(1)本发明中利用脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐作为主剂其具有很好的界面活性,能够进一步降低油水界面张力。
(2)加入季铵盐作为增效剂,能够与主剂协同增效,尤其是脂肪醇聚氧乙烯基缩水甘油醚季铵盐可以与主剂形成一种具有更高界面活性的超分子结构,起到稳定组合物性能的作用。
(3)以含有聚氧丙烯醚和/或聚氧乙烯醚链段的聚甘油醚为助溶剂,其具有较强的增溶乳化作用,能够融合主剂与增效剂,使二者相互作用,协同增效,使有机组分和水更好的相溶,体系均一稳定,有效提高驱油率。
附图说明
图1示出本发明实验例2中驱油剂Ⅰ、对比样Ⅰ、对比样Ⅱ在等体积模拟水和原油中的乳化结果外观图;
图2示出本发明实验例3中驱油剂Ⅰ、对比样Ⅰ、对比样Ⅱ和驱油剂Ⅲ溶液的的油水界面张力随表面活性剂浓度变化图。
具体实施方式
下面通过具体实施方式对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
本发明提供的用于高温高盐油藏驱油剂的表面活性剂组合物利用主剂、增效剂和助溶剂的性能特点,使驱油剂内部实现超分子作用,增强界面活性,有效降低驱油剂的界面张力,同时增效剂和助溶剂的加入使整个驱油体系的稳定性和耐温抗盐得到提高,进一步提高驱油剂的性能,从而提高驱油率。
本发明提供一种用于高温高盐油藏驱油剂的表面活性剂组合物,其包括主剂和增效剂。
所述主剂为脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐,其通过脂肪胺醚化引入聚氧丙烯链段和聚氧乙烯链段,提高自身的亲脂性、水溶性和耐盐能力。其具有以下结构:
Figure PCTCN2021128317-appb-000004
其中,R为烷基或取代芳香基,优选为C 10-C 25的烷基或C 10-C 25烷基苯基,更优选为C 12-C 22的烷基,如十二烷基、十四烷基、十六烷基、十八烷基、二十二烷基。
m+n为大于等于2小于等于20,m为2~20,n为2~20,优选地,m为2~16,n为2~16,更优选地,m为5~10,n为5~10。i为2~8,优选为2-6,更优选为2-4,如为3。m、n、i为整数。
本发明中,主剂脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐中的R基为烷基和取代芳香基时,均能够提高驱油剂的界面性能,并且,以烷基为更优,减少对驱油用水及地层的污染,减少环境负担。
m、n分别为丙氧基(PO)和乙氧基(EO)的数目,其中,聚氧丙烯(PPO)链段在油相中延伸保证了分子的亲脂性,不破坏分子的水溶性,聚氧乙烯(PEO)链段使得表面活性剂分子具有非离子性质,提高水溶性及耐水性。通过大量实验发现,在应用过程中,嵌入本发明中的PPO和PEO链段长度,降低了界面张力和耐盐性能,增溶能力强,延伸了分子的空间结构,有效减弱了吸附滞留效应,增强乳化能力,有利于原油采收率的提高。
所述脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐通过脂肪胺经醚化、烯基化和磺化制备得到。
所述脂肪胺为伯胺,选自烷基胺或取代芳基胺,优选为C 10-C 25的烷基胺或C 10-C 25烷基苯基胺,更优选为C 12-C 22的烷基胺,如1-十二烷基胺、1-十四烷基胺、1-十六烷基胺、1-十八烷基胺、二十二烷-1-胺。
所述醚化为先与环氧丙烷进行醚化,再与环氧乙烷进行醚化,得到脂肪胺聚氧丙烯聚氧乙烯醚。所述反应在保护气条件下进行反应,如在氮气保护下,先后与环氧丙烷、环氧乙烷进行反应。
优选地,所述醚化反应在催化剂存在下进行反应,催化剂选自有机碱或无机碱,优选为碱金属氢氧化物,如KOH、NaOH。
所述脂肪胺与环氧丙烷的摩尔比为1:(4~40),优选为1:(4~32),更优选为1:(5~20)。所述脂肪胺与环氧乙烷的摩尔比为1:(4~40),优选为1:(4~32),更优选为1:(5~20)。
所述醚化反应温度为100-180℃,优选为120-160℃。
所述烯基化为脂肪胺聚氧丙烯聚氧乙烯醚与卤代烯烃进行烯基化。所述卤代烯烃选自卤代单烯烃,优选为含C 2-C 8的卤代单烯烃,更优选为3-氯丙烯。
所述烯基化反应中,将碱金属氢化物加入到脂肪胺聚氧丙烯聚氧乙烯醚中反应,除氧脱水后,再加入卤代烯烃进行反应,得到烯基化脂肪胺聚氧丙烯聚氧乙烯醚。例如:
Figure PCTCN2021128317-appb-000005
其中,j为卤代烯烃中亚甲基数目,j为整数。
所述脂肪胺聚氧丙烯聚氧乙烯醚与卤代烯烃的摩尔比为1:(2.0-5.5),优选为1:(2.2-6.5),更优选为1:(2.5-3.5)。所述醚化反应温度为60-110℃,优选为70-90℃。
所述磺化为烯基化脂肪胺聚氧丙烯聚氧乙烯醚与磺化剂反应,得到脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐。所述磺化剂选自亚硫酸氢盐和/或亚硫酸盐,优选为亚硫酸氢钠和亚硫酸钠,二者摩尔比为1:(0.8-3),优选为1:(1.0-1.5)。
所述磺化反应在催化剂硝酸盐存在下反应,硝酸盐加入量为烯基化脂肪胺聚氧丙烯聚氧乙烯醚摩尔量的10%-40%。所述反应在溶剂中进行,所述溶剂选自水和醇类溶剂中的一种或几种,优选为水、甲醇和乙醇中的一种或几种,更优选为水和乙醇。所述磺化反应温度为60℃-100℃,优选为70℃-90℃。
所述增效剂选自季铵盐,优选选自烷基三甲基季铵盐,如十二烷基三甲基氯化铵、十四烷基三甲基氯化铵、十六烷基三甲基氯化铵、十八烷基三甲基氯化铵、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基三甲基溴化铵、十八烷基三甲基溴化铵,Gemini季铵盐,如乙/丙/丁撑基双(十二烷基二甲基氯化铵)、乙/丙/丁撑基双(十四烷基二甲基氯化铵)、乙/丙/丁撑基双(十六烷基二甲基氯化铵)、乙/丙/丁撑基双(十八烷基二甲基氯化铵)、乙/丙/丁撑基双(十二烷基二甲基溴化铵)、乙/丙/丁撑基双(十四烷基二甲基溴化铵)、乙/丙/丁撑基双(十六烷基二甲基溴化铵)、乙/丙/丁撑基双(十八烷基二甲基溴化铵),含有聚氧乙烯醚嵌段的季铵盐中的一种或几种,优选选自脂肪醇聚氧乙烯基缩水甘油醚季铵盐中的一种或几种。脂肪醇聚氧乙烯基缩水甘油醚季铵盐具有如下结构:
Figure PCTCN2021128317-appb-000006
R 0为烷基或取代芳香基,优选为C 10-C 25的烷基或C 10-C 25烷基苯基,更优选为C 12-C 22的烷基,如十二烷基、十四烷基、十六烷基、十八烷基、二十二烷基。p为2~20,优选为2~16,更优选为5~9。p为整数。
本发明中,增效剂与主剂相互作用,形成超分子体系,从而增强整个驱油体系的界面活性。增效剂中的R 0一方面可以影响驱油剂的环境友好性,另一方面R 0和EO的数目可以影响其耐盐性及亲水-亲油平衡,更为重要是能够影响增效剂与主剂超分子作用的形成,通过大量实验可确定,p值为2-20时,增效剂与主剂间可以形成有效的超分子体系,为5-9时,体系稳定性好,同时耐温和抗盐性能也能得到提高。
本发明中,脂肪醇聚氧乙烯醚在碱金属氢氧化物水溶液中,在相转移催化剂存在下与卤代环氧丙烷反应,得到脂肪醇聚氧乙烯基缩水甘油醚,再加入三甲胺和浓酸反应,得到脂肪醇聚氧乙烯基缩水甘油醚季铵盐。
例如:
Figure PCTCN2021128317-appb-000007
Figure PCTCN2021128317-appb-000008
所述浓酸选自浓盐酸或浓硫酸,优选为浓盐酸。
本发明中,所述主剂与增效剂的质量比为100:(1~16),优选为100:(1.5~8),更优选为100:(2~5)。
在本发明的一种优选实施方式中,所述用于高温高盐油藏驱油剂的表面活性剂组合物还包括助溶剂,所述助溶剂选自脂肪醇聚氧乙烯聚甘油醚、脂肪胺聚氧乙烯聚甘油醚、脂肪醇聚氧丙烯聚氧乙烯聚甘油醚和脂肪胺聚氧丙烯聚氧乙烯聚甘油醚中的一种或几种,优选为脂肪胺聚氧丙烯聚氧乙烯聚甘油醚中的一种或几种。
优选地,所述助溶剂具有以下结构:
Figure PCTCN2021128317-appb-000009
其中,
R 1为烷基或取代芳香基,优选为C 10-C 25的烷基或C 10-C 25烷基苯基,更优选为C 12-C 22的烷基,如十二烷基、十四烷基、十六烷基、十八烷基、二十二烷基。
E为氮或氧,优选为氮。
a+b为大于等于2小于等于20。a为0~20,优选为2~16,更优选为5~8;b为1~20,优选为2~16,更优选为5~8。c为2、3或4,优选为2。a、b、c为整数。
所述助溶剂可促进主剂在溶液中的分散并提高驱油剂的耐温抗盐性。
所述助溶剂由聚醚与卤代环氧丙烷取代反应,得到含环氧键的缩水甘油醚中间体,再与聚甘油开环反应制备得到。所述助溶剂由以下方法制备得到:
步骤1、制备聚甘油。
根据经典方法制备聚甘油。将甘油和氢氧化钠混合,在氮气环境下,升温至250℃,根据折光率,可分别制备聚合度为2、3、4的聚甘油。
步骤2、将卤代环氧丙烷加入到含有聚醚的溶剂中,加热反应,得到含环氧链段的缩水甘油醚中间体。
所述聚醚选自脂肪醇聚氧乙烯醚、脂肪胺聚氧乙烯醚、脂肪醇聚氧丙烯聚氧乙烯醚和脂肪胺聚氧丙烯聚氧乙烯醚中的一种或几种。
将聚醚加入到碱性水溶液中,加入相转移催化剂,在加热条件下,缓慢滴加环氧氯丙烷进行反应,反应结束后,静置分层,分离下层,得到含环氧链段的缩水甘油醚中间体。
所述聚醚与环氧氯丙烷的摩尔比为1:(1.5-4.5),优选为1:(1.8-3.5),更优选为1:(2.1-3)。
所述相转移催化剂与聚醚的摩尔比为(0.01-0.08):1,优选为(0.02-0.05):1。
所述反应温度为40-65℃,优选为45-60℃。
步骤3、将含环氧链段的缩水甘油醚中间体加入到聚甘油中,保温反应,得到助溶剂。
先将聚甘油加入到氢氧化钠醇溶液中,搅拌反应,反应完成后去除乙醇和少量水,加入含环氧键的缩水甘油醚中间体,持续抽真空加热保温反应。反应结束后,用醇洗涤,过滤、干燥得到助溶剂。
所述氢氧化钠醇溶液质量浓度为4%-15%,优选为6%-12%,更优选为8%-10%。所醇为乙醇、丙醇、丁醇和异丙醇中的一种或几种,优选为乙醇或丙醇,更优选为乙醇。
所述含环氧键的缩水甘油醚中间体和聚甘油的摩尔比为1:(1.5-5),优选为1:(1.8-4),更优选为1:(2.0-3.0)。
所述含环氧键的缩水甘油醚中间体和聚甘油的反应温度为100-180℃,优选为120-170℃,更优选为140-160℃。
本发明中,所述主剂与助溶剂的质量比为100:(2~25),优选为100:(5~20),更优选为100:(8~15)。
本发明中,所述用于高温高盐油藏驱油剂的表面活性剂组合物在溶剂中使用。所述溶剂选自醇类溶剂和醚类溶剂中的一种或几种,更优选为异丙醇、正丙醇、正丁醇、正戊醇、异戊醇、乙二醇单丁基醚、丙二醇单丁基醚、一缩乙二醇、二缩乙二醇和三缩乙二醇中的一种或几种,更优选为乙二醇单丁基醚、丙二醇单丁基醚和异丙醇中的一种或几种。
所述溶剂中还包括水,水选自蒸馏水、去离子水、自来水、矿物水或地下水。
所述用于高温高盐油藏驱油剂的表面活性剂组合物与溶剂的质量体积比为(1~20)g:(100~150)mL,优选为(2~15)g:(100~150)mL。
本发明中的高温高盐油藏驱油用表面活性剂组合物以阴非离子表面活性剂叔胺聚氧丙烯聚氧乙烯醚磺酸盐作为主剂,以季铵盐为增效剂,尤其是以脂肪醇聚氧乙烯基缩水甘油醚季铵盐为增效剂,以含有聚氧丙烯醚和/或聚氧乙烯醚链段的聚甘油醚作为助溶剂,配合使用,协同增效,使其具有优异的界面活性,进一步有效降低至超低油水界面张力,可以形成高界面活性的超分子结构,体系均一稳定,能够得到性能稳定持久的表面活性剂组合物,尤其制备得到驱油剂,性能优异、稳定,能够有效提高驱油效率。
实施例
实施例1
将2mol 1-十二烷基胺加入到反应釜中,再加入100mL 10mol/L的KOH溶液,将反应釜抽真空并通氮气循环3次保证其真空环境,加热至160℃,加入20mol环氧丙烷加入反应釜中,反应至体系压力不再变化为止。将反应釜抽真空并通氮气循环3次保证其真空环境,加入20mol环氧乙烷,在160℃下反应至体系压力不再变化为止,得到十二烷基胺聚氧丙烯聚氧乙烯醚,反应摩尔收率为95%以上。
将1.5mol十二烷基胺聚氧丙烯聚氧乙烯醚和1.5mol氢氧化钠固体加入到反应釜中,通入氮气进行除氧脱水后,在100℃下搅拌反应2.5h,降温至室温。升温至80℃,缓慢滴加3.8mol的3-氯丙烯,搅拌反应8h,用热去离子水洗涤,加入氢氧化钠调节pH值至中性,静置分层,取上层液,旋蒸去除未反应的3-氯丙烯,得到烯丙基十二烷基胺聚氧丙烯聚氧乙烯醚,反应摩尔收率为85%以上。
将1mol烯丙基十二烷基胺聚氧丙烯聚氧乙烯醚、500mL去离子水和30g硝酸钠加入到反应釜中。将0.6mol的亚硫酸氢钠和0.6mol的亚硫酸钠溶于500mL去离子水中,缓慢加入到反应釜中,在80℃下搅拌反应12h,反应结束后,用石油醚进行萃取,旋蒸去除溶剂后,得到十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐。
实施例2
按照实施例1中的方法制备得到二十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐,区别仅在于:用等摩尔量的二十二烷-1-胺替换1-十二烷基胺。
实施例3
向反应釜中加入2mol十二醇聚氧乙烯醚(AEO-9),2mol的NaOH固体、0.04mol的四丁基溴化铵(TBAB),加入600mL正己烷,边搅拌溶解,同时滴加2.2mol环氧氯丙烷,升温至50℃,在强烈搅拌下反应10h时间后停止搅拌,静置分层。上层经减压蒸馏蒸出未反应的环氧氯丙烷,得到十二醇聚氧乙烯基缩水甘油醚,摩尔收率为97%。
向反应釜中加入上述1mol十二醇聚氧乙烯基缩水甘油醚、200mL质量分数为33%三甲胺水溶液及300mL无水乙醇,常温搅拌溶解。向反应液中加入100mL浓HCl(质量分数为37%)中和至中性,加热至85℃回流反应3h,蒸出乙醇和水,用强酸性阳离子交换树脂(AMBERLITE IR-120(H)离子交换树脂)分离后,真空干燥得十二醇聚氧乙烯基缩水甘油醚季铵盐。其摩尔收率为92%。
实施例4
按照实施例3中的方法制备得到二十二醇聚氧乙烯基缩水甘油醚季铵盐,区别仅在于:用等摩尔量的二十二醇聚氧乙烯醚替换十二醇聚氧乙烯醚。
实施例5
在反应釜中加入9mol甘油和1.5mol氢氧化钠,通氮气,慢慢升温至250℃,制备得到聚合度为3的聚甘油。
在反应釜中加入1mol实施例1制备的十二烷基胺聚氧丙烯聚氧乙烯醚、100mL 5mol/L的NaOH水溶液、0.02mol四丁基溴化铵,搅拌溶解,同时滴加2.2mol环氧氯丙烷,升温至50℃,在强烈搅拌下反应10h后停止搅拌,静置分出上层,经减压蒸馏蒸出未反应的环氧氯丙烷,得到十二烷基胺聚氧丙烯聚氧乙烯醚缩水甘油醚中间体,摩尔收率为96%。
在反应釜中分别加入1.6mol的聚甘油,160mL的质量分数为10%的氢氧化钠乙醇溶液,真空加热除去原料中的乙醇和水,然后加入0.8mol十二烷基胺聚氧丙烯聚氧乙烯醚缩水甘油醚中间体,继续抽真空加热至150℃,保温反应10h。用乙醇洗涤、过滤、干燥,得到十二烷基胺聚氧丙烯聚氧乙烯聚甘油醚,摩尔收率为85%。
实施例6
按照实施例5中的方法制备得到二十二烷基胺聚氧丙烯聚氧乙烯聚甘油醚,区别仅在于:用等摩尔量的二十二烷基胺聚氧丙烯聚氧乙烯醚替换十二烷基胺聚氧丙烯聚氧乙烯醚。
实验例
实验例1
取2.64g实施例1制备的十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐作为主剂、0.06g实施例3制备的十二醇聚氧乙烯基缩水甘油醚季铵盐作为增效剂、0.3g实施例5制备的十二烷基胺聚氧丙烯聚氧乙烯聚甘油醚作为助溶剂,加入到15mL的异丙醇中,均匀分散溶解,加去离子水配制成100g溶液,混合分散,得到驱油剂Ⅰ。
取2.64g实施例2制备的二十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐作为主剂、0.06g实施例4制备的二十二醇聚氧乙烯基缩水甘油醚季铵盐作为增效剂、0.3g实施例6制备的二十二烷基胺聚氧丙烯聚氧乙烯聚甘油醚作为助溶剂,加入到15mL的异丙醇中,均匀分散溶解,加去离子水配制成100g溶液,混合分散,得到驱油剂Ⅱ。
6g重烷基苯磺酸盐(市购)、8.6g脂肪醇聚氧乙烯醚硫酸钠盐(AES-9)分别加去离子水配制成100g溶液,分别得到对比样Ⅰ和对比样Ⅱ。
将分别将10g驱油剂Ⅰ、10g驱油剂Ⅱ、10g对比样Ⅰ和10g对比样Ⅱ加入到90mL矿化度为16945mg/L、钙镁离子为750mg/L的模拟水中,分别搅拌均匀。86℃下(模拟油藏温度),放置24h后视溶解沉淀情况来评价样品的配伍性能。
实验结果证明,在模拟水中,油藏温度下,本发明中的驱油剂Ⅰ和驱油剂Ⅱ配伍性好,放置24h后无沉淀产生,而重烷基苯磺酸盐和脂肪醇聚氧乙烯醚硫酸钠(AES-9)均出现不同程度的沉淀。
实验例2
将10g驱油剂Ⅰ、10g对比样Ⅰ和10g对比样Ⅱ分别加入到90mL矿化度为16945mg/L、钙镁离子为750mg/L的模拟水中,再加入等体积的原油,在86℃下,进行乳化能力检测。
实验结果证明,在模拟油水和油藏温度条件下,本发明中驱油剂Ⅰ和驱油剂Ⅱ放置24h后乳化能力优于现有的对比样Ⅰ和对比样Ⅱ。乳化结果外观图如图1所示。
实验例3
使实施例1制备的十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐在异丙醇中溶解(十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐与异丙醇的质量体积比为2.64g:15mL),制得到驱油剂Ⅲ。
将驱油剂Ⅰ、对比样Ⅰ、对比样Ⅱ和驱油剂Ⅲ分别加入到高矿化度(矿化度16945mg/L,钙镁离子750mg/L)模拟水中,分别配置质量浓度为0.05%、0.1%、0.2%和0.3%的溶液。在86℃下,进行油水界面张力测试,测试结果如表1所示,变化趋势如图2所示。
从表1中可以看出,驱油剂Ⅰ体系的界面张力始终低于10 -2mN/m,优于其它三种表面活性剂体系。说明本发明提供的高温高矿度油藏驱油的表面活性剂组合物的界面张力性能极为优异。
表1驱油剂Ⅰ、对比样Ⅰ、对比样Ⅱ和驱油剂Ⅲ溶液的界面张力
Figure PCTCN2021128317-appb-000010
实验例4
利用本发明中的用于高温高矿度油藏驱油的表面活性剂组合物加水配制得到驱油剂Ⅳ和驱油剂Ⅴ。
实施例1制备的十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐、实施例3制备的十二醇聚氧乙烯基缩水甘油醚季铵盐和实施例5制备的十二烷基胺聚氧丙烯聚氧乙烯聚甘油醚的质量比为2.64:0.06:0.3,组成用于高温高矿度油藏驱油的表面活性剂组合物,先将组合物在异丙醇中溶解(十二烷基胺聚氧丙烯聚氧乙烯醚磺酸盐与异丙醇的质量体积比为2.64g:15mL),再加高矿化度水配合制得到驱油剂Ⅳ和驱油剂Ⅴ。(高矿化度水中矿化度为16945mg/L、钙镁离子为750mg/L)
该用于高温高矿度油藏驱油的表面活性剂组合物在驱油剂Ⅳ和驱油剂Ⅴ中的浓度分别为0.3wt%、0.2wt%。
利用重烷基苯磺酸盐、脂肪醇聚氧乙烯醚硫酸钠加入上述高矿化度水配制得到驱油剂Ⅵ和驱油剂Ⅶ。驱油剂Ⅵ中,重烷基苯磺酸盐浓度为0.3wt%;驱油剂Ⅶ中,脂肪醇聚氧乙烯醚硫酸钠浓度为0.3wt%。
在温度86℃下,和矿化度为16945mg/L、钙镁离子为750mg/L条件下,在密封的安培瓶中放置90天,检测30天后和90天后的界面张力值,结果见表2。
表2驱油剂界面张力稳定性结果
Figure PCTCN2021128317-appb-000011
从表2中的结果可以证明,本发明用于高温高矿度油藏驱油的表面活性剂组合物配制得到的驱油剂Ⅳ和驱油剂Ⅴ在模拟水,油藏温度(86℃)下,老化90d后仍能达到超低界面张力,驱油剂Ⅳ和驱油剂Ⅴ更适用于高温和高矿化度油藏。
实验例5
实验例4中的驱油剂Ⅳ、驱油剂Ⅵ和驱油剂Ⅶ,以及单纯聚合物聚丙烯酰胺驱油剂Ⅷ(聚丙烯酰胺水溶液浓度为1700mg/L),用俄罗斯某油田天然岩心,岩心长度为12cm,直径3.0cm,水测渗透率25×10 -3μm 2左右,在温度86℃和采出水条件下(矿化度16945mg/L,钙镁离子为750mg/L)进行物理模拟驱油试验驱替实验条件如下:
(1)天然岩心洗油后烘干,测量岩心尺寸长度、直径,室温下饱和注入水,测定孔隙度及孔隙体积;
(2)86℃下饱和原油,控制束缚水饱和度为35-37%,并老化过 夜;
(3)驱替实验温度86℃,注入速度:0.1ml/min;
(4)水驱至含水98%后转注1700mg/L的聚丙烯酰胺溶液0.1PV和0.3PV驱油剂,再注入0.2PV的1700mg/L的聚丙烯酰胺溶液,每隔5min记录压力、产油量及产水量(聚合物驱油体系Ⅷ注入0.6PV的1700mg/L的聚丙烯酰胺溶液);
(5)后续水驱至含水100%,每隔10min记录压力、产油量及产水量,至30min内出油量未增加为止,停驱并根据各阶段的产液量和含水率,计算采收率,整个实验过程由压力传感器自动采集压力。
测试结果如表3所示。
表3天然岩心物理模拟驱油实验结果
Figure PCTCN2021128317-appb-000012
表3结果可见,用本发明的驱油剂Ⅳ应用于俄罗斯某油田岩心及油水条件,使用浓度为0.3%wt(油水界面张力降低到0.0017mN/m,粘度达到12.0mPa.s)时,能在水驱基础上进一步提高采收率18.48%OOIP以上(0.1PV前置段塞+0.3PV驱油剂+0.2PV后续保护段塞),而驱油剂Ⅵ虽然采用了相同的段塞(0.1PV前置段塞+0.3PV驱油剂+0.2PV后续保护段塞)、相同的浓度(0.3wt%表面活性剂)和相近渗透率的天然岩心,驱油剂Ⅶ采用了与本发明类似结构的表面活性剂,但这两种驱油剂的化学驱采收率仅能比水驱提高10.22%OOIP和11.29%OOIP。同样,驱油剂Ⅷ采用了相同的段塞(0.6PV)和浓度1700mg/L,但化学驱采收率仅能比水驱提高7.45%OOIP,说明本发明中的驱油剂Ⅳ具有良好的协同效应,驱油效果更好。由物理模拟驱油实验结果表明,本发明的用于高温高矿度油藏驱油的表面活性剂组合物配制得到的驱油剂Ⅳ在高温和高矿化度油藏条件下可 体现出高效的驱油性能。
以上结合具体实施方式和/或范例性实例以及附图对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。

Claims (10)

  1. 一种用于高温高盐油藏驱油剂的表面活性剂组合物,其特征在于,其包括主剂和增效剂,
    所述主剂为脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐,其通过脂肪胺醚化引入聚氧丙烯链段和聚氧乙烯链段;
    所述增效剂选自季铵盐,优选选自烷基三甲基季铵盐、Gemini季铵盐、含有聚氧乙烯醚嵌段的季铵盐中的一种或几种。
  2. 根据权利要求1所述的组合物,其特征在于,所述组合物还包括助溶剂,所述助溶剂选自脂肪醇聚氧乙烯聚甘油醚、脂肪胺聚氧乙烯聚甘油醚、脂肪醇聚氧丙烯聚氧乙烯聚甘油醚和脂肪胺聚氧丙烯聚氧乙烯聚甘油醚中的一种或几种。
  3. 根据权利要求1所述的组合物,其特征在于,所述增效剂为脂肪醇聚氧乙烯基缩水甘油醚季铵盐中的一种或几种。
  4. 根据权利要求1至3之一所述的组合物,其特征在于,
    所述脂肪胺聚氧丙烯聚氧乙烯醚磺酸盐通过脂肪胺经醚化、烯基化和磺化制备得到;
    所述脂肪醇聚氧乙烯醚在碱金属氢氧化物水溶液中,在相转移催化剂存在下与卤代环氧丙烷反应,得到脂肪醇聚氧乙烯基缩水甘油醚,再加入三甲胺和浓酸反应,得到脂肪醇聚氧乙烯基缩水甘油醚季铵盐。
  5. 根据权利要求2所述的组合物,其特征在于,所述助溶剂由聚醚与卤代环氧丙烷取代反应,得到含环氧键的缩水甘油醚中间体,再与聚甘油开环反应制备得到。
  6. 根据权利要求1至3之一所述的组合物,其特征在于,
    所述主剂为脂肪胺聚氧丙烯聚氧乙烯嵌段聚醚磺酸盐,其具有以下结构:
    Figure PCTCN2021128317-appb-100001
    其中,R为烷基或取代芳香基;m+n为大于等于2小于等于20,m为2~20,n为2~20;i为2~8;m、n、i为整数;
    所述脂肪醇聚氧乙烯基缩水甘油醚季铵盐具有如下结构:
    Figure PCTCN2021128317-appb-100002
    R 0为烷基或取代芳香基;p为2~20;p为整数;
    所述助溶剂具有以下结构:
    Figure PCTCN2021128317-appb-100003
    其中,R 1为烷基或取代芳香基;E为氮或氧;a+b为大于等于2小于等于20;a为0~20;b为1~20;c为2、3或4;a、b、c为整数。
  7. 根据权利要求1至3之一所述的组合物,其特征在于,所述主剂与增效剂的质量比为100:(1~16);所述主剂与助溶剂的质量比为100:(2~25)。
  8. 根据权利要求1至3之一所述的组合物,其特征在于,所述用于高温高盐油藏驱油剂的表面活性剂组合物在溶剂中使用,所述溶剂选自醇类溶剂和醚类溶剂中的一种或几种,
    优选地,所述溶剂中还包括水。
  9. 根据权利要求8所述的组合物,其特征在于,所述用于高温高盐油藏驱油剂的表面活性剂组合物与溶剂的质量体积比为(1~20)g:(100~150)mL。
  10. 一种用于高温高盐油藏驱油剂的表面活性剂组合物的用途,其特征在于,所述组合物用于油藏温度高于70℃、矿化度高于15000mg/L的原油驱替。
PCT/CN2021/128317 2021-07-13 2021-11-03 用于高温高矿度油藏驱油的表面活性剂组合物 WO2023284178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110793240.1A CN113563858B (zh) 2021-07-13 2021-07-13 一种用于高温高矿度油藏驱油的表面活性剂组合物
CN202110793240.1 2021-07-13

Publications (1)

Publication Number Publication Date
WO2023284178A1 true WO2023284178A1 (zh) 2023-01-19

Family

ID=78164813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128317 WO2023284178A1 (zh) 2021-07-13 2021-11-03 用于高温高矿度油藏驱油的表面活性剂组合物

Country Status (2)

Country Link
CN (1) CN113563858B (zh)
WO (1) WO2023284178A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563858B (zh) * 2021-07-13 2022-08-19 黑龙江信维源化工有限公司 一种用于高温高矿度油藏驱油的表面活性剂组合物
CN114436906A (zh) * 2022-02-11 2022-05-06 山东大明精细化工有限公司 一种驱油用聚氧乙烯醚磺酸盐表面活性剂的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099569A (en) * 1976-09-20 1978-07-11 Texaco Inc. Oil recovery process using a tapered surfactant concentration slug
CN103740354A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物及其制备方法
CN104232044A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物、制备方法及应用
CN113563858A (zh) * 2021-07-13 2021-10-29 黑龙江信维源化工有限公司 一种用于高温高矿度油藏驱油的表面活性剂组合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540320A1 (de) * 1995-10-28 1997-04-30 Herberts & Co Gmbh Nichtionische Emulgatoren
EP2399885A1 (en) * 2010-06-22 2011-12-28 Ulrich Dietz Device and method for solubilizing, separating, removing and reacting carboxylic acids in aqueous or organic solutions by means of micro- or nanoemulsification
MY184153A (en) * 2018-03-29 2021-03-23 Seechem Horizon Sdn Bhd A chemical treatment solution for formation damage at near wellbore
CN111088012B (zh) * 2018-10-23 2022-09-06 中国石油化工股份有限公司 提高原油采收率的复合表面活性剂及其制备方法和应用
WO2020131032A1 (en) * 2018-12-18 2020-06-25 Hewlett-Packard Development Company, L.P. Aqueous inkjet ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099569A (en) * 1976-09-20 1978-07-11 Texaco Inc. Oil recovery process using a tapered surfactant concentration slug
CN103740354A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物及其制备方法
CN104232044A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物、制备方法及应用
CN113563858A (zh) * 2021-07-13 2021-10-29 黑龙江信维源化工有限公司 一种用于高温高矿度油藏驱油的表面活性剂组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENGYUAN LÜ, LIU PING; ZHANG XIAODONG; CHEN ZHAOJUN; DU HUI: "Synthesis and Properties of Fatty Alcohol Polyoxyethylene Polydiglycerol Ethers", YOUTIAN-HUAXUE : JIKAN = OILFIELD CHEMISTRY / YOUTIAN-HUAXUE BIANJIBU, GAOFENZI-YANJIUSUO <CHENGDU>, CN, vol. 35, no. 3, 25 September 2018 (2018-09-25), CN , pages 480 - 484,498, XP093024780, ISSN: 1000-4092, DOI: 10.19346/j.cnki.1000-4092.2018.03.019 *

Also Published As

Publication number Publication date
CN113563858B (zh) 2022-08-19
CN113563858A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023284178A1 (zh) 用于高温高矿度油藏驱油的表面活性剂组合物
CN106590592B (zh) 提高原油采收率的复合表面活性剂
US20150141303A1 (en) Binary and ternary surfactant blends for enhanced oil recovery in reservoir brines with extremely high total dissolved solids
CN106593373B (zh) 低成本提高原油采收率的方法
CN106867494A (zh) 增溶原油能力强的组合表面活性剂及低成本制备方法
CN103965853A (zh) 组合表面活性剂及其制备方法
WO2015161812A1 (en) Compounds, compositions thereof and methods for hydrocarbon extraction using the same
CN102040994A (zh) 一种耐盐的氨基磺酸型两性表面活性剂复配体系及其在三次采油中的应用
CN109294547B (zh) 一种驱油用阴非离子两性表面活性剂及其制备方法
CN112226223A (zh) 超低渗油藏降压增注用表面活性剂组合物及制备方法
CN109652048A (zh) 一种复合驱油剂及其制备方法和应用
CA2573526A1 (en) Under-neutralized alkylxylene sulfonic acid composition for enhanced oil recovery processes
CN104109524B (zh) 高盐油藏强化泡沫驱用组合物及制备方法
CN112694877A (zh) 含双酚a聚醚二酸盐的复合表面活性剂及其制备方法和应用
CN114181688A (zh) 一种适合低渗油藏多段塞表面活性剂组合驱油体系及制备方法
CN111088012B (zh) 提高原油采收率的复合表面活性剂及其制备方法和应用
US4203491A (en) Chemical flood oil recovery with highly saline reservoir water
CA1132452A (en) Lignosulfanates as additives in oil recovery processes involving chemical recovery agents
CN112226222B (zh) 高温高矿化度油藏化学驱三次采油用低张力粘弹性表面活性剂组合物及其制备方法
CN106590578A (zh) 中等矿化度油藏驱油用复合型表面活性剂组合物
CN104277813A (zh) 油田采油组合物及其制备方法
CN111073621A (zh) 一种驱油用双长链阴-非复合型表面活性剂及其制备方法
CN104277809A (zh) 驱油组合物及其制备方法
CN105273705B (zh) 耐盐驱油组合物及其制备方法
CN111087601B (zh) 采油用表面活性剂、组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE