WO2023282339A1 - 画像処理方法、画像処理プログラム、画像処理装置及び眼科装置 - Google Patents

画像処理方法、画像処理プログラム、画像処理装置及び眼科装置 Download PDF

Info

Publication number
WO2023282339A1
WO2023282339A1 PCT/JP2022/027008 JP2022027008W WO2023282339A1 WO 2023282339 A1 WO2023282339 A1 WO 2023282339A1 JP 2022027008 W JP2022027008 W JP 2022027008W WO 2023282339 A1 WO2023282339 A1 WO 2023282339A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
fundus
fundus image
eye
subject
Prior art date
Application number
PCT/JP2022/027008
Other languages
English (en)
French (fr)
Inventor
泰士 田邉
朋春 藤原
幹 外山
真梨子 向井
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2023533196A priority Critical patent/JPWO2023282339A1/ja
Priority to CN202280047704.7A priority patent/CN117597061A/zh
Priority to EP22837753.7A priority patent/EP4360535A1/en
Publication of WO2023282339A1 publication Critical patent/WO2023282339A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the technology of the present disclosure relates to an image processing method, a program, an image processing apparatus, and an ophthalmologic apparatus.
  • US Patent Application Publication No. 2019/0059723 discloses a tracking method for moving an optical system according to the movement of an eye to be examined. Conventionally, there has been a demand for capturing a fundus image without blurring.
  • An image processing method is image processing performed by a processor, comprising: obtaining a first fundus image of an eye to be examined; a step of obtaining a position for obtaining a tomographic image of the fundus of the eye to be examined; a step of obtaining a second fundus image of the eye to be examined; and determining whether or not the position to be obtained is included in a predetermined range of the first fundus image. and if the position to be acquired is included in the predetermined range, a first registration process of aligning the first fundus image and the second fundus image is used to determine the first position of the eye to be inspected. second registration, different from the first registration process, calculating the amount of movement of and aligning the first fundus image and the second fundus image when the acquired position is outside the predetermined range and calculating a second motion amount of the eye to be inspected using the process.
  • An image processing device is an image processing device comprising a processor, wherein the processor acquires a first fundus image of an eye to be examined, and uses the first fundus image to set obtaining a position for obtaining a tomographic image of the fundus of the subject eye; acquiring a second fundus image of the eye to be inspected; determining whether the acquired position is included in a predetermined range of the first fundus image; and determining whether the acquired position is included in the predetermined range.
  • a first registration process for aligning the first fundus image and the second fundus image is used to calculate a first movement amount of the subject's eye, and the position to be acquired is outside the predetermined range.
  • a second registration process different from the first registration process for aligning the first fundus image and the second fundus image is used to determine the second amount of movement of the eye to be inspected. and calculating.
  • An image processing program provides a computer with a step of acquiring a first fundus image of an eye to be examined, and a tomographic image of the fundus of the eye to be examined set using the first fundus image. acquiring a second fundus image of the eye to be inspected; determining whether the acquired position is included in a predetermined range of the first fundus image; When the position to be acquired is included in the predetermined range, calculating a first movement amount of the subject's eye using a first registration process for aligning the first fundus image and the second fundus image. using a second registration process different from the first registration process for aligning the first fundus image and the second fundus image when the position to be acquired is outside the predetermined range; and calculating a second motion amount of the subject's eye.
  • FIG. 1 is a block diagram of an ophthalmic system 100;
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of an ophthalmologic apparatus 110;
  • FIG. 3 is a functional block diagram of the CPU 16A of the control device 16 of the ophthalmologic apparatus 110.
  • FIG. 4 is a flow chart showing a program executed by a CPU 16A of the ophthalmologic apparatus 110;
  • FIG. 5 is a flowchart of a subroutine of eye tracking processing in step 306 of FIG. 4;
  • FIG. 2 is a diagram showing a fundus central region and a fundus peripheral region in an eyeball;
  • FIG. 4 shows a UWF-SLO fundus image 400G.
  • FIG. 4 shows a UWF-SLO fundus image 400G superimposed with a position 402 for acquiring OCT data.
  • 4 is a diagram showing a UWF-SLO fundus image 400G in which a position 402 for acquiring OCT data and a region 400 for acquiring a rectangular SLO fundus image are superimposed.
  • FIG. Fig. 5 shows a screen 500 of the display of viewer 150;
  • an ophthalmic system 100 includes an ophthalmic device 110, an eye axial length measuring device 120, a management server device (hereinafter referred to as “server”) 140, and an image display device (hereinafter referred to as "viewer”). 150 and .
  • the ophthalmologic device 110 acquires a fundus image.
  • the axial length measuring device 120 measures the axial length of the subject.
  • the server 140 stores the fundus image obtained by photographing the fundus of the subject with the ophthalmologic apparatus 110 in association with the ID of the subject.
  • the viewer 150 displays medical information such as fundus images acquired from the server 140 .
  • the ophthalmologic apparatus 110 is an example of the "image processing apparatus" of the technology of the present disclosure.
  • Network 130 is any network such as LAN, WAN, the Internet, or a wide area Ethernet network.
  • LAN local area network
  • WAN wide area network
  • ophthalmologic equipment inspection equipment for visual field measurement, intraocular pressure measurement, etc.
  • diagnosis support device that performs image analysis using artificial intelligence are connected via the network 130 to the ophthalmic equipment 110, the eye axial length measuring device 120, and the server. 140 and viewer 150 .
  • SLO scanning laser ophthalmoscope
  • OCT optical coherence tomography
  • the horizontal direction is the "X direction”
  • the vertical direction to the horizontal plane is the "Y direction”.
  • the ophthalmologic device 110 includes an imaging device 14 and a control device 16 .
  • the imaging device 14 includes an SLO unit 18, an OCT unit 20, and an imaging optical system 19, and acquires a fundus image of the eye 12 to be examined.
  • the two-dimensional fundus image acquired by the SLO unit 18 is hereinafter referred to as an SLO fundus image.
  • a tomographic image of the retina, a front image (en-face image), and the like created based on the OCT data acquired by the OCT unit 20 are referred to as OCT images.
  • the control device 16 comprises a computer having a CPU (Central Processing Unit) 16A, a RAM (Random Access Memory) 16B, a ROM (Read-Only Memory) 16C, and an input/output (I/O) port 16D. ing.
  • the ROM 16C stores an image processing program, which will be described later.
  • the control device 16 may further include an external storage device and store the image processing program in the external storage device.
  • the image processing program is an example of the "program” of the technology of the present disclosure.
  • the ROM 16C (or external storage device) is an example of the “memory” and “computer-readable storage medium” of the technology of the present disclosure.
  • the CPU 16A is an example of the “processor” of the technology of the present disclosure.
  • the control device 16 is an example of the "computer program product” of the technology of the present disclosure.
  • the control device 16 has an input/display device 16E connected to the CPU 16A via an I/O port 16D.
  • the input/display device 16E has a graphic user interface that displays an image of the subject's eye 12 and receives various instructions from the user. Graphic user interfaces include touch panel displays.
  • the control device 16 has a communication interface (I/F) 16F connected to the I/O port 16D.
  • the ophthalmologic apparatus 110 is connected to an axial length measuring instrument 120 , a server 140 and a viewer 150 via a communication interface (I/F) 16F and a network 130 .
  • the control device 16 of the ophthalmic device 110 includes the input/display device 16E, but the technology of the present disclosure is not limited to this.
  • the controller 16 of the ophthalmic device 110 may not have the input/display device 16E, but may have a separate input/display device physically separate from the ophthalmic device 110.
  • the display device comprises an image processor unit operating under the control of the CPU 16A of the control device 16.
  • the image processor unit may display an SLO fundus image, an OCT image, etc., based on the image signal output by the CPU 16A.
  • the imaging device 14 operates under the control of the CPU 16A of the control device 16.
  • the imaging device 14 includes an SLO unit 18 , an imaging optical system 19 and an OCT unit 20 .
  • the imaging optical system 19 includes a first optical scanner 22 , a second optical scanner 24 and a wide-angle optical system 30 .
  • the first optical scanner 22 two-dimensionally scans the light emitted from the SLO unit 18 in the X direction and the Y direction.
  • the second optical scanner 24 two-dimensionally scans the light emitted from the OCT unit 20 in the X direction and the Y direction.
  • the first optical scanner 22 and the second optical scanner 24 may be optical elements capable of deflecting light beams, such as polygon mirrors and galvanometer mirrors. Moreover, those combinations may be sufficient.
  • the wide-angle optical system 30 includes an objective optical system (not shown in FIG. 2) having a common optical system 28, and a synthesizing section 26 that synthesizes the light from the SLO unit 18 and the light from the OCT unit 20.
  • the objective optical system of the common optical system 28 may be a reflective optical system using a concave mirror such as an elliptical mirror, a refractive optical system using a wide-angle lens, or a catadioptric system combining concave mirrors and lenses. good.
  • a wide-angle optical system with an elliptical mirror and wide-angle lens it is possible to image not only the central part of the fundus where the optic disc and macula exist, but also the equatorial part of the eyeball and the peripheral part of the fundus where vortex veins exist. It becomes possible.
  • the wide-angle optical system 30 realizes observation in a wide field of view (FOV: Field of View) 12A at the fundus.
  • the FOV 12A indicates a range that can be photographed by the photographing device 14.
  • FIG. FOV12A can be expressed as a viewing angle.
  • a viewing angle can be defined by an internal illumination angle and an external illumination angle in this embodiment.
  • the external irradiation angle is an irradiation angle defined by using the pupil 27 as a reference for the irradiation angle of the light beam irradiated from the ophthalmologic apparatus 110 to the eye 12 to be examined.
  • the internal illumination angle is an illumination angle defined with the center O of the eyeball as a reference for the illumination angle of the luminous flux that illuminates the fundus.
  • the external illumination angle and the internal illumination angle are in correspondence. For example, an external illumination angle of 120 degrees corresponds to an internal illumination angle of approximately 160 degrees. In this embodiment, the internal illumination angle is 200 degrees.
  • UWF-SLO fundus image an SLO fundus image obtained by photographing at an angle of view of 160 degrees or more with an internal irradiation angle is referred to as a UWF-SLO fundus image.
  • UWF is an abbreviation for UltraWide Field.
  • the SLO system is implemented by the control device 16, SLO unit 18, and imaging optical system 19 shown in FIG. Since the SLO system includes the wide-angle optical system 30, it enables fundus imaging with a wide FOV 12A.
  • the SLO unit 18 includes a plurality of light sources, for example, a B light (blue light) light source 40, a G light (green light) light source 42, an R light (red light) light source 44, and an IR light (infrared (for example, near infrared) light source). and optical systems 48, 50, 52, 54, and 56 that reflect or transmit the light from the light sources 40, 42, 44, and 46 and guide them to one optical path.
  • Optical systems 48, 50, 56 are mirrors and optical systems 52, 54 are beam splitters.
  • the B light is reflected by the optical system 48, transmitted through the optical system 50, and reflected by the optical system 54, the G light is reflected by the optical systems 50 and 54, and the R light is transmitted by the optical systems 52 and 54.
  • IR light is reflected by the optical systems 56, 52 and directed to one optical path, respectively.
  • the SLO unit 18 is configured to be switchable between a light source that emits laser light of different wavelengths, such as a mode that emits G light, R light, and B light, and a mode that emits infrared light, or a combination of light sources that emit light.
  • a light source that emits laser light of different wavelengths
  • FIG. 2 includes four light sources, a B light (blue light) light source 40, a G light source 42, an R light source 44, and an IR light source 46
  • SLO unit 18 may further include a white light source to emit light in various modes, such as a mode that emits only white light.
  • the light incident on the imaging optical system 19 from the SLO unit 18 is scanned in the X direction and the Y direction by the first optical scanner 22 .
  • the scanning light passes through the wide-angle optical system 30 and the pupil 27 and irradiates the posterior segment of the eye 12 to be examined.
  • Reflected light reflected by the fundus enters the SLO unit 18 via the wide-angle optical system 30 and the first optical scanner 22 .
  • the SLO unit 18 includes a beam splitter 64 that reflects B light and transmits light other than B light from the posterior segment (for example, fundus) of the eye 12 to be inspected, and G light that has passed through the beam splitter 64.
  • a beam splitter 58 that reflects light and transmits light other than G light is provided.
  • the SLO unit 18 has a beam splitter 60 that reflects the R light and transmits other than the R light out of the light transmitted through the beam splitter 58 .
  • the SLO unit 18 has a beam splitter 62 that reflects IR light out of the light transmitted through the beam splitter 60 .
  • the SLO unit 18 has a plurality of photodetection elements corresponding to a plurality of light sources.
  • the SLO unit 18 includes a B light detection element 70 that detects B light reflected by the beam splitter 64 and a G light detection element 72 that detects G light reflected by the beam splitter 58 .
  • the SLO unit 18 includes an R photodetector element 74 that detects R light reflected by the beam splitter 60 and an IR photodetector element 76 that detects IR light reflected by the beam splitter 62 .
  • Light reflected light reflected by the fundus
  • the beam splitter 64 in the case of B light, and is detected by the B light detection element 70 .
  • G light is transmitted through the beam splitter 64 , reflected by the beam splitter 58 , and received by the G light detection element 72 .
  • the incident light in the case of R light, passes through the beam splitters 64 and 58 , is reflected by the beam splitter 60 , and is received by the R light detection element 74 .
  • the incident light passes through beam splitters 64 , 58 and 60 , is reflected by beam splitter 62 , and is received by IR photodetector 76 .
  • the CPU 16A uses the signals detected by the B photodetector 70, G photodetector 72, R photodetector 74, and IR photodetector 76 to generate a UWF-SLO fundus image.
  • a UWF-SLO fundus image (also referred to as a UWF fundus image or an original fundus image as described later) includes a UWF-SLO fundus image obtained by photographing the fundus in G color (G color fundus image) and a fundus image in R color.
  • a UWF-SLO fundus image (R-color fundus image) obtained by photographing in color.
  • the UWF-SLO fundus image includes a UWF-SLO fundus image obtained by photographing the fundus in B color (B color fundus image) and a UWF-SLO fundus image obtained by photographing the fundus in IR (IR fundus image). image).
  • control device 16 controls the light sources 40, 42, 44 to emit light simultaneously.
  • a G-color fundus image, an R-color fundus image, and a B-color fundus image whose respective positions correspond to each other are obtained.
  • An RGB color fundus image is obtained from the G color fundus image, the R color fundus image, and the B color fundus image.
  • the control device 16 controls the light sources 42 and 44 to emit light at the same time, and the fundus of the subject's eye 12 is photographed simultaneously with the G light and the R light, thereby obtaining a G-color fundus image and an R-color fundus image corresponding to each other at each position.
  • a fundus image is obtained.
  • An RG color fundus image is obtained from the G color fundus image and the R color fundus image.
  • UWF-SLO fundus images include B-color fundus images, G-color fundus images, R-color fundus images, IR fundus images, RGB color fundus images, and RG color fundus images.
  • Each image data of the UWF-SLO fundus image is transmitted from the ophthalmologic apparatus 110 to the server 140 via the communication interface (I/F) 16F together with the subject information input via the input/display device 16E.
  • Each image data of the UWF-SLO fundus image and information of the subject are stored in the storage device 254 correspondingly.
  • the information of the subject includes, for example, subject ID, name, age, visual acuity, distinction between right eye/left eye, and the like.
  • the subject information is entered by the operator through the input/display device 16E.
  • the OCT system is implemented by the control device 16, OCT unit 20, and imaging optical system 19 shown in FIG. Since the OCT system includes the wide-angle optical system 30, it enables fundus imaging with a wide FOV 12A, as in the above-described SLO fundus imaging.
  • the OCT unit 20 includes a light source 20A, a sensor (detection element) 20B, a first optical coupler 20C, a reference optical system 20D, a collimating lens 20E, and a second optical coupler 20F.
  • the light emitted from the light source 20A is split by the first optical coupler 20C.
  • One of the split beams is collimated by the collimating lens 20E and then enters the imaging optical system 19 as measurement light.
  • the measurement light is scanned in the X and Y directions by the second optical scanner 24 .
  • the scanning light passes through the wide-angle optical system 30 and the pupil 27 and illuminates the fundus.
  • the measurement light reflected by the fundus enters the OCT unit 20 via the wide-angle optical system 30 and the second optical scanner 24, passes through the collimating lens 20E and the first optical coupler 20C, and reaches the second optical coupler 20F. incident on
  • the other light emitted from the light source 20A and branched by the first optical coupler 20C enters the reference optical system 20D as reference light, passes through the reference optical system 20D, and enters the second optical coupler 20F. do.
  • the CPU 16A performs signal processing such as Fourier transform on the detection signal detected by the sensor 20B to generate OCT data.
  • the CPU 16A generates OCT images such as tomographic images and en-face images based on the OCT data.
  • the OCT system can acquire OCT data of the imaging region realized by the wide-angle optical system 30.
  • the OCT data, tomographic images, and en-face images generated by the CPU 16A are transmitted from the ophthalmologic apparatus 110 to the server 140 via the communication interface (I/F) 16F together with information on the subject.
  • Various OCT images such as OCT data, tomographic images and en-face images are associated with subject information and stored in the storage device 254 .
  • the light source 20A exemplifies a wavelength sweep type SS-OCT (Swept-Source OCT), but SD-OCT (Spectral-Domain OCT), TD-OCT (Time-Domain OCT), etc.
  • SS-OCT Session-Coupled Device
  • SD-OCT Spectral-Domain OCT
  • TD-OCT Time-Domain OCT
  • the axial length measuring device 120 measures the axial length of the subject's eye 12 in the axial direction.
  • the axial length measuring device 120 transmits the measured axial length to the server 140 .
  • the server 140 stores the subject's eye axial length in association with the subject ID.
  • the control program for the ophthalmic equipment has an imaging control function, a display control function, an image processing function, and a processing function.
  • the CPU 16A executes the control program for the ophthalmologic equipment having these functions, the CPU 16A functions as an imaging control unit 202, a display control unit 204, an image processing unit 206, and a processing unit 208, as shown in FIG. .
  • the CPU 16A of the control device 16 of the ophthalmologic apparatus 110 executes the image processing program of the ophthalmologic apparatus, thereby realizing the control of the ophthalmologic apparatus shown in the flowchart of FIG.
  • the processing shown in the flowchart of FIG. 4 is an example of the "image processing method" of the technology of the present disclosure.
  • the operator of the ophthalmologic apparatus 110 has the subject place his or her chin on a support portion (not shown) of the ophthalmologic apparatus 110 and adjusts the position of the subject's eye 12 .
  • the display control unit 204 of the ophthalmologic apparatus 110 displays a menu screen for inputting subject information and mode selection on the screen of the input/display device 16E.
  • Modes include an SLO mode for acquiring an SLO fundus image and an OCT mode for acquiring an OCT fundus image.
  • the imaging control unit 202 controls the SLO unit 18 and the imaging optical system 19 to obtain a first fundus image of the eye fundus of the subject's eye 12 , specifically, B light source 40 , G light source 42 and R light source 44 . to acquire UWF-SLO fundus images at three different wavelengths.
  • the UWF-SLO fundus image includes a G-color fundus image, an R-color fundus image, a B-color fundus image, and an RGB color fundus image.
  • a UWF-SLO fundus image is an example of the "first fundus image" of the technology of the present disclosure.
  • the display control unit 204 displays the UWF-SLO fundus image 400G on the display of the input/display device 16E.
  • FIG. 7A shows a UWF-SLO fundus image 400G displayed on the display.
  • the UWF-SLO fundus image 400G corresponds to an image of an area that can be scanned by the SLO unit 18, and as shown in FIG. Contains 400gg.
  • a user uses the displayed UWF-SLO fundus image 400G to select a region for acquiring OCT data (position for acquiring a tomographic image) using a touch panel or an input device (not shown). set.
  • FIG. 7B shows a case where a position 402 for acquiring a tomographic image is set by a straight line in the X direction using the UWF-SLO fundus image 400G.
  • the position 402 for acquiring a tomographic image is represented by an arrow.
  • the position 402 for acquiring a tomographic image is not limited to a straight line in the X direction as shown in FIG. A curve or the like connecting two points, or a surface such as a circular area or a rectangular area may be used.
  • OCT data (referred to as "A scan data”) is obtained by scanning one point of the fundus in the depth (optical axis) direction (this scanning is referred to as “A scan”). is obtained.
  • a scan data is performed a plurality of times while moving along the line (referred to as “B scan") to obtain OCT data (“B scan data”) is obtained.
  • B scan data is obtained when the position for acquiring the tomographic image is a plane.
  • the B scan is repeated while moving along the plane (referred to as “C scan”) to obtain OCT data (referred to as "C scan data”).
  • C scan data Three-dimensional OCT data is generated from the C-scan data, and a two-dimensional en-face image or the like is generated based on the three-dimensional OCT data.
  • the processing unit 208 acquires position data (coordinate data, etc.) of a position 402 for acquiring a tomographic image, which is set using the UWF-SLO fundus image 400G.
  • the data indicating the position where the tomographic image is acquired is not limited to coordinate data, and may be a number or the like that roughly indicates the position of the fundus image.
  • step 306 eye tracking processing is performed. Eye tracking processing will be described with reference to FIG.
  • eye tracking processing is executed immediately after the position data of the position 402 for acquiring the tomographic image, which is set using the UWF-SLO fundus image 400G in step 304, is acquired.
  • the operator confirms that the subject's eye 12 and the ophthalmic device 110 are properly aligned. After confirming that the alignment is in an appropriate state, the operator instructs to start OCT imaging by operating buttons or the like on the display of the input/display device 16E. When an operation to start OCT imaging is instructed in this way, eye tracking processing is executed.
  • the image processing unit 206 uses the R-color fundus image and the G-color fundus image of the UWF-SLO fundus image to extract feature points of each of the retinal blood vessels and the choroidal blood vessels. Specifically, the image processing unit 206 first extracts each of the retinal blood vessels and the choroidal blood vessels, and extracts feature points of each of the retinal blood vessels and the choroidal blood vessels.
  • the structure of the eye is such that the vitreous body is covered by multiple layers with different structures.
  • the multiple layers include, from innermost to outermost on the vitreous side, the retina, choroid, and sclera.
  • the R light passes through the retina and reaches the choroid. Therefore, the R-color fundus image includes information on blood vessels existing in the retina (retinal vessels) and information on blood vessels existing in the choroid (choroidal vessels).
  • the G light reaches only the retina. Therefore, the G-color fundus image contains only information on blood vessels existing in the retina (retinal blood vessels).
  • the image processing unit 206 extracts retinal blood vessels from the G-color fundus image by performing image processing such as black hat filter processing on the G-color fundus image.
  • image processing such as black hat filter processing
  • a retinal blood vessel image in which only retinal blood vessel pixels are extracted from the G-color fundus image is obtained.
  • Black hat filtering is performed by performing N times (N is an integer of 1 or more) expansion processing and N times contraction processing on the image data of the G-color fundus image, which is the original image, and the closing processing performed on this original image. Refers to the process of taking the difference from the obtained image data.
  • the image processing unit 206 removes retinal blood vessels from the R-color fundus image by inpainting processing or the like using the retinal blood vessel image extracted from the G-color fundus image.
  • the inpainting process is a process of setting a pixel value at a predetermined position so that the difference from the average value of surrounding pixels is within a specific range (for example, 0). That is, the position information of the retinal blood vessels extracted from the G-color fundus image is used to fill in the pixels corresponding to the retinal blood vessels in the R-color fundus image with the same value as the surrounding pixels. As a result, a choroidal blood vessel image is obtained from the R-color fundus image in which only the pixels of the retinal blood vessels are extracted.
  • the image processing unit 206 may perform CLAHE (Contrast Limited Adaptive Histogram Equalization) processing on the R-color fundus image from which the retinal blood vessels have been removed, and perform enhancement processing for emphasizing the choroidal blood vessels. .
  • CLAHE Contrast Limited Adaptive Histogram Equalization
  • the image processing unit 206 extracts branching points or merging points of retinal blood vessels from the retinal blood vessel image as first feature points of the retinal blood vessels. Then, from the choroidal blood vessel image, a branch point or a confluence point of the choroidal blood vessel is extracted as a first characteristic point of the choroidal blood vessel.
  • the processing unit 208 stores the first feature points of the retinal vessels and the first feature points of the choroidal vessels in the RAM 16B.
  • the imaging control unit 202 controls the SLO unit 18 and the imaging optical system 19 to obtain a rectangular SLO fundus image of the eye 12 to be examined.
  • the rectangular SLO fundus image of the fundus of the subject's eye 12 is an example of the "second fundus image" of the technology of the present disclosure.
  • FIG. 7C shows a UWF-SLO fundus image 400G on which a region 400 for acquiring a rectangular SLO fundus image is superimposed on a position 402 for acquiring a tomographic image.
  • the area 400 for acquiring the rectangular SLO fundus image includes the entire area of the position 402 for acquiring the tomographic image.
  • the technology of the present disclosure is not limited to the case where the area 400 for acquiring the rectangular SLO fundus image includes the entire area of the position 402 for acquiring the tomographic image.
  • the area for acquiring the rectangular SLO fundus image may include only part of the position 402 for acquiring the tomographic image. In this way, the area for acquiring the rectangular SLO fundus image may include at least part of the position 402 for acquiring the tomographic image.
  • the area for acquiring the rectangular SLO fundus image does not have to include the position 402 for acquiring the tomographic image. Therefore, the area for acquiring the rectangular SLO fundus image may be set independently of the position 402 for acquiring the tomographic image.
  • the region 400 for acquiring the rectangular SLO fundus image includes the entire region of the position 402 for acquiring the tomographic image, the region 400 does not include the position 402 at all or includes only a part of the position 402. It is possible to increase the probability that the search range for calculating is narrowed. Thereby, eye tracking processing can be performed smoothly, that is, processing time can be shortened.
  • the area for acquiring the rectangular SLO fundus image includes at least part of the fundus area 400gg of the subject's eye.
  • the size of the area for acquiring the rectangular SLO fundus image is smaller than the size of the UWF-SLO fundus image 400G. That is, the angle of view of the rectangular SLO fundus image is smaller than the angle of view of the UWF-SLO fundus image, and is set to, for example, 10 degrees to 50 degrees.
  • the imaging control unit 202 acquires the position of the area 400 for acquiring the rectangular SLO fundus image set using the UWF-SLO fundus image 400G.
  • the processing unit 208 stores and holds the position of the region for acquiring the rectangular SLO fundus image as the first position in the RAM 16B.
  • the imaging control unit 202 controls the SLO unit 18 and the imaging optical system 19 based on the acquired position of the region 400 to acquire an image of the fundus of the eye 12 to be inspected. Acquire a rectangular SLO fundus image of the fundus.
  • the imaging control unit 202 causes the IR light source 46 to emit light to irradiate the fundus with IR light, thereby capturing an image of the fundus. This is because the IR light is not perceived by the visual cells of the retina of the subject's eye, so that the subject does not feel glare.
  • step 354 the image processing unit 206 extracts feature points of each of the retinal blood vessels and the choroidal blood vessels in the rectangular SLO fundus image of the second fundus image.
  • the image processing unit 206 performs black hat processing on the rectangular SLO fundus image to specify the pixel positions of the retinal blood vessels. This yields the second feature points of the retinal vessels.
  • the image processing unit 206 removes the retinal blood vessels from the rectangular SLO fundus image by performing inpainting processing on the pixel positions of the retinal blood vessels. A second feature point is extracted.
  • the processing unit 208 stores the second feature point of the choroidal blood vessel in the RAM 16B.
  • step 356 the image processing unit 206 determines whether the position 402 for acquiring the tomographic image is within a predetermined range, outside the predetermined range, or partly included in the predetermined range.
  • the predetermined range is, for example, the central region of the fundus.
  • the image processing unit 206 determines whether the position 402 for acquiring the tomographic image is included in the central region of the fundus, in a peripheral region that does not include the central region, or straddles the central region and the peripheral region. is determined based on the data indicating the position 402 where the tomographic image is acquired.
  • the central region 900 of the fundus is a circular region with a predetermined radius centered at the point where the optical axis of the ophthalmologic apparatus 110 passes through the center of the eyeball and intersects the fundus.
  • the region of the processed area outside the center region 900 of the fundus is the peripheral region 902 of the fundus.
  • the predetermined range is not limited to the central region 900 of the fundus.
  • it may be a circular area with a predetermined radius centered on the macula, or a predetermined range where the blood vessel density of the retinal blood vessels is equal to or greater than a predetermined value.
  • Image processing is performed when the position 402 for acquiring a tomographic image is included in the central fundus region 900 and when the position 402 for acquiring a tomographic image straddles the central fundus region 900 and the peripheral region 902 for the fundus. Now go to step 358 . Image processing (especially eye tracking processing) proceeds to step 360 when the position 402 for obtaining a tomographic image is located in the fundus peripheral region 902 .
  • step 358 the image processing unit 206 executes the first registration processing whose processing content is optimized for the central part of the fundus so that the processing time is relatively short and image matching is facilitated.
  • step 360 the image processing unit 206 executes a second registration process in which the processing content is optimized for the peripheral region so that image matching is facilitated even if the processing time is relatively long.
  • the registration process is a process of aligning a rectangular SLO fundus image and a UWF-SLO fundus image (in particular, an RGB color fundus image). Specifically, it is a process of specifying the position of the rectangular SLO fundus image on the RGB color fundus image by image matching.
  • the image processing unit 206 extracts, as feature points, three second feature points of the retinal blood vessels extracted from the rectangular SLO fundus image.
  • the image processing unit 206 searches for positions where the three second feature points match the first feature points of the retinal blood vessels extracted from the RGB color fundus image.
  • the processing unit 208 stores and holds the position matched in the first registration process in the RAM 16B as the second position. Note that in the first registration process of step 358, the RGB color fundus image is not denoised.
  • the image processing unit 206 first performs denoising processing on the RGB color fundus image. Then, the image processing unit 206 extracts, as feature points, three from both the second feature points of the retinal vessels and the second feature points of the choroidal vessels extracted from the rectangular SLO fundus image, for a total of six feature points. The image processing unit 206 searches for positions where the six feature points match the first feature point of the retinal blood vessels or the first feature point of the choroidal blood vessels extracted from the RGB color fundus image. The processing unit 208 stores and holds the position matched in the second registration process in the RAM 16B as the second position.
  • the number of feature amounts used for matching is smaller than the number of feature amounts used in the second registration process. This is because the density of blood vessels in the fundus central region 900 is higher than that in the fundus peripheral region 902, so even if the number of feature points is small, the result of image matching processing can be obtained with high accuracy. This is for shortening the processing time.
  • the image matching processing result is accurate. This is because it is necessary to use the feature points of the choroidal blood vessels in order to obtain , and it is necessary to use the retinal blood vessels and the choroidal blood vessels in order to obtain more accurate image matching processing results.
  • first registration process anterior vessels
  • second registration process retinal vessels
  • choroidal vessels for example, (2, 4 (2, 2)
  • the number of retinal blood vessel feature points and the number of choroidal blood vessel feature points in the second registration process are not limited to the same number. Either one may be more numerous than the other. For example, the number of feature points for choroidal vessels is greater than the number of feature points for retinal vessels.
  • the feature points of only the choroidal blood vessels may be made larger than the number of feature values of the retinal vessels when performing the first registration processing.
  • the image processing unit 206 calculates the eye movement amount from the first position and the second position. Specifically, the image processing unit 206 calculates the magnitude and direction of the deviation between the first position and the second position. Then, the image processing unit 206 calculates the amount of movement of the subject's eye 12 from the calculated magnitude and direction of the displacement.
  • the amount of motion is an amount having a magnitude and a direction of motion, that is, a vector amount. The time elapses from when the fundus of the subject's eye 12 is photographed to obtain a UWF-SLO fundus image in step 302 to when the fundus of the subject's eye 12 is photographed to obtain a rectangular SLO fundus image in step 352. Therefore, the same location of the subject's eye is not necessarily photographed.
  • the image processing unit 206 calculates in what direction and how much the subject's eye 12 is displaced at the start of OCT imaging or during OCT imaging, that is, the amount of movement (vector amount) of the subject's eye 12. do.
  • the deviation amount and the deviation direction calculated in step 362 after step 358 is executed are an example of "the first deviation amount and the first deviation direction.”
  • the deviation amount and the deviation direction calculated in step 362 after step 360 is executed are an example of "the second deviation amount and the second deviation direction.”
  • the subject's eye 12 Since the subject's eye 12 is displaced in this way, if the subject's eye 12 is scanned based on the position for acquiring the tomographic image set based on the UWF-SLO fundus image, the movement amount (displacement amount) from the position originally desired to be acquired. and in the direction of displacement).
  • the imaging control unit 202 controls the second optical system so that the tomographic image of the subject's eye 12 after movement can be acquired at the position to be acquired.
  • the scanning range of the scanner 24 is adjusted.
  • the second optical scanner 24 is an example of the "scanning device" of the technology of the present disclosure.
  • step 308 the imaging control unit 202 controls the OCT unit 20 and the second optical scanner 24 whose scanning range is adjusted, and scans the position of the subject's eye 12 for obtaining a tomographic image, thereby obtaining a tomographic image. get.
  • the processing unit 208 outputs the acquired tomographic image, the RG-UWF-SLO fundus image, and the data of the position 402 where the tomographic image is acquired to the server 140 in correspondence with the subject's information.
  • the image processing in FIG. 4 ends.
  • the server 140 associates the tomographic image, the RGB color fundus image, and the data of the position 402 where the tomographic image is acquired with the subject ID and stores them in a storage device (not shown).
  • the viewer 150 requests the server 140 to transmit data such as a tomographic image corresponding to the subject ID according to an instruction from a user such as an ophthalmologist.
  • the server 140 transmits the tomographic image, the UWF-SLO fundus image, and the data of the position 402 for acquiring the tomographic image stored in association with the subject ID. It transmits to the viewer 150 corresponding to the information and the like. Thereby, the viewer 150 displays each received data on a display (not shown).
  • a screen 500 displayed on the display of the viewer 150 is shown in FIG.
  • the screen 500 has a subject information display area 502 and an image display area 504 .
  • the subject information display area 502 includes a subject ID display field 512, subject name display field 514, age display field 516, visual acuity display field 518, right/left eye display field 520, and axial length display field. 522.
  • the display control unit 204 receives from the server 140 the subject ID, the subject's name, the subject's age, the visual acuity, the right or left eye information, and the subject's eye axial length data, Displayed in corresponding display fields 512-522.
  • the image display area 504 includes an RGB color fundus image display field 508 , a tomographic image display field 506 and a text data display field 510 .
  • a UWF-SLO fundus image 400G superimposed with a position 402 for obtaining a tomographic image is displayed.
  • a tomographic image is displayed in the tomographic image display field 506 .
  • the text data display field 510 displays comments and the like at the time of medical examination.
  • the first registration process is performed. Specifically, the deviation amount and deviation direction of the subject's eye 12 are calculated using a relatively small number of feature points of the retinal blood vessels in each of the UWF-SLO fundus image and the rectangular SLO fundus image. Therefore, the displacement amount and the displacement direction of the subject's eye 12 can be calculated in a relatively short time. Therefore, the motion amount of the subject's eye 12 can be calculated in a relatively short time.
  • the scanning range of the second optical scanner 24 is adjusted to acquire a tomographic image. Therefore, in the above embodiment, a tomographic image can be acquired while following the movement of the eye.
  • the second registration process is performed. Specifically, the deviation amount and deviation direction of the subject's eye 12 are calculated using a relatively large number of characteristic points of at least choroidal blood vessels in each of the UWF-SLO fundus image and the rectangular SLO fundus image. Therefore, the displacement amount and the displacement direction of the subject's eye 12 can be accurately calculated. Therefore, the motion amount of the subject's eye 12 can be accurately calculated. Therefore, the scanning range of the second optical scanner 24 is adjusted based on the accurately calculated movement amount of the eye 12 to acquire a tomographic image. Therefore, in the above embodiments, it is possible to accurately acquire a tomographic image of the set region.
  • the tomographic image is acquired after executing the eye tracking process.
  • eye tracking processing may be performed while acquiring a tomographic image.
  • steps 352 to 362 in FIG. 5 may be repeatedly executed while the tomographic image is being acquired.
  • each time steps 352 to 362 are repeatedly executed a predetermined number of times, the average value of the movement amounts of the eye 12 to be examined is obtained, and the scanning range of the second optical scanner 24 is adjusted while the tomographic image is being acquired. and a tomographic image may be obtained.
  • a plurality of tomographic images of the same position of the subject's eye 12 are obtained.
  • a noise-reduced tomographic image may be acquired by averaging these multiple tomographic images.
  • the tomographic image is acquired after executing the eye tracking process.
  • the technology of the present disclosure is not limited to this.
  • a plurality of tomographic images are obtained without tracking the optical scanner.
  • each component may exist either singly or two or more.
  • image processing may be performed only by a hardware configuration such as FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the technology of the present disclosure includes the following technology, as it includes both cases in which image processing is realized by software configuration using a computer and cases in which it is not.
  • a first acquisition unit that acquires a first fundus image of the subject's eye; a second acquisition unit that acquires a position for acquiring a tomographic image of the fundus of the subject eye, which is set using the first fundus image; a third acquisition unit that acquires a second fundus image of the eye to be inspected; a determination unit that determines whether the acquired position is included in a predetermined range of the first fundus image; When the position to be acquired is included in the predetermined range, a first registration process for aligning the first fundus image and the second fundus image is used to obtain the first displacement amount and the displacement of the eye to be inspected.
  • a second registration different from the first registration process which calculates the direction of and the direction of and aligns the first fundus image and the second fundus image when the acquired position is outside the predetermined range.
  • a calculation unit that calculates a second displacement amount and a displacement direction of the eye to be inspected using a process; image processing device including
  • a first acquiring unit acquiring a first fundus image of the eye to be inspected; a second acquisition unit acquiring a position for acquiring a tomographic image of the fundus of the subject eye, which is set using the first fundus image; a step in which a third acquisition unit acquires a second fundus image of the subject eye; a determination unit determining whether the acquired position is included in a predetermined range of the first fundus image; When the position to be acquired is included in the predetermined range, the calculation unit uses a first registration process for aligning the first fundus image and the second fundus image to obtain the first position of the eye to be inspected.
  • the imaging control unit 202 is an example of the "first acquisition unit” and the “third acquisition unit” of the technology of the present disclosure.
  • the processing unit 208 is an example of the “second acquisition unit” of the technology of the present disclosure.
  • the image processing unit 206 is an example of the “determination unit” and the “calculation unit” of the technology of the present disclosure.
  • a computer program product for image processing comprising a computer readable storage medium which is not itself a temporary signal, said computer readable storage medium having a program stored thereon, said A program is stored in a computer as image processing performed by a processor, comprising: obtaining a first fundus image of an eye to be examined; acquiring a second fundus image of the eye to be inspected; determining whether or not the acquired position is included in a predetermined range of the first fundus image; When the position is included in the predetermined range, a first registration process for aligning the first fundus image and the second fundus image is used to obtain the first shift amount and shift direction of the subject's eye.
  • a second registration process different from the first registration process is used to align the first fundus image and the second fundus image. and calculating a second displacement amount and a displacement direction of the eye to be inspected.

Abstract

プロセッサが行う画像処理であって、被検眼の第1眼底画像を取得するステップと、前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、前記被検眼の第2眼底画像を取得するステップと、前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1の動き量を算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2の動き量とを算出するステップと、を含む。

Description

画像処理方法、画像処理プログラム、画像処理装置及び眼科装置
 本開示の技術は画像処理方法、プログラム、画像処理装置及び眼科装置に関する。
 米国特許出願公開第2019/0059723号明細書には、被検眼の動きに合わせて光学系を移動させるトラッキング方法が開示されている。従来からブレのない眼底画像を撮影することが求められている。
 本開示の技術の第1態様の画像処理方法は、プロセッサが行う画像処理であって、被検眼の第1眼底画像を取得するステップと、前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、前記被検眼の第2眼底画像を取得するステップと、前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1の動き量を算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2の動き量とを算出するステップと、を含む。
 本開示の技術の第2態様の画像処理装置は、プロセッサを備える画像処理装置であって、前記プロセッサは、被検眼の第1眼底画像を取得するステップと、前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、
 前記被検眼の第2眼底画像を取得するステップと、前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1の動き量を算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2の動き量とを算出するステップと、を含む画像処理を実行する。
 本開示の技術の第3態様の画像処理プログラムは、コンピュータに、被検眼の第1眼底画像を取得するステップと、前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、前記被検眼の第2眼底画像を取得するステップと、前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1の動き量を算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2の動き量とを算出するステップと、を含む画像処理を実行させる。
眼科システム100のブロック図である。 眼科装置110の全体構成を示す概略構成図である。 眼科装置110の制御装置16のCPU16Aの機能のブロック図である。 眼科装置110のCPU16Aが実行するプログラムを示すフローチャートである。 図4のステップ306のアイトラッキング処理のサブルーチンのフローチャートである。 眼球において眼底中心領域と眼底周辺領域を示す図である。 UWF-SLO眼底画像400Gを示す図である。 OCTデータを取得する位置402が重畳されたUWF-SLO眼底画像400Gを示す図である。 OCTデータを取得する位置402と矩形SLO眼底画像を取得する領域400が重畳されたUWF-SLO眼底画像400Gを示す図である。 ビューワ150のディスプレイのスクリーン500を示した図である。
 以下、図面を参照して本発明の実施の形態を詳細に説明する。
 図1を参照して、眼科システム100の構成を説明する。図1に示すように、眼科システム100は、眼科装置110と、眼軸長測定器120と、管理サーバ装置(以下、「サーバ」という)140と、画像表示装置(以下、「ビューワ」という)150と、を備えている。眼科装置110は、眼底画像を取得する。眼軸長測定器120は、被検者の眼軸長を測定する。サーバ140は、眼科装置110によって被検者の眼底が撮影されることにより得られた眼底画像を、被検者のIDに対応して記憶する。ビューワ150は、サーバ140から取得した眼底画像などの医療情報を表示する。
 眼科装置110は、本開示の技術の「画像処理装置」の一例である。
 眼科装置110、眼軸長測定器120、サーバ140、およびビューワ150は、ネットワーク130を介して、相互に接続されている。ネットワーク130は、LAN、WAN、インターネットや広域イーサ網等の任意のネットワークである。例えば、眼科システム100が1つの病院に構築される場合には、ネットワーク130にLANを採用することができる。
 なお、他の眼科機器(視野測定、眼圧測定などの検査機器)や人工知能を用いた画像解析を行う診断支援装置がネットワーク130を介して、眼科装置110、眼軸長測定器120、サーバ140、およびビューワ150に接続されていてもよい。
 次に、図2を参照して、眼科装置110の構成を説明する。
 説明の便宜上、走査型レーザ検眼鏡(Scanning Laser Ophthalmoscope)を「SLO」と称する。また、光干渉断層計(Optical Coherence Tomography)を「OCT」と称する。
 なお、眼科装置110が水平面に設置された場合の水平方向を「X方向」、水平面に対する垂直方向を「Y方向」とし、被検眼12の前眼部の瞳孔の中心と眼球の中心とを結ぶ方向を「Z方向」とする。従って、X方向、Y方向、およびZ方向は互いに垂直である。
 眼科装置110は、撮影装置14および制御装置16を含む。撮影装置14は、SLOユニット18、OCTユニット20、および撮影光学系19を備えており、被検眼12の眼底の眼底画像を取得する。以下、SLOユニット18により取得された二次元眼底画像をSLO眼底画像と称する。また、OCTユニット20により取得されたOCTデータに基づいて作成された網膜の断層画像や正面画像(en-face画像)などをOCT画像と称する。
 制御装置16は、CPU(Central Processing Unit(中央処理装置))16A、RAM(Random Access Memory)16B、ROM(Read-Only memory)16C、および入出力(I/O)ポート16Dを有するコンピュータを備えている。ROM16Cには、後述する画像処理プログラムが記憶されている。なお、制御装置16は、外部記憶装置を更に備え、画像処理プログラムを、外部記憶装置に記憶してもよい。
 画像処理プログラムは、本開示の技術の「プログラム」の一例である。ROM16C(又は外部記憶装置)は、本開示の技術の「メモリ」及び「コンピュータ可読記憶媒体」の一例である。CPU16Aは、本開示の技術の「プロセッサ」の一例である。制御装置16は、本開示の技術の「コンピュータープログラム製品」の一例である。
 制御装置16は、I/Oポート16Dを介してCPU16Aに接続された入力/表示装置16Eを備えている。入力/表示装置16Eは、被検眼12の画像を表示したり、ユーザから各種指示を受け付けたりするグラフィックユーザインターフェースを有する。グラフィックユーザインターフェースとしては、タッチパネル・ディスプレイが挙げられる。
 制御装置16はI/Oポート16Dに接続された通信インターフェース(I/F)16Fを備えている。眼科装置110は、通信インターフェース(I/F)16Fおよびネットワーク130を介して眼軸長測定器120、サーバ140、およびビューワ150に接続される。
 上記のように、図2では、眼科装置110の制御装置16が入力/表示装置16Eを備えているが、本開示の技術はこれに限定されない。例えば、眼科装置110の制御装置16は入力/表示装置16Eを備えず、眼科装置110とは物理的に独立した別個の入力/表示装置を備えるようにしてもよい。この場合、当該表示装置は、制御装置16のCPU16Aの制御下で動作する画像処理プロセッサユニットを備える。画像処理プロセッサユニットが、CPU16Aが出力指示した画像信号に基づいて、SLO眼底画像やOCT画像等を表示するようにしてもよい。
 撮影装置14は、制御装置16のCPU16Aの制御下で作動する。撮影装置14は、SLOユニット18、撮影光学系19、およびOCTユニット20を含む。撮影光学系19は、第1光学スキャナ22、第2光学スキャナ24、および広角光学系30を含む。
 第1光学スキャナ22は、SLOユニット18から射出された光をX方向、およびY方向に2次元走査する。第2光学スキャナ24は、OCTユニット20から射出された光をX方向、およびY方向に2次元走査する。第1光学スキャナ22および第2光学スキャナ24は、光束を偏向できる光学素子であればよく、例えば、ポリゴンミラーや、ガルバノミラー等を用いることができる。また、それらの組み合わせであってもよい。
 広角光学系30は、共通光学系28を有する対物光学系(図2では不図示)、およびSLOユニット18からの光とOCTユニット20からの光を合成する合成部26を含む。
 なお、共通光学系28の対物光学系は、楕円鏡などの凹面ミラーを用いた反射光学系や、広角レンズなどを用いた屈折光学系、あるいは、凹面ミラーやレンズを組み合わせた反射屈折光学系でもよい。楕円鏡や広角レンズなどを用いた広角光学系を用いることにより、視神経乳頭や黄斑が存在する眼底中心部だけでなく眼球の赤道部や渦静脈が存在する眼底周辺部の網膜を撮影することが可能となる。
 広角光学系30によって、眼底において広い視野(FOV:Field of View)12Aでの観察が実現される。FOV12Aは、撮影装置14によって撮影可能な範囲を示している。FOV12Aは、視野角として表現され得る。視野角は、本実施の形態において、内部照射角と外部照射角とで規定され得る。外部照射角とは、眼科装置110から被検眼12へ照射される光束の照射角を、瞳孔27を基準として規定した照射角である。また、内部照射角とは、眼底へ照射される光束の照射角を、眼球中心Oを基準として規定した照射角である。外部照射角と内部照射角とは、対応関係にある。例えば、外部照射角が120度の場合、内部照射角は約160度に相当する。本実施の形態では、内部照射角は200度としている。
 ここで、内部照射角で160度以上の撮影画角で撮影されて得られたSLO眼底画像をUWF-SLO眼底画像と称する。なお、UWFとは、UltraWide Field(超広角)の略称を指す。
 SLOシステムは、図2に示す制御装置16、SLOユニット18、および撮影光学系19によって実現される。SLOシステムは、広角光学系30を備えるため、広いFOV12Aでの眼底撮影を可能とする。
 SLOユニット18は、複数の光源、例えば、B光(青色光)の光源40、G光(緑色光)の光源42、R光(赤色光)の光源44、およびIR光(赤外線(例えば、近赤外光))の光源46と、光源40、42、44、46からの光を、反射または透過して1つの光路に導く光学系48、50、52、54、56とを備えている。光学系48、50、56は、ミラーであり、光学系52、54は、ビームスプリッタ―である。B光は、光学系48で反射し、光学系50を透過し、光学系54で反射し、G光は、光学系50、54で反射し、R光は、光学系52、54を透過し、IR光は、光学系56、52で反射して、それぞれ1つの光路に導かれる。
 SLOユニット18は、G光、R光、およびB光を発するモードと、赤外線を発するモードなど、波長の異なるレーザ光を発する光源あるいは発光させる光源の組合せを切り替え可能に構成されている。図2に示す例では、B光(青色光)の光源40、G光の光源42、R光の光源44、およびIR光の光源46の4つの光源を備えるが、本開示の技術は、これに限定されない。例えば、SLOユニット18は、さらに、白色光の光源をさらに備え、白色光のみを発するモード等の種々のモードで光を発するようにしてもよい。
 SLOユニット18から撮影光学系19に入射された光は、第1光学スキャナ22によってX方向およびY方向に走査される。走査光は広角光学系30および瞳孔27を経由して、被検眼12の後眼部に照射される。眼底により反射された反射光は、広角光学系30および第1光学スキャナ22を経由してSLOユニット18へ入射される。
 SLOユニット18は、被検眼12の後眼部(例えば、眼底)からの光の内、B光を反射し且つB光以外を透過するビームスプリッタ64、ビームスプリッタ64を透過した光の内、G光を反射し且つG光以外を透過するビームスプリッタ58を備えている。SLOユニット18は、ビームスプリッタ58を透過した光の内、R光を反射し且つR光以外を透過するビームスプリッタ60を備えている。SLOユニット18は、ビームスプリッタ60を透過した光の内、IR光を反射するビームスプリッタ62を備えている。
 SLOユニット18は、複数の光源に対応して複数の光検出素子を備えている。SLOユニット18は、ビームスプリッタ64により反射したB光を検出するB光検出素子70、およびビームスプリッタ58により反射したG光を検出するG光検出素子72を備えている。SLOユニット18は、ビームスプリッタ60により反射したR光を検出するR光検出素子74、およびビームスプリッタ62により反射したIR光を検出するIR光検出素子76を備えている。
 広角光学系30および第1光学スキャナ22を経由してSLOユニット18へ入射された光(眼底により反射された反射光)は、B光の場合、ビームスプリッタ64で反射してB光検出素子70により受光され、G光の場合、ビームスプリッタ64を透過し、ビームスプリッタ58で反射してG光検出素子72により受光される。上記入射された光は、R光の場合、ビームスプリッタ64、58を透過し、ビームスプリッタ60で反射してR光検出素子74により受光される。上記入射された光は、IR光の場合、ビームスプリッタ64、58、60を透過し、ビームスプリッタ62で反射してIR光検出素子76により受光される。CPU16Aは、B光検出素子70、G光検出素子72、R光検出素子74、およびIR光検出素子76で検出された信号を用いてUWF-SLO眼底画像を生成する。
 UWF-SLO眼底画像(後述するようにUWF眼底画像、オリジナル眼底画像ともいう)には、眼底がG色で撮影されて得られたUWF-SLO眼底画像(G色眼底画像)と、眼底がR色で撮影されて得られたUWF-SLO眼底画像(R色眼底画像)とがある。UWF-SLO眼底画像には、眼底がB色で撮影されて得られたUWF-SLO眼底画像(B色眼底画像)と、眼底がIRで撮影されて得られたUWF-SLO眼底画像(IR眼底画像)とがある。
 また、制御装置16が、同時に発光するように光源40、42、44を制御する。B光、G光およびR光で同時に被検眼12の眼底が撮影されることにより、各位置が互いに対応するG色眼底画像、R色眼底画像、およびB色眼底画像が得られる。G色眼底画像、R色眼底画像、およびB色眼底画像からRGBカラー眼底画像が得られる。制御装置16が、同時に発光するように光源42、44を制御し、G光およびR光で同時に被検眼12の眼底が撮影されることにより、各位置が互いに対応するG色眼底画像およびR色眼底画像が得られる。G色眼底画像およびR色眼底画像からRGカラー眼底画像が得られる。
 このようにUWF-SLO眼底画像として、具体的には、B色眼底画像、G色眼底画像、R色眼底画像、IR眼底画像、RGBカラー眼底画像、RGカラー眼底画像がある。UWF-SLO眼底画像の各画像データは、入力/表示装置16Eを介して入力された被検者の情報と共に、通信インターフェース(I/F)16Fを介して眼科装置110からサーバ140へ送信される。UWF-SLO眼底画像の各画像データと被検者の情報とは、記憶装置254に、対応して記憶される。なお、被検者の情報には、例えば、被検者ID、氏名、年齢、視力、右眼/左眼の区別等がある。被検者の情報はオペレータが入力/表示装置16Eを介して入力する。
 OCTシステムは、図2に示す制御装置16、OCTユニット20、および撮影光学系19によって実現される。OCTシステムは、広角光学系30を備えるため、上述したSLO眼底画像の撮影と同様に、広いFOV12Aでの眼底撮影を可能とする。OCTユニット20は、光源20A、センサ(検出素子)20B、第1の光カプラ20C、参照光学系20D、コリメートレンズ20E、および第2の光カプラ20Fを含む。
 光源20Aから射出された光は、第1の光カプラ20Cで分岐される。分岐された一方の光は、測定光として、コリメートレンズ20Eで平行光にされた後、撮影光学系19に入射される。測定光は、第2光学スキャナ24によってX方向およびY方向に走査される。走査光は広角光学系30および瞳孔27を経由して、眼底に照射される。眼底により反射された測定光は、広角光学系30および第2光学スキャナ24を経由してOCTユニット20へ入射され、コリメートレンズ20Eおよび第1の光カプラ20Cを介して、第2の光カプラ20Fに入射する。
 光源20Aから射出され、第1の光カプラ20Cで分岐された他方の光は、参照光として、参照光学系20Dへ入射され、参照光学系20Dを経由して、第2の光カプラ20Fに入射する。
 第2の光カプラ20Fに入射されたこれらの光、即ち、眼底で反射された測定光と、参照光とは、第2の光カプラ20Fで干渉されて干渉光を生成する。干渉光はセンサ20Bで受光される。CPU16Aは、センサ20Bで検出された検出信号に対してフーリエ変換などの信号処理を行い、OCTデータ生成する。CPU16Aは、当該OCTデータに基づいて断層画像やen-face画像などのOCT画像を生成する。
 ここで、OCTシステムは、広角光学系30で実現される撮影領域のOCTデータを取得可能である。
 CPU16Aで生成されたOCTデータ、断層画像やen-face画像は、被検者の情報と共に、通信インターフェース(I/F)16Fを介して眼科装置110からサーバ140へ送信される。OCTデータ、断層画像やen-face画像などの各種OCT画像と被検者の情報とは関連付けがなされて、記憶装置254に記憶される。
 なお、本実施の形態では、光源20Aが波長掃引タイプのSS-OCT(Swept-Source OCT)を例示するが、SD-OCT(Spectral-Domain OCT)、TD-OCT(Time-Domain OCT)など、様々な方式のOCTシステムであってもよい。
 次に、眼軸長測定器120を説明する。眼軸長測定器120は、被検眼12の眼軸方向の長さである眼軸長を測定する。
 眼軸長測定器120は、測定された眼軸長をサーバ140に送信する。サーバ140は、被検者の眼軸長を被検者IDに対応して記憶する。
 次に、図3を参照して、眼科装置110のCPU16Aが眼科機器の制御プログラムを実行することで実現される各種機能について説明する。眼科機器の制御プログラムは、撮影制御機能、表示制御機能、画像処理機能、および処理機能を備えている。CPU16Aがこの各機能を有する眼科機器の制御プログラムを実行することで、CPU16Aは、図3に示すように、撮影制御部202、表示制御部204、画像処理部206、および処理部208として機能する。
 次に、図4を用いて、眼科装置110の画像処理を詳細に説明する。眼科装置110の制御装置16のCPU16Aが眼科機器の画像処理プログラムを実行することで、図4のフローチャートに示された眼科機器の制御が実現される。
 図4のフローチャートに示された処理は、本開示の技術の「画像処理方法」の一例である。
 眼科装置110のオペレータは、被検者に、眼科装置110の図示しない支持部にあごをのせてもらい、被検者の被検眼12の位置を調整する。
 眼科装置110の表示制御部204は、入力/表示装置16Eの画面に、被検者の情報の入力とモード選択のためのメニュー画面を表示する。モードには、SLO眼底画像を取得するSLOモード及びOCT眼底画像を取得するOCTモードなどがある。オペレータは、被検者の情報を、入力/表示装置16Eを介して入力するとともに、OCTモードを選択すると、CPU16Aは図4に示す眼科機器の制御プログラムの実行を開始する。
 ステップ302で、撮影制御部202は、SLOユニット18及び撮影光学系19を制御して、被検眼12の眼底の第1眼底画像、具体的には、B光源40、G光源42、R光源44を発光させ、3種類の波長でUWF-SLO眼底画像を取得する。なお、上記のように、UWF-SLO眼底画像は、G色眼底画像、R色眼底画像、B色眼底画像、及びRGBカラー眼底画像が含まれる。
 UWF-SLO眼底画像は、本開示の技術の「第1眼底画像」の一例である。
 ステップ304で、表示制御部204は、入力/表示装置16EのディスプレイにUWF-SLO眼底画像400Gを表示する。図7Aには、ディスプレイに表示されたUWF-SLO眼底画像400Gが示されている。UWF-SLO眼底画像400Gは、SLOユニット18が走査できる領域の画像に相当し、図7Aに示すように、被検眼12の眼底自体からの反射光が導かれて形成された被検眼の眼底領域400ggを含む。
 ユーザ(眼科装置110の操作者)が、表示されているUWF-SLO眼底画像400Gを用いて、OCTデータを取得する領域(断層画像を取得する位置)をタッチパネルや図示せぬ入力デバイスを用いて設定する。図7Bには、UWF-SLO眼底画像400Gを用いて、断層画像を取得する位置402が、X方向の直線で設定された場合が示されている。断層画像を取得する位置402が直線で設定されると、断層画像を取得する位置402が矢印で表される。
 なお、断層画像を取得する位置402は、図7Bに示すようにX方向の直線に限定されず、ある一点、線、例えば、Y方向の直線、X方向及びY方向の各々と交差する直線、2点を結ぶ曲線等、あるいは面、例えば、円形領域や矩形領域等でもよい。
 断層画像を取得する位置が一点の場合には、眼底の1点の深さ(光軸)方向の走査(この走査を「Aスキャン」と言う。)によりOCTデータ(「Aスキャンデータ」という)が得られる。
 断層画像を取得する位置が線の場合には、Aスキャンを当該線に沿って移動しつつAスキャンを複数回行うこと(「Bスキャン」と言う。)することにより、OCTデータ(「Bスキャンデータ」という)が得られる。
 断層画像を取得する位置が面の場合には、Bスキャンを当該面に沿って移動しつつBスキャンを繰り返す(「Cスキャン」と言う。)することにより、OCTデータ(「Cスキャンデータ」という)が得られる。Cスキャンデータにより、3次元OCTデータが生成され、その3次元OCTデータに基づいて二次元のen-face画像などが生成される。
 そして、処理部208は、UWF-SLO眼底画像400Gを用いて設定された、断層画像を取得する位置402の位置データ(座標データなど)を取得する。断層画像を取得する位置を示すデータは座標データに限らず眼底画像の位置が大まかにわかる番号などででもよい。
 ステップ306で、アイトラッキング処理が実行される。図5を用いて、アイトラッキング処理を説明する。
 なお、本開示の技術は、このようにステップ304でUWF-SLO眼底画像400Gを用いて設定された、断層画像を取得する位置402の位置データが取得されると、直ちにアイトラッキング処理が実行されることに限定されない。例えば、オペレータは被検者の被検眼12と眼科装置110とのアライメントを適切な状態となっていることを確認する。オペレータは、アライメントを適切な状態となっていることを確認すると、OCT撮影を開始することを、入力/表示装置16Eのディスプレイにあるボタン等を操作することにより、指示する。このようにOCT撮影を開始する操作が指示された場合に、アイトラッキング処理を実行する。
 図5のステップ350で、画像処理部206は、UWF-SLO眼底画像のR色眼底画像とG色眼底画像とを用いて、網膜血管及び脈絡膜血管の各々の特徴点を抽出する。具体的には、画像処理部206は、まず、網膜血管及び脈絡膜血管の各々を抽出し、網膜血管及び脈絡膜血管の各々の特徴点を抽出する。
 まず、R色眼底画像とG色眼底画像とを用いて、網膜血管及び脈絡膜血管の各々を抽出する方法を説明する。
 眼の構造は、硝子体を、構造が異なる複数の層が覆うようになっている。複数の層には、硝子体側の最も内側から外側に、網膜、脈絡膜、強膜が含まれる。R光は、網膜を通過して脈絡膜まで到達する。よって、R色眼底画像には、網膜に存在する血管(網膜血管)の情報と脈絡膜に存在する血管(脈絡膜血管)の情報とが含まれる。これに対し、G光は、網膜までしか到達しない。よって、G色眼底画像には、網膜に存在する血管(網膜血管)の情報のみが含まれる。
 画像処理部206は、G色眼底画像にブラックハットフィルタ処理などの画像処理を施すことにより、G色眼底画像から網膜血管を抽出する。これによりG色眼底画像から網膜血管の画素のみが抽出された網膜血管画像が得られる。ブラックハットフィルタ処理とは、原画像であるG色眼底画像の画像データと、この原画像に対してN回(Nは1以上の整数)の膨張処理及びN回の収縮処理を行うクロージング処理により得られる画像データとの差分をとる処理を指す。
 次に、画像処理部206は、R色眼底画像から、G色眼底画像から抽出した網膜血管画像を用いてインペインティング処理などにより、網膜血管を除去する。インペイント処理とは、所定位置の画素値を、周囲の画素の平均値との差が特定範囲(例えば、0)になるように設定する処理である。つまり、G色眼底画像から抽出された網膜血管の位置情報を用いてR色眼底画像の網膜血管に相当する画素を周囲の画素と同じ値に塗りつぶす処理を行う。これにより、網膜血管の画素のみが抽出されたR色眼底画像から脈絡膜血管画像が得られる。さらに、画像処理部206は、網膜血管が除去されたR色眼底画像に対し、適応ヒストグラム均等化(CLAHE:Contrast Limited Adaptive Histogram Equalization)処理を施し、脈絡膜血管を強調する強調処理を行ってもよい。
 次に、R色眼底画像とG色眼底画像とを用いて、網膜血管及び脈絡膜血管の各々の特徴点を抽出する方法を説明する。
 画像処理部206は、網膜血管画像から網膜血管の分岐点あるいは合流点を網膜血管の第1特徴点として抽出する。そして、脈絡膜血管画像から脈絡膜血管の分岐点あるいは合流点を脈絡膜血管の第1特徴点として抽出する。これらの網膜血管の第1特徴点と脈絡膜血管の第1特徴点とは処理部208によりRAM16Bに記憶される。
 ステップ352で、撮影制御部202は、SLOユニット18及び撮影光学系19を制御して、被検眼12の眼底の矩形SLO眼底画像を取得する。
 なお、被検眼12の眼底の矩形SLO眼底画像は、本開示の技術の「第2眼底画像」の一例である
 具体的には、まず、オペレータは、UWF-SLO眼底画像400Gを用いて、矩形SLO眼底画像を取得する領域を設定する。図7Cには、断層画像を取得する位置402の他に、矩形SLO眼底画像を取得する領域400が重畳されたUWF-SLO眼底画像400Gが示されている。図7Cに示す例では、矩形SLO眼底画像を取得する領域400は、断層画像を取得する位置402の全ての領域を含んでいる。
 本開示の技術は、矩形SLO眼底画像を取得する領域400は、断層画像を取得する位置402の全ての領域を含む場合に限定されない。例えば、矩形SLO眼底画像を取得する領域は、断層画像を取得する位置402の一部のみを含んでもよい。このように矩形SLO眼底画像を取得する領域は、断層画像を取得する位置402の少なくとも一部を含むようにしてもよい。
 矩形SLO眼底画像を取得する領域は、断層画像を取得する位置402を含まなくてもよい。よって、矩形SLO眼底画像を取得する領域は、断層画像を取得する位置402とは無関係に設定されてもよい。
 なお、矩形SLO眼底画像を取得する領域400が断層画像を取得する位置402の全ての領域を含むほうが、領域400が位置402を全く含まない又は一部のみ含む場合より、後述する眼の動き量を計算するための探索範囲が狭くなる確率を高くできる。これにより、アイトラッキング処理を円滑に行うこと、つまり、処理時間を短縮することができる。
 矩形SLO眼底画像を取得する領域は、被検眼の眼底領域400ggの少なくとも一部を含む。
 矩形SLO眼底画像を取得する領域の大きさは、UWF-SLO眼底画像400Gの大きさより小さい。つまり、矩形SLO眼底画像の画角は、UWF-SLO眼底画像の撮影画角より小さい画角であり、例えば、10度~50度の画角に設定される。
 ステップ352で、撮影制御部202は、UWF-SLO眼底画像400Gを用いて設定された矩形SLO眼底画像を取得する領域400の位置を取得する。処理部208は、矩形SLO眼底画像を取得する領域の位置を第1位置としてRAM16Bに記憶保持する。そして、撮影制御部202は、取得された当該領域400の位置に基づいて、SLOユニット18及び撮影光学系19を制御して、被検眼12の眼底の画像を取得することにより、被検眼12の眼底の矩形SLO眼底画像を取得する。なお、矩形SLO眼底画像を取得する際、撮影制御部202は、IR光源46を発光させ、IR光を眼底に照射することで、眼底を撮影する。これは、IR光は被検眼の網膜の視細胞で感知されないので、被検者にまぶしさを感じさせないようにするためである。
 次に、ステップ354で、画像処理部206は、第2眼底画像の矩形SLO眼底画像における網膜血管及び脈絡膜血管の各々の特徴点を抽出する。
 ところで、IR光で撮影された矩形SLO眼底画像では、網膜血管は細い黒い血管として、脈絡膜血管は太い白い血管として写る。そこで、画像処理部206は、ブラックハット処理を矩形SLO眼底画像に施し網膜血管の画素位置を特定する。これにより網膜血管の第2特徴点が得られる。
次に、画像処理部206は、網膜血管の画素位置にインペインティング処理を行うことにより、矩形SLO眼底画像から網膜血管を除去し、網膜血管が除去された矩形SLO眼底画像から、脈絡膜血管の第2特徴点を抽出する。処理部208は、脈絡膜血管の第2特徴点を、RAM16Bに記憶される。
 次に、ステップ356で、画像処理部206は、断層画像を取得する位置402が、所定範囲内か、当該所定範囲の外か、あるいは当該所定範囲に一部が含まれるかを判断する。
 ここで、所定範囲は、例えば、眼底の中心領域がある。この場合、画像処理部206は、断層画像を取得する位置402が、眼底の中心領域に含まれるか、中心領域を含まない周辺領域に含まれるか、あるいは、中心領域と周辺領域とにまたがるのかを、断層画像を取得する位置402を示すデータに基づいて判断する。
 ここで、眼底の中心領域900は、図6に示すように、眼科装置110の光軸が、眼球中心を通って眼底と交差する点を中心とする所定半径の円の領域である。なお、眼底の中心領域900の外側の処理面積の領域が眼底周辺領域902である。
 所定範囲は、眼底の中心領域900に限定されない。例えば、黄斑部を中心とする所定半径の円の領域でもよく、網膜血管の血管密度が所定以上であるとして予め定められた範囲としてもよい。
 画像処理(特に、アイトラッキング処理)は、断層画像を取得する位置402が眼底中心領域900に含まれる場合と、断層画像を取得する位置402が眼底中心領域900と眼底周辺領域902とにまたがる場合では、ステップ358に進む。画像処理(特に、アイトラッキング処理)は、断層画像を取得する位置402が眼底周辺領域902に位置する場合は、ステップ360に進む。
 ステップ358で、画像処理部206は、処理時間を比較的短く且つより画像マッチングされ易くなるように、処理内容が眼底中心部に最適化された第1レジストレーション処理を実行する。ステップ360で、画像処理部206は、処理時間を比較的長くなっても画像マッチングされ易くなるように、処理内容が周辺部領域に最適化された第2レジストレーション処理を実行する。
 ここで、レジストレーション処理とは、矩形SLO眼底画像とUWF-SLO眼底画像(特に、RGBカラー眼底画像)との位置合わせ処理である。具体的には、矩形SLO眼底画像がRGBカラー眼底画像上のどの位置に位置するかを画像マッチングにより特定する処理である。
 ステップ358の第1レジストレーション処理の画像マッチングでは、画像処理部206は、特徴点として、矩形SLO眼底画像から抽出された網膜血管の第2特徴点を3個抽出する。画像処理部206は、当該3つの第2特徴点と、RGBカラー眼底画像から抽出された網膜血管の第1特徴点とが一致する位置を探索する。処理部208は、第1レジストレーション処理でマッチングした位置を第2位置としてRAM16Bに記憶保持する。
 なお、ステップ358の第1レジストレーション処理では、RGBカラー眼底画像にデノイズ処理を行わない。
 ステップ360の第2レジストレーション処理の画像マッチングでは、画像処理部206は、まずRGBカラー眼底画像にデノイズ処理を行う。そして、画像処理部206は、特徴点として、矩形SLO眼底画像から抽出された網膜血管の第2特徴点と脈絡膜血管の第2特徴点の双方から3個、合計6個を抽出する。画像処理部206は、当該6つの特徴点とRGBカラー眼底画像から抽出された網膜血管の第1特徴点あるいは脈絡膜血管の第1特徴点とが一致する位置を探索する。処理部208は、第2レジストレーション処理でマッチングした位置を第2位置としてRAM16Bに記憶保持する。
 上記のように第1レジストレーション処理ではデノイズ処理されない。眼底の中心領域900では、眼底周辺領域902に比較すると、収差が少ないため画像が鮮明であるので、ノイズが比較的少ない。よって、レジストレーションの探索領域が眼底の中心領域900である場合は、RGBカラー眼底画像に対してノイズ除去(デノイズ)する必要がないからである。
 また、上記のように、第1レジストレーション処理をする場合、マッチングに用いる特徴量の数は、第2レジストレーション処理での特徴量の数より少ない。これは、眼底中心領域900内の血管の密度は、眼底周辺領域902より、高いので、特徴点の数が少なくても、精度よく画像マッチング処理結果を得られるので、計算量を少なくして、処理時間を短くするためである。
 更に、第2レジストレーション処理をする場合、特徴点は、網膜血管ばかりではなく脈絡膜血管の特徴点も用いている。これは、眼底周辺領域902内の網膜血管の密度は、眼底中心領域900より、低く、眼底周辺領域902内の脈絡膜血管の密度は、眼底中心領域900より、高いので、精度よく画像マッチング処理結果を得るためには、脈絡膜血管の特徴点を用いる必要があり、より精度よく画像マッチング処理結果を得るためには、網膜血管及び脈絡膜血管を用いる必要があるからである。
 上記のように第1レジストレーション処理の画像マッチングでは、網膜血管の第2特徴点を3個抽出し、第2レジストレーション処理の画像マッチングでは、網膜血管の第2特徴点と脈絡膜血管の第2特徴点の双方から3個、合計6個を抽出するが、本開示の技術はこれに限定されない。例えば、特徴点の数は、「第1レジストレーション処理(網膜血管)、第2レジストレーション処理(網膜血管、脈絡膜血管)」で表記すると、例えば、(2、4(2、2))、(4、6(3、3))等でもよい。このように、特徴点の総数は、第1レジストレーション処理より、第2レジストレーション処理のほうが、多い。
 第2レジストレーション処理における網膜血管の特徴点の数と脈絡膜血管の特徴点の数とは同数に限定されない。何れか一方のほうが他方より数を多くしてもよい。例えば、網膜血管の特徴点の数より、脈絡膜血管の特徴点の数を多くする。
 第2レジストレーション処理をする場合、脈絡膜血管のみの特徴点を、第1レジストレーション処理をする場合の網膜血管の特徴量の数より多くするようにしてもよい。
 ステップ362で、画像処理部206は、第1位置と第2位置とから、眼の動き量を算出する。具体的には、画像処理部206は、第1の位置と第2の位置とのズレの大きさとズレの方向を算出する。そして、画像処理部206は、算出したズレの大きさとズレの方向とから被検眼12の動き量を算出する。当該動き量は動きの大きさと動きの方向を持つ量、つまり、ベクトル量である。ステップ302でUWF-SLO眼底画像を取得するために被検眼12の眼底を撮影した時点からステップ352で矩形SLO眼底画像を取得するために被検眼12の眼底を撮影した時点までの時間が経過しているので、被検眼の同じ場所を撮影しているとは限らない。また、OCT撮影中に固視微動などにより、被検眼が動く場合もある。よって、画像処理部206は、OCTの撮影開始時あるいはOCTの撮影中に被検眼12が、どの方向にどのくらいの量、ずれているのか、つまり、被検眼12の動き量(ベクトル量)を算出する。
 なお、ステップ358が実行されてステップ362で算出されたズレ量とズレの方向は、「第1のズレ量と第1ズレの方向」の一例である。ステップ360が実行されてステップ362で算出されたズレ量とズレの方向は、「第2のズレ量と第2のズレの方向」の一例である。
このように被検眼12がずれたので、UWF-SLO眼底画像を基準に設定した断層画像を取得する位置に基づいて被検眼12を走査したのでは、本来取得したい位置から上記動き量(ズレ量及びズレの方向に)ずれた位置を走査することになる。
そこで、ステップ364で、撮影制御部202は、動いた後の被検眼12の上記取得する位置の断層画像を取得できるように、被検眼12の動き量(ベクトル量)に基づいて、第2光学スキャナ24による走査範囲を調整する。
 第2光学スキャナ24は、本開示の技術の「走査デバイス」の一例である。
このように被検眼12の走査範囲の調整が終了すると、図4のステップ306のアイトラッキング処理が終了し、画像処理はステップ308に進む。
 ステップ308で、撮影制御部202は、OCTユニット20と、走査範囲が調整された第2光学スキャナ24とを制御し、被検眼12の断層画像を取得する位置を走査することにより、断層画像を取得する。
 ステップ310で、処理部208は、取得された断層画像、RG-UWF-SLO眼底画像、断層画像を取得する位置402のデータを、被検者の情報に対応して、サーバ140に出力する。以上により、図4の画像処理が終了する。
 サーバ140は、断層画像、RGBカラー眼底画像、断層画像を取得する位置402のデータを、被検者IDと関連付けて、図示しない記憶装置に記憶する。
 ビューワ150から、眼科医などのユーザからの指示により、被検者IDに対応して断層画像などデータの送信の要求がサーバ140にされる。
 上記要求がサーバ140にされると、サーバ140は、被検者IDに対応して記憶されている断層画像、UWF-SLO眼底画像、断層画像を取得する位置402のデータを、被検者の情報等に対応して、ビューワ150に送信する。これによりビューワ150は、受信した各データを、図示しないディスプレイに表示する。
 図8には、ビューワ150のディスプレイに表示されたスクリーン500が示されている。スクリーン500は、被検者情報表示エリア502及び画像表示エリア504を有する。
 被検者情報表示エリア502は、被検者ID表示フィールド512、被検者氏名表示フィールド514、年齢表示フィールド516、視力表示フィールド518、右眼/左眼表示フィールド520、及び眼軸長表示フィールド522を有する。表示制御部204は、サーバ140から受信した被検者ID、被検者の氏名、被検者の年齢、視力、右眼又は左眼の情報、及び被検者の眼軸長のデータを、対応する表示フィールド512~522に表示する。
 画像表示エリア504は、RGBカラー眼底画像表示フィールド508、断層画像表示フィールド506、及びテキストデータ表示フィールド510を備える。
 RGBカラー眼底画像表示フィールド508には、断層画像を取得する位置402が重畳されたUWF-SLO眼底画像400Gが表示される。
 断層画像表示フィールド506には、断層画像が表示される。テキストデータ表示フィールド510には、診察の際のコメント等が表示される。
 以上説明したように、本実施の形態では、矩形SLO眼底画像を取得する領域400の少なくとも一部がUWF-SLO眼底画像の所定範囲に含まれる場合は、第1レジストレーション処理が実行される。具体的には、UWF-SLO眼底画像及び矩形SLO眼底画像の各々における網膜血管の比較的少ない数の特徴点を用いて被検眼12のズレ量とズレの方向を算出する。よって、被検眼12のズレ量とズレの方向を、比較的短時間で算出することができる。従って、被検眼12の動き量を、比較的短時間で算出することがでる。よって、比較的短時間で算出した被検眼12の動き量に基づいて、第2光学スキャナ24による走査範囲を調整し、断層画像を取得する。よって、上記実施の形態では、眼の動きに追従しながら断層画像を取得することができる。
 一方、本実施の形態では、矩形SLO眼底画像を取得する領域400の少なくとも一部がUWF-SLO眼底画像の所定範囲に含まれない場合は、第2レジストレーション処理が実行される。具体的には、UWF-SLO眼底画像及び矩形SLO眼底画像の各々における少なくとも脈絡膜血管の比較的多い数の特徴点を用いて被検眼12のズレ量とズレの方向を算出する。よって、被検眼12のズレ量とズレの方向を、正確に算出することができる。従って、被検眼12の動き量を、正確に算出することがでる。よって、正確に算出した被検眼12の動き量に基づいて、第2光学スキャナ24による走査範囲を調整し、断層画像を取得する。よって、上記実施の形態では、設定された領域の断層画像を正確に取得することができる。
 上記実施の形態では、アイトラッキング処理を実行した後に、断層画像を取得している。本開示の技術はこれに限定されない。例えば、断層画像を取得しながら、アイトラッキング処理を実行してもよい。この場合、図5のステップ352からステップ362を、断層画像を取得している間、繰り返し実行するようにしてもよい。そして、ステップ352からステップ362を所定回繰り返し実行する毎に、得られた被検眼12の動き量の平均値を求め、断層画像を取得している間、第2光学スキャナ24による走査範囲を調整し、断層画像を取得するようにしてもよい。これにより被検眼12の同じ位置の断層画像を複数枚取得する。これらの複数枚の断層画像の加算平均を行うことにより、ノイズが低減された断層画像を取得するようにしてもよい。
 上記実施の形態では、アイトラッキング処理を実行した後に、断層画像を取得している。本開示の技術はこれに限定されない。例えば、光学スキャナを追従させることなく複数枚の断層画像の取得を行う。複数枚の断層画像を取得している間、図5のステップ352からステップ362を、繰り返し実行するようにする、そして、眼の動きが所定値以上のときに撮影された断層画像を削除し、残された複数の断層画像を用いて加算平均を行うようにしてもうよい。
 本開示において、各構成要素(装置等)は、矛盾が生じない限りは、1つのみ存在しても2つ以上存在してもよい 。
 以上説明した各例では、コンピュータを利用したソフトウェア構成により画像処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、画像処理が実行されるようにしてもよい。画像処理のうちの一部の処理がソフトウェア構成により実行され、残りの処理がハードウェア構成によって実行されるようにしてもよい。
 このように本開示の技術は、コンピュータを利用したソフトウェア構成により画像処理が実現される場合とされない場合とを含むので、以下の技術を含む。
(第1の技術)
 被検眼の第1眼底画像を取得する第1取得部と、
 前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得する第2取得部と、
 前記被検眼の第2眼底画像を取得する第3取得部と、
 前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断する判断部と、
 前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1のズレ量とズレの方向とを算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2のズレ量とズレの方向とを算出する算出部と、
 を含む画像処理装置。
(第2の技術)
 第1取得部が、被検眼の第1眼底画像を取得するステップと、
 第2取得部が、前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、
 第3取得部が、前記被検眼の第2眼底画像を取得するステップと、
 判断部が、前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、
 算出部が、前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1のズレ量とズレの方向とを算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2のズレ量とズレの方向とを算出するステップと、
 を含む画像処理方法。
 撮影制御部202は、本開示の技術の「第1取得部」及び「第3取得部」の一例である。処理部208は、本開示の技術の「第2取得部」の一例である。画像処理部206は、本開示の技術の「判断部」及び「算出部」の一例である。
 以上の開示内容から以下の技術が提案される。
(第3の技術)
 画像処理するためのコンピュータープログラム製品であって、前記コンピュータープログラム製品は、それ自体が一時的な信号ではないコンピュータ可読記憶媒体を備え、前記コンピュータ可読記憶媒体には、プログラムが格納されており、前記プログラムは、コンピュータに、プロセッサが行う画像処理であって、被検眼の第1眼底画像を取得するステップと、前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、前記被検眼の第2眼底画像を取得するステップと、前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1のズレ量とズレの方向とを算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2のズレ量とズレの方向とを算出するステップと、を含む画像処理を実行させる、コンピュータープログラム製品。
 以上説明した各画像処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的にかつ個々に記載された場合と同様に、本明細書中に参照により取り込まれる。

Claims (13)

  1.  プロセッサが行う画像処理であって、
     被検眼の第1眼底画像を取得するステップと、
     前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、
     前記被検眼の第2眼底画像を取得するステップと、
     前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、
     前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1の動き量を算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2の動き量とを算出するステップと、
     を含む画像処理方法。
  2.  前記第1の動き量あるいは前記第2の動き量に基づいて、前記断層画像を取得するための走査デバイスを制御するステップと、
     を更に含む請求項1に記載の画像処理方法。
  3.  前記所定範囲は、眼底中心領域であることを特徴とする請求項1又は請求項2に記載の画像処理方法。
  4.  前記第1眼底画像及び前記第2眼底画像の各々の網膜血管の特徴点を抽出するステップを更に含み、
     前記第1レジストレーション処理は、前記網膜血管の特徴点を用いて前記第1眼底画像と前記第2眼底画像との位置合わせすることを特徴とする請求項1から請求項3の何れか1項に記載の画像処理方法。
  5.  前記第1眼底画像及び前記第2眼底画像の各々の脈絡膜血管の特徴点を抽出するステップを更に含み、
     前記第2レジストレーション処理は、前記脈絡膜血管の特徴点を用いて前記第1眼底画像と前記第2眼底画像との位置合わせすることを特徴とする請求項1から請求項4の何れか1項に記載の画像処理方法。
  6.  前記第1の動き量は、第1のズレ量と第1ズレの方向の成分からなり、
     前記第2の動き量は、第2のズレ量と第2ズレの方向の成分からなる、
     ことを特徴とする請求項1から請求項5の何れか1項に記載の画像処理方法。
  7.  前記第1眼底画像は、前記被検眼の眼底自体からの反射光が導かれて形成された被検眼の眼底自体の画像を含み、
     前記被検眼の第2眼底画像を取得するステップでは、
     前記第1眼底画像を用いて前記被検眼の眼底自体の画像の少なくとも一部を含むように設定された領域の位置を取得し、取得された前記領域の位置に基づいて、前記被検眼の眼底の画像を取得することにより、前記第2眼底画像を取得する、
     ことを特徴とする、請求項1から請求項6の何れか1項に記載の画像処理方法。
  8.  前記領域の大きさは、前記第1眼底画像の大きさより小さいことを特徴とする、請求項7に記載の画像処理方法。
  9.  前記領域は、前記断層画像を取得する位置の少なくとも一部を含むことを特徴とする、請求項7又は請求項8に記載の画像処理方法。
  10.  前記制御された走査デバイスを用いて、前記被検眼の眼底の断層画像を取得するステップを更に含む、請求項2に記載の画像処理方法。
  11.  前記第2眼底画像を取得するステップ、前記判断するステップ、前記算出するステップ、及び前記制御するステップを繰り返し実行しながら、前記被検眼の眼底の断層画像を取得するステップを更に含む、請求項2に記載の画像処理方法。
  12.  プロセッサを備える画像処理装置であって、
     前記プロセッサは、
     被検眼の第1眼底画像を取得するステップと、
     前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、
     前記被検眼の第2眼底画像を取得するステップと、
     前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、
     前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1の動き量を算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2の動き量とを算出するステップと、
     を含む画像処理を実行する、画像処理装置。
  13.  コンピュータに、
     被検眼の第1眼底画像を取得するステップと、
     前記第1眼底画像を用いて設定された、前記被検眼の眼底の断層画像を取得する位置を取得するステップと、
     前記被検眼の第2眼底画像を取得するステップと、
     前記取得する位置が前記第1眼底画像の所定範囲に含まれるか否かを判断するステップと、
     前記取得する位置が前記所定範囲に含まれる場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする第1レジストレーション処理を用いて、前記被検眼の第1の動き量を算出し、前記取得する位置が前記所定範囲以外の場合は、前記第1眼底画像と前記第2眼底画像との位置合わせする、前記第1レジストレーション処理とは異なる第2レジストレーション処理を用いて、前記被検眼の第2の動き量とを算出するステップと、
     を含む画像処理を実行させるプログラム。
PCT/JP2022/027008 2021-07-07 2022-07-07 画像処理方法、画像処理プログラム、画像処理装置及び眼科装置 WO2023282339A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023533196A JPWO2023282339A1 (ja) 2021-07-07 2022-07-07
CN202280047704.7A CN117597061A (zh) 2021-07-07 2022-07-07 图像处理方法、图像处理程序、图像处理装置及眼科装置
EP22837753.7A EP4360535A1 (en) 2021-07-07 2022-07-07 Image processing method, image processing program, image processing device, and ophthalmic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021112899 2021-07-07
JP2021-112899 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023282339A1 true WO2023282339A1 (ja) 2023-01-12

Family

ID=84800621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027008 WO2023282339A1 (ja) 2021-07-07 2022-07-07 画像処理方法、画像処理プログラム、画像処理装置及び眼科装置

Country Status (4)

Country Link
EP (1) EP4360535A1 (ja)
JP (1) JPWO2023282339A1 (ja)
CN (1) CN117597061A (ja)
WO (1) WO2023282339A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208415A (ja) * 2012-02-28 2013-10-10 Topcon Corp 眼底観察装置
JP2018064662A (ja) * 2016-10-17 2018-04-26 キヤノン株式会社 眼科撮影装置およびその制御方法
US20190059723A1 (en) 2017-08-30 2019-02-28 Topcon Corporation Ophthalmologic apparatus and method of controlling the same
JP2020530368A (ja) * 2017-08-14 2020-10-22 オプトス ピーエルシー 眼科装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208415A (ja) * 2012-02-28 2013-10-10 Topcon Corp 眼底観察装置
JP2018064662A (ja) * 2016-10-17 2018-04-26 キヤノン株式会社 眼科撮影装置およびその制御方法
JP2020530368A (ja) * 2017-08-14 2020-10-22 オプトス ピーエルシー 眼科装置
US20190059723A1 (en) 2017-08-30 2019-02-28 Topcon Corporation Ophthalmologic apparatus and method of controlling the same

Also Published As

Publication number Publication date
EP4360535A1 (en) 2024-05-01
JPWO2023282339A1 (ja) 2023-01-12
CN117597061A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
JP2023009530A (ja) 画像処理方法、画像処理装置、及びプログラム
US10561311B2 (en) Ophthalmic imaging apparatus and ophthalmic information processing apparatus
US10786153B2 (en) Ophthalmologic imaging apparatus
JP7186587B2 (ja) 眼科装置
JP2022040372A (ja) 眼科装置
US10321819B2 (en) Ophthalmic imaging apparatus
JP7306467B2 (ja) 画像処理方法、画像処理装置、及びプログラム
JP2019177032A (ja) 眼科画像処理装置、および眼科画像処理プログラム
WO2021074960A1 (ja) 画像処理方法、画像処理装置、及び画像処理プログラム
JP2019171221A (ja) 眼科撮影装置及び眼科情報処理装置
JP2022060588A (ja) 眼科装置、及び眼科装置の制御方法
JP7419946B2 (ja) 画像処理方法、画像処理装置、及び画像処理プログラム
WO2023282339A1 (ja) 画像処理方法、画像処理プログラム、画像処理装置及び眼科装置
JP2022089086A (ja) 画像処理方法、画像処理装置、及び画像処理プログラム
WO2021210281A1 (ja) 画像処理方法、画像処理装置、及び画像処理プログラム
JP7306482B2 (ja) 画像処理方法、画像処理装置、及びプログラム
WO2022177028A1 (ja) 画像処理方法、画像処理装置、及びプログラム
WO2023199847A1 (ja) 画像処理方法、画像処理装置、及びプログラム
WO2023182011A1 (ja) 画像処理方法、画像処理装置、眼科装置、及びプログラム
JP7272453B2 (ja) 画像処理方法、画像処理装置、およびプログラム
WO2022250048A1 (ja) 画像処理方法、画像処理装置、及びプログラム
WO2022113409A1 (ja) 画像処理方法、画像処理装置、及びプログラム
US20230380680A1 (en) Ophthalmic apparatus and method of controlling the same
US11954872B2 (en) Image processing method, program, and image processing device
JP7416083B2 (ja) 画像処理方法、画像処理装置、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533196

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022837753

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022837753

Country of ref document: EP

Effective date: 20240122

NENP Non-entry into the national phase

Ref country code: DE