WO2023284044A1 - 3d显示系统及其显示方法 - Google Patents

3d显示系统及其显示方法 Download PDF

Info

Publication number
WO2023284044A1
WO2023284044A1 PCT/CN2021/111412 CN2021111412W WO2023284044A1 WO 2023284044 A1 WO2023284044 A1 WO 2023284044A1 CN 2021111412 W CN2021111412 W CN 2021111412W WO 2023284044 A1 WO2023284044 A1 WO 2023284044A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
emitting diode
light emitting
light
lens
Prior art date
Application number
PCT/CN2021/111412
Other languages
English (en)
French (fr)
Inventor
蔡振飞
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US17/607,717 priority Critical patent/US20240029669A1/en
Publication of WO2023284044A1 publication Critical patent/WO2023284044A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/23Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using wavelength separation, e.g. using anaglyph techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/334Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using spectral multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects

Definitions

  • the present application relates to the field of display technology, in particular to a 3D display system and a display method thereof.
  • 3D display There are many types of 3D display, one of which is color difference 3D display.
  • the imaging principle of chromatic aberration 3D display technology is to use two different colors to print images from two different viewing angles in the same frame, which can also be called color separation stereoscopic imaging technology.
  • red-cyan, red-blue and other 3D glasses If you want to watch the 3D effect, you must use the corresponding red-cyan, red-blue and other 3D glasses to watch, otherwise the image viewed by the naked eye will be ghosted and blurred.
  • the red image passes through the red lens (the background color of the red lens is red, so the red in the image is filtered, that is, the red lens can only distinguish images other than red), and the cyan image passes through the cyan lens (the base color of the cyan lens is cyan, so the cyan in the image is filtered, that is, the cyan lens can only distinguish images other than cyan), that is, the two lenses of the red-cyan 3D glasses filter red and cyan respectively.
  • the present application provides a 3D display system, which is used to solve the problem of low resolution of the chromatic aberration 3D display in the prior art and easy color shift when viewed at the edge of the screen, which makes the viewer's 3D experience poor, and long-term viewing is likely to cause dizziness technical problem.
  • An embodiment of the present application provides a 3D display system, including a display device and 3D glasses.
  • the display device includes a display panel and a backlight module arranged below the display panel.
  • the backlight module includes a plurality of evenly distributed A micro light emitting diode, a plurality of second micro light emitting diodes and a plurality of third micro light emitting diodes;
  • the 3D glasses include a first lens and a second lens, the color of the first lens is the same as that of the first micro light emitting diode The light output color is consistent, and the color of the second lens is consistent with the light output color of the second micro light emitting diode or the mixed light output color of the second micro light emitting diode and the third micro light emitting diode; wherein, the first The micro light emitting diodes work alternately with the second micro light emitting diodes.
  • the third micro light emitting diodes do not work.
  • the color of the two mirrors is consistent with the mixed light color of the second micro-light emitting diode and the third micro-light-emitting diode, the third micro-light-emitting diode and the second micro-light-emitting diode work simultaneously.
  • the colors of the first micro light emitting diode, the second micro light emitting diode and the third micro light emitting diode are respectively selected from one of red, green and blue. kind.
  • the colors of light emitted by the first micro-light emitting diode, the second micro-light-emitting diode and the third micro-light-emitting diode are red, blue, and green, respectively.
  • the first micro light emitting diode works in odd frames; in even frames, the second micro light emitting diode works or the third micro light emitting diode is The second micro light emitting diodes work simultaneously.
  • both the first mirror and the second mirror are liquid crystal screens, and the liquid crystal screen can be controlled to switch between a light-transmitting state and a light-shielding state.
  • the first mirror when the first micro-light emitting diode is working, the first mirror is in a light-transmitting state, and the second mirror is in a light-shielding state; when the second micro-light-emitting diode When working or when the third micro light emitting diode and the second micro light emitting diode are working simultaneously, the first lens is in a light-shielding state, and the second lens is in a light transmitting state.
  • the first lens and the second lens are passive color filter 3D glasses.
  • the first micro light emitting diode works in even frames; the second micro light emitting diode works or the third micro light emitting diode is connected with the The second micro light emitting diodes work simultaneously.
  • the display device further includes a synchronous signal transmitter disposed on the backlight module, and a synchronous signal receiver is disposed on the 3D glasses, and the synchronous signal receiver is used for for receiving the synchronization signal sent by the synchronization signal transmitter.
  • the synchronization signal transmitter is an infrared signal transmitter
  • the synchronization signal receiver is an infrared signal receiver
  • the display device further includes a driving circuit board electrically connected to the display panel, a Bluetooth module is arranged on the driving circuit board, and a Bluetooth receiver is arranged on the 3D glasses. module.
  • the backlight module further includes a substrate, a TFT array layer, and a transparent adhesive layer; the TFT array layer is located on the side of the substrate facing the display panel, and the multilayer The first micro light emitting diode, the plurality of second micro light emitting diodes and the plurality of third micro light emitting diodes are located on the side of the TFT array layer away from the substrate, and the transparent adhesive layer is located on the side facing the substrate
  • One side of the display panel covers the plurality of first micro light emitting diodes, the plurality of second micro light emitting diodes and the plurality of third micro light emitting diodes; wherein, the TFT array layer includes a plurality of TFT , any one of the TFTs correspondingly drives one of the first micro-light emitting diodes, one of the second micro-light-emitting diodes, or one of the third micro-light-emitting diodes.
  • the embodiment of the present application also provides a display method of a 3D display system, including steps:
  • a 3D display system including a display device and 3D glasses, the display device includes a display panel and a backlight module arranged below the display panel, and the backlight module includes a plurality of uniformly distributed first micro-luminescence Diodes, a plurality of second micro-light emitting diodes and a plurality of third micro-light-emitting diodes;
  • the 3D glasses include a first lens and a second lens, and the color of the first lens is consistent with the light output color of the first micro-light-emitting diodes , the color of the second lens is consistent with the light output color of the second micro-light emitting diode or the mixed light output color of the second micro-light-emitting diode and the third micro-light-emitting diode;
  • step S4 Repeat step S2 and step S3 in sequence until the display ends.
  • the order of the step S2 and the step S3 can be interchanged.
  • the light output colors of the first micro light emitting diode, the second micro light emitting diode and the third micro light emitting diode are respectively selected from red, green and blue One of.
  • the colors of light emitted by the first micro-light emitting diode, the second micro-light-emitting diode and the third micro-light-emitting diode are red, blue, and green, respectively.
  • both the first lens and the second lens are liquid crystal screens, and the liquid crystal screen can be controlled to switch between a light-transmitting state and a light-shielding state.
  • the first micro-light emitting diode in the step S2, is turned on to display odd frames, the first lens is controlled to be in a light-transmitting state, and the first lens is controlled to be in a light-transmitting state.
  • the two mirrors are in the light-shielding state; in the step S3, the second micro-light emitting diode or the second micro-light-emitting diode and the third micro-light-emitting diode are turned on simultaneously to display even frames, and the first micro-light-emitting diode is controlled.
  • the lens is in a light-shielding state, and the second lens is controlled to be in a light-transmitting state.
  • the first lens and the second lens are passive color filter 3D glasses.
  • the display device further includes a synchronous signal transmitter disposed on the backlight module, a synchronous signal receiver is disposed on the 3D glasses, and the synchronous The signal receiver is used for receiving the synchronization signal sent by the synchronization signal transmitter.
  • a 3D display system provided by the present application includes a display device and 3D glasses.
  • the display device includes a display panel and a backlight module arranged below the display panel.
  • the backlight module includes a plurality of uniformly distributed first micro light emitting diodes, a plurality of The second micro-light emitting diode and a plurality of third micro-light-emitting diodes;
  • the 3D glasses include a first lens and a second lens, the color of the first lens is consistent with the color of light emitted by the first micro-light-emitting diode, and the color of the second lens is consistent with the color of the second micro-light
  • the light color of the light emitting diode or the mixed light color of the second micro light emitting diode and the third micro light emitting diode is consistent; wherein, the first micro light emitting diode and the second micro light emitting diode work alternately, when the color of the second lens is the same as that of the second micro light emitting diode
  • the third micro-light-emitting diode does not work or works at the same time as the second micro-light-emitting diode, without reducing the resolution of the display screen.
  • the combination of color difference 3D and shutter 3D can be realized to improve the user's 3D experience.
  • FIG. 1 is a schematic diagram of a basic structure of a 3D display system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the working sequence of the 3D display system provided by the embodiment of the present application.
  • FIG. 3 is a flowchart of a display method of a 3D display system provided by an embodiment of the present application.
  • the 3D display system includes a display device 10 and 3D glasses 20.
  • the display device 10 includes a display panel 11 and a The backlight module 12 below the panel 11, the backlight module 12 includes a plurality of first micro-light emitting diodes 1231, a plurality of second micro-light-emitting diodes 1232 and a plurality of third micro-light-emitting diodes 1233 evenly distributed;
  • the 3D glasses 20 includes a first lens 201 and a second lens 202, the color of the first lens 201 is consistent with the light color of the first micro-light emitting diode 1231, and the color of the second lens 202 is consistent with the color of the second micro-light emitting diode
  • the light color of 1232 or the mixed light color of the second micro-LED 1232 and the third micro-light-emitting diode 1233 are consistent.
  • the first micro light emitting diode 1231 and the second micro light emitting diode 1232 work alternately, when the color of the second lens 202 is consistent with the light color of the second micro light emitting diode 1232, the third Micro LED 1233 does not work, when the color of the second lens 202 is consistent with the mixed light color of the second micro LED 1232 and the third micro LED 1233, the third micro LED 1233 and the third micro LED 1233
  • the second micro light emitting diodes 1232 work simultaneously.
  • the 3D display system provided by the present application provides backlights of different colors by controlling the first micro-light emitting diode 1231, the second micro-light-emitting diode 1232 and the third micro-light-emitting diode 1233 on the backlight module 12 to work in time-sharing. .
  • the first case is that the first micro light emitting diode 1231 and the second micro light emitting diode 1232 work alternately, and the third micro light emitting diode 1233 does not work, then the images displayed on the display panel 11 are respectively Determined by the color of light emitted by the first micro-LED 1231 and the second micro-light-emitting diode 1232, when the first micro-light-emitting diode 1231 is working, the first lens 201 can distinguish color, that is, the image excited by the first micro-light emitting diode 1231 can be seen through the first lens 201; Other colors, that is, the image excited by the second micro-light emitting diode 1232 can be seen through the second lens 202.
  • the refresh rate of the display panel 11 is greater than or equal to 120 Hz, due to the parallax of the eyes and the persistence of vision effect,
  • the images are synthesized into an image with depth of field in the brain, that is, you can see the 3D stereoscopic effect, that is, the combination of the color difference 3D and the shutter 3D is realized, because the first micro light emitting diode 1231 and the second micro light emitting diode 1232 Distributed under the display panel 11, therefore, no color shift will occur no matter viewed from the middle area or the edge area, which improves the user's 3D experience effect.
  • the second case is that the first micro light emitting diode 1231 and the second micro light emitting diode 1232 work alternately, and the third micro light emitting diode 1233 and the second micro light emitting diode 1232 work at the same time, then the image displayed on the display panel 11 is respectively determined by the third micro light emitting diode 1233 It is determined by the light color of the first micro-light emitting diode 1231 and the mixed light color of the second micro-light-emitting diode 1232 and the third micro-light-emitting diode 1233.
  • the first lens 201 can distinguish Colors other than the light emitting color of the light emitting diode 1231, that is, the image excited by the first micro light emitting diode 1231 can be seen through the first lens 201; when the second micro light emitting diode 1232 and the third micro light emitting diode 1233 work simultaneously, the The second mirror 202 can distinguish colors other than the mixed light color of the second micro-light emitting diode 1232 and the third micro-light-emitting diode 1233, that is, the second micro-light-emitting diode 1232 and the third micro-light-emitting diode 1232 can be seen through the second mirror 202
  • the display principle of the image co-excited by 1233 is similar to that of the first case, and will not be repeated here.
  • the colors of the first micro-LED 1231 , the second micro-LED 1232 and the third micro-LED 1233 are respectively selected from one of red, green and blue. It can be understood that, since the light colors of the first micro LED 1231, the second micro LED 1232, and the third micro LED 1233 are different, when the first micro LED 1231 is red and the second micro LED 1232 is When green, the third micro-light emitting diode 1233 is blue.
  • the first micro-light-emitting diode 1231, the second micro-light-emitting diode 1232, and the third micro-light-emitting diode 1233 can also be red, blue, and green, respectively. ;green,red,blue;green,blue,red;blue,red,green;blue,green,red.
  • the first micro LED 1231 , the second micro LED 1232 , and the third micro LED 1233 are respectively red, blue, and green for illustration, and other similar situations will not be repeated. It can be understood that when the first micro light emitting diode 1231, the second micro light emitting diode 1232, and the third micro light emitting diode 1233 are red, blue, and green respectively, the color of the first lens 201 is red, and the color of the second lens 202 is red. The color is blue or cyan (that is, a mixture of blue and green).
  • the backlight module 12 further includes a substrate 121, a TFT array layer 122 and a transparent adhesive layer 124; the TFT array layer 122 is located on the side of the substrate 121 facing the display panel 11, and the multilayer
  • the first micro light emitting diode 1231, the plurality of second micro light emitting diodes 1232 and the plurality of third micro light emitting diodes 1233 are located on the side of the TFT array layer 122 away from the substrate 121
  • the transparent adhesive layer 124 is located on the side of the base 121 facing the display panel 11 and covers the plurality of first micro LEDs 1231 , the plurality of second micro LEDs 1232 and the plurality of third micro LEDs 1233 .
  • the TFT array layer 122 includes a plurality of TFTs, and any one of the TFTs drives one of the first micro-light emitting diodes 1231, one of the second micro-light-emitting diodes 1232, or one of the third micro-light-emitting diodes.
  • 1233 that is, the first micro light emitting diode 1231, the second micro light emitting diode 1232 and the third micro light emitting diode 1233 are all actively emitting light, and the first micro light emitting diode 1231, the second micro light emitting diode 1232 and the third micro light emitting diode 1231 can be respectively controlled by the peripheral driving circuit.
  • Three micro LEDs 1233 are turned on and off.
  • the transparent adhesive layer 124 is used to protect the first micro LED 1231 , the second micro LED 1232 and the third micro LED 1233 to improve the service life of the display device 10 .
  • the display panel 11 includes an array substrate 111, a color filter substrate 113, and a liquid crystal molecular layer 112 sandwiched between the array substrate 111 and the color filter substrate 113, wherein the color filter substrate 113 is provided with a plurality of
  • the color color resistors include multiple red color resistors 1131 , multiple blue color resistors 1132 and multiple green color resistors 1133 .
  • the first micro LED 1231 works; in even frames, the second micro LED 1232 works or the third micro LED 1233 and the second micro LED 1232 work simultaneously.
  • the above-mentioned odd frames and even frames can be interchanged, that is, another implementation mode is: in the even frame, the first micro light emitting diode 1231 works; in the odd frame, the second micro light emitting diode 1232 works or The third micro light emitting diode 1233 and the second micro light emitting diode 1232 work simultaneously.
  • the image is divided into two frames by frame, that is, the image is divided into odd frames and even frames to form two sets of pictures corresponding to the left eye and the right eye, which are displayed continuously and interlaced, so that the picture can be kept
  • the original resolution allows users to feel the 3D effect easily without reducing the brightness of the picture.
  • the images displayed in odd frames and even frames are to divide the original 2D image into two, and process them into two images corresponding to the left and right eyes through depth-of-field processing on a frame-by-frame basis.
  • the pictures will be played alternately and continuously, and the brain will comprehensively process the images formed on the retinas of the left and right eyes to produce a 3D stereoscopic effect.
  • both the first lens 201 and the second lens 202 are liquid crystal screens, and the liquid crystal screens can be controlled to switch between a light-transmitting state and a light-shielding state.
  • the first mirror 201 and the second mirror 202 are composed of liquid crystal screens that only have two states of on and off. When the power is off, the mirrors are open to allow light to pass through. When the power is on, the mirrors are closed and no light can pass through.
  • the present application can increase the steady-state time of lens opening by increasing the liquid crystal response time of the 3D glasses, and then the opening time of the backlight can be appropriately increased, so that the brightness of the image viewed by wearing the 3D glasses is improved, thereby improving The user's 3D experience effect.
  • the first lens 201 and the second lens 202 may also be passive color filter 3D glasses.
  • the first lens 201 when the first micro-light emitting diode 1231 works, the first lens 201 is in a light-transmitting state, and the second lens 202 is in a light-shielding state;
  • the second micro light emitting diodes 1232 work at the same time, the first lens 201 is in a light-shielding state, and the second lens 202 is in a light-transmitting state.
  • the first lens 201 corresponds to receiving images excited by the first micro-light emitting diodes 1231
  • the first micro-light emitting diodes 1231 corresponds to exciting images of odd-numbered frames, that is, when there are odd-numbered frames, the display panel 11 displays images corresponding to odd-numbered frames
  • the first micro light-emitting diode 1231 in the backlight module 12 lights up, the liquid crystal screen of the first mirror 201 in the corresponding 3D glasses 20 is turned on, the liquid crystal screen of the second mirror 202 is closed, and the corresponding left eye accepts the picture of odd frames image.
  • the second lens 202 corresponds to receiving the image excited by the second micro-light emitting diode 1232 or the image jointly excited by the second micro-light-emitting diode 1232 and the third micro-light-emitting diode 1233, and the second micro-light-emitting diode 1232 or the second micro-light-emitting diode 1232
  • the light emitting diode 1232 and the third micro light emitting diode 1233 correspondingly excite the image of the even frame, that is, when the even frame is displayed, the display panel 11 displays the image corresponding to the even frame, and at the same time the second micro light emitting diode 1232 in the backlight module 12 lights up, or the second micro light emitting diode 1232 lights up.
  • the second micro light emitting diode 1232 and the third micro light emitting diode 1233 light up at the same time, the liquid crystal screen of the second lens 202 in the corresponding 3D glasses 20 is turned on, the liquid crystal screen of the first lens 201 is closed, and the corresponding right eye receives the picture of even frames image.
  • the display device 10 further includes a synchronous signal transmitter (not shown in the figure) disposed on the backlight module 12, and a synchronous signal receiver (not shown in the figure) is disposed on the 3D glasses 20 ), the synchronization signal receiver is used to receive the synchronization signal sent by the synchronization signal transmitter.
  • the synchronization signal transmitter is an infrared signal transmitter
  • the synchronization signal receiver is an infrared signal receiver.
  • the synchronization signal transmitter transmits a synchronization signal
  • the synchronization signal receiver controls the first glass 201 to open after receiving the synchronization signal, and the second glass 202 to close; when the display device 10 displays an even-numbered frame image
  • the synchronization signal transmitter transmits a synchronization signal
  • the synchronization signal receiver controls the second lens 202 to open and the first lens 201 to close after receiving the synchronization signal, that is, the synchronization signal transmitter can synchronously control the first lens 201 and the second lens 201 of the 3D glasses 20.
  • the opening and closing of the lens 202 enables the eyes to see the corresponding picture at the correct moment.
  • the display device 10 further includes a driving circuit board (not shown) electrically connected to the display panel 11, a Bluetooth module (not shown) is arranged on the driving circuit board, and the 3D
  • the glasses 20 are provided with a bluetooth receiving module (not shown in the figure), that is, the display device 10 can also communicate with the 3D glasses 20 via bluetooth for synchronous signals.
  • Figure 2 is a schematic diagram of the working sequence of the 3D display system provided by the embodiment of this application.
  • the refresh rate of the display device is 120 Hz, it switches every 1/120 second.
  • the left-eye lens of the 3D glasses is turned on, and the right-eye lens is turned off; in even frames, the image corresponding to the right eye (R) is displayed, and at the same time, the left-eye lens of the 3D glasses is turned off,
  • the right eye glass is opened to realize viewing the correct image frame at the correct moment.
  • odd frames and even frames here can also be interchanged.
  • FIG. 3 is a flow chart of a display method of a 3D display system provided in an embodiment of the present application.
  • the display method includes steps:
  • a 3D display system including a display device and 3D glasses, the display device includes a display panel and a backlight module arranged below the display panel, and the backlight module includes a plurality of uniformly distributed first micro-luminescence Diodes, a plurality of second micro-light emitting diodes and a plurality of third micro-light-emitting diodes;
  • the 3D glasses include a first lens and a second lens, and the color of the first lens is consistent with the light output color of the first micro-light-emitting diodes , the color of the second lens is consistent with the light output color of the second micro-light emitting diode or the mixed light output color of the second micro-light-emitting diode and the third micro-light-emitting diode;
  • step S4 Repeat step S2 and step S3 in sequence until the display ends.
  • step S2 and step S3 can be interchanged, that is, the second micro light emitting diode can be turned on first or the second micro light emitting diode and the third micro light emitting diode can be turned on at the same time, and then the first micro light emitting diode can be turned on. Micro LEDs.
  • the display method of the 3D display system is to provide different colors by controlling the time-sharing lighting of the first micro-light emitting diode, the second micro-light-emitting diode and the third micro-light-emitting diode on the backlight module. backlight.
  • the first situation is that the color of the second lens is consistent with the color of the light emitted by the second micro-light emitting diode
  • the image displayed on the display panel is respectively composed of the first micro-light-emitting diode and the second micro-light-emitting diode. The color of the light emitted by the diode is determined.
  • the color other than the light-emitting color of the first micro-light-emitting diode can be distinguished through the first lens, that is, the first micro-light-emitting diode can be seen through the first lens.
  • the image excited by micro-light emitting diode For images excited by light-emitting diodes, when the refresh rate of the display panel is greater than or equal to 120 Hz, due to the parallax of the eyes and the persistence of vision effect, the two images are synthesized in the brain into an image with depth of field, that is, you can see the 3D stereoscopic effect , which realizes the combination of color-difference 3D and shutter-type 3D. Since the first micro-light emitting diodes and the second micro-light-emitting diodes are evenly distributed under the display panel, no matter viewing from the middle area or the edge area, there will be no Color shift improves the user's 3D experience.
  • the color of the second lens is consistent with the mixed light color of the second micro light emitting diode and the third micro light emitting diode, then the image displayed on the display panel is composed of the light color of the first micro light emitting diode, the second micro light emitting diode The mixed light color of the light-emitting diode and the third micro-light-emitting diode is determined.
  • the first lens can distinguish colors other than the light-emitting color of the first micro-light-emitting diode, that is, through the first The lens can see the image excited by the first micro-light emitting diode; when the second micro-light-emitting diode and the third micro-light-emitting diode are lit at the same time, the second lens can distinguish Mixing colors other than the light color, that is, the image jointly excited by the second micro-LED and the third micro-LED can be seen through the second lens.
  • the display principle is similar to that of the first case, and will not be repeated here.
  • the colors of light emitted by the first micro-LED, the second micro-LED and the third micro-LED are respectively selected from one of red, green and blue. It can be understood that, since the light colors of the first micro light emitting diode, the second micro light emitting diode and the third micro light emitting diode are different, when the first micro light emitting diode is red and the second micro light emitting diode is green, the third micro light emitting diode
  • the micro light emitting diode is blue, and in other embodiments, the first micro light emitting diode, the second micro light emitting diode and the third micro light emitting diode can also be respectively red, blue, green; green, red, blue; green , blue, red; blue, green, red.
  • both the first lens and the second lens are liquid crystal screens, and the liquid crystal screen can be controlled to switch between a light-transmitting state and a light-shielding state.
  • the first lens and the second lens are composed of liquid crystal screens that only have two states of on and off. When the power is off, the lens is open to allow light to pass through, and when the power is on, the lens is closed and no light can pass through.
  • the first lens and the second lens may also be passive color filter 3D glasses.
  • the first micro-light emitting diode is turned on to display odd frames, the first lens is controlled to be in a light-transmitting state, and the second lens is controlled to be in a light-shielding state; the step In S3, turn on the second micro-light emitting diode or turn on the second micro-light-emitting diode and the third micro-light-emitting diode simultaneously to display even-numbered frames, control the first mirror to be in a light-shielding state, and control the second The second lens is in a light-transmitting state.
  • the first lens corresponds to receiving images excited by the first micro-light emitting diodes
  • the first micro-light emitting diodes corresponds to exciting images of odd-numbered frames, that is, when there are odd-numbered frames
  • the display panel displays images corresponding to odd-numbered frames
  • the backlight module The first micro-light emitting diode in the 3D glasses lights up, the liquid crystal screen of the first lens in the corresponding 3D glasses is turned on, the liquid crystal screen of the second lens is turned off, and the corresponding left eye receives odd-numbered frame images.
  • the second lens corresponds to receiving the image excited by the second micro light emitting diode or the image jointly excited by the second micro light emitting diode and the third micro light emitting diode, and the second micro light emitting diode or the second micro light emitting diode and the third micro light emitting diode
  • the micro-light emitting diode corresponds to the image of the even-numbered frame, that is, when the even-numbered frame is displayed, the display panel displays the image corresponding to the even-numbered frame, and at the same time the second micro-light-emitting diode in the backlight module is lit, or the second micro-light-emitting diode and the third micro-light-emitting diode Light up at the same time, the liquid crystal screen of the second lens in the corresponding 3D glasses is opened, the liquid crystal screen of the first lens is closed, and the corresponding right eye receives the picture image of even frames.
  • the display device further includes a synchronous signal transmitter disposed on the backlight module, and a synchronous signal receiver is disposed on the 3D glasses, and the synchronous signal receiver is used to receive the synchronous The synchronization signal sent by the signal transmitter.
  • the synchronization signal transmitter is an infrared signal transmitter
  • the synchronization signal receiver is an infrared signal receiver.
  • the synchronization signal transmitter transmits a synchronization signal
  • the synchronization signal receiver controls the first lens to open and the second lens to close
  • the synchronization signal The transmitter transmits a synchronous signal
  • the synchronous signal receiver controls the second lens to open and the first lens to close after receiving the synchronous signal, that is, the synchronous signal transmitter can synchronously control the opening and closing of the first lens and the second lens of the 3D glasses, so that both eyes To be able to see the corresponding picture at the right moment.
  • the display device further includes a driving circuit board electrically connected to the display panel, the driving circuit board is provided with a Bluetooth module, and the 3D glasses are provided with a Bluetooth receiving module, that is, the display The device can also perform synchronous signal communication with the 3D glasses via bluetooth.
  • a 3D display system provided by an embodiment of the present application includes a display device and 3D glasses.
  • the display device includes a display panel and a backlight module arranged below the display panel.
  • the backlight module includes a plurality of A micro light emitting diode, a plurality of second micro light emitting diodes and a plurality of third micro light emitting diodes;
  • the 3D glasses include a first lens and a second lens, the color of the first lens is consistent with the light output color of the first micro light emitting diodes, and the second The color of the lens is consistent with the light output color of the second micro light emitting diode or the mixed light output color of the second micro light emitting diode and the third micro light emitting diode; wherein, the first micro light emitting diode and the second micro light emitting diode work alternately, when the second lens When the color of the lens is consistent with the light output color of the second micro light emitting diode, the third micro light emitting diode does not
  • the third micro-light-emitting diode does not work or works at the same time as the second micro-light-emitting diode, without reducing the resolution of the display screen.
  • the combined use of chromatic aberration 3D and shutter 3D can improve the user's 3D experience, and solve the problem of low resolution of chromatic aberration 3D display in the prior art and easy color shift when viewing at the edge of the screen, making the viewer's 3D experience The effect is poor, and long-term viewing is prone to technical problems that cause dizziness.

Abstract

一种3D显示系统及其显示方法。3D显示系统包括显示装置(10)和3D眼镜(20),显示装置(10)包括均匀分布的多个第一微发光二极管(1231)、多个第二微发光二极管(1232)以及多个第三微发光二极管(1233);3D眼镜(20)包括第一镜片(201)和第二镜片(202);第一微发光二极管(1231)与第二微发光二极管(1232)交替工作,第三微发光二极管(1233)不工作或与第二微发光二极管(1232)同时工作。

Description

3D显示系统及其显示方法 技术领域
本申请涉及显示技术领域,尤其涉及一种3D显示系统及其显示方法。
背景技术
3D显示的种类有很多,其中一种就是色差式3D显示。色差式3D显示技术的成像原理是用两种不同的颜色将来源于两个不同视角上拍摄的影像在同一幅画面中完成印制,也可以称为分色立体成像技术。
若想观看到3D效果,必须使用对应的红青、红蓝等3D眼镜观看,否则肉眼观看到的图像是重影且模糊的。以红青3D眼镜为例,红色的影像通过红色镜片(红色镜片的底色为红色,所以影像中的红色被过滤,即红色镜片只能分辨除红色之外的影像),青色的影像通过青色镜片(青色镜片的底色为青色,所以影像中的青色被过滤,即青色镜片只能分辨除青色之外的影像),即红青3D眼镜的两只镜片分别过滤了红色和青色这两种色彩,那么大脑便可以重叠两只眼睛看到的不同影像,从而出现3D立体效果,其缺点为分辨率低以及在画面边缘观看容易产生色偏,使得观看者的3D体验效果差,并且长期观看容易造成眩晕。故,有必要改善这一缺陷。
技术问题
本申请提供一种3D显示系统,用于解决现有技术的色差式3D显示的分辨率低以及在画面边缘观看容易产生色偏,使得观看者的3D体验效果差,并且长期观看容易造成眩晕的技术问题。
技术解决方案
本申请实施例提供一种3D显示系统,包括显示装置和3D眼镜,所述显示装置包括显示面板以及设于所述显示面板下方的背光模组,所述背光模组包括均匀分布的多个第一微发光二极管、多个第二微发光二极管以及多个第三微发光二极管;所述3D眼镜包括第一镜片和第二镜片,所述第一镜片的颜色与所述第一微发光二极管的出光颜色一致,所述第二镜片的颜色与所述第二微发光二极管的出光颜色或所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致;其中,所述第一微发光二极管与所述第二微发光二极管交替工作,当所述第二镜片的颜色与所述第二微发光二极管的出光颜色一致时,所述第三微发光二极管不工作,当所述第二镜片的颜色与所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致时,所述第三微发光二极管与所述第二微发光二极管同时工作。
在本申请实施例提供的3D显示系统中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别选自红色、绿色、蓝色中的一种。
在本申请实施例提供的3D显示系统中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别为红色、蓝色、绿色。
在本申请实施例提供的3D显示系统中,在奇数帧时,所述第一微发光二极管工作;在偶数帧时,所述第二微发光二极管工作或所述第三微发光二极管与所述第二微发光二极管同时工作。
在本申请实施例提供的3D显示系统中,所述第一镜片和所述第二镜片均为液晶屏,且所述液晶屏能够控制为在透光状态和遮光状态之间切换。
在本申请实施例提供的3D显示系统中,当所述第一微发光二极管工作时,所述第一镜片为透光状态,所述第二镜片为遮光状态;当所述第二微发光二极管工作或所述第三微发光二极管与所述第二微发光二极管同时工作时,所述第一镜片为遮光状态,所述第二镜片为透光状态。
在本申请实施例提供的3D显示系统中,所述第一镜片和所述第二镜片为被动式的滤色3D眼镜。
在本申请实施例提供的3D显示系统中,在偶数帧时,所述第一微发光二极管工作;在奇数帧时,所述第二微发光二极管工作或所述第三微发光二极管与所述第二微发光二极管同时工作。
在本申请实施例提供的3D显示系统中,所述显示装置还包括设于所述背光模组上的同步信号发射器,所述3D眼镜上设置有同步信号接收器,所述同步信号接收器用于接收所述同步信号发射器发出的同步信号。
在本申请实施例提供的3D显示系统中,所述同步信号发射器为红外信号发射器,所述同步信号接收器为红外信号接收器。
在本申请实施例提供的3D显示系统中,所述显示装置还包括与所述显示面板电连接的驱动电路板,所述驱动电路板上设置有蓝牙模块,所述3D眼镜上设置有蓝牙接收模块。
在本申请实施例提供的3D显示系统中,所述背光模组还包括基底、TFT阵列层以及透明胶层;所述TFT阵列层位于所述基底面向所述显示面板的一侧,所述多个第一微发光二极管、所述多个第二微发光二极管以及所述多个第三微发光二极管位于所述TFT阵列层远离所述基底的一侧,所述透明胶层位于所述基底面向所述显示面板的一侧并覆盖所述多个第一微发光二极管、所述多个第二微发光二极管以及所述多个第三微发光二极管;其中,所述TFT阵列层包括多个TFT,任一所述TFT对应驱动一个所述第一微发光二极管、或一个所述第二微发光二极管、或一个所述第三微发光二极管。
本申请实施例还提供一种3D显示系统的显示方法,包括步骤:
S1、提供一3D显示系统,包括显示装置和3D眼镜,所述显示装置包括显示面板以及设于所述显示面板下方的背光模组,所述背光模组包括均匀分布的多个第一微发光二极管、多个第二微发光二极管以及多个第三微发光二极管;所述3D眼镜包括第一镜片和第二镜片,所述第一镜片的颜色与所述第一微发光二极管的出光颜色一致,所述第二镜片的颜色与所述第二微发光二极管的出光颜色或所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致;
S2、点亮所述第一微发光二极管;
S3、当所述第二镜片的颜色与所述第二微发光二极管的出光颜色一致时,点亮所述第二微发光二极管,当所述第二镜片的颜色与所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致时,同时点亮所述第二微发光二极管和所述第三微发光二极管;
S4、依次循环所述步骤S2和所述步骤S3,直至显示结束。
在本申请实施例提供的3D显示系统的显示方法中,所述步骤S2和所述步骤S3的先后顺序能够互换。
在本申请实施例提供的3D显示系统的显示方法中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别选自红色、绿色、蓝色中的一种。
在本申请实施例提供的3D显示系统的显示方法中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别为红色、蓝色、绿色。
在本申请实施例提供的3D显示系统的显示方法中,所述第一镜片和所述第二镜片均为液晶屏,且所述液晶屏能够控制为在透光状态和遮光状态之间切换。
在本申请实施例提供的3D显示系统的显示方法中,所述步骤S2中,点亮所述第一微发光二极管以显示奇数帧,控制所述第一镜片为透光状态,控制所述第二镜片为遮光状态;所述步骤S3中,点亮所述第二微发光二极管或同时点亮所述第二微发光二极管和所述第三微发光二极管以显示偶数帧,控制所述第一镜片为遮光状态,控制所述第二镜片为透光状态。
在本申请实施例提供的3D显示系统的显示方法中,所述第一镜片和所述第二镜片为被动式的滤色3D眼镜。
在本申请实施例提供的3D显示系统的显示方法中,所述显示装置还包括设于所述背光模组上的同步信号发射器,所述3D眼镜上设置有同步信号接收器,所述同步信号接收器用于接收所述同步信号发射器发出的同步信号。
有益效果
本申请提供的一种3D显示系统,包括显示装置和3D眼镜,显示装置包括显示面板以及设于显示面板下方的背光模组,背光模组包括均匀分布的多个第一微发光二极管、多个第二微发光二极管以及多个第三微发光二极管;3D眼镜包括第一镜片和第二镜片,第一镜片的颜色与第一微发光二极管的出光颜色一致,第二镜片的颜色与第二微发光二极管的出光颜色或第二微发光二极管和第三微发光二极管的混合出光颜色一致;其中,第一微发光二极管与第二微发光二极管交替工作,当第二镜片的颜色与第二微发光二极管的出光颜色一致时,第三微发光二极管不工作,当第二镜片的颜色与第二微发光二极管和第三微发光二极管的混合出光颜色一致时,第三微发光二极管与第二微发光二极管同时工作。本申请通过控制背光模组上的第一微发光二极管、第二微发光二极管交替工作,第三微发光二极管不工作或与第二微发光二极管同时工作,可以在不降低显示屏分辨率的基础上实现色差式3D和快门式3D的结合使用,提高用户的3D体验效果。
附图说明
图1为本申请实施例提供的3D显示系统的基本结构示意图。
图2为本申请实施例提供的3D显示系统的工作时序示意图。
图3为本申请实施例提供的3D显示系统的显示方法流程图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。在附图中,为了清晰及便于理解和描述,附图中绘示的组件的尺寸和厚度并未按照比例。
如图1所示,为本申请实施例提供的3D显示系统的基本结构示意图,所述3D显示系统包括显示装置10和3D眼镜20,所述显示装置10包括显示面板11以及设于所述显示面板11下方的背光模组12,所述背光模组12包括均匀分布的多个第一微发光二极管1231、多个第二微发光二极管1232以及多个第三微发光二极管1233;所述3D眼镜20包括第一镜片201和第二镜片202,所述第一镜片201的颜色与所述第一微发光二极管1231的出光颜色一致,所述第二镜片202的颜色与所述第二微发光二极管1232的出光颜色或所述第二微发光二极管1232和所述第三微发光二极管1233的混合出光颜色一致。
其中,所述第一微发光二极管1231与所述第二微发光二极管1232交替工作,当所述第二镜片202的颜色与所述第二微发光二极管1232的出光颜色一致时,所述第三微发光二极管1233不工作,当所述第二镜片202的颜色与所述第二微发光二极管1232和所述第三微发光二极管1233的混合出光颜色一致时,所述第三微发光二极管1233与所述第二微发光二极管1232同时工作。
可以理解的是,本申请提供的3D显示系统是通过控制背光模组12上的第一微发光二极管1231、第二微发光二极管1232以及第三微发光二极管1233分时工作来提供不同颜色的背光。具体的,有以下两种情况:第一种情况是第一微发光二极管1231与第二微发光二极管1232交替工作,且第三微发光二极管1233不工作,则显示面板11上显示的图像是分别由第一微发光二极管1231和第二微发光二极管1232的出光颜色来决定的,当第一微发光二极管1231工作时,通过第一镜片201能分辨除第一微发光二极管1231的出光颜色之外的颜色,即通过第一镜片201能看到由第一微发光二极管1231激发的图像;当第二微发光二极管1232工作时,通过第二镜片202能分辨除第二微发光二极管1232的出光颜色之外的颜色,即通过第二镜片202能看到由第二微发光二极管1232激发的图像,当显示面板11的刷新率大于或等于120赫兹时,由于双眼的视差以及视觉暂留效应,两幅图像在大脑中合成一幅具有景深的图像,即可以看到3D立体效果,即实现了色差式3D和快门式3D的结合,由于第一微发光二极管1231、第二微发光二极管1232均匀的分布在显示面板11的下方,因此,无论从中间区域还是边缘区域观看,都不会产生色偏,提高了用户的3D体验效果。
第二种情况是第一微发光二极管1231与第二微发光二极管1232交替工作,且第三微发光二极管1233与第二微发光二极管1232同时工作,则显示面板11上显示的图像是分别由第一微发光二极管1231的出光颜色、第二微发光二极管1232和第三微发光二极管1233的混合出光颜色来决定的,当第一微发光二极管1231工作时,第一镜片201能分辨除第一微发光二极管1231的出光颜色之外的颜色,即通过第一镜片201能看到由第一微发光二极管1231激发的图像;当第二微发光二极管1232和第三微发光二极管1233同时工作时,第二镜片202能分辨除第二微发光二极管1232和第三微发光二极管1233的混合出光颜色之外的颜色,即通过第二镜片202能看到由第二微发光二极管1232和第三微发光二极管1233共同激发的图像,其显示原理与第一种情况类似,此处不再赘述。
在一种实施例中,第一微发光二极管1231、第二微发光二极管1232以及第三微发光二极管1233的出光颜色分别选自红色、绿色、蓝色中的一种。可以理解的是,由于第一微发光二极管1231、第二微发光二极管1232、第三微发光二极管1233的出光颜色各不相同,当第一微发光二极管1231为红色、第二微发光二极管1232为绿色时,第三微发光二极管1233则为蓝色,在其它实施例中,第一微发光二极管1231、第二微发光二极管1232、第三微发光二极管1233还可以分别为红色、蓝色、绿色;绿色、红色、蓝色;绿色、蓝色、红色;蓝色、红色、绿色;蓝色、绿色、红色。
本申请实施例以第一微发光二极管1231、第二微发光二极管1232、第三微发光二极管1233分别为红色、蓝色、绿色为例进行说明,其它类似情况不进行赘述。可以理解的是,当第一微发光二极管1231、第二微发光二极管1232、第三微发光二极管1233分别为红色、蓝色、绿色时,第一镜片201的颜色为红色,第二镜片202的颜色为蓝色或青色(即蓝色和绿色的混合色)。
在一种实施例中,背光模组12还包括基底121、TFT阵列层122以及透明胶层124;所述TFT阵列层122位于所述基底121面向所述显示面板11的一侧,所述多个第一微发光二极管1231、所述多个第二微发光二极管1232以及所述多个第三微发光二极管1233位于所述TFT阵列层122远离所述基底121的一侧,所述透明胶层124位于所述基底121面向所述显示面板11的一侧并覆盖所述多个第一微发光二极管1231、所述多个第二微发光二极管1232以及所述多个第三微发光二极管1233。
其中,所述TFT阵列层122包括多个TFT,任一所述TFT对应驱动一个所述第一微发光二极管1231、或一个所述第二微发光二极管1232、或一个所述第三微发光二极管1233,即第一微发光二极管1231、第二微发光二极管1232以及第三微发光二极管1233均为主动发光,可以通过外围驱动电路分别控制第一微发光二极管1231、第二微发光二极管1232以及第三微发光二极管1233的开启和关闭。其中,所述透明胶层124用于保护第一微发光二极管1231、第二微发光二极管1232以及第三微发光二极管1233,以提高显示装置10的使用寿命。
在一种实施例中,显示面板11包括阵列基板111、彩膜基板113以及夹设于阵列基板111和彩膜基板113之间的液晶分子层112,其中,彩膜基板113上设有多个彩色色阻,包括多个红色色阻1131、多个蓝色色阻1132以及多个绿色色阻1133。
在一种实施例中,在奇数帧时,第一微发光二极管1231工作;在偶数帧时,第二微发光二极管1232工作或第三微发光二极管1233与第二微发光二极管1232同时工作。需要说明的是,上述的奇数帧和偶数帧可以互换,即另一种实施方式为:在偶数帧时,第一微发光二极管1231工作;在奇数帧时,第二微发光二极管1232工作或第三微发光二极管1233与第二微发光二极管1232同时工作。可以理解的是,本申请实施例通过把图像按帧一分为二,即把图像分为奇数帧和偶数帧,形成对应左眼和右眼的两组画面,连续交错显示出来,能够保持画面的原始分辨率,很轻松地让用户感受3D效果,而且不会造成画面亮度降低。
具体的,奇数帧和偶数帧时显示的图像是将原始2D下的画面一分为二,按帧通过景深处理为对应于左右眼的两幅画面,当播放3D片源时,对应左右眼的画面会交替连续的播放,大脑综合处理左右眼视网膜上所成的图像从而可以产生3D立体效果。
在一种实施例中,第一镜片201和第二镜片202均为液晶屏,且所述液晶屏能够控制为在透光状态和遮光状态之间切换。具体的,第一镜片201和第二镜片202由仅有开与关两种状态的液晶屏构成,不通电时镜片打开可以透过光线,通电时镜片关闭无光线透过。需要说明的是,本申请可以通过提高3D眼镜的液晶响应时间,从而增加镜片打开的稳态时间,则背光的打开时间就可以适当增加,使得佩戴3D眼镜观看图像的亮度有所提高,从而提升用户的3D体验效果。在其它实施例中,所述第一镜片201和所述第二镜片202也可以为被动式的滤色3D眼镜。
在一种实施例中,当第一微发光二极管1231工作时,第一镜片201为透光状态,第二镜片202为遮光状态;当第二微发光二极管1232工作或第三微发光二极管1233与第二微发光二极管1232同时工作时,第一镜片201为遮光状态,第二镜片202为透光状态。
可以理解的是,第一镜片201对应接收第一微发光二极管1231激发的图像,而第一微发光二极管1231对应激发奇数帧的图像,即奇数帧时,显示面板11显示奇数帧对应的图像,同时背光模组12中的第一微发光二极管1231亮起,相应的3D眼镜20中的第一镜片201的液晶屏打开,第二镜片202的液晶屏关闭,相应的左眼接受奇数帧的画面影像。
可以理解的是,第二镜片202对应接收第二微发光二极管1232激发的图像或第二微发光二极管1232和第三微发光二极管1233共同激发的图像,而第二微发光二极管1232或第二微发光二极管1232和第三微发光二极管1233对应激发偶数帧的图像,即偶数帧时,显示面板11显示偶数帧对应的图像,同时背光模组12中的第二微发光二极管1232亮起、或第二微发光二极管1232和第三微发光二极管1233同时亮起,相应的3D眼镜20中的第二镜片202的液晶屏打开,第一镜片201的液晶屏关闭,相应的右眼接受偶数帧的画面影像。
在一种实施例中,所述显示装置10还包括设于所述背光模组12上的同步信号发射器(图未示),所述3D眼镜20上设置有同步信号接收器(图未示),所述同步信号接收器用于接收所述同步信号发射器发出的同步信号。具体的,所述同步信号发射器为红外信号发射器,所述同步信号接收器为红外信号接收器。
具体的,当显示装置10显示奇数帧图像时,同步信号发射器发射同步信号,同步信号接收器接收同步信号后控制第一镜片201打开,第二镜片202关闭;当显示装置10显示偶数帧图像时,同步信号发射器发射同步信号,同步信号接收器接收同步信号后控制第二镜片202打开,第一镜片201关闭,即同步信号发射器可以同步控制3D眼镜20的第一镜片201、第二镜片202的开和关,使双眼能够在正确的时刻看到相应画面。
在其它实施例中,所述显示装置10还包括与所述显示面板11电连接的驱动电路板(图未示),所述驱动电路板上设置有蓝牙模块(图未示),所述3D眼镜20上设置有蓝牙接收模块(图未示),即所述显示装置10还可以通过蓝牙与所述3D眼镜20进行同步信号的通信。
接下来,请参阅图2,为本申请实施例提供的3D显示系统的工作时序示意图,当显示装置的刷新率为120赫兹时,每1/120秒切换一次,奇数帧时,显示左眼对应的图像(L),与此同时,3D眼镜的左眼镜片打开,右眼镜片关闭;偶数帧时,显示右眼对应的图像(R),与此同此,3D眼镜的左眼镜片关闭,右眼镜片打开,以实现在正确的时刻观看到正确的图像画面。需要说明的是,此处的奇数帧和偶数帧也可以互换。
接下来,请参阅图3,为本申请实施例提供的3D显示系统的显示方法流程图,所述显示方法包括步骤:
S1、提供一3D显示系统,包括显示装置和3D眼镜,所述显示装置包括显示面板以及设于所述显示面板下方的背光模组,所述背光模组包括均匀分布的多个第一微发光二极管、多个第二微发光二极管以及多个第三微发光二极管;所述3D眼镜包括第一镜片和第二镜片,所述第一镜片的颜色与所述第一微发光二极管的出光颜色一致,所述第二镜片的颜色与所述第二微发光二极管的出光颜色或所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致;
S2、点亮所述第一微发光二极管;
S3、当所述第二镜片的颜色与所述第二微发光二极管的出光颜色一致时,点亮所述第二微发光二极管,当所述第二镜片的颜色与所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致时,同时点亮所述第二微发光二极管和所述第三微发光二极管;
S4、依次循环所述步骤S2和所述步骤S3,直至显示结束。
需要说明的是,上述步骤S2和步骤S3的顺序可以互换,即也可以先点亮第二微发光二极管或先同时点亮第二微发光二极管和第三微发光二极管,后点亮第一微发光二极管。
可以理解的是,本申请实施例提供的3D显示系统的显示方法是通过控制背光模组上的第一微发光二极管、第二微发光二极管以及第三微发光二极管分时点亮来提供不同颜色的背光。具体的,有以下两种情况:第一种情况是第二镜片的颜色与第二微发光二极管的出光颜色一致,则显示面板上显示的图像是分别由第一微发光二极管和第二微发光二极管的出光颜色来决定的,当第一微发光二极管被点亮时,通过第一镜片能分辨除第一微发光二极管的出光颜色之外的颜色,即通过第一镜片能看到由第一微发光二极管激发的图像;当第二微发光二极管被点亮时,通过第二镜片能分辨除第二微发光二极管的出光颜色之外的颜色,即通过第二镜片能看到由第二微发光二极管激发的图像,当显示面板的刷新率大于或等于120赫兹时,由于双眼的视差以及视觉暂留效应,两幅图像在大脑中合成一幅具有景深的图像,即可以看到3D立体效果,即实现了色差式3D和快门式3D的结合,由于第一微发光二极管、第二微发光二极管均匀的分布在显示面板的下方,因此,无论从中间区域还是边缘区域观看,都不会产生色偏,提高了用户的3D体验效果。
第二种情况是第二镜片的颜色与第二微发光二极管和第三微发光二极管的混合出光颜色一致,则显示面板上显示的图像是分别由第一微发光二极管的出光颜色、第二微发光二极管和第三微发光二极管的混合出光颜色来决定的,当第一微发光二极管被点亮时,第一镜片能分辨除第一微发光二极管的出光颜色之外的颜色,即通过第一镜片能看到由第一微发光二极管激发的图像;当第二微发光二极管和第三微发光二极管同时被点亮时,第二镜片能分辨除第二微发光二极管和第三微发光二极管的混合出光颜色之外的颜色,即通过第二镜片能看到由第二微发光二极管和第三微发光二极管共同激发的图像,其显示原理与第一种情况类似,此处不再赘述。
在本实施例中,第一微发光二极管、第二微发光二极管以及第三微发光二极管的出光颜色分别选自红色、绿色、蓝色中的一种。可以理解的是,由于第一微发光二极管、第二微发光二极管以及第三微发光二极管的出光颜色各不相同,当第一微发光二极管为红色、第二微发光二极管为绿色时,第三微发光二极管则为蓝色,在其它实施例中,第一微发光二极管、第二微发光二极管以及第三微发光二极管还可以分别为红色、蓝色、绿色;绿色、红色、蓝色;绿色、蓝色、红色;蓝色、红色、绿色;蓝色、绿色、红色。
在本实施例中,所述第一镜片和所述第二镜片均为液晶屏,且所述液晶屏能够控制为在透光状态和遮光状态之间切换。具体的,第一镜片和第二镜片由仅有开与关两种状态的液晶屏构成,不通电时镜片打开可以透过光线,通电时镜片关闭无光线透过。在其他实施例中,所述第一镜片和所述第二镜片也可以为被动式的滤色3D眼镜。
在本实施例中,所述步骤S2中,点亮所述第一微发光二极管以显示奇数帧,控制所述第一镜片为透光状态,控制所述第二镜片为遮光状态;所述步骤S3中,点亮所述第二微发光二极管或同时点亮所述第二微发光二极管和所述第三微发光二极管以显示偶数帧,控制所述第一镜片为遮光状态,控制所述第二镜片为透光状态。
可以理解的是,第一镜片对应接收第一微发光二极管激发的图像,而第一微发光二极管对应激发奇数帧的图像,即奇数帧时,显示面板显示奇数帧对应的图像,同时背光模组中的第一微发光二极管点亮,相应的3D眼镜中的第一镜片的液晶屏打开,第二镜片的液晶屏关闭,相应的左眼接受奇数帧的画面影像。
可以理解的是,第二镜片对应接收第二微发光二极管激发的图像或第二微发光二极管和第三微发光二极管共同激发的图像,而第二微发光二极管或第二微发光二极管和第三微发光二极管对应激发偶数帧的图像,即偶数帧时,显示面板显示偶数帧对应的图像,同时背光模组中的第二微发光二极管点亮、或第二微发光二极管和第三微发光二极管同时点亮,相应的3D眼镜中的第二镜片的液晶屏打开,第一镜片的液晶屏关闭,相应的右眼接受偶数帧的画面影像。
在一种实施例中,所述显示装置还包括设于所述背光模组上的同步信号发射器,所述3D眼镜上设置有同步信号接收器,所述同步信号接收器用于接收所述同步信号发射器发出的同步信号。具体的,所述同步信号发射器为红外信号发射器,所述同步信号接收器为红外信号接收器。
具体的,当显示装置显示奇数帧图像时,同步信号发射器发射同步信号,同步信号接收器接收同步信号后控制第一镜片打开,第二镜片关闭;当显示装置显示偶数帧图像时,同步信号发射器发射同步信号,同步信号接收器接收同步信号后控制第二镜片打开,第一镜片关闭,即同步信号发射器可以同步控制3D眼镜的第一镜片、第二镜片的开和关,使双眼能够在正确的时刻看到相应画面。
在其它实施例中,所述显示装置还包括与所述显示面板电连接的驱动电路板,所述驱动电路板上设置有蓝牙模块,所述3D眼镜上设置有蓝牙接收模块,即所述显示装置还可以通过蓝牙与所述3D眼镜进行同步信号的通信。
综上所述,本申请实施例提供的一种3D显示系统,包括显示装置和3D眼镜,显示装置包括显示面板以及设于显示面板下方的背光模组,背光模组包括均匀分布的多个第一微发光二极管、多个第二微发光二极管以及多个第三微发光二极管;3D眼镜包括第一镜片和第二镜片,第一镜片的颜色与第一微发光二极管的出光颜色一致,第二镜片的颜色与第二微发光二极管的出光颜色或第二微发光二极管和第三微发光二极管的混合出光颜色一致;其中,第一微发光二极管与第二微发光二极管交替工作,当第二镜片的颜色与第二微发光二极管的出光颜色一致时,第三微发光二极管不工作,当第二镜片的颜色与第二微发光二极管和第三微发光二极管的混合出光颜色一致时,第三微发光二极管与第二微发光二极管同时工作。本申请通过控制背光模组上的第一微发光二极管、第二微发光二极管交替工作,第三微发光二极管不工作或与第二微发光二极管同时工作,可以在不降低显示屏分辨率的基础上实现色差式3D和快门式3D的结合使用,提高用户的3D体验效果,解决了现有技术的色差式3D显示的分辨率低以及在画面边缘观看容易产生色偏,使得观看者的3D体验效果差,并且长期观看容易造成眩晕的技术问题。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些替换或改变都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种3D显示系统,其包括显示装置和3D眼镜,所述显示装置包括显示面板以及设于所述显示面板下方的背光模组,所述背光模组包括均匀分布的多个第一微发光二极管、多个第二微发光二极管以及多个第三微发光二极管;
    所述3D眼镜包括第一镜片和第二镜片,所述第一镜片的颜色与所述第一微发光二极管的出光颜色一致,所述第二镜片的颜色与所述第二微发光二极管的出光颜色或所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致;
    其中,所述第一微发光二极管与所述第二微发光二极管交替工作,当所述第二镜片的颜色与所述第二微发光二极管的出光颜色一致时,所述第三微发光二极管不工作,当所述第二镜片的颜色与所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致时,所述第三微发光二极管与所述第二微发光二极管同时工作。
  2. 如权利要求1所述的3D显示系统,其中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别选自红色、绿色、蓝色中的一种。
  3. 如权利要求2所述的3D显示系统,其中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别为红色、蓝色、绿色。
  4. 如权利要求1所述的3D显示系统,其中,在奇数帧时,所述第一微发光二极管工作;在偶数帧时,所述第二微发光二极管工作或所述第三微发光二极管与所述第二微发光二极管同时工作。
  5. 如权利要求4所述的3D显示系统,其中,所述第一镜片和所述第二镜片均为液晶屏,且所述液晶屏能够控制为在透光状态和遮光状态之间切换。
  6. 如权利要求5所述的3D显示系统,其中,当所述第一微发光二极管工作时,所述第一镜片为透光状态,所述第二镜片为遮光状态;当所述第二微发光二极管工作或所述第三微发光二极管与所述第二微发光二极管同时工作时,所述第一镜片为遮光状态,所述第二镜片为透光状态。
  7. 如权利要求4所述的3D显示系统,其中,所述第一镜片和所述第二镜片为被动式的滤色3D眼镜。
  8. 如权利要求1所述的3D显示系统,其中,在偶数帧时,所述第一微发光二极管工作;在奇数帧时,所述第二微发光二极管工作或所述第三微发光二极管与所述第二微发光二极管同时工作。
  9. 如权利要求1所述的3D显示系统,其中,所述显示装置还包括设于所述背光模组上的同步信号发射器,所述3D眼镜上设置有同步信号接收器,所述同步信号接收器用于接收所述同步信号发射器发出的同步信号。
  10. 如权利要求9所述的3D显示系统,其中,所述同步信号发射器为红外信号发射器,所述同步信号接收器为红外信号接收器。
  11. 如权利要求1所述的3D显示系统,其中,所述显示装置还包括与所述显示面板电连接的驱动电路板,所述驱动电路板上设置有蓝牙模块,所述3D眼镜上设置有蓝牙接收模块。
  12. 如权利要求1所述的3D显示系统,其中,所述背光模组还包括基底、TFT阵列层以及透明胶层;
    所述TFT阵列层位于所述基底面向所述显示面板的一侧,所述多个第一微发光二极管、所述多个第二微发光二极管以及所述多个第三微发光二极管位于所述TFT阵列层远离所述基底的一侧,所述透明胶层位于所述基底面向所述显示面板的一侧并覆盖所述多个第一微发光二极管、所述多个第二微发光二极管以及所述多个第三微发光二极管;
    其中,所述TFT阵列层包括多个TFT,任一所述TFT对应驱动一个所述第一微发光二极管、或一个所述第二微发光二极管、或一个所述第三微发光二极管。
  13. 一种3D显示系统的显示方法,其包括步骤:
    S1、提供一3D显示系统,包括显示装置和3D眼镜,所述显示装置包括显示面板以及设于所述显示面板下方的背光模组,所述背光模组包括均匀分布的多个第一微发光二极管、多个第二微发光二极管以及多个第三微发光二极管;所述3D眼镜包括第一镜片和第二镜片,所述第一镜片的颜色与所述第一微发光二极管的出光颜色一致,所述第二镜片的颜色与所述第二微发光二极管的出光颜色或所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致;
    S2、点亮所述第一微发光二极管;
    S3、当所述第二镜片的颜色与所述第二微发光二极管的出光颜色一致时,点亮所述第二微发光二极管,当所述第二镜片的颜色与所述第二微发光二极管和所述第三微发光二极管的混合出光颜色一致时,同时点亮所述第二微发光二极管和所述第三微发光二极管;
    S4、依次循环所述步骤S2和所述步骤S3,直至显示结束。
  14. 如权利要求13所述的3D显示系统的显示方法,其中,所述步骤S2和所述步骤S3的先后顺序能够互换。
  15. 如权利要求13所述的3D显示系统的显示方法,其中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别选自红色、绿色、蓝色中的一种。
  16. 如权利要求15所述的3D显示系统的显示方法,其中,所述第一微发光二极管、所述第二微发光二极管以及所述第三微发光二极管的出光颜色分别为红色、蓝色、绿色。
  17. 如权利要求13所述的3D显示系统的显示方法,其中,所述第一镜片和所述第二镜片均为液晶屏,且所述液晶屏能够控制为在透光状态和遮光状态之间切换。
  18. 如权利要求17所述的3D显示系统的显示方法,其中,所述步骤S2中,点亮所述第一微发光二极管以显示奇数帧,控制所述第一镜片为透光状态,控制所述第二镜片为遮光状态;
    所述步骤S3中,点亮所述第二微发光二极管或同时点亮所述第二微发光二极管和所述第三微发光二极管以显示偶数帧,控制所述第一镜片为遮光状态,控制所述第二镜片为透光状态。
  19. 如权利要求13所述的3D显示系统的显示方法,其中,所述第一镜片和所述第二镜片为被动式的滤色3D眼镜。
  20. 如权利要求13所述的3D显示系统的显示方法,其中,所述显示装置还包括设于所述背光模组上的同步信号发射器,所述3D眼镜上设置有同步信号接收器,所述同步信号接收器用于接收所述同步信号发射器发出的同步信号。
PCT/CN2021/111412 2021-07-15 2021-08-09 3d显示系统及其显示方法 WO2023284044A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/607,717 US20240029669A1 (en) 2021-07-15 2021-08-09 3d display system and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110799554.2 2021-07-15
CN202110799554.2A CN113534488A (zh) 2021-07-15 2021-07-15 3d显示系统及其显示方法

Publications (1)

Publication Number Publication Date
WO2023284044A1 true WO2023284044A1 (zh) 2023-01-19

Family

ID=78099394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111412 WO2023284044A1 (zh) 2021-07-15 2021-08-09 3d显示系统及其显示方法

Country Status (3)

Country Link
US (1) US20240029669A1 (zh)
CN (1) CN113534488A (zh)
WO (1) WO2023284044A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852920A (zh) * 2010-03-19 2010-10-06 华映视讯(吴江)有限公司 立体显示装置及立体画面显示方法
TW201129825A (en) * 2010-02-25 2011-09-01 Chunghwa Picture Tubes Ltd Stereoscopic display device and stereoscopic image displaying method thereof
CN102317845A (zh) * 2009-02-13 2012-01-11 3M创新有限公司 立体3d显示装置
CN102685538A (zh) * 2011-03-16 2012-09-19 三星电子株式会社 3d图像显示装置、3d眼镜、及其驱动方法
US20140320551A1 (en) * 2013-04-26 2014-10-30 Japan Display Inc. Display device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963371A (en) * 1998-02-04 1999-10-05 Intel Corporation Method of displaying private data to collocated users
US8730306B2 (en) * 2006-04-25 2014-05-20 Corporation For Laser Optics Research 3-D projection full color multimedia display
KR101660971B1 (ko) * 2009-11-06 2016-09-29 엘지디스플레이 주식회사 입체 영상표시장치와 그 구동방법
US8619205B2 (en) * 2009-11-13 2013-12-31 Sharp Kabushiki Kaisha Three-dimensional video recognition system, video display device and active shutter glasses
US8692855B2 (en) * 2010-01-26 2014-04-08 Dolby Laboratories Licensing Corporation Compact arrangement of 3D filters and other apparatus/methods of lighting, recycling, and display
KR101255711B1 (ko) * 2010-07-02 2013-04-17 엘지디스플레이 주식회사 입체영상 표시장치 및 그 구동방법
JP5404546B2 (ja) * 2010-07-16 2014-02-05 株式会社ジャパンディスプレイ 画像表示装置の駆動方法
JP5241788B2 (ja) * 2010-09-01 2013-07-17 シャープ株式会社 立体映像用メガネおよび電子機器
KR101734458B1 (ko) * 2010-11-05 2017-05-12 삼성디스플레이 주식회사 입체 영상 표시 장치 및 그의 구동 방법
TWI444088B (zh) * 2011-03-11 2014-07-01 Nat Univ Tsing Hua 不具色分離現象之彩色發光二極體顯示裝置
EP2687017B1 (en) * 2011-03-14 2017-06-21 Dolby Laboratories Licensing Corporation Image projection display and method for displaying an image
KR20120105199A (ko) * 2011-03-15 2012-09-25 엘지디스플레이 주식회사 다중 시청 가능한 입체영상 표시장치 및 그 구동방법
US9325976B2 (en) * 2011-05-02 2016-04-26 Dolby Laboratories Licensing Corporation Displays, including HDR and 3D, using bandpass filters and other techniques
JP5884367B2 (ja) * 2011-09-27 2016-03-15 セイコーエプソン株式会社 プロジェクター
US9335541B2 (en) * 2012-01-17 2016-05-10 Imax Theatres International Limited Stereoscopic glasses using dichroic and absorptive layers
KR20150019341A (ko) * 2013-08-13 2015-02-25 삼성디스플레이 주식회사 입체 영상 표시 방법, 이를 채용한 유기 발광 표시 장치 및 입체 영상 표시 시스템
US9986228B2 (en) * 2016-03-24 2018-05-29 3Di Llc Trackable glasses system that provides multiple views of a shared display
US20160147063A1 (en) * 2014-11-26 2016-05-26 Osterhout Group, Inc. See-through computer display systems
US9494800B2 (en) * 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
CN104534358A (zh) * 2014-12-24 2015-04-22 南京中电熊猫液晶显示科技有限公司 一种背光模组及3d显示装置
US20170272732A1 (en) * 2016-03-17 2017-09-21 Disney Enterprises, Inc. Wavelength multiplexing visualization using discrete pixels
CN105741804B (zh) * 2016-04-08 2018-12-21 京东方科技集团股份有限公司 驱动基板及其驱动方法、液晶显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102317845A (zh) * 2009-02-13 2012-01-11 3M创新有限公司 立体3d显示装置
TW201129825A (en) * 2010-02-25 2011-09-01 Chunghwa Picture Tubes Ltd Stereoscopic display device and stereoscopic image displaying method thereof
CN101852920A (zh) * 2010-03-19 2010-10-06 华映视讯(吴江)有限公司 立体显示装置及立体画面显示方法
CN102685538A (zh) * 2011-03-16 2012-09-19 三星电子株式会社 3d图像显示装置、3d眼镜、及其驱动方法
US20140320551A1 (en) * 2013-04-26 2014-10-30 Japan Display Inc. Display device

Also Published As

Publication number Publication date
CN113534488A (zh) 2021-10-22
US20240029669A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US8928745B2 (en) Stereoscopic 3D display device
KR100752336B1 (ko) 패럴랙스-배리어 방식 입체영상 표시 장치
US8564650B2 (en) Apparatus and method for changing an open period for right and left eye shutters of a pair of viewing glasses
US20110205251A1 (en) Passive eyewear stereoscopic viewing system with frequency selective emitter
US20080158672A1 (en) Method and Apparatus for Three Dimensional Imaging
US7522184B2 (en) 2-D and 3-D display
WO2011048993A1 (ja) 画像表示装置および立体画像表示システム
US20110102422A1 (en) Two-dimensional/three-dimensional image display apparatus and method of driving the same
EP2579240B1 (en) Liquid crystal display device and television receiver
JP2011128548A (ja) 画像表示装置、画像表示観察システム及び画像表示方法
CN102263970B (zh) 显示设备和显示方法
TW201210317A (en) Stereoscopic image display device and driving method thereof
JP2001186442A (ja) 映像表示装置
WO2012031387A1 (zh) 一种3d图像显示方法、系统、3d电视及眼镜
JP2005227424A (ja) 表示システム
KR20070119870A (ko) 입체영상의 표출이 가능한 led 전광판
US8780286B2 (en) Three dimensional image display device
US8770759B2 (en) Liquid crystal glasses, projection display system and control method thereof
JP2011013265A (ja) 電気光学装置及び電子機器
WO2008073000A1 (fr) Système de formation d'images stéréoscopiques
WO2023284044A1 (zh) 3d显示系统及其显示方法
KR102056672B1 (ko) 입체 영상 표시 장치
US20120139919A1 (en) 3d anaglyph display apparatus and system
KR20160021650A (ko) 렌티큘러 렌즈 방식의 입체영상표시장치
CN103220538A (zh) 立体显示系统及立体显示方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17607717

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE