WO2023282237A1 - Catheter for diagnostic imaging - Google Patents

Catheter for diagnostic imaging Download PDF

Info

Publication number
WO2023282237A1
WO2023282237A1 PCT/JP2022/026635 JP2022026635W WO2023282237A1 WO 2023282237 A1 WO2023282237 A1 WO 2023282237A1 JP 2022026635 W JP2022026635 W JP 2022026635W WO 2023282237 A1 WO2023282237 A1 WO 2023282237A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
tube
inner tube
sheath
outer tube
Prior art date
Application number
PCT/JP2022/026635
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 福田
総一郎 杉原
智司 丸山
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2023533125A priority Critical patent/JPWO2023282237A1/ja
Publication of WO2023282237A1 publication Critical patent/WO2023282237A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present disclosure relates to diagnostic imaging catheters.
  • an ultrasound catheter that obtains images by intravascular ultrasound (Intravascular Ultrasound, abbreviated as "IVUS") has been known as an example of diagnostic imaging catheters that obtain tomographic images of blood vessels and the like.
  • Patent Literature 1 discloses this type of ultrasound catheter.
  • the ultrasound catheter described in Patent Document 1 includes a catheter sheath to be inserted into a blood vessel, and a drive shaft movable together with an ultrasound transducer within the catheter sheath.
  • a connection port and a sheath connector are connected to the proximal side of the catheter sheath described in Patent Document 1.
  • a drive shaft connector is connected to the proximal side of the drive shaft described in Patent Document 1.
  • a distal side of the drive shaft connector described in Patent Document 1 is provided with a guide tube that covers a predetermined portion of the proximal side of the drive shaft.
  • the guide tube and the drive shaft connector (hereinafter, the guide tube and the drive shaft connector are simply referred to as “inner tube”) as the inner tube are connected as the outer tube. It is configured to be movable inside the port and sheath connector (hereinafter, the connection port and sheath connector are simply referred to as "outer tube”).
  • the ultrasonic transducer as the ultrasonic sensor and the drive shaft can move in the longitudinal direction of the catheter sheath.
  • the drive shaft is configured to be rotatable around the central axis of the drive shaft inside the inner tube and the outer tube.
  • An object of the present disclosure is to provide a diagnostic imaging catheter capable of suppressing bending and meandering of the drive shaft inside the inner tube and the outer tube.
  • a diagnostic imaging catheter as a first aspect of the present disclosure comprises a sheath inserted into a body cavity, a drive shaft inserted into the sheath, and an image sensor fixed to a distal end of the drive shaft.
  • an outer tube fixed to the proximal end of the sheath; an inner tube that accommodates the proximal end of a drive shaft and is movable within the outer tube together with the drive shaft; and a proximal side of the sheath.
  • a protective tube that is fixed to the inner tube and moves within the inner tube as the inner tube moves within the outer tube, and passes the drive shaft through the protective tube; at least a part of the proximal end of the shaft that is housed in the protective tube in a state of being pushed most into the tube and positioned outside the protective tube in a drawn state of being pulled out of the outer tube most, A high-rigidity portion having greater flexural rigidity than a portion located inside the sheath in the pulled-out state is provided.
  • the drive shaft has, in the shaft base end portion, a region equal to or larger than at least the length of the radius of the inner diameter of the inner tube in the shaft axial direction of the drive shaft. is provided with the high rigidity portion.
  • the drive shaft includes the high-rigidity portion over the entire area of the shaft base end in the shaft axial direction.
  • the drive shaft when the shaft base end is a proximal shaft base end, the drive shaft is housed in the protective tube in the pushed state and the pulled out state.
  • the high-rigidity portion is further provided on at least a portion of the shaft base end.
  • the drive shaft does not include the high-rigidity portion at a portion positioned inside the sheath in the pushed state.
  • a diagnostic imaging catheter capable of suppressing bending and meandering of the drive shaft inside the inner tube and the outer tube.
  • FIG. 1 is a diagram showing a diagnostic imaging apparatus to which an ultrasound catheter as an embodiment of a diagnostic imaging catheter according to the present disclosure and an external device are connected;
  • FIG. 2 is a view showing the ultrasound catheter alone shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the operating portion of the ultrasound catheter shown in FIG. 2, showing a pulled-out state in which the inner tube is most pulled out from the outer tube to the proximal side.
  • FIG. 3 is a schematic view of the operating portion of the ultrasound catheter shown in FIG. 2, showing a pushed state in which the inner tube is pushed farthest distally toward the inside of the outer tube.
  • FIG. 3 is a partial cross-sectional view showing details of a portion of the drive shaft and a portion of the electric signal line of the ultrasound catheter shown in FIG. 2, and a diagram showing the configuration of the high-rigidity portion of the drive shaft;
  • FIG. 5 is a view showing a modification of the high-rigidity portion of the drive shaft shown in FIG. 4;
  • FIG. 5 is a view showing a modification of the high-rigidity portion of the drive shaft shown in FIG. 4;
  • FIG. 5 is a view showing a modification of the high-rigidity portion of the drive shaft shown in FIG. 4;
  • FIG. 5 is a view showing a modification of the high-rigidity portion of the drive shaft shown in FIG. 4;
  • FIG. 10 is a schematic diagram of the operation section of the ultrasound catheter in the pulled-out state, showing a modification of the arrangement of the high-rigidity section of the drive shaft.
  • FIG. 8B is a schematic diagram showing a pushed-out state of the operating portion of the ultrasound catheter shown in FIG. 8A;
  • the longitudinal direction of the diagnostic imaging catheter is referred to as "longitudinal direction A".
  • the side of the catheter for diagnostic imaging that is inserted into the living body in the longitudinal direction A is referred to as the "distal side.”
  • the "proximal side” refers to the proximal side of the diagnostic imaging catheter that is manipulated in vitro in the longitudinal direction A.
  • the direction from the proximal side to the distal side of the diagnostic imaging catheter may be simply referred to as "insertion direction A1".
  • the direction from the distal end side to the proximal end side of the diagnostic imaging catheter may be simply referred to as "removal direction A2".
  • FIG. 1 is a diagram showing a diagnostic imaging apparatus 100. As shown in FIG.
  • the diagnostic imaging apparatus 100 includes an ultrasound catheter 110 and an external device 120 .
  • FIG. 1 shows the ultrasound catheter 110 connected to an external device 120 .
  • the ultrasonic catheter 110 will be exemplified as a diagnostic imaging catheter, but the diagnostic imaging catheter according to the present disclosure is not limited to the ultrasonic catheter 110 shown in this embodiment.
  • the diagnostic imaging catheter may be, for example, a catheter that enables Optical Coherence Tomography (abbreviated as "OCT”), Near Infrared Spectroscopy (abbreviated as "NIRS”), and the like.
  • OCT Optical Coherence Tomography
  • NIRS Near Infrared Spectroscopy
  • the diagnostic imaging catheter may be configured to include an optical sensor as an image sensor instead of or in addition to the ultrasonic sensor 60 described later.
  • FIG. 2 is a diagram showing the ultrasound catheter 110 shown in FIG. 1 alone.
  • the ultrasound catheter 110 is applied to intravascular ultrasound (Intravascular Ultrasound, abbreviated as "IVUS").
  • IVUS Intravascular Ultrasound
  • the ultrasound catheter 110 is driven by being connected to an external device 120 . More specifically, the ultrasound catheter 110 of this embodiment is connected to the driving unit 120a of the external device 120. As shown in FIG.
  • the ultrasound catheter 110 includes an insertion section 110a and an operation section 110b.
  • the insertion portion 110a is a portion of the ultrasound catheter 110 that is used by being inserted into the living body.
  • the operation part 110b is a part of the ultrasound catheter 110 that is operated outside the body while the insertion part 110a is inserted into the body.
  • the portion on the distal side of a distal connector 42 to be described later is the insertion portion 110a
  • the portion on the proximal side of the distal connector 42 is the operating portion 110b.
  • the insertion section 110a includes a distal portion of the ultrasonic probe 10 and the sheath 20. As shown in FIGS. Although the details will be described later, the distal side portion of the ultrasonic probe 10 included in the insertion portion 110a includes the ultrasonic sensor 60, the distal side portion of the drive shaft 13, and the electric signal line 14 (Fig. 4) on the distal side.
  • the operation part 110b can move the drive shaft 13 within the sheath 20 in the longitudinal direction of the sheath 20 (the same direction as the longitudinal direction A).
  • the operation section 110b includes a proximal portion of the ultrasonic probe 10, an inner tube 30, an outer tube 40, and a protective tube 50.
  • the proximal portion of the ultrasonic probe 10 included in the operation portion 110b includes the proximal portion of the drive shaft 13 and the proximal portion of the electrical signal line 14 (see FIG. 4). It consists of a side part and a
  • the inner tube 30 holds the proximal end of the ultrasound probe 10 (hereinafter, the "proximal end” is simply referred to as the “proximal end”).
  • Outer tube 40 holds the proximal end of sheath 20 .
  • the ultrasonic probe 10 moves in the longitudinal direction A within the sheath 20 by moving the inner tube 30 in the outer tube 40 in the central axis direction (the same direction as the longitudinal direction A). can be done.
  • FIG. 3A and 3B are schematic diagrams of the operating portion 110b of the ultrasound catheter 110.
  • FIG. 3A shows a drawn state in which the inner tube 30 is most drawn proximally from the outer tube 40 .
  • FIG. 3B shows a pushed state in which the inner tube 30 is pushed most distally into the outer tube 40 .
  • the state shown in FIG. 3A may be simply referred to as "pulled out state”.
  • the state shown in FIG. 3B may be simply described as a "pressed state”.
  • FIG. 4 is a partial cross-sectional view showing details of a portion of drive shaft 13 and a portion of electrical signal line 14 of ultrasound catheter 110 .
  • the ultrasonic probe 10 includes an ultrasonic sensor 60 as an image sensor, a drive shaft 13, an electric signal line 14 extending through the drive shaft 13 (see FIG. 4), Prepare.
  • the ultrasonic sensor 60 includes an ultrasonic transducer and a housing.
  • the ultrasonic sensor 60 is fixed to the distal end of the drive shaft 13 (hereinafter, the distal end is simply referred to as the "distal end").
  • the ultrasonic transducer of ultrasonic sensor 60 includes a piezoelectric element.
  • a piezoelectric element is composed of a flat piezoelectric body and electrodes laminated on the piezoelectric body. Ultrasonic waves can be transmitted and received by the ultrasonic transducer.
  • the housing of the ultrasonic sensor 60 supports the ultrasonic transducer.
  • the proximal side of the housing is connected to drive shaft 13 .
  • the housing may be integrated with the drive shaft 13 . Therefore, the housing may be directly connected to the drive shaft 13 by adhesion or the like, or may be indirectly connected to the drive shaft 13 via a connector or the like.
  • the drive shaft 13 is inserted into the sheath 20.
  • the drive shaft 13 is configured by a tubular body having flexibility.
  • the electric signal line 14 connected to the ultrasonic transducer of the ultrasonic sensor 60 is arranged inside the drive shaft 13 .
  • the drive shaft 13 is composed of, for example, multiple layers of coils with different winding directions around the axis. Although the details will be described later, the drive shaft 13 of the present embodiment is composed of three layers of coils (see FIG. 4, etc.). Materials for the coil include, for example, stainless steel and Ni--Ti (nickel-titanium) alloy.
  • the drive shaft 13 extends through the interior of the sheath 20, the inner tube 30, the outer tube 40 and the protective tube 50, as shown in FIGS. As mentioned above, the distal end of drive shaft 13 is connected to the housing of ultrasonic sensor 60 . A proximal end of the drive shaft 13 is held by a later-described hub 32 forming a proximal end of the inner tube 30 . That is, the drive shaft 13 extends in the longitudinal direction A from the distal end of the insertion section 110a to the proximal end of the operation section 110b.
  • the electrical signal line 14 extends inside the drive shaft 13 .
  • the electric signal line 14 electrically connects the ultrasonic transducer of the ultrasonic sensor 60 (see FIG. 2) and the external device 120 (see FIG. 1).
  • the electric signal line 14 extends in the longitudinal direction A from the distal end of the insertion section 110a to the proximal end of the operation section 110b, like the drive shaft 13 does.
  • a plurality of electric signal lines 14 are provided, and each electric signal line 14 is connected to an electrode of an ultrasonic transducer of the ultrasonic sensor 60 .
  • the plurality of electrical signal lines 14 are composed of, for example, twisted pair cables in which two electrical signal lines 14 are twisted together.
  • Each electrical signal line 14 can be a flexible thin wire member having an outer diameter greater than 0 mm and less than or equal to 0.1 mm.
  • Each electric signal line 14 can be composed of, for example, a conducting wire and a covering material that is formed of an insulating material and covers the circumference of the conducting wire.
  • the sheath 20 is inserted into a body cavity such as a blood vessel.
  • the sheath 20 includes a body portion 20a and a guidewire insertion portion 20b.
  • a first hollow portion is defined inside the body portion 20a.
  • a second hollow portion is defined in the guide wire insertion portion 20b.
  • the ultrasonic probe 10 is accommodated in the first hollow portion of the body portion 20a.
  • the ultrasonic probe 10 can move back and forth in the longitudinal direction A in the first hollow portion.
  • a guide wire can be inserted through the second hollow portion of the guide wire insertion portion 20b. As shown in FIG.
  • the tubular guidewire insertion portion 20b is adjacent to the distal end portion of the tubular body portion 20a so as to be parallel to each other.
  • the main body portion 20a and the guidewire insertion portion 20b may be formed by joining different tube members by heat sealing or the like.
  • the sheath 20 is made of a flexible material, and the material is not particularly limited.
  • constituent materials include various thermoplastic elastomers such as polyethylene, styrene, polyolefin, polyurethane, polyester, polyamide, polyimide, polybutadiene, transpolyisoprene, fluororubber, and chlorinated polyethylene.
  • thermoplastic elastomers such as polyethylene, styrene, polyolefin, polyurethane, polyester, polyamide, polyimide, polybutadiene, transpolyisoprene, fluororubber, and chlorinated polyethylene.
  • polymer alloys, polymer blends, laminates, etc. in which two or more types are combined can also be used.
  • the main body portion 20a may have a reinforcement portion at its proximal end that is reinforced with a highly rigid material.
  • the reinforcing portion may be formed, for example, by arranging a reinforcing material in which a metal wire made of stainless steel or the like is braided in a mesh shape to a tubular member having flexibility such as resin.
  • the tubular member may be formed, for example, from the material of the sheath 20 described above.
  • Inner tube 30 houses the proximal end of drive shaft 13 and is movable within outer tube 40 with drive shaft 13 .
  • the inner tube 30 includes an inner tube main body 31 and a hub 32.
  • the inner tube main body 31 is inserted in the outer tube 40 so as to be movable forward and backward.
  • the hub 32 is connected to the proximal side of the inner tube main body 31 .
  • the outer tube 40 is fixed to the proximal end of the sheath 20.
  • the outer tube 40 of this embodiment includes an outer tube body 41 , a distal connector 42 and a proximal connector 43 .
  • the outer tube body 41 is located radially outside the inner tube body 31 , and the inner tube body 31 moves back and forth inside the outer tube body 41 .
  • the distal connector 42 connects the proximal end of the main body 20 a of the sheath 20 and the distal end of the outer tube main body 41 .
  • the proximal connector 43 is fixed to the proximal end of the outer tube main body 41 .
  • the drive shaft 13 and the electric signal line 14 of the ultrasonic probe 10 described above are connected to the main body 20a of the sheath 20, the outer tube 40 connected to the proximal side of the main body 20a, and the outer tube 40. It extends to a hub 32 which constitutes the proximal end of inner tube 30 into which the section is inserted.
  • the ultrasonic probe 10 and the inner tube 30 described above are connected to each other so that they move back and forth in the longitudinal direction A integrally. Therefore, for example, when the inner tube 30 is pushed in the insertion direction A1, the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1 as shown in FIG. 3B. When the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1, the ultrasonic probe 10 connected to the inner tube 30 moves inside the main body 20a of the sheath 20 in the insertion direction A1. Conversely, when the inner tube 30 is pulled in the removal direction A2, the inner tube 30 is pulled out from the outer tube 40 in the removal direction A2 as shown in FIG. 3A. When the inner tube 30 is pulled out from the outer tube 40 in the withdrawal direction A2, the ultrasonic probe 10 connected to the inner tube 30 moves inside the main body 20a of the sheath 20 in the withdrawal direction A2.
  • the distal end of the inner tube 30 reaches near the distal connector 42 of the outer tube 40 when the inner tube 30 is pushed in the insertion direction A1 to the maximum.
  • the ultrasonic sensor 60 of the ultrasonic probe 10 is positioned near the distal end of the body portion 20a of the sheath 20 .
  • the inner tube 30 and the outer tube 40 are provided with pull-out stoppers that prevent the inner tube 30 from slipping out of the outer tube 40 when the inner tube 30 is pulled out from the outer tube 40 in the pull-out direction A2. ing.
  • the removal-preventing stopper on the pull-out side of the present embodiment is composed of the distal end portion 31a of the inner tube main body 31 of the inner tube 30 and the abutting wall portion 43b of the proximal connector 43 of the outer tube 40. .
  • a distal end portion 31a of an inner tube main body 31 of the inner tube 30 has an annular projection projecting radially outward.
  • the pulled-out state in which the inner tube 30 is pulled out from the outer tube 40 to the maximum in the pulling direction A2 means that the annular protrusion 31a of the inner tube main body 31 of the inner tube 30 means a state in which the portion is in contact with the abutment wall portion 43b of the proximal connector 43 of the outer tube 40.
  • the pulled-out state in which the inner tube 30 is pulled out from the outer tube 40 to the maximum in the pulling direction A2 means that the annular protrusion 31a of the inner tube main body 31 of the inner tube 30 means a state in which the portion is in contact with the abutment wall portion 43b of the proximal connector 43 of the outer tube 40.
  • the inner tube 30 and the outer tube 40 are provided with a push-side pull-out mechanism that prevents the inner tube 30 from slipping out of the outer tube 40 when the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1.
  • a stop is provided.
  • the push-side retaining stopper of this embodiment is composed of the distal end surface 32 a of the hub 32 of the inner tube 30 and the proximal end surface 43 a of the proximal connector 43 of the outer tube 40 .
  • the distal end surface 32a of the hub 32 of the inner tube 30 contacts the proximal end surface 43a of the proximal connector 43 of the outer tube 40, thereby restricting movement of the inner tube 30 with respect to the outer tube 40 in the insertion direction A1. .
  • the most pushed state (see FIG. 3B) in which the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1 means that the distal end surface 32a of the hub 32 of the inner tube 30 is It means a state in which the proximal end face 43a of the proximal connector 43 of the tube 40 is in contact.
  • the pull-out side and push-in side retainer stoppers provided on the inner tube 30 and the outer tube 40 are not limited to the configuration described above.
  • the configuration is not particularly limited as long as it prevents the inner tube 30 from falling out of the outer tube 40 on the pull-out side and the push-in side.
  • the proximal end of the hub 32 of the inner tube 30 is provided with a connector section that is mechanically and electrically connected to the external device 120 (see FIG. 1).
  • the ultrasound catheter 110 is mechanically and electrically connected to the external device 120 by the connector provided on the hub 32 of the inner tube 30 .
  • the electric signal line 14 of the ultrasonic probe 10 extends from the ultrasonic transducer of the ultrasonic sensor 60 to the connector portion of the hub 32 of the inner tube 30, and connects to the connector portion of the hub 32. is connected to the external device 120, the ultrasonic transducer of the ultrasonic sensor 60 and the external device 120 are electrically connected.
  • a signal received by the ultrasonic transducer is transmitted to the external device 120 via the connector section of the hub 32, subjected to predetermined processing, and displayed as an image.
  • protective tube 50 As shown in FIGS. 3A and 3B, protective tube 50 is fixed to the proximal side of sheath 20 . More specifically, the protective tube 50 is fixed to the proximal end of the sheath 20 together with the outer tube main body 41 of the outer tube 40 via the distal connector 42 . That is, the protective tube 50 of this embodiment is directly fixed to the outer tube 40 . The distal end of the protective tube 50 of this embodiment is fixed to the inner wall of the hollow portion of the distal connector 42 through which the drive shaft 13 passes.
  • the protective tube 50 is moved within the inner tube 30 as the inner tube 30 is moved within the outer tube 40, and the drive shaft 13 is passed inside.
  • the protective tube 50 of this embodiment extends in the outer tube 40 in the central axis direction (the same direction as the longitudinal direction A) of the outer tube 40 .
  • the protective tube 50 is arranged concentrically with the outer tube 40 within the outer tube 40 .
  • the proximal end of protective tube 50 is an open free end.
  • the drive shaft 13 extends inside the outer tube 40 and inside the protective tube 50 . As the inner tube 30 and the outer tube 40 move relative to each other in the longitudinal direction A, the protective tube 50 moves in the annular space between the inner tube 30 and the drive shaft 13 .
  • the protective tube 50 is pushed in and pulled out relative to the inner tube 30 .
  • the drive shaft 13 is likely to bend or meander when pushed in the insertion direction A ⁇ b>1 due to, for example, friction between the ultrasonic sensor 60 and the drive shaft 13 and the sheath 20 .
  • the free end which is the proximal end of the protection tube 50 of the present embodiment, is not only in the pushed state (see FIG. 3B) of the inner tube 30 and the outer tube 40, but also in the pulled state (see FIG. 3B).
  • 3A) is also located within the inner tube 30 .
  • the protective tube 50 of this embodiment is arranged such that its proximal end is always located within the inner tube 30 .
  • the portion of the drive shaft 13 that is inside the outer tube 40 but not inside the inner tube 30 can be accommodated inside the protective tube 50 . That is, the protective tube 50 can suppress bending and meandering of the portion of the drive shaft 13 that is likely to bend and meander in the outer tube 40 .
  • the protective tube 50 of this embodiment extends from the distal end of the outer tube 40 beyond the proximal end of the outer tube 40 to the outside of the outer tube 40.
  • the protective tube 50 of this embodiment extends from the distal end of the outer tube 40 beyond the proximal end of the outer tube 40 to the outside of the outer tube 40.
  • it is not limited to this configuration.
  • the protective tube 50 of this embodiment is fixed to the outer tube 40, for example, the protective tube 50 itself may not be an independent member but may be configured by a portion integrally connected from the proximal end of the sheath 20.
  • the protective tube 50 may be formed of, for example, a loosely coiled metal tubular body. By doing so, since the physiological saline solution can flow through the gaps of the coil during priming, it becomes difficult for air to remain in the outer tube 40 .
  • the protective tube 50 may be a tube made of fluororesin such as PTFE instead of metal.
  • the protective tube 50 may be a tubular body in which at least one slit or hole is formed instead of a loosely coiled tubular body.
  • the protection tube 50 may be a composite tube body such as a metal pipe with a hole on the side and a resin tube joined to the metal pipe.
  • the external device 120 includes a motor 121 that is a power source for rotating the drive shaft 13 (see FIG. 2, etc.) and a power source for moving the drive shaft 13 in the longitudinal direction A. and a motor 122 .
  • Rotational motion of the motor 122 is converted into axial motion by a ball screw 123 connected to the motor 122 .
  • the external device 120 of the present embodiment includes a drive unit 120a, a control device 120b electrically connected to the drive unit 120a by wire or wirelessly, and the control device 120b connected to the ultrasonic catheter 110. and a monitor 120c capable of displaying an image generated based on the received signal.
  • the motor 121, the motor 122 and the ball screw 123 described above in this embodiment are provided in the drive unit 120a.
  • the operation of the drive unit 120a is controlled by a controller 120b.
  • the controller 120b can be configured by a processor including a CPU and memory.
  • the external device 120 is not limited to the configuration shown in this embodiment, and may be configured to further include an external input unit such as a keyboard, for example.
  • the drive shaft 13 has a highly rigid portion 70 .
  • a highly rigid portion 70 is provided at the proximal end of the drive shaft 13 .
  • the drive shaft 13 is accommodated in the protective tube 50 in a state in which the inner tube 30 is pushed most into the outer tube 40 (see FIG. 3B), and the inner tube 30 is pushed farthest from inside the outer tube 40 . It has a shaft base end portion 13a positioned outside the protection tube 50 in the pulled out state (see FIG. 3A).
  • the drive shaft 13 has a high-rigidity portion 70 on at least a portion of the shaft base end portion 13a.
  • the high-rigidity portion 70 has greater flexural rigidity than the shaft body portion 13b, which is a portion of the drive shaft 13 positioned inside the sheath 20 in the pulled-out state (see FIG. 3A).
  • This "flexural rigidity" can be obtained, for example, from the relationship between the load and deformation of the free end of a test piece of a predetermined length held in a cantilever manner.
  • the high-rigidity portion 70 is provided on at least a part of the shaft base end portion 13a of the drive shaft 13, the shaft base end portion positioned outside the protective tube 50 in the pulled-out state (see FIG. 3A) Bending and meandering at 13a can be suppressed.
  • the shaft base end 13a in the pulled-out state (see FIG. 3A), the shaft base end 13a is positioned outside the protective tube 50 but still positioned inside the inner tube 30. As shown in FIG. Therefore, the inner tube 30 suppresses bending and meandering of the shaft proximal end portion 13 a when the inner tube 30 is pushed into the outer tube 40 .
  • the drive shaft 13 is rotatably accommodated within the inner tube 30 . Therefore, a gap is provided between the shaft base end portion 13a of the drive shaft 13 and the inner tube 30 that surrounds the shaft base end portion 13a. In addition, a gap may be provided from the viewpoint of securing the flow path during priming.
  • FIG. 4 shows the high-rigidity portion 70 of the drive shaft 13 of this embodiment. More specifically, FIG. 4 shows the distal end of the rigid portion 70 of the drive shaft 13 of this embodiment.
  • the high-rigidity portion 70 of the present embodiment includes three layers of coil portions 71 with different winding directions, and a cylindrical body 72 that radially covers the three layers of coil portions 71 .
  • the shaft main body portion 13b (see FIG. 3A) positioned inside the sheath 20 in the pulled-out state (FIG. 3A) is composed of only three layers of coil portions 71.
  • the high-rigidity portion 70 of the present embodiment is configured by surrounding the three-layered coil portion 71 integrally connected from the shaft body portion 13b with the cylindrical body 72. As shown in FIG.
  • the cylindrical body 72 can be composed of, for example, a resin tube or a metal pipe.
  • the bending and meandering of the coil portion 71 accommodated inside the cylindrical body 72 is restricted by contacting the inner surface of the cylindrical body 72 .
  • the proximal end of the cylindrical body 72 of this embodiment is fitted into the hollow portion of the hub 32 (see FIG. 3A etc.) of the inner tube 30 . That is, the proximal end portion of the cylindrical body 72 of this embodiment is fixed by being sandwiched between the inner walls of the hollow portion of the hub 32 with the drive shaft 13 accommodated therein. That is, the proximal end of drive shaft 13 and the proximal end of barrel 72 are fixed to hub 32 of inner tube 30 .
  • the high-rigidity portion 70 is accommodated in the protective tube 50 in the pushed state (see FIG. 3B), and is located outside the protective tube 50 in the pulled-out state (see FIG. 3A). It suffices if it is provided at least partly.
  • the cylindrical body 72 of the present embodiment may be provided at least partially on the shaft base end portion 13a.
  • the drive shaft 13 has at least the length of the radius of the inner diameter of the inner tube 30 in the axial direction of the drive shaft 13 (the same direction as the longitudinal direction A) of the shaft base end portion 13a. It is preferable to provide a high-rigidity portion 70 in an area equal to or longer than the length minus (see symbol "r" in FIG. 3A).
  • the cylindrical body 72 is at least as long as the radius of the inner diameter of the inner tube 30 in the shaft axial direction of the drive shaft 13 (see symbol "r" in FIG. 3A). It is provided in an area equal to or longer than the length minus By doing so, the bending and meandering of the shaft base end portion 13a can be further suppressed. As a result, bending and breakage of the shaft base end portion 13a can be further suppressed.
  • the “inner tube inner diameter” means the inner diameter of the portion of the inner tube that is inserted into the outer tube, and means the inner diameter r of the inner tube main body 31 of the inner tube 30 in this embodiment.
  • the drive shaft 13 has the high rigidity portion 70 over the entire area of the shaft base end portion 13a in the shaft axial direction. That is, in the present embodiment, the cylindrical body 72 is provided over the entire area of the shaft base end portion 13a in the shaft axial direction. By doing so, the bending and meandering of the shaft base end portion 13a can be further suppressed. As a result, bending and breakage of the shaft base end portion 13a can be further suppressed.
  • the drive shaft 13 can be pushed in (see FIG. 3B) and pulled out (FIG. 3A) as in the present embodiment.
  • the cylindrical body 72 is provided not only at the proximal shaft base end portion 13a but also at the distal shaft base end portion 13c.
  • the cylindrical body 72 of the present embodiment covers the entire area of the proximal shaft base end 13a in the shaft axial direction and the proximal shaft base end 13a of the distal shaft base end 13c. It is provided over a region in the shaft axial direction of a portion that is continuous to the distal side.
  • the distal end of the cylindrical body 72 of this embodiment is located within the protective tube 50 even in the drawn state (see FIG. 3A).
  • the pulled-out state see FIG. 3A
  • the pushed-in state see FIG. 3B
  • the distal end of the high-rigidity portion 70 moves toward the free end, which is the proximal end of the protective tube 50. I don't get caught. Therefore, bending and meandering of the proximal shaft base end portion 13a can be further suppressed. As a result, bending and breaking of the proximal shaft base end portion 13a can be further suppressed.
  • the drive shaft 13 of this embodiment does not include the high-rigidity portion 70 at the portion positioned inside the sheath 20 in the pushed state (see FIG. 3B). That is, the high-rigidity portion 70 is formed at a position where it does not enter the sheath 20 in the pushed state (see FIG. 3B). More specifically, the distal end of the high-rigidity portion 70 of the drive shaft 13 of this embodiment is located within the outer tube 40 in a pushed state (see FIG. 3B).
  • the bending rigidity of the high-rigidity portion 70 is higher than the bending rigidity of the sheath 20, the high-rigidity portion 70 enters the sheath 20 and the posture of the sheath 20 changes to the high-rigidity portion. It is possible to prevent the change along the posture of 70 . As a result, positional fluctuation of the ultrasonic sensor 60 within the sheath 20 can be suppressed. Moreover, bending of the sheath 20 at the distal end of the high-rigidity portion 70 can be suppressed. In other words, in the ultrasound catheter 110 of this embodiment, the bending rigidity of the high-rigidity portion 70 of the drive shaft 13 may be higher than the bending rigidity of the sheath 20 .
  • the high-rigidity portion 70 of the present embodiment is composed of the three-layered coil portion 71 and the cylindrical body 72, but is not limited to this configuration.
  • 5 to 7 are diagrams showing modified examples of the high-rigidity portion 70.
  • FIG. 1 is a diagram showing modified examples of the high-rigidity portion 70.
  • the high-rigidity portion 70 shown in FIG. 5 includes a three-layered coil portion 71 and a laminated reinforcing portion 73 that is joined to the outer peripheral surface of the coil portion 71 and laminated on the outer peripheral surface of the coil portion 71 .
  • the high-rigidity portion 70 may include a laminated reinforcement portion 73 joined to the outer peripheral surface of the coil portion 71 instead of or in addition to the cylindrical body 72 (see FIG. 4).
  • the lamination reinforcing portion 73 can be made of wax or various resins, for example.
  • the three-layered coil portion 71 is reinforced by the laminated reinforcing portion 73 to increase strength and bending rigidity.
  • a method of joining the laminated reinforcing portion 73 to the outer peripheral surface of the coil portion 71 is not particularly limited.
  • the laminated reinforcing portion 73 may be joined to the outer peripheral surface of the coil portion 71 by adhesion, welding, application, coating, or the like, for example.
  • a high-rigidity portion 70 shown in FIG. 6 includes a three-layered coil portion 71 and a core member 74 inserted inside the coil portion 71 .
  • the high-rigidity portion 70 includes the core member 74 inserted into the coil portion 71 instead of or in addition to the cylindrical body 72 (see FIG. 4) and the laminated reinforcing portion 73 (see FIG. 5).
  • the core member 74 can be made of metal or resin, for example. Deflection and meandering of the coil portion 71 are restricted by contact with the outer surface of the core member 74 .
  • the high-rigidity portion 70 shown in FIG. 7 is composed of three layers of coil portions 75 .
  • each coil of the coil portion 75 constituting the high-rigidity portion 70 shown in FIG. 7 has a larger cross-sectional dimension than each coil of the three-layered coil portion 71 located on the distal side thereof.
  • a three-layer coil portion 71 located on the distal side and a three-layer coil portion 75 as the high-rigidity portion 70 located on the proximal side are joined by a joint portion 76 .
  • the joining portion 76 is not particularly limited as long as it is configured to join the coil portion 71 and the coil portion 75, such as a welding portion or an adhesive.
  • the difference in bending rigidity is achieved by varying the cross-sectional dimensions of the coils. may be realized.
  • FIG. 7 further includes at least one of a tubular body 72 (see FIG. 4), a laminated reinforcing portion 73 (see FIG. 5), and a core member 74 (see FIG. 6).
  • a tubular body 72 see FIG. 4
  • a laminated reinforcing portion 73 see FIG. 5
  • a core member 74 see FIG. 6
  • the configuration of the high-rigidity portion 70 is not particularly limited as long as it has higher bending rigidity than the shaft body portion 13b, which is the portion located inside the sheath 20, in the pulled-out state (see FIG. 3A).
  • FIG. 3A and FIG. 3B show a configuration in which one high-rigidity portion 70 that is continuous in the shaft axial direction is provided at the proximal shaft base end portion 13a, but the configuration is not limited to this.
  • the proximal shaft base end portion 13a may be provided with a plurality of high-rigidity portions 70 intermittently arranged in the axial direction of the shaft.
  • the high-rigidity portion 70 extends distally from within the hub 32 of the inner tube 30 and is positioned at the proximal end of the protective tube 50 in the pulled-out state (see FIG. 3A). It is preferable to have a continuous configuration up to the position in the vicinity or in the protective tube 50 as in the above-described embodiment. By doing so, the bending and meandering of the proximal shaft base end portion 13a can be more reliably suppressed.
  • the present disclosure relates to diagnostic imaging catheters.

Abstract

A catheter for diagnostic imaging according to the present disclosure comprises: a sheath; a drive shaft inserted into the sheath; an image sensor fixed to the drive shaft; an outer tube fixed to a proximal end part of the sheath; an inner tube accommodating a proximal end part of the drive shaft and movable within the outer tube together with the drive shaft; and a protective tube fixed to a proximal side of the sheath and that is moved within the inner tube as the inner tube moves within the outer tube, the protective tube allowing the drive shaft to be passed therein. The drive shaft includes a highly rigid section at least in a portion of a shaft base end part that is accommodated within the protective tube in a pushed-in state in which the inner tube is maximally pushed into the outer tube and that is located outside the protective tube in a pulled-out state in which the inner tube is maximally pulled out from the outer tube, the highly rigid section having a higher bending rigidity than a portion that is located within the sheath in the pulled-out state.

Description

画像診断用カテーテルdiagnostic imaging catheter
 本開示は画像診断用カテーテルに関する。 The present disclosure relates to diagnostic imaging catheters.
 従来から、血管等の断層画像を得る画像診断用カテーテルの一例として、血管内超音波診断法(Intravascular Ultrasound、略称「IVUS」)によって画像を得る超音波カテーテルが知られている。特許文献1には、この種の超音波カテーテルが開示されている。 Conventionally, an ultrasound catheter that obtains images by intravascular ultrasound (Intravascular Ultrasound, abbreviated as "IVUS") has been known as an example of diagnostic imaging catheters that obtain tomographic images of blood vessels and the like. Patent Literature 1 discloses this type of ultrasound catheter.
 特許文献1に記載の超音波カテーテルは、血管内に挿入されるカテーテルシースと、このカテーテルシース内で超音波振動子とともに移動可能な駆動シャフトと、を備える。特許文献1に記載のカテーテルシースの近位側には、接続ポート及びシースコネクタが連結されている。また、特許文献1に記載の駆動シャフトの近位側にはドライブシャフトコネクタが連結されている。特許文献1に記載のドライブシャフトコネクタの遠位側には、駆動シャフトの近位側の所定部分を覆うガイドチューブが設けられている。 The ultrasound catheter described in Patent Document 1 includes a catheter sheath to be inserted into a blood vessel, and a drive shaft movable together with an ultrasound transducer within the catheter sheath. A connection port and a sheath connector are connected to the proximal side of the catheter sheath described in Patent Document 1. A drive shaft connector is connected to the proximal side of the drive shaft described in Patent Document 1. A distal side of the drive shaft connector described in Patent Document 1 is provided with a guide tube that covers a predetermined portion of the proximal side of the drive shaft.
特開2000-189517号公報JP-A-2000-189517
 特許文献1に記載の超音波カテーテルにおいて、内管としての、ガイドチューブ及びドライブシャフトコネクタ(以下、ガイドチューブ及びドライブシャフトコネクタを単に「内管」と記載する。)は、外管としての、接続ポート及びシースコネクタ(以下、接続ポート及びシースコネクタを単に「外管」と記載する。)、の内部を移動可能に構成されている。これにより、超音波センサとしての超音波振動子、及び、駆動シャフトは、カテーテルシース内を、カテーテルシースの長手方向に移動可能である。また、特許文献1に記載の超音波カテーテルにおいて、駆動シャフトは、内管及び外管の内部で、駆動シャフトの中心軸周りに回動可能に構成されている。 In the ultrasound catheter described in Patent Document 1, the guide tube and the drive shaft connector (hereinafter, the guide tube and the drive shaft connector are simply referred to as "inner tube") as the inner tube are connected as the outer tube. It is configured to be movable inside the port and sheath connector (hereinafter, the connection port and sheath connector are simply referred to as "outer tube"). As a result, the ultrasonic transducer as the ultrasonic sensor and the drive shaft can move in the longitudinal direction of the catheter sheath. In addition, in the ultrasound catheter described in Patent Document 1, the drive shaft is configured to be rotatable around the central axis of the drive shaft inside the inner tube and the outer tube.
 特許文献1に記載されているような画像診断用カテーテルとしての超音波カテーテルでは、駆動シャフトが、内管及び外管の内部で撓んだり、蛇行したりするおそれがある。駆動シャフトに撓みや蛇行が発生すると、駆動シャフトの折れ曲がりや破断が発生し得る。 In an ultrasound catheter as a diagnostic imaging catheter as described in Patent Document 1, there is a risk that the drive shaft will bend or meander inside the inner tube and the outer tube. Bending or breaking of the drive shaft can occur when the drive shaft bends or meanders.
 本開示は、内管及び外管の内部での駆動シャフトの撓み及び蛇行を抑制可能な画像診断用カテーテルを提供することを目的とする。 An object of the present disclosure is to provide a diagnostic imaging catheter capable of suppressing bending and meandering of the drive shaft inside the inner tube and the outer tube.
 本開示の第1の態様としての画像診断用カテーテルは、体腔内に挿入されるシースと、前記シース内に挿入されている駆動シャフトと、前記駆動シャフトの遠位端部に固定された画像センサと、前記シースの近位端部に固定されている外管と、駆動シャフトの近位端部を収容し、前記駆動シャフトと共に前記外管内を移動可能な内管と、前記シースの近位側に固定され、前記内管の前記外管内での移動に伴って前記内管内で移動させられ、前記駆動シャフトを内部に通す保護管と、を備え、前記駆動シャフトは、前記内管が前記外管内に最も押し込まれた押し込み状態で前記保護管内に収容され、かつ、前記内管が前記外管内から最も引き出された引き出し状態で前記保護管外に位置するシャフト基端部の少なくとも一部に、前記引き出し状態で前記シース内に位置する部位より曲げ剛性が大きい高剛性部を備える。 A diagnostic imaging catheter as a first aspect of the present disclosure comprises a sheath inserted into a body cavity, a drive shaft inserted into the sheath, and an image sensor fixed to a distal end of the drive shaft. an outer tube fixed to the proximal end of the sheath; an inner tube that accommodates the proximal end of a drive shaft and is movable within the outer tube together with the drive shaft; and a proximal side of the sheath. a protective tube that is fixed to the inner tube and moves within the inner tube as the inner tube moves within the outer tube, and passes the drive shaft through the protective tube; at least a part of the proximal end of the shaft that is housed in the protective tube in a state of being pushed most into the tube and positioned outside the protective tube in a drawn state of being pulled out of the outer tube most, A high-rigidity portion having greater flexural rigidity than a portion located inside the sheath in the pulled-out state is provided.
 本開示の1つの実施形態として、前記駆動シャフトは、前記シャフト基端部のうち、前記駆動シャフトのシャフト軸方向において少なくとも前記内管の内径の半径の長さ分を引いた長さ以上の領域に、前記高剛性部を備える。 As one embodiment of the present disclosure, the drive shaft has, in the shaft base end portion, a region equal to or larger than at least the length of the radius of the inner diameter of the inner tube in the shaft axial direction of the drive shaft. is provided with the high rigidity portion.
 本開示の1つの実施形態として、前記駆動シャフトは、前記シャフト基端部の前記シャフト軸方向の全域に、前記高剛性部を備える。 As one embodiment of the present disclosure, the drive shaft includes the high-rigidity portion over the entire area of the shaft base end in the shaft axial direction.
 本開示の1つの実施形態として、前記シャフト基端部を近位側シャフト基端部とした場合に、前記駆動シャフトは、前記押し込み状態及び前記引き出し状態で前記保護管内に収容される遠位側シャフト基端部の少なくとも一部に、前記高剛性部を更に備える。 As one embodiment of the present disclosure, when the shaft base end is a proximal shaft base end, the drive shaft is housed in the protective tube in the pushed state and the pulled out state. The high-rigidity portion is further provided on at least a portion of the shaft base end.
 本開示の1つの実施形態として、前記駆動シャフトは、前記押し込み状態で、前記シース内に位置する部位に、前記高剛性部を備えない。 As one embodiment of the present disclosure, the drive shaft does not include the high-rigidity portion at a portion positioned inside the sheath in the pushed state.
 本開示によれば、内管及び外管の内部での駆動シャフトの撓み及び蛇行を抑制可能な画像診断用カテーテルを提供することができる。 According to the present disclosure, it is possible to provide a diagnostic imaging catheter capable of suppressing bending and meandering of the drive shaft inside the inner tube and the outer tube.
本開示に係る画像診断用カテーテルの一実施形態としての超音波カテーテルと、外部装置と、が接続された画像診断装置を示す図である。1 is a diagram showing a diagnostic imaging apparatus to which an ultrasound catheter as an embodiment of a diagnostic imaging catheter according to the present disclosure and an external device are connected; FIG. 図1に示す超音波カテーテル単体を示す図である。FIG. 2 is a view showing the ultrasound catheter alone shown in FIG. 1; 図2に示す超音波カテーテルの操作部の概略図であり、内管が外管から近位側に最も引き出された引き出し状態を示す図である。FIG. 3 is a schematic diagram of the operating portion of the ultrasound catheter shown in FIG. 2, showing a pulled-out state in which the inner tube is most pulled out from the outer tube to the proximal side. 図2に示す超音波カテーテルの操作部の概略図であり、内管が外管内に向かって遠位側に最も押し込まれた押し込み状態を示す図である。FIG. 3 is a schematic view of the operating portion of the ultrasound catheter shown in FIG. 2, showing a pushed state in which the inner tube is pushed farthest distally toward the inside of the outer tube. 図2に示す超音波カテーテルの駆動シャフトの一部及び電気信号線の一部の詳細を示す部分断面図であると共に、駆動シャフトの高剛性部の構成を示す図である。FIG. 3 is a partial cross-sectional view showing details of a portion of the drive shaft and a portion of the electric signal line of the ultrasound catheter shown in FIG. 2, and a diagram showing the configuration of the high-rigidity portion of the drive shaft; 図4に示す駆動シャフトの高剛性部の一変形例を示す図である。FIG. 5 is a view showing a modification of the high-rigidity portion of the drive shaft shown in FIG. 4; 図4に示す駆動シャフトの高剛性部の一変形例を示す図である。FIG. 5 is a view showing a modification of the high-rigidity portion of the drive shaft shown in FIG. 4; 図4に示す駆動シャフトの高剛性部の一変形例を示す図である。FIG. 5 is a view showing a modification of the high-rigidity portion of the drive shaft shown in FIG. 4; 引き出し状態にある超音波カテーテルの操作部の概略図であり、駆動シャフトの高剛性部の配置の変形例を示す図である。FIG. 10 is a schematic diagram of the operation section of the ultrasound catheter in the pulled-out state, showing a modification of the arrangement of the high-rigidity section of the drive shaft. 図8Aに示す超音波カテーテルの操作部の押し出し状態を示す概略図である。FIG. 8B is a schematic diagram showing a pushed-out state of the operating portion of the ultrasound catheter shown in FIG. 8A;
 以下、本開示に係る画像診断用カテーテルの実施形態について図面を参照して例示説明する。各図において共通する構成には同一の符号を付している。 An embodiment of a diagnostic imaging catheter according to the present disclosure will be described below with reference to the drawings. The same reference numerals are given to the configurations that are common in each figure.
 本開示では、画像診断用カテーテルの長手方向を「長手方向A」と記載する。本開示では、画像診断用カテーテルの長手方向Aで生体内に挿入される側を「遠位側」と記載する。画像診断用カテーテルの長手方向Aで生体外にて操作される手元側を「近位側」と記載する。また、画像診断用カテーテルの近位側から遠位側に向かう方向を単に「挿入方向A1」と記載する場合がある。画像診断用カテーテルの遠位端側から近位端側に向かう方向を単に「抜去方向A2」と記載する場合がある。 In the present disclosure, the longitudinal direction of the diagnostic imaging catheter is referred to as "longitudinal direction A". In the present disclosure, the side of the catheter for diagnostic imaging that is inserted into the living body in the longitudinal direction A is referred to as the "distal side." The "proximal side" refers to the proximal side of the diagnostic imaging catheter that is manipulated in vitro in the longitudinal direction A. Also, the direction from the proximal side to the distal side of the diagnostic imaging catheter may be simply referred to as "insertion direction A1". The direction from the distal end side to the proximal end side of the diagnostic imaging catheter may be simply referred to as "removal direction A2".
 まず、本開示に係る画像診断用カテーテルの一実施形態としての超音波カテーテル110、を備える画像診断装置100について説明する。図1は、画像診断装置100を示す図である。画像診断装置100は、超音波カテーテル110と、外部装置120と、を備える。図1では、超音波カテーテル110が外部装置120に接続されている状態を示している。以下、本明細書では、画像診断用カテーテルとして、超音波カテーテル110について例示説明するが、本開示に係る画像診断用カテーテルは、本実施形態で示す超音波カテーテル110に限られない。画像診断用カテーテルは、例えば、光干渉断層診断法(Optical Coherence Tomography、略称「OCT」)、近赤外線分光法(Near Infrared Spectroscopy、略称「NIRS」)などを可能とするカテーテルであってもよい。かかる場合には、画像診断用カテーテルは、画像センサとして、後述する超音波センサ60に代えて又は加えて、光センサを備える構成とされてよい。 First, a diagnostic imaging apparatus 100 including an ultrasound catheter 110 as an embodiment of a diagnostic imaging catheter according to the present disclosure will be described. FIG. 1 is a diagram showing a diagnostic imaging apparatus 100. As shown in FIG. The diagnostic imaging apparatus 100 includes an ultrasound catheter 110 and an external device 120 . FIG. 1 shows the ultrasound catheter 110 connected to an external device 120 . Hereinafter, in the present specification, the ultrasonic catheter 110 will be exemplified as a diagnostic imaging catheter, but the diagnostic imaging catheter according to the present disclosure is not limited to the ultrasonic catheter 110 shown in this embodiment. The diagnostic imaging catheter may be, for example, a catheter that enables Optical Coherence Tomography (abbreviated as "OCT"), Near Infrared Spectroscopy (abbreviated as "NIRS"), and the like. In such a case, the diagnostic imaging catheter may be configured to include an optical sensor as an image sensor instead of or in addition to the ultrasonic sensor 60 described later.
<超音波カテーテル110>
 図2は、図1に示す超音波カテーテル110単体を示す図である。超音波カテーテル110は、血管内超音波診断法(Intravascular Ultrasound、略称「IVUS」)に適用される。図1に示すように、超音波カテーテル110は、外部装置120に接続されることによって駆動される。より具体的に、本実施形態の超音波カテーテル110は、外部装置120の駆動ユニット120aに接続されている。
<Ultrasound catheter 110>
FIG. 2 is a diagram showing the ultrasound catheter 110 shown in FIG. 1 alone. The ultrasound catheter 110 is applied to intravascular ultrasound (Intravascular Ultrasound, abbreviated as "IVUS"). As shown in FIG. 1, the ultrasound catheter 110 is driven by being connected to an external device 120 . More specifically, the ultrasound catheter 110 of this embodiment is connected to the driving unit 120a of the external device 120. As shown in FIG.
 図1、図2に示すように、超音波カテーテル110は、挿入部110aと、操作部110bと、を備える。挿入部110aは、超音波カテーテル110のうち、生体内に挿入されて使用される部位である。操作部110bは、超音波カテーテル110のうち、挿入部110aが生体内に挿入されている状態で、生体外で操作される部位である。本実施形態の超音波カテーテル110では、後述する遠位側コネクタ42よりも遠位側の部分が挿入部110aであり、遠位側コネクタ42から近位側の部分が操作部110bである。 As shown in FIGS. 1 and 2, the ultrasound catheter 110 includes an insertion section 110a and an operation section 110b. The insertion portion 110a is a portion of the ultrasound catheter 110 that is used by being inserted into the living body. The operation part 110b is a part of the ultrasound catheter 110 that is operated outside the body while the insertion part 110a is inserted into the body. In the ultrasonic catheter 110 of the present embodiment, the portion on the distal side of a distal connector 42 to be described later is the insertion portion 110a, and the portion on the proximal side of the distal connector 42 is the operating portion 110b.
 図1、図2に示すように、挿入部110aは、超音波探触子10の遠位側の部分と、シース20と、を備える。詳細は後述するが、挿入部110aに含まれる超音波探触子10の遠位側の部分とは、超音波センサ60と、駆動シャフト13の遠位側の部分と、電気信号線14(図4参照)の遠位側の部分と、で構成されている。 As shown in FIGS. 1 and 2, the insertion section 110a includes a distal portion of the ultrasonic probe 10 and the sheath 20. As shown in FIGS. Although the details will be described later, the distal side portion of the ultrasonic probe 10 included in the insertion portion 110a includes the ultrasonic sensor 60, the distal side portion of the drive shaft 13, and the electric signal line 14 (Fig. 4) on the distal side.
 操作部110bは、駆動シャフト13をシース20内でシース20の長手方向(長手方向Aと同じ方向)に移動させることができる。図1、図2に示すように、操作部110bは、超音波探触子10の近位側の部分と、内管30と、外管40と、保護管50と、を備える。詳細は後述するが、操作部110bに含まれる超音波探触子10の近位側の部分とは、駆動シャフト13の近位側の部分と、電気信号線14(図4参照)の近位側の部分と、で構成されている。 The operation part 110b can move the drive shaft 13 within the sheath 20 in the longitudinal direction of the sheath 20 (the same direction as the longitudinal direction A). As shown in FIGS. 1 and 2, the operation section 110b includes a proximal portion of the ultrasonic probe 10, an inner tube 30, an outer tube 40, and a protective tube 50. As shown in FIGS. Although the details will be described later, the proximal portion of the ultrasonic probe 10 included in the operation portion 110b includes the proximal portion of the drive shaft 13 and the proximal portion of the electrical signal line 14 (see FIG. 4). It consists of a side part and a
 内管30は、超音波探触子10の近位側の端部(以下、「近位側の端部」を単に「近位端部」と記載する。)を保持している。外管40は、シース20の近位端部を保持している。詳細は後述するが、内管30が外管40内を中心軸方向(長手方向Aと同じ方向)に移動することで、超音波探触子10がシース20内を長手方向Aに移動することができる。 The inner tube 30 holds the proximal end of the ultrasound probe 10 (hereinafter, the "proximal end" is simply referred to as the "proximal end"). Outer tube 40 holds the proximal end of sheath 20 . Although the details will be described later, the ultrasonic probe 10 moves in the longitudinal direction A within the sheath 20 by moving the inner tube 30 in the outer tube 40 in the central axis direction (the same direction as the longitudinal direction A). can be done.
[超音波探触子10]
 図3A、図3Bは、超音波カテーテル110の操作部110bの概略図である。図3Aは、内管30が外管40から近位側に最も引き出された引き出し状態を示している。図3Bは、内管30が外管40内に向かって遠位側に最も押し込まれた押し込み状態を示している。以下、図3Aに示す状態を単に「引き出し状態」と記載する場合がある。また、図3Bに示す状態を単に「押し込み状態」と記載する場合がある。図4は、超音波カテーテル110の駆動シャフト13の一部及び電気信号線14の一部の詳細を示す部分断面図である。
[Ultrasonic probe 10]
3A and 3B are schematic diagrams of the operating portion 110b of the ultrasound catheter 110. FIG. FIG. 3A shows a drawn state in which the inner tube 30 is most drawn proximally from the outer tube 40 . FIG. 3B shows a pushed state in which the inner tube 30 is pushed most distally into the outer tube 40 . Hereinafter, the state shown in FIG. 3A may be simply referred to as "pulled out state". Also, the state shown in FIG. 3B may be simply described as a "pressed state". FIG. 4 is a partial cross-sectional view showing details of a portion of drive shaft 13 and a portion of electrical signal line 14 of ultrasound catheter 110 .
 図2に示すように、超音波探触子10は、画像センサとしての超音波センサ60と、駆動シャフト13と、この駆動シャフト13内を延在する電気信号線14(図4参照)と、を備える。超音波センサ60は、超音波振動子と、ハウジングと、を備える。 As shown in FIG. 2, the ultrasonic probe 10 includes an ultrasonic sensor 60 as an image sensor, a drive shaft 13, an electric signal line 14 extending through the drive shaft 13 (see FIG. 4), Prepare. The ultrasonic sensor 60 includes an ultrasonic transducer and a housing.
 図2に示すように、超音波センサ60は、駆動シャフト13の遠位側の端部(以下、遠位側の端部を単に「遠位端部」と記載する。)に固定されている。超音波センサ60の超音波振動子は圧電素子を含む。圧電素子は、扁平状の圧電体と、この圧電体に積層されている電極と、からなる。超音波振動子により、超音波の送受信を行うことができる。 As shown in FIG. 2, the ultrasonic sensor 60 is fixed to the distal end of the drive shaft 13 (hereinafter, the distal end is simply referred to as the "distal end"). . The ultrasonic transducer of ultrasonic sensor 60 includes a piezoelectric element. A piezoelectric element is composed of a flat piezoelectric body and electrodes laminated on the piezoelectric body. Ultrasonic waves can be transmitted and received by the ultrasonic transducer.
 超音波センサ60のハウジングは、超音波振動子を支持している。ハウジングの近位側は、駆動シャフト13に接続されている。ハウジングは、駆動シャフト13と一体化されていればよい。したがって、ハウジングは、駆動シャフト13に接着等により直接的に接続されていてもよく、駆動シャフト13にコネクタ等を介して間接的に接続されていてもよい。 The housing of the ultrasonic sensor 60 supports the ultrasonic transducer. The proximal side of the housing is connected to drive shaft 13 . The housing may be integrated with the drive shaft 13 . Therefore, the housing may be directly connected to the drive shaft 13 by adhesion or the like, or may be indirectly connected to the drive shaft 13 via a connector or the like.
 図2に示すように、駆動シャフト13は、シース20内に挿入されている。駆動シャフト13は、可撓性を有する管体により構成されている。図4に示すように、駆動シャフト13の内部には、超音波センサ60の超音波振動子に接続される電気信号線14が配置されている。駆動シャフト13は、例えば、軸まわりの巻き方向が異なる多層のコイルによって構成される。詳細は後述するが、本実施形態の駆動シャフト13は、3層のコイルにより構成されている(図4等参照)。コイルの材料としては、例えば、ステンレス、Ni-Ti(ニッケル・チタン)合金などが挙げられる。このような駆動シャフト13にすることで、2本の電気信号線14を二重らせん状のツイストペアケーブルにより構成しても、シールド性を高めて電気信号線14から発生するノイズによる影響を軽減することができる。 As shown in FIG. 2, the drive shaft 13 is inserted into the sheath 20. The drive shaft 13 is configured by a tubular body having flexibility. As shown in FIG. 4, the electric signal line 14 connected to the ultrasonic transducer of the ultrasonic sensor 60 is arranged inside the drive shaft 13 . The drive shaft 13 is composed of, for example, multiple layers of coils with different winding directions around the axis. Although the details will be described later, the drive shaft 13 of the present embodiment is composed of three layers of coils (see FIG. 4, etc.). Materials for the coil include, for example, stainless steel and Ni--Ti (nickel-titanium) alloy. By using such a drive shaft 13, even if the two electric signal lines 14 are composed of a double-helical twisted pair cable, the shielding property is enhanced and the influence of noise generated from the electric signal lines 14 is reduced. be able to.
 図2~図4に示すように、駆動シャフト13は、シース20、内管30、外管40及び保護管50の内部を通って延在している。上述したように、駆動シャフト13の遠位端部は、超音波センサ60のハウジングに接続されている。駆動シャフト13の近位端は、内管30の近位端を構成する後述のハブ32に保持されている。つまり、駆動シャフト13は、長手方向Aにおいて、挿入部110aの遠位端部から操作部110bの近位端部まで延在している。 The drive shaft 13 extends through the interior of the sheath 20, the inner tube 30, the outer tube 40 and the protective tube 50, as shown in FIGS. As mentioned above, the distal end of drive shaft 13 is connected to the housing of ultrasonic sensor 60 . A proximal end of the drive shaft 13 is held by a later-described hub 32 forming a proximal end of the inner tube 30 . That is, the drive shaft 13 extends in the longitudinal direction A from the distal end of the insertion section 110a to the proximal end of the operation section 110b.
 図4に示すように、電気信号線14は、駆動シャフト13内に延在している。電気信号線14は、超音波センサ60(図2参照)の超音波振動子と外部装置120(図1参照)とを電気的に接続している。つまり、電気信号線14は、駆動シャフト13と同様、長手方向Aにおいて、挿入部110aの遠位端部から操作部110bの近位端部まで延在している。電気信号線14は複数(本実施形態では2本)設けられており、各電気信号線14は、超音波センサ60の超音波振動子の電極に接続されている。複数の電気信号線14は、例えば、2本の電気信号線14が撚り合わされたツイストペアケーブルにより構成される。各電気信号線14は、外径が0mmより大きく0.1mm以下の、可撓性を有する柔軟な細線部材とすることができる。各電気信号線14は、例えば、導線と、絶縁材料により形成され、導線の周囲を被覆する被覆材と、により構成可能である。 As shown in FIG. 4 , the electrical signal line 14 extends inside the drive shaft 13 . The electric signal line 14 electrically connects the ultrasonic transducer of the ultrasonic sensor 60 (see FIG. 2) and the external device 120 (see FIG. 1). In other words, the electric signal line 14 extends in the longitudinal direction A from the distal end of the insertion section 110a to the proximal end of the operation section 110b, like the drive shaft 13 does. A plurality of electric signal lines 14 (two in this embodiment) are provided, and each electric signal line 14 is connected to an electrode of an ultrasonic transducer of the ultrasonic sensor 60 . The plurality of electrical signal lines 14 are composed of, for example, twisted pair cables in which two electrical signal lines 14 are twisted together. Each electrical signal line 14 can be a flexible thin wire member having an outer diameter greater than 0 mm and less than or equal to 0.1 mm. Each electric signal line 14 can be composed of, for example, a conducting wire and a covering material that is formed of an insulating material and covers the circumference of the conducting wire.
[シース20]
 シース20は、血管等の体腔内に挿入される。図2に示すように、シース20は、本体部20aと、ガイドワイヤ挿通部20bと、を備える。本体部20aの内部には、第1中空部が区画されている。ガイドワイヤ挿通部20bには、第2中空部が区画されている。本体部20aの第1中空部には、超音波探触子10が収容されている。超音波探触子10は、第1中空部において、長手方向Aに進退移動することができる。ガイドワイヤ挿通部20bの第2中空部には、ガイドワイヤが挿通可能である。図2に示すように、本実施形態では、管状のガイドワイヤ挿通部20bが、管状の本体部20aの遠位端部に対して、互いが平行な状態になるように隣接されている。本体部20a及びガイドワイヤ挿通部20bは、互いに異なる管部材を熱融着等によって接合することで形成されてよい。
[Sheath 20]
The sheath 20 is inserted into a body cavity such as a blood vessel. As shown in FIG. 2, the sheath 20 includes a body portion 20a and a guidewire insertion portion 20b. A first hollow portion is defined inside the body portion 20a. A second hollow portion is defined in the guide wire insertion portion 20b. The ultrasonic probe 10 is accommodated in the first hollow portion of the body portion 20a. The ultrasonic probe 10 can move back and forth in the longitudinal direction A in the first hollow portion. A guide wire can be inserted through the second hollow portion of the guide wire insertion portion 20b. As shown in FIG. 2, in this embodiment, the tubular guidewire insertion portion 20b is adjacent to the distal end portion of the tubular body portion 20a so as to be parallel to each other. The main body portion 20a and the guidewire insertion portion 20b may be formed by joining different tube members by heat sealing or the like.
 シース20は、可撓性を有する材料で形成され、その材料は特に限定されない。構成材料としては、例えば、ポリエチレン、スチレン、ポリオレフィン、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリブタジエン、トランスポリイソプレン、フッ素ゴム、塩素化ポリエチレン等の各種熱可塑性エラストマー等が挙げられ、これらのうちの1種または2種以上を組合せたポリマーアロイ、ポリマーブレンド、積層体等も使用することができる。 The sheath 20 is made of a flexible material, and the material is not particularly limited. Examples of constituent materials include various thermoplastic elastomers such as polyethylene, styrene, polyolefin, polyurethane, polyester, polyamide, polyimide, polybutadiene, transpolyisoprene, fluororubber, and chlorinated polyethylene. Alternatively, polymer alloys, polymer blends, laminates, etc. in which two or more types are combined can also be used.
 本体部20aは、その近位端部において、剛性が高い材料によって補強された補強部を有してよい。補強部は、例えば、樹脂等の可撓性を有する管状部材に、ステンレス製などの金属素線を網目状に編組した補強材が配設されて形成されてよい。上記管状部材は、例えば、上述したシース20の構成材料によって形成されてよい。 The main body portion 20a may have a reinforcement portion at its proximal end that is reinforced with a highly rigid material. The reinforcing portion may be formed, for example, by arranging a reinforcing material in which a metal wire made of stainless steel or the like is braided in a mesh shape to a tubular member having flexibility such as resin. The tubular member may be formed, for example, from the material of the sheath 20 described above.
[内管30及び外管40]
 内管30は、駆動シャフト13の近位端部を収容し、駆動シャフト13と共に外管40内を移動可能である。図1、図2、図3A、図3Bに示すように、内管30は、内管本体31と、ハブ32と、を備える。内管本体31は、外管40内で進退移動可能に挿入されている。ハブ32は、内管本体31の近位側に接続されている。
[Inner tube 30 and outer tube 40]
Inner tube 30 houses the proximal end of drive shaft 13 and is movable within outer tube 40 with drive shaft 13 . As shown in FIGS. 1, 2, 3A, and 3B, the inner tube 30 includes an inner tube main body 31 and a hub 32. As shown in FIGS. The inner tube main body 31 is inserted in the outer tube 40 so as to be movable forward and backward. The hub 32 is connected to the proximal side of the inner tube main body 31 .
 図1、図2、図3A、図3Bに示すように、外管40は、シース20の近位端部に固定されている。本実施形態の外管40は、外管本体41と、遠位側コネクタ42と、近位側コネクタ43と、を備える。外管本体41は、内管本体31の径方向外側に位置し、外管本体41内を内管本体31が進退移動する。遠位側コネクタ42は、シース20の本体部20aの近位端部と、外管本体41の遠位端部と、を接続している。近位側コネクタ43は、外管本体41の近位端部に固定されている。 As shown in FIGS. 1, 2, 3A and 3B, the outer tube 40 is fixed to the proximal end of the sheath 20. As shown in FIGS. The outer tube 40 of this embodiment includes an outer tube body 41 , a distal connector 42 and a proximal connector 43 . The outer tube body 41 is located radially outside the inner tube body 31 , and the inner tube body 31 moves back and forth inside the outer tube body 41 . The distal connector 42 connects the proximal end of the main body 20 a of the sheath 20 and the distal end of the outer tube main body 41 . The proximal connector 43 is fixed to the proximal end of the outer tube main body 41 .
 上述した超音波探触子10の駆動シャフト13及び電気信号線14は、シース20の本体部20a、この本体部20aの近位側に接続された外管40、及び、この外管40に一部が挿入されている内管30の近位端を構成するハブ32まで、延在している。 The drive shaft 13 and the electric signal line 14 of the ultrasonic probe 10 described above are connected to the main body 20a of the sheath 20, the outer tube 40 connected to the proximal side of the main body 20a, and the outer tube 40. It extends to a hub 32 which constitutes the proximal end of inner tube 30 into which the section is inserted.
 上述した超音波探触子10及び内管30は、それぞれが一体的に長手方向Aに進退移動するように互いに接続されている。そのため、例えば、内管30が、挿入方向A1に向かって押される操作がなされると、図3Bに示すように、内管30は、挿入方向A1に向かって、外管40内に押し込まれる。内管30が挿入方向A1に向かって外管40内に押し込まれると、内管30に接続されている超音波探触子10がシース20の本体部20a内を挿入方向A1に移動する。逆に、内管30が、抜去方向A2に向かって引かれる操作がなされると、図3Aに示すように、内管30は、外管40内から抜去方向A2に引き出される。内管30が外管40内から抜去方向A2に引き出されると、内管30に接続されている超音波探触子10はシース20の本体部20a内を抜去方向A2に移動する。 The ultrasonic probe 10 and the inner tube 30 described above are connected to each other so that they move back and forth in the longitudinal direction A integrally. Therefore, for example, when the inner tube 30 is pushed in the insertion direction A1, the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1 as shown in FIG. 3B. When the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1, the ultrasonic probe 10 connected to the inner tube 30 moves inside the main body 20a of the sheath 20 in the insertion direction A1. Conversely, when the inner tube 30 is pulled in the removal direction A2, the inner tube 30 is pulled out from the outer tube 40 in the removal direction A2 as shown in FIG. 3A. When the inner tube 30 is pulled out from the outer tube 40 in the withdrawal direction A2, the ultrasonic probe 10 connected to the inner tube 30 moves inside the main body 20a of the sheath 20 in the withdrawal direction A2.
 図3Bに示すように、内管30が挿入方向A1へ最も押し込まれたときには、内管30の遠位端部は、外管40の遠位側コネクタ42付近まで到達する。この際、超音波探触子10の超音波センサ60は、シース20の本体部20aの遠位端付近に位置する。 As shown in FIG. 3B, the distal end of the inner tube 30 reaches near the distal connector 42 of the outer tube 40 when the inner tube 30 is pushed in the insertion direction A1 to the maximum. At this time, the ultrasonic sensor 60 of the ultrasonic probe 10 is positioned near the distal end of the body portion 20a of the sheath 20 .
 内管30及び外管40には、内管30を外管40から抜去方向A2に引き出した際に、内管30が外管40から抜け落ちないようにする、引き抜き側の抜け止めストッパが設けられている。本実施形態の引き抜き側の抜け止めストッパは、内管30の内管本体31の遠位端部31aと、外管40の近位側コネクタ43の突き当て壁部43bと、により構成されている。内管30の内管本体31の遠位端部31aは、径方向外側に突出する環状凸部を備える。この遠位端部31aの環状凸部が、近位側コネクタ43の突き当て壁部43bに当接することで、内管30の外管40に対する抜去方向A2の移動が規制される。つまり、本実施形態において、内管30が外管40から抜去方向A2に最も引き出された引き出し状態(図3A参照)とは、内管30の内管本体31の遠位端部31aにおける環状凸部が、外管40の近位側コネクタ43における突き当て壁部43bに、当接した状態を意味する。 The inner tube 30 and the outer tube 40 are provided with pull-out stoppers that prevent the inner tube 30 from slipping out of the outer tube 40 when the inner tube 30 is pulled out from the outer tube 40 in the pull-out direction A2. ing. The removal-preventing stopper on the pull-out side of the present embodiment is composed of the distal end portion 31a of the inner tube main body 31 of the inner tube 30 and the abutting wall portion 43b of the proximal connector 43 of the outer tube 40. . A distal end portion 31a of an inner tube main body 31 of the inner tube 30 has an annular projection projecting radially outward. The annular convex portion of the distal end portion 31a abuts against the abutment wall portion 43b of the proximal connector 43, thereby restricting movement of the inner tube 30 with respect to the outer tube 40 in the withdrawal direction A2. That is, in the present embodiment, the pulled-out state (see FIG. 3A) in which the inner tube 30 is pulled out from the outer tube 40 to the maximum in the pulling direction A2 means that the annular protrusion 31a of the inner tube main body 31 of the inner tube 30 means a state in which the portion is in contact with the abutment wall portion 43b of the proximal connector 43 of the outer tube 40. As shown in FIG.
 更に、内管30及び外管40には、内管30を挿入方向A1に向かって外管40内へと押し込む際に、内管30が外管40から抜け落ちないようにする、押し込み側の抜け止めストッパが設けられている。本実施形態の押し込み側の抜け止めストッパは、内管30のハブ32の遠位端面32aと、外管40の近位側コネクタ43の近位端面43aと、により構成されている。内管30のハブ32の遠位端面32aが、外管40の近位側コネクタ43の近位端面43aに当接することで、内管30の外管40に対する挿入方向A1の移動が規制される。つまり、本実施形態において、内管30が外管40内に挿入方向A1に向かって最も押し込まれた押し込み状態(図3B参照)とは、内管30のハブ32の遠位端面32aが、外管40の近位側コネクタ43の近位端面43aに、当接した状態を意味する。 Further, the inner tube 30 and the outer tube 40 are provided with a push-side pull-out mechanism that prevents the inner tube 30 from slipping out of the outer tube 40 when the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1. A stop is provided. The push-side retaining stopper of this embodiment is composed of the distal end surface 32 a of the hub 32 of the inner tube 30 and the proximal end surface 43 a of the proximal connector 43 of the outer tube 40 . The distal end surface 32a of the hub 32 of the inner tube 30 contacts the proximal end surface 43a of the proximal connector 43 of the outer tube 40, thereby restricting movement of the inner tube 30 with respect to the outer tube 40 in the insertion direction A1. . That is, in the present embodiment, the most pushed state (see FIG. 3B) in which the inner tube 30 is pushed into the outer tube 40 in the insertion direction A1 means that the distal end surface 32a of the hub 32 of the inner tube 30 is It means a state in which the proximal end face 43a of the proximal connector 43 of the tube 40 is in contact.
 但し、内管30及び外管40に設けられる引き抜き側及び押し込み側の抜け止めストッパは、上述した構成に限られない。内管30の外管40に対する引き抜き側の抜け落ち、及び、押し込み側の抜け落ち、を防ぐ構成であれば、その構成は特に限定されない。 However, the pull-out side and push-in side retainer stoppers provided on the inner tube 30 and the outer tube 40 are not limited to the configuration described above. The configuration is not particularly limited as long as it prevents the inner tube 30 from falling out of the outer tube 40 on the pull-out side and the push-in side.
 内管30のハブ32の近位端部には、外部装置120(図1参照)と機械的および電気的に接続されるコネクタ部が設けられている。つまり、超音波カテーテル110は、内管30のハブ32に設けられたコネクタ部により、外部装置120と機械的および電気的に接続される。より具体的に、超音波探触子10の電気信号線14は、超音波センサ60の超音波振動子から、内管30のハブ32のコネクタ部まで延在しており、ハブ32のコネクタ部が外部装置120に接続された状態で、超音波センサ60の超音波振動子と外部装置120とを電気的に接続する。超音波振動子における受信信号は、ハブ32のコネクタ部を介して外部装置120に送信され、所定の処理を施されて画像として表示される。 The proximal end of the hub 32 of the inner tube 30 is provided with a connector section that is mechanically and electrically connected to the external device 120 (see FIG. 1). In other words, the ultrasound catheter 110 is mechanically and electrically connected to the external device 120 by the connector provided on the hub 32 of the inner tube 30 . More specifically, the electric signal line 14 of the ultrasonic probe 10 extends from the ultrasonic transducer of the ultrasonic sensor 60 to the connector portion of the hub 32 of the inner tube 30, and connects to the connector portion of the hub 32. is connected to the external device 120, the ultrasonic transducer of the ultrasonic sensor 60 and the external device 120 are electrically connected. A signal received by the ultrasonic transducer is transmitted to the external device 120 via the connector section of the hub 32, subjected to predetermined processing, and displayed as an image.
[保護管50]
 図3A、図3Bに示すように、保護管50は、シース20の近位側に固定されている。より具体的に、保護管50は、外管40の外管本体41と共に、遠位側コネクタ42を介して、シース20の近位端部に固定されている。すなわち、本実施形態の保護管50は、外管40に対して直接的に固定されている。本実施形態の保護管50の遠位端部は、駆動シャフト13が通り抜ける遠位側コネクタ42の中空部の内壁に、固定されている。
[protection tube 50]
As shown in FIGS. 3A and 3B, protective tube 50 is fixed to the proximal side of sheath 20 . More specifically, the protective tube 50 is fixed to the proximal end of the sheath 20 together with the outer tube main body 41 of the outer tube 40 via the distal connector 42 . That is, the protective tube 50 of this embodiment is directly fixed to the outer tube 40 . The distal end of the protective tube 50 of this embodiment is fixed to the inner wall of the hollow portion of the distal connector 42 through which the drive shaft 13 passes.
 また、保護管50は、内管30の外管40内での移動に伴って内管30内で移動させられ、駆動シャフト13を内部に通す。図3A、図3Bに示すように、本実施形態の保護管50は、外管40内で、外管40の中心軸方向(長手方向Aと同じ方向)に延在している。保護管50は、外管40内で、外管40と同心円状に配置されている。保護管50の近位端は、開口されている自由端である。駆動シャフト13は、外管40内、かつ、保護管50内に延在している。内管30及び外管40の長手方向Aでの相対移動に伴い、保護管50は、内管30内の駆動シャフト13との間の環状空間を移動する。 In addition, the protective tube 50 is moved within the inner tube 30 as the inner tube 30 is moved within the outer tube 40, and the drive shaft 13 is passed inside. As shown in FIGS. 3A and 3B, the protective tube 50 of this embodiment extends in the outer tube 40 in the central axis direction (the same direction as the longitudinal direction A) of the outer tube 40 . The protective tube 50 is arranged concentrically with the outer tube 40 within the outer tube 40 . The proximal end of protective tube 50 is an open free end. The drive shaft 13 extends inside the outer tube 40 and inside the protective tube 50 . As the inner tube 30 and the outer tube 40 move relative to each other in the longitudinal direction A, the protective tube 50 moves in the annular space between the inner tube 30 and the drive shaft 13 .
 より具体的に、図3Aに示す引き出し状態から、図3Bに示す押し込み状態に移行する際には、保護管50は、内管30に対して相対的に抜去方向A2に移動し、内管30内に押し込まれていく。逆に、図3Bに示す押し込み状態から、図3Aに示す引き出し状態に移行する際には、保護管50は、内管30に対して相対的に挿入方向A1に移動し、内管30内から引き出されていく。このように、保護管50が、内管30に対して相対的に押し込まれたり引き出されたりする。駆動シャフト13には、例えば、超音波センサ60及び駆動シャフト13と、シース20と、の間の摩擦等によって、挿入方向A1への押し込み時に撓みや蛇行が発生し易い。上述の保護管50を設けることで、保護管50がない構成と比較して、外管40内での駆動シャフト13の撓み及び蛇行を抑制できる。その結果、外管40内での駆動シャフト13の折れ曲がりや破断を抑制することができる。 More specifically, when shifting from the pulled-out state shown in FIG. 3A to the pushed-in state shown in FIG. pushed inside. Conversely, when shifting from the pushed state shown in FIG. 3B to the pulled out state shown in FIG. being pulled out. Thus, the protective tube 50 is pushed in and pulled out relative to the inner tube 30 . The drive shaft 13 is likely to bend or meander when pushed in the insertion direction A<b>1 due to, for example, friction between the ultrasonic sensor 60 and the drive shaft 13 and the sheath 20 . By providing the protective tube 50 described above, it is possible to suppress bending and meandering of the drive shaft 13 inside the outer tube 40 compared to a configuration without the protective tube 50 . As a result, bending and breakage of the drive shaft 13 inside the outer tube 40 can be suppressed.
 図3A、図3Bに示すように、本実施形態の保護管50の近位端である自由端は、内管30及び外管40の押し込み状態(図3B参照)のみならず、引き出し状態(図3A参照)であっても、内管30内に位置する。換言すれば、本実施形態の保護管50は、その近位端が常時内管30内に位置するように、配置されている。このような構成とすることで、駆動シャフト13のうち、外管40内であって内管30内に収容されていない部分を、保護管50内に収容することができる。つまり、駆動シャフト13のうち、外管40内で撓みや蛇行が発生し易い上記部分についても、保護管50により、撓み及び蛇行を抑制することができる。 As shown in FIGS. 3A and 3B, the free end, which is the proximal end of the protection tube 50 of the present embodiment, is not only in the pushed state (see FIG. 3B) of the inner tube 30 and the outer tube 40, but also in the pulled state (see FIG. 3B). 3A) is also located within the inner tube 30 . In other words, the protective tube 50 of this embodiment is arranged such that its proximal end is always located within the inner tube 30 . With such a configuration, the portion of the drive shaft 13 that is inside the outer tube 40 but not inside the inner tube 30 can be accommodated inside the protective tube 50 . That is, the protective tube 50 can suppress bending and meandering of the portion of the drive shaft 13 that is likely to bend and meander in the outer tube 40 .
 図3A、図3Bに示すように、本実施形態の保護管50は、外管40の遠位端部から、外管40の近位端部を越えて、外管40の外側まで延在しているが、この構成に限られない。 As shown in FIGS. 3A and 3B, the protective tube 50 of this embodiment extends from the distal end of the outer tube 40 beyond the proximal end of the outer tube 40 to the outside of the outer tube 40. However, it is not limited to this configuration.
 本実施形態の保護管50は、外管40に固定されているが、例えば、保護管50自体独立した部材ではなくシース20の近位端から一体的に連なる部分により構成されていてもよい。 Although the protective tube 50 of this embodiment is fixed to the outer tube 40, for example, the protective tube 50 itself may not be an independent member but may be configured by a portion integrally connected from the proximal end of the sheath 20.
 保護管50は、例えば、金属の疎巻きコイル状の管体で形成されてよい。このようにすることで、プライミング時に生理食塩液がコイルの隙間から流れ込めるので、外管40内に空気が残留し難くなる。また、保護管50は、金属ではなく、PTFEなどのフッ素樹脂で形成されたチューブであってもよい。また、保護管50は、疎巻きコイル状の管体ではなく、少なくとも1つのスリットや穴が形成されている管体であってもよい。更に、保護管50は、側面に穴が開いた金属パイプとこの金属パイプに接合された樹脂チューブなどの複合管体であってもよい。 The protective tube 50 may be formed of, for example, a loosely coiled metal tubular body. By doing so, since the physiological saline solution can flow through the gaps of the coil during priming, it becomes difficult for air to remain in the outer tube 40 . Also, the protective tube 50 may be a tube made of fluororesin such as PTFE instead of metal. Also, the protective tube 50 may be a tubular body in which at least one slit or hole is formed instead of a loosely coiled tubular body. Furthermore, the protection tube 50 may be a composite tube body such as a metal pipe with a hole on the side and a resin tube joined to the metal pipe.
<外部装置120>
 図1に示すように、外部装置120は、駆動シャフト13(図2等参照)を回転させるための動力源であるモータ121と、駆動シャフト13を長手方向Aに移動させるための動力源であるモータ122と、を備える。モータ122の回転運動は、モータ122に接続したボールネジ123によって軸方向の運動に変換される。
<External Device 120>
As shown in FIG. 1, the external device 120 includes a motor 121 that is a power source for rotating the drive shaft 13 (see FIG. 2, etc.) and a power source for moving the drive shaft 13 in the longitudinal direction A. and a motor 122 . Rotational motion of the motor 122 is converted into axial motion by a ball screw 123 connected to the motor 122 .
 より具体的に、本実施形態の外部装置120は、駆動ユニット120aと、この駆動ユニット120aに有線又は無線で電気的に接続されている制御装置120bと、この制御装置120bが超音波カテーテル110から受信した受信信号に基づいて生成した画像を表示可能なモニタ120cと、を備える。本実施形態の上述したモータ121、モータ122及びボールネジ123は、駆動ユニット120aに設けられている。この駆動ユニット120aの動作は、制御装置120bによって制御される。制御装置120bは、CPU及びメモリを含むプロセッサにより構成することができる。 More specifically, the external device 120 of the present embodiment includes a drive unit 120a, a control device 120b electrically connected to the drive unit 120a by wire or wirelessly, and the control device 120b connected to the ultrasonic catheter 110. and a monitor 120c capable of displaying an image generated based on the received signal. The motor 121, the motor 122 and the ball screw 123 described above in this embodiment are provided in the drive unit 120a. The operation of the drive unit 120a is controlled by a controller 120b. The controller 120b can be configured by a processor including a CPU and memory.
 外部装置120は、本実施形態で示す構成に限られず、例えば、キーボード等の外部入力部を更に備える構成であってもよい。 The external device 120 is not limited to the configuration shown in this embodiment, and may be configured to further include an external input unit such as a keyboard, for example.
 以下、図3A、図3B、図4を参照して、超音波カテーテル110における駆動シャフト13の高剛性部70の詳細について説明する。 Details of the high-rigidity portion 70 of the drive shaft 13 in the ultrasound catheter 110 will be described below with reference to FIGS. 3A, 3B, and 4. FIG.
 駆動シャフト13は、高剛性部70を備える。高剛性部70は、駆動シャフト13の近位端部に設けられている。具体的に、駆動シャフト13は、内管30が外管40内に最も押し込まれた押し込み状態(図3B参照)で保護管50内に収容され、かつ、内管30が外管40内から最も引き出された引き出し状態(図3A参照)で保護管50外に位置するシャフト基端部13aを備える。駆動シャフト13は、このシャフト基端部13aの少なくとも一部に、高剛性部70を備えている。高剛性部70は、駆動シャフト13のうち引き出し状態(図3A参照)でシース20内に位置する部位としてのシャフト本体部13bより曲げ剛性が大きい。この「曲げ剛性」は、例えば、所定長さの試験片を片持ち状に保持し、自由端側に係る荷重と変形との関係から求めることができる。 The drive shaft 13 has a highly rigid portion 70 . A highly rigid portion 70 is provided at the proximal end of the drive shaft 13 . Specifically, the drive shaft 13 is accommodated in the protective tube 50 in a state in which the inner tube 30 is pushed most into the outer tube 40 (see FIG. 3B), and the inner tube 30 is pushed farthest from inside the outer tube 40 . It has a shaft base end portion 13a positioned outside the protection tube 50 in the pulled out state (see FIG. 3A). The drive shaft 13 has a high-rigidity portion 70 on at least a portion of the shaft base end portion 13a. The high-rigidity portion 70 has greater flexural rigidity than the shaft body portion 13b, which is a portion of the drive shaft 13 positioned inside the sheath 20 in the pulled-out state (see FIG. 3A). This "flexural rigidity" can be obtained, for example, from the relationship between the load and deformation of the free end of a test piece of a predetermined length held in a cantilever manner.
 このように、駆動シャフト13のシャフト基端部13aの少なくとも一部に、高剛性部70が設けられていることで、引き出し状態(図3A参照)で保護管50外に位置するシャフト基端部13aでの撓み及び蛇行を抑制できる。 In this way, since the high-rigidity portion 70 is provided on at least a part of the shaft base end portion 13a of the drive shaft 13, the shaft base end portion positioned outside the protective tube 50 in the pulled-out state (see FIG. 3A) Bending and meandering at 13a can be suppressed.
 ここで、図3Aに示すように、引き出し状態(図3A参照)で、シャフト基端部13aは、保護管50外に位置するが、依然として内管30内に位置している。そのため、内管30を外管40内に押し込む際のシャフト基端部13aの撓みや蛇行は、内管30により抑制される。但し、駆動シャフト13は、内管30内で回動可能に収容されている。そのため、駆動シャフト13のシャフト基端部13aと、このシャフト基端部13aの周囲を覆う内管30と、の間には隙間が設けられている。また、プライミング時の流路確保の観点で、隙間が設けられている場合もある。つまり、駆動シャフト13のうち内管30内に位置する部分であっても、上述の隙間により、撓みや蛇行が発生し得る。これに対して、シャフト基端部13aの少なくとも一部に高剛性部70を設けることで、シャフト基端部13aでの上述の撓み及び蛇行を抑制できる。その結果、シャフト基端部13aの折れ曲がりや破断を抑制することができる。 Here, as shown in FIG. 3A, in the pulled-out state (see FIG. 3A), the shaft base end 13a is positioned outside the protective tube 50 but still positioned inside the inner tube 30. As shown in FIG. Therefore, the inner tube 30 suppresses bending and meandering of the shaft proximal end portion 13 a when the inner tube 30 is pushed into the outer tube 40 . However, the drive shaft 13 is rotatably accommodated within the inner tube 30 . Therefore, a gap is provided between the shaft base end portion 13a of the drive shaft 13 and the inner tube 30 that surrounds the shaft base end portion 13a. In addition, a gap may be provided from the viewpoint of securing the flow path during priming. In other words, even a portion of the drive shaft 13 located inside the inner tube 30 can bend or meander due to the gap described above. In contrast, by providing the high-rigidity portion 70 in at least a portion of the shaft base end portion 13a, the above-described bending and meandering of the shaft base end portion 13a can be suppressed. As a result, bending and breaking of the shaft base end portion 13a can be suppressed.
 図4では、本実施形態の駆動シャフト13の高剛性部70を示している。より具体的に、図4では、本実施形態の駆動シャフト13の高剛性部70の遠位端部を示している。図4に示すように、本実施形態の高剛性部70は、巻き方向が異なる3層のコイル部71と、この3層のコイル部71の径方向外側を覆う筒体72と、を備える。引き出し状態(図3A)でシース20内に位置するシャフト本体部13b(図3A参照)は、3層のコイル部71のみで構成されている。つまり、本実施形態の高剛性部70は、シャフト本体部13bから一体で連なる3層のコイル部71の周囲を筒体72で取り囲むことにより構成されている。 FIG. 4 shows the high-rigidity portion 70 of the drive shaft 13 of this embodiment. More specifically, FIG. 4 shows the distal end of the rigid portion 70 of the drive shaft 13 of this embodiment. As shown in FIG. 4 , the high-rigidity portion 70 of the present embodiment includes three layers of coil portions 71 with different winding directions, and a cylindrical body 72 that radially covers the three layers of coil portions 71 . The shaft main body portion 13b (see FIG. 3A) positioned inside the sheath 20 in the pulled-out state (FIG. 3A) is composed of only three layers of coil portions 71. As shown in FIG. That is, the high-rigidity portion 70 of the present embodiment is configured by surrounding the three-layered coil portion 71 integrally connected from the shaft body portion 13b with the cylindrical body 72. As shown in FIG.
 筒体72は、例えば、樹脂チューブ又は金属パイプにより構成可能である。筒体72の内側に収容されるコイル部71の撓み及び蛇行は、筒体72の内面に当接することで制限される。本実施形態の筒体72の近位端部は、内管30のハブ32(図3A等参照)の中空部に内嵌めされている。つまり、本実施形態の筒体72の近位端部は、その内部に駆動シャフト13を収容した状態で、ハブ32の中空部の内壁に挟み込まれて固定されている。つまり、駆動シャフト13の近位端および筒体72の近位端は、内管30のハブ32に固定されている。 The cylindrical body 72 can be composed of, for example, a resin tube or a metal pipe. The bending and meandering of the coil portion 71 accommodated inside the cylindrical body 72 is restricted by contacting the inner surface of the cylindrical body 72 . The proximal end of the cylindrical body 72 of this embodiment is fitted into the hollow portion of the hub 32 (see FIG. 3A etc.) of the inner tube 30 . That is, the proximal end portion of the cylindrical body 72 of this embodiment is fixed by being sandwiched between the inner walls of the hollow portion of the hub 32 with the drive shaft 13 accommodated therein. That is, the proximal end of drive shaft 13 and the proximal end of barrel 72 are fixed to hub 32 of inner tube 30 .
 上述したように、高剛性部70は、押し込み状態(図3B参照)で保護管50内に収容され、かつ、引き出し状態(図3A参照)で保護管50外に位置するシャフト基端部13aの少なくとも一部に設けられていればよい。つまり、本実施形態の筒体72は、シャフト基端部13aの少なくとも一部に設けられていればよい。但し、駆動シャフト13は、本実施形態のように、シャフト基端部13aのうち、駆動シャフト13のシャフト軸方向(長手方向Aと同じ方向)において少なくとも内管30の内径の半径の長さ分(図3Aの符号「r」参照)を引いた長さ以上の領域に、高剛性部70を備えることが好ましい。つまり、本実施形態では、筒体72が、シャフト基端部13aのうち、駆動シャフト13のシャフト軸方向において少なくとも内管30の内径の半径の長さ分(図3Aの符号「r」参照)を引いた長さ以上の領域に、設けられている。このようにすることで、シャフト基端部13aの撓み及び蛇行を、より抑制できる。その結果、シャフト基端部13aの折れ曲がりや破断を、より抑制することができる。「内管の内径」とは、内管のうち外管内に挿入される部分の内径を意味し、本実施形態では、内管30の内管本体31の内径rを意味する。 As described above, the high-rigidity portion 70 is accommodated in the protective tube 50 in the pushed state (see FIG. 3B), and is located outside the protective tube 50 in the pulled-out state (see FIG. 3A). It suffices if it is provided at least partly. In other words, the cylindrical body 72 of the present embodiment may be provided at least partially on the shaft base end portion 13a. However, as in the present embodiment, the drive shaft 13 has at least the length of the radius of the inner diameter of the inner tube 30 in the axial direction of the drive shaft 13 (the same direction as the longitudinal direction A) of the shaft base end portion 13a. It is preferable to provide a high-rigidity portion 70 in an area equal to or longer than the length minus (see symbol "r" in FIG. 3A). That is, in the present embodiment, the cylindrical body 72 is at least as long as the radius of the inner diameter of the inner tube 30 in the shaft axial direction of the drive shaft 13 (see symbol "r" in FIG. 3A). It is provided in an area equal to or longer than the length minus By doing so, the bending and meandering of the shaft base end portion 13a can be further suppressed. As a result, bending and breakage of the shaft base end portion 13a can be further suppressed. The “inner tube inner diameter” means the inner diameter of the portion of the inner tube that is inserted into the outer tube, and means the inner diameter r of the inner tube main body 31 of the inner tube 30 in this embodiment.
 更に、本実施形態のように、駆動シャフト13は、シャフト基端部13aのシャフト軸方向の全域に、高剛性部70を備えることが、より好ましい。つまり、本実施形態では、筒体72が、シャフト基端部13aのシャフト軸方向の全域に亘って設けられている。このようにすることで、シャフト基端部13aの撓み及び蛇行を、更に抑制できる。その結果、シャフト基端部13aの折れ曲がりや破断を、更に抑制することができる。 Furthermore, as in the present embodiment, it is more preferable that the drive shaft 13 has the high rigidity portion 70 over the entire area of the shaft base end portion 13a in the shaft axial direction. That is, in the present embodiment, the cylindrical body 72 is provided over the entire area of the shaft base end portion 13a in the shaft axial direction. By doing so, the bending and meandering of the shaft base end portion 13a can be further suppressed. As a result, bending and breakage of the shaft base end portion 13a can be further suppressed.
 また、上述のシャフト基端部13aを「近位側シャフト基端部13a」とした場合に、本実施形態のように、駆動シャフト13は、押し込み状態(図3B参照)及び引き出し状態(図3A参照)で保護管50内に収容される遠位側シャフト基端部13cの少なくとも一部に、高剛性部70を更に備えることが好ましい。つまり、本実施形態では、筒体72が、近位側シャフト基端部13aのみならず、遠位側シャフト基端部13cにも設けられている。より具体的に、本実施形態の筒体72は、近位側シャフト基端部13aのシャフト軸方向の全域と、遠位側シャフト基端部13cのうち、近位側シャフト基端部13aの遠位側に連続する一部の部分のシャフト軸方向の領域と、に亘って設けられている。換言すれば、本実施形態の筒体72の遠位端は、引き出し状態(図3A参照)においても、保護管50内に位置している。このようにすることで、引き出し状態(図3A参照)から押し込み状態(図3B参照)に移行する際に、高剛性部70の遠位端が、保護管50の近位端である自由端に引っ掛からない。そのため、近位側シャフト基端部13aの撓み及び蛇行を、より一層抑制できる。その結果、近位側シャフト基端部13aの折れ曲がりや破断を、より一層抑制することができる。 Further, when the shaft base end portion 13a described above is referred to as the “proximal side shaft base end portion 13a”, the drive shaft 13 can be pushed in (see FIG. 3B) and pulled out (FIG. 3A) as in the present embodiment. ), it is preferable to further include a high-rigidity portion 70 in at least a portion of the distal shaft base end portion 13 c housed in the protective tube 50 . In other words, in the present embodiment, the cylindrical body 72 is provided not only at the proximal shaft base end portion 13a but also at the distal shaft base end portion 13c. More specifically, the cylindrical body 72 of the present embodiment covers the entire area of the proximal shaft base end 13a in the shaft axial direction and the proximal shaft base end 13a of the distal shaft base end 13c. It is provided over a region in the shaft axial direction of a portion that is continuous to the distal side. In other words, the distal end of the cylindrical body 72 of this embodiment is located within the protective tube 50 even in the drawn state (see FIG. 3A). By doing so, when the pulled-out state (see FIG. 3A) shifts to the pushed-in state (see FIG. 3B), the distal end of the high-rigidity portion 70 moves toward the free end, which is the proximal end of the protective tube 50. I don't get caught. Therefore, bending and meandering of the proximal shaft base end portion 13a can be further suppressed. As a result, bending and breaking of the proximal shaft base end portion 13a can be further suppressed.
 更に、本実施形態の駆動シャフト13は、押し込み状態(図3B参照)で、シース20内に位置する部位に、高剛性部70を備えない。つまり、高剛性部70は、押し込み状態(図3B参照)で、シース20内に入り込まない位置に形成されている。より具体的に、本実施形態の駆動シャフト13の高剛性部70の遠位端は、押し込み状態(図3B参照)で、外管40内に位置する。このようにすることで、仮に高剛性部70の曲げ剛性が、シース20の曲げ剛性より高い場合であっても、高剛性部70がシース20内に入り込んで、シース20の姿勢が高剛性部70の姿勢に沿うように変化してしまうことを、防ぐことができる。その結果、シース20内の超音波センサ60の位置変動を抑制できる。また、高剛性部70の遠位端でシース20が折れ曲がることを抑制できる。換言すれば、本実施形態の超音波カテーテル110では、駆動シャフト13の高剛性部70の曲げ剛性は、シース20の曲げ剛性より高くてよい。 Furthermore, the drive shaft 13 of this embodiment does not include the high-rigidity portion 70 at the portion positioned inside the sheath 20 in the pushed state (see FIG. 3B). That is, the high-rigidity portion 70 is formed at a position where it does not enter the sheath 20 in the pushed state (see FIG. 3B). More specifically, the distal end of the high-rigidity portion 70 of the drive shaft 13 of this embodiment is located within the outer tube 40 in a pushed state (see FIG. 3B). By doing so, even if the bending rigidity of the high-rigidity portion 70 is higher than the bending rigidity of the sheath 20, the high-rigidity portion 70 enters the sheath 20 and the posture of the sheath 20 changes to the high-rigidity portion. It is possible to prevent the change along the posture of 70 . As a result, positional fluctuation of the ultrasonic sensor 60 within the sheath 20 can be suppressed. Moreover, bending of the sheath 20 at the distal end of the high-rigidity portion 70 can be suppressed. In other words, in the ultrasound catheter 110 of this embodiment, the bending rigidity of the high-rigidity portion 70 of the drive shaft 13 may be higher than the bending rigidity of the sheath 20 .
 本実施形態の高剛性部70は、上述したように、3層のコイル部71と、筒体72と、により構成されているが、この構成に限られない。図5~図7は、高剛性部70の変形例を示す図である。 As described above, the high-rigidity portion 70 of the present embodiment is composed of the three-layered coil portion 71 and the cylindrical body 72, but is not limited to this configuration. 5 to 7 are diagrams showing modified examples of the high-rigidity portion 70. FIG.
 図5に示す高剛性部70は、3層のコイル部71と、このコイル部71の外周面に接合され、コイル部71の外周面に積層されている積層補強部73と、を備える。このように、高剛性部70は、上述の筒体72(図4参照)に代えて又は加えて、コイル部71の外周面に接合された積層補強部73を備えてもよい。積層補強部73は、例えば、ロウや各種樹脂により構成可能である。3層のコイル部71は、積層補強部73により補強されることで強度が増し、曲げ剛性が高められる。積層補強部73のコイル部71の外周面への接合方法は、特に限定されない。積層補強部73は、例えば、コイル部71の外周面に接着、溶着、塗布、コーティングなどで、接合すればよい。 The high-rigidity portion 70 shown in FIG. 5 includes a three-layered coil portion 71 and a laminated reinforcing portion 73 that is joined to the outer peripheral surface of the coil portion 71 and laminated on the outer peripheral surface of the coil portion 71 . In this manner, the high-rigidity portion 70 may include a laminated reinforcement portion 73 joined to the outer peripheral surface of the coil portion 71 instead of or in addition to the cylindrical body 72 (see FIG. 4). The lamination reinforcing portion 73 can be made of wax or various resins, for example. The three-layered coil portion 71 is reinforced by the laminated reinforcing portion 73 to increase strength and bending rigidity. A method of joining the laminated reinforcing portion 73 to the outer peripheral surface of the coil portion 71 is not particularly limited. The laminated reinforcing portion 73 may be joined to the outer peripheral surface of the coil portion 71 by adhesion, welding, application, coating, or the like, for example.
 図6に示す高剛性部70は、3層のコイル部71と、このコイル部71の内側に挿通される芯部材74と、を備える。このように、高剛性部70は、上述の筒体72(図4参照)や積層補強部73(図5参照)に代えて又は加えて、コイル部71内に挿通されている芯部材74を備えてもよい。芯部材74は、例えば、金属や樹脂から構成可能である。コイル部71の撓み及び蛇行は、芯部材74の外面に当接することで制限される。 A high-rigidity portion 70 shown in FIG. 6 includes a three-layered coil portion 71 and a core member 74 inserted inside the coil portion 71 . In this manner, the high-rigidity portion 70 includes the core member 74 inserted into the coil portion 71 instead of or in addition to the cylindrical body 72 (see FIG. 4) and the laminated reinforcing portion 73 (see FIG. 5). You may prepare. The core member 74 can be made of metal or resin, for example. Deflection and meandering of the coil portion 71 are restricted by contact with the outer surface of the core member 74 .
 図7に示す高剛性部70は、3層のコイル部75により構成されている。但し、図7に示す高剛性部70を構成するコイル部75の各コイルは、その遠位側に位置する3層のコイル部71の各コイルと比較して、断面寸法が大きい。図7に示す例では、遠位側に位置する3層のコイル部71と、近位側に位置する高剛性部70としての3層のコイル部75と、が接合部76により接合されている。接合部76は、例えば溶接部、接着剤など、コイル部71とコイル部75とを接合する構成であれば特に限定されない。 The high-rigidity portion 70 shown in FIG. 7 is composed of three layers of coil portions 75 . However, each coil of the coil portion 75 constituting the high-rigidity portion 70 shown in FIG. 7 has a larger cross-sectional dimension than each coil of the three-layered coil portion 71 located on the distal side thereof. In the example shown in FIG. 7 , a three-layer coil portion 71 located on the distal side and a three-layer coil portion 75 as the high-rigidity portion 70 located on the proximal side are joined by a joint portion 76 . . The joining portion 76 is not particularly limited as long as it is configured to join the coil portion 71 and the coil portion 75, such as a welding portion or an adhesive.
 図7では、コイルの断面寸法を異ならせることで、曲げ剛性の差異を実現しているが、例えば、コイルピッチ、コイル断面形状など、その他のコイルの構成を利用して、曲げ剛性の差異を実現してもよい。 In FIG. 7, the difference in bending rigidity is achieved by varying the cross-sectional dimensions of the coils. may be realized.
 また、図7に示す高剛性部70は、筒体72(図4参照)、積層補強部73(図5参照)、及び、芯部材74(図6参照)、の少なくとも1つを更に備えていてもよい。 7 further includes at least one of a tubular body 72 (see FIG. 4), a laminated reinforcing portion 73 (see FIG. 5), and a core member 74 (see FIG. 6). may
 このように、高剛性部70は、引き出し状態(図3A参照)で、シース20内に位置する部位であるシャフト本体部13bより曲げ剛性が高い構成であれば、その構成は特に限定されない。 In this way, the configuration of the high-rigidity portion 70 is not particularly limited as long as it has higher bending rigidity than the shaft body portion 13b, which is the portion located inside the sheath 20, in the pulled-out state (see FIG. 3A).
 本開示に係る画像診断用カテーテルは、上述した実施形態及び変形例に示す具体的な構成に限られず、請求の範囲を逸脱しない限り、種々の変形・変更・組み合わせが可能である。例えば、図3A、図3Bでは、近位側シャフト基端部13aにおいて、シャフト軸方向に連なった1つの高剛性部70が設けられる構成を示したが、この構成に限られない。図8A、図8Bに示すように、近位側シャフト基端部13aにおいて、シャフト軸方向に間欠的に配置された複数の高剛性部70が設けられる構成であってもよい。但し、上述した実施形態のように、高剛性部70は、内管30のハブ32内から遠位側に向かって延在し、引き出し状態(図3A参照)で保護管50の近位端の近傍、又は、上述した実施形態のように保護管50内の位置まで至る一続きの構成とすることが好ましい。このようにすることで、近位側シャフト基端部13aの撓み及び蛇行を、より確実に抑制できる。 The diagnostic imaging catheter according to the present disclosure is not limited to the specific configurations shown in the above-described embodiments and modifications, and various modifications, changes, and combinations are possible without departing from the scope of the claims. For example, FIG. 3A and FIG. 3B show a configuration in which one high-rigidity portion 70 that is continuous in the shaft axial direction is provided at the proximal shaft base end portion 13a, but the configuration is not limited to this. As shown in FIGS. 8A and 8B, the proximal shaft base end portion 13a may be provided with a plurality of high-rigidity portions 70 intermittently arranged in the axial direction of the shaft. However, as in the above-described embodiment, the high-rigidity portion 70 extends distally from within the hub 32 of the inner tube 30 and is positioned at the proximal end of the protective tube 50 in the pulled-out state (see FIG. 3A). It is preferable to have a continuous configuration up to the position in the vicinity or in the protective tube 50 as in the above-described embodiment. By doing so, the bending and meandering of the proximal shaft base end portion 13a can be more reliably suppressed.
 本開示は画像診断用カテーテルに関する。 The present disclosure relates to diagnostic imaging catheters.
10:超音波探触子
13:駆動シャフト
13a:近位側シャフト基端部(シャフト基端部)
13b:シャフト本体部
13c:遠位側シャフト基端部
14:電気信号線
20:シース
20a:本体部
20b:ガイドワイヤ挿通部
30:内管
31:内管本体
31a:内管本体の遠位端部
32:ハブ
32a:ハブの遠位端面
40:外管
41:外管本体
42:遠位側コネクタ
43:近位側コネクタ
43a:近位端面
43b:突き当て壁部
50:保護管
60:超音波センサ(画像センサの一例)
70:高剛性部
71:コイル部
72:筒体
73:積層補強部
74:芯部材
75:コイル部
76:接合部
100:画像診断装置
110:超音波カテーテル(画像診断用カテーテルの一例)
110a:挿入部
110b:操作部
120:外部装置
120a:駆動ユニット
120b:制御装置
120c:モニタ
121、122:モータ
123:ボールネジ
A:画像診断用カテーテルの長手方向(シースの長手方向)
A1:挿入方向
A2:抜去方向
r:内管の内径の半径
10: Ultrasonic probe 13: Drive shaft 13a: Proximal side shaft base end (shaft base end)
13b: Shaft main body portion 13c: Distal side shaft base end portion 14: Electric signal line 20: Sheath 20a: Main body portion 20b: Guide wire insertion portion 30: Inner tube 31: Inner tube main body 31a: Distal end of inner tube main body Part 32: Hub 32a: Hub distal end surface 40: Outer tube 41: Outer tube body 42: Distal side connector 43: Proximal side connector 43a: Proximal end surface 43b: Abutment wall 50: Protective tube 60: Ultra Sound wave sensor (an example of an image sensor)
70: High-rigidity portion 71: Coil portion 72: Cylindrical body 73: Laminated reinforcement portion 74: Core member 75: Coil portion 76: Joint portion 100: Diagnostic imaging device 110: Ultrasonic catheter (an example of diagnostic imaging catheter)
110a: Insertion section 110b: Operation section 120: External device 120a: Drive unit 120b: Control device 120c: Monitors 121, 122: Motor 123: Ball screw A: Longitudinal direction of diagnostic imaging catheter (longitudinal direction of sheath)
A1: Insertion direction A2: Removal direction r: Radius of the inner diameter of the inner tube

Claims (5)

  1.  体腔内に挿入されるシースと、
     前記シース内に挿入されている駆動シャフトと、
     前記駆動シャフトの遠位端部に固定された画像センサと、
     前記シースの近位端部に固定されている外管と、
     駆動シャフトの近位端部を収容し、前記駆動シャフトと共に前記外管内を移動可能な内管と、
     前記シースの近位側に固定され、前記内管の前記外管内での移動に伴って前記内管内で移動させられ、前記駆動シャフトを内部に通す保護管と、を備え、
     前記駆動シャフトは、前記内管が前記外管内に最も押し込まれた押し込み状態で前記保護管内に収容され、かつ、前記内管が前記外管内から最も引き出された引き出し状態で前記保護管外に位置するシャフト基端部の少なくとも一部に、前記引き出し状態で前記シース内に位置する部位より曲げ剛性が大きい高剛性部を備える、画像診断用カテーテル。
    a sheath inserted into the body cavity;
    a drive shaft inserted within the sheath;
    an image sensor secured to the distal end of the drive shaft;
    an outer tube secured to the proximal end of the sheath;
    an inner tube that houses the proximal end of a drive shaft and is movable within the outer tube with the drive shaft;
    a protective tube fixed to the proximal side of the sheath, moved within the inner tube as the inner tube moves within the outer tube, and passing the drive shaft therein;
    The drive shaft is accommodated in the protective tube in a pushed state in which the inner tube is most pushed into the outer tube, and is positioned outside the protective tube in a drawn state in which the inner tube is pulled out from the outer tube. A catheter for diagnostic imaging, comprising a high-rigidity portion having greater flexural rigidity than the portion positioned within the sheath in the pulled-out state, at least a part of the proximal end portion of the shaft.
  2.  前記駆動シャフトは、前記シャフト基端部のうち、前記駆動シャフトのシャフト軸方向において少なくとも前記内管の内径の半径の長さ分を引いた長さ以上の領域に、前記高剛性部を備える、請求項1に記載の画像診断用カテーテル。 The drive shaft includes the high-rigidity portion in a region of the shaft base end that is equal to or longer than at least the length of the radius of the inner diameter of the inner tube in the axial direction of the drive shaft. The diagnostic imaging catheter according to claim 1 .
  3.  前記駆動シャフトは、前記シャフト基端部の前記シャフト軸方向の全域に、前記高剛性部を備える、請求項2に記載の画像診断用カテーテル。 The diagnostic imaging catheter according to claim 2, wherein the driving shaft includes the high-rigidity portion over the entire area of the shaft base end in the shaft axial direction.
  4.  前記シャフト基端部を近位側シャフト基端部とした場合に、前記駆動シャフトは、前記押し込み状態及び前記引き出し状態で前記保護管内に収容される遠位側シャフト基端部の少なくとも一部に、前記高剛性部を更に備える、請求項1から3のいずれか1つに記載の画像診断用カテーテル。 When the shaft base end is the proximal shaft base end, the driving shaft is attached to at least a part of the distal shaft base end accommodated in the protective tube in the pushed state and the pulled out state. 4. The diagnostic imaging catheter according to any one of claims 1 to 3, further comprising the high-rigidity portion.
  5.  前記駆動シャフトは、前記押し込み状態で、前記シース内に位置する部位に、前記高剛性部を備えない、請求項1から4のいずれか1つに記載の画像診断用カテーテル。 The diagnostic imaging catheter according to any one of claims 1 to 4, wherein the drive shaft does not have the high-rigidity portion at a portion positioned inside the sheath in the pushed state.
PCT/JP2022/026635 2021-07-05 2022-07-04 Catheter for diagnostic imaging WO2023282237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533125A JPWO2023282237A1 (en) 2021-07-05 2022-07-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-111721 2021-07-05
JP2021111721 2021-07-05

Publications (1)

Publication Number Publication Date
WO2023282237A1 true WO2023282237A1 (en) 2023-01-12

Family

ID=84800722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026635 WO2023282237A1 (en) 2021-07-05 2022-07-04 Catheter for diagnostic imaging

Country Status (2)

Country Link
JP (1) JPWO2023282237A1 (en)
WO (1) WO2023282237A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002360578A (en) * 2001-06-08 2002-12-17 Terumo Corp Ultrasonic catheter
US20090156941A1 (en) * 2007-12-17 2009-06-18 Silicon Valley Medical Instruments, Inc. Telescope for an imaging catheter
JP2011512961A (en) * 2008-02-28 2011-04-28 ボストン サイエンティフィック サイムド,インコーポレイテッド Imaging catheter
JP2016505313A (en) * 2012-12-13 2016-02-25 ヴォルカノ コーポレイションVolcano Corporation Rotating sensing catheter with self-supporting drive shaft location
JP2018121830A (en) * 2017-01-31 2018-08-09 テルモ株式会社 Image diagnosis catheter
JP2020508151A (en) * 2017-02-23 2020-03-19 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Flexible torque cable for delivery of medical devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002360578A (en) * 2001-06-08 2002-12-17 Terumo Corp Ultrasonic catheter
US20090156941A1 (en) * 2007-12-17 2009-06-18 Silicon Valley Medical Instruments, Inc. Telescope for an imaging catheter
JP2011512961A (en) * 2008-02-28 2011-04-28 ボストン サイエンティフィック サイムド,インコーポレイテッド Imaging catheter
JP2016505313A (en) * 2012-12-13 2016-02-25 ヴォルカノ コーポレイションVolcano Corporation Rotating sensing catheter with self-supporting drive shaft location
JP2018121830A (en) * 2017-01-31 2018-08-09 テルモ株式会社 Image diagnosis catheter
JP2020508151A (en) * 2017-02-23 2020-03-19 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Flexible torque cable for delivery of medical devices

Also Published As

Publication number Publication date
JPWO2023282237A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US9259184B2 (en) Probe for insertion into a living body
US5546947A (en) Ultrasonic endoprobe
EP2931130B1 (en) Rotational sensing catheter with self-supporting drive shaft section
JP6378787B2 (en) Design and method for an intravascular catheter
US20150005628A1 (en) Probe
JP2012024491A (en) Catheter
US11284857B2 (en) Medical device
WO2023282237A1 (en) Catheter for diagnostic imaging
JP6625067B2 (en) Medical devices
JP7467555B2 (en) Medical device handle stabilization device and medical device
JP6805009B2 (en) Diagnostic imaging catheter
JP2021053445A (en) Medical device
JP7403532B2 (en) ultrasonic transducer
JP6779799B2 (en) Medical device
JP7313431B2 (en) diagnostic imaging catheter
WO2024070899A1 (en) Catheter and medical device
JP2023047207A (en) Catheter for image diagnosis
WO2021187251A1 (en) Ultrasonic probe
WO2017163693A1 (en) Image diagnosis catheter, assisting device, and method for manufacturing assisting device
JP2023047206A (en) Catheter for image diagnosis
JP7470717B2 (en) Catheter assembly and bundling method
EP4364672A1 (en) Catheter for diagnostic imaging
JP6815927B2 (en) Medical device
JP2016016147A (en) Cable and ultrasonic catheter
JP2023144742A (en) Catheter for diagnostic imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533125

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE