WO2023282185A1 - Plasma treatment device and plasma treatment method - Google Patents

Plasma treatment device and plasma treatment method Download PDF

Info

Publication number
WO2023282185A1
WO2023282185A1 PCT/JP2022/026329 JP2022026329W WO2023282185A1 WO 2023282185 A1 WO2023282185 A1 WO 2023282185A1 JP 2022026329 W JP2022026329 W JP 2022026329W WO 2023282185 A1 WO2023282185 A1 WO 2023282185A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
liquid
flow path
plasma processing
processing apparatus
Prior art date
Application number
PCT/JP2022/026329
Other languages
French (fr)
Japanese (ja)
Inventor
浩孝 豊田
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2023533091A priority Critical patent/JPWO2023282185A1/ja
Publication of WO2023282185A1 publication Critical patent/WO2023282185A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • Japanese Patent Application Laid-Open No. 2019-57381 discloses a technique of irradiating a liquid to be processed with microwave plasma.
  • the components contained in the liquid to be processed may affect the plasma generation part, making it difficult to generate plasma.
  • the plasma processing apparatus includes plasma generating means for generating plasma.
  • the plasma processing apparatus includes irradiation means for irradiating the first liquid with the generated plasma.
  • the plasma processing apparatus includes contact means for bringing the plasma-irradiated first liquid into contact with the second liquid.
  • both liquids can be brought into contact by mixing.
  • a highly reactive first liquid containing chemically active species and the like can be generated by irradiating the first liquid with plasma.
  • plasma processing can be performed on the second liquid. Since it is not necessary to irradiate the second liquid with plasma, even if the second liquid contains a component that adversely affects the plasma generating means, the plasma generating means will not be affected by the component.
  • the plasma generation means may have a plasma generation space for generating plasma.
  • the plasma generation means may include decompression means for depressurizing the plasma generation space.
  • the decompression means may comprise a first flow path comprising a constricted portion with a narrow cross-sectional area.
  • the first channel may carry the first liquid or the second liquid.
  • the narrowed portion may be connected to the plasma generation space.
  • the plasma processing apparatus may include a second flow path that merges with the first flow path.
  • the second channel may be connected to the plasma generation space.
  • a second liquid may flow through the first channel.
  • a first liquid may flow through the second channel.
  • the plasma processing apparatus may include an inner tube and an outer tube that surrounds the inner tube.
  • the plasma-generating space and the second flow path may be arranged in the inner tube.
  • the inner tube and the outer tube may be arranged so that their central axes coincide with each other.
  • a first flow path may be formed between the inner tube and the outer tube, surrounding the outer periphery of the inner tube.
  • the first flow path may have a path extending from one end of the inner tube and the outer tube to the other end, and may include a constricted portion on the path. In the constricted portion, the flow of the second liquid may have a velocity component that swirls around the central axis.
  • the plasma processing apparatus may further include at least one straightening section arranged on the first flow path up to the throttle section.
  • the rectifying portion may extend in the axial direction of the central axis and be inclined with respect to the axial direction of the central axis.
  • the straightening section may be formed on at least one of the wall surface of the outer circumference of the inner tube and the wall surface of the inner circumference of the outer tube.
  • the straightening section may have a projection shape protruding from the wall surface or a groove shape recessed from the wall surface.
  • the plasma processing apparatus may further include a supply section for discharging the second liquid into the first flow path.
  • the direction in which the second liquid is discharged by the supply unit may be inclined with respect to the axial direction of the central axis.
  • the inner tube may comprise a first tube having a first electrode at a first end and a second tube having a second electrode at a second end.
  • the first tube, the second tube, and the external tube may be arranged so that their central axes are aligned with each other.
  • the first end and the second end may face each other in a non-contact state.
  • a first flow path may be formed between the outer circumferences of the first and second tubes and the inner circumference of the outer tube.
  • a second flow path and a plasma generating space may be formed in regions where the first end and the second end face each other.
  • the plasma processing apparatus may further include a propagation space configured to allow microwaves to propagate to the plasma generation space.
  • the first liquid may be a liquid in which no solid solute is dissolved.
  • the second liquid may be a liquid in which a solid solute is dissolved.
  • One aspect of the plasma processing method disclosed in this specification includes an irradiation step of irradiating the first liquid with plasma.
  • the plasma processing method comprises a contacting step of contacting the first liquid with the second liquid.
  • plasma may be generated in a reduced pressure environment.
  • the first liquid may be brought into contact while the second liquid is flowing.
  • a reduced pressure environment may be created by the venturi effect provided by the flow of the second liquid.
  • microwaves may be injected into the space where plasma is generated.
  • FIG. 1 is a schematic cross-sectional view of a plasma processing apparatus 100 of Example 1.
  • FIG. 2 is a schematic cross-sectional view of a plasma processing apparatus 200 of a comparative example;
  • FIG. 3 is a schematic cross-sectional view of a plasma processing apparatus 300 of Example 2;
  • FIG. 11 is a schematic perspective view of a plasma processing apparatus 400 of Example 3; It is a schematic perspective view of the plasma processing apparatus 400a of a modification.
  • FIG. 1 is a schematic cross-sectional view of a plasma processing apparatus 100 of Example 1.
  • FIG. The z-direction indicates vertically upward.
  • the plasma processing apparatus 100 includes a first outer conductor 120 , a second outer conductor 130 , an outer tube 140 and an insulating spacer 180 .
  • the first outer conductor 120 and the second outer conductor 130 have a cylindrical shape sharing the central axis CA.
  • the material of the first outer conductor 120 and the second outer conductor 130 is copper, brass, or other metals.
  • the first outer conductor 120 includes a channel space CH1, a plasma propagation space MP1, and a first electrode 121. As shown in FIG.
  • the channel space CH1 is a space through which a fluid can flow.
  • the channel space CH1 also has a function of cooling the first outer conductor 120 with liquid.
  • the plasma propagation space MP1 is a space for propagating microwaves generated by a microwave generator (not shown).
  • the first electrode 121 is arranged at the first end E ⁇ b>1 of the first outer conductor 120 .
  • the second outer conductor 130 includes a channel space CH2 and a second electrode 131.
  • the channel space CH2 is a space that forms part of the second channel LP2, as will be described later.
  • a plurality of channel spaces CH2 are arranged rotationally symmetrically with respect to the central axis CA.
  • the second electrode 131 is arranged at the second end E2 of the second outer conductor 130 .
  • the second electrode 131 protrudes from the second end E2.
  • the shapes of the first electrode 121 and the second electrode 131 are circular rings having substantially the same diameter.
  • the first end E1 of the first outer conductor 120 and the second end E2 of the second outer conductor 130 are connected via a ring-shaped insulating spacer 180 .
  • the first outer conductor 120 and the second outer conductor 130 may be fixed by bolts (not shown).
  • a plasma generation space PG1 is formed in a region where the first end E1 and the second end E2 face each other.
  • the plasma generation space PG1 is an annular space.
  • a first electrode 121 and a second electrode 131 are arranged facing each other in the plasma generation space PG1.
  • a slit S ⁇ b>1 is formed between the first electrode 121 and the second electrode 131 .
  • the width of the slit S1 is about 0.05 mm or more and 1 mm or less.
  • the gap G1 is formed inside the insulating spacer 180 and functions as a channel connecting the channel spaces CH1 and CH2.
  • the gap G2 is formed around the outer circumferences of the first outer conductor 120 and the second outer conductor 130, and functions as a flow path connecting the plasma generation space PG1 and the outer circumference space OS1.
  • a second flow path LP2 is formed by the flow path space CH1, the gap G1, the flow path space CH2, and the gap G2, as indicated by the dotted arrow.
  • the second flow path LP2 is a flow path that joins the first flow path LP1 from the flow path space CH1 via the plasma generation space PG1. Since the plasma generation space PG1 is not likely to be immersed in the liquid flowing through the second flow path LP2, plasma can be stably generated.
  • the gap G2 has a region extending obliquely downward with respect to the horizontal direction (x direction). As a result, gravity can be used to prevent the fluid flowing through the first flow path LP1 from flowing back to the plasma generation space PG1.
  • the outer tube 140 is arranged outside the first outer conductor 120 and the second outer conductor 130 .
  • the outer tube 140 has a cylindrical shape and shares the central axis CA with the first outer conductor 120 and the second outer conductor 130 .
  • the material of the outer tube 140 is glass, for example.
  • An outer space OS1 is formed between the outer circumferences of the first outer conductor 120 and the second outer conductor 130 and the inner circumference of the outer tube 140 .
  • the outer space OS1 functions as the first flow path LP1, as indicated by the dotted arrow.
  • the first outer conductor 120 has a first inclined surface 122 protruding toward the outer tube 140 toward the first end E1.
  • the second outer conductor 130 also has a second slanted surface 132 protruding toward the outer tube 140 toward the second end E2.
  • a narrowed portion RP having a narrow cross-sectional area is formed in the vicinity of the confluence point JP between the first flow path LP1 and the second flow path LP2.
  • the flow velocity of the liquid flowing through the first flow path LP1 becomes extremely large around the throttle portion RP.
  • the venturi effect can reduce the pressure of the liquid. For example, a liquid under 1 atmosphere can be lowered to about 0.1 atmosphere. Since the plasma generation space PG1 is connected to the throttle portion RP through the gap G2, the plasma generation space PG1 can be decompressed. Since the pressure can be reduced without using a pump or the like, the plasma processing apparatus 100 can be simplified.
  • a solution containing a metal or metal compound is prepared.
  • an aqueous solution of silver nitrate was used.
  • the AgNO 3 concentration was 0.1 mol/L.
  • an aqueous solution of silver nitrate is allowed to flow through the first flow path LP1. Due to the venturi effect, the air pressure around the plasma generation space PG1 is lowered.
  • the flow rate was set at 55 L/min.
  • the pressure in the plasma generation space PG1 was about 0.2 atm.
  • pure water is allowed to flow through the second flow path LP2.
  • the flow rate was set at 250 mL/min.
  • microwaves generated by a microwave generator are radiated into the plasma propagation space MP1.
  • the microwave propagates in the direction of the arrow M1 inside the plasma propagation space MP1 and reaches the plasma generation space PG1.
  • the microwave frequency was 2.45 GHz and the microwave power was 1 kW.
  • a surface current is then induced in the first outer conductor 120 and the second outer conductor 130 .
  • a relatively strong electric field is applied between the first electrode 121 and the second electrode 131 .
  • discharge occurs between the first electrode 121 and the second electrode 131, and plasma is generated in the plasma generation space PG1.
  • the plasma generated in the plasma generation space PG1 irradiates the pure water flowing through the second flow path LP2 with plasma products.
  • plasma products include electrons, positive ions, radicals, and ultraviolet rays.
  • the pure water flowing through the second flow path LP2 is plasma-treated to generate plasma-treated water containing chemically active species.
  • the plasma-treated water is immediately introduced to the confluence point JP due to the pressure difference due to the venturi effect, and is mixed with the silver nitrate aqueous solution. That is, the plasma-treated water comes into contact with the silver nitrate aqueous solution.
  • the chemically active species contained in the plasma-treated water can be chemically reacted with the silver nitrate aqueous solution before the chemically active species are deactivated.
  • silver nanoparticles can be produced.
  • the silver nanoparticles are aggregates in which silver particles having a particle size of about 20 nm or more and 50 nm or less are aggregated.
  • the silver nitrate aqueous solution flowing through the first flow path LP1 can be continuously plasma-treated in-line. Compared to batch processing, it is possible to increase the production efficiency of silver nanoparticles.
  • the plasma processing apparatus 200 (FIG. 2) of the comparative example differs from the plasma processing apparatus 100 (FIG. 1) of Example 1 in that the second flow path LP2 is not provided. That is, the plasma processing apparatus 200 of the comparative example is an apparatus that directly irradiates the silver nitrate aqueous solution flowing through the first flow path LP1 with plasma.
  • a reverse flow passage LPb may be formed from the confluence point JP toward the plasma generation space PG1.
  • the silver nitrate aqueous solution flows backward to the plasma generation space PG1, droplets DR of the silver nitrate aqueous solution adhere to the first electrode 121 and the second electrode 131 . Since the silver nitrate aqueous solution is a liquid in which a solid solute is dissolved, the solid solute is solidified and deposits DE are deposited on the first electrode 121 and the second electrode 131 . Discharge stops and plasma processing cannot be performed.
  • the plasma processing apparatus 100 of Example 1 includes a second flow path LP2 that merges with the first flow path LP1 via the plasma generation space PG1.
  • a second flow path LP2 that merges with the first flow path LP1 via the plasma generation space PG1.
  • the plasma processing apparatus 100 of Example 1 includes a second flow path LP2 that merges with the first flow path LP1 via the plasma generation space PG1.
  • the plasma-treated water By irradiating the pure water flowing through the second flow path LP2 with plasma, it is possible to generate highly reactive plasma-treated water containing chemically active species and the like.
  • silver nanoparticles can be generated. That is, the silver nitrate aqueous solution can be plasma-treated through the plasma-treated water. It is possible to completely separate the plasma-treated water generation region and the plasma-treated silver nitrate aqueous solution region.
  • the plasma processing apparatus 200 (FIG. 2) of the comparative example, it is conceivable to form an air curtain with gas, for example, in order to prevent the formation of the backflow flow path LPb.
  • gas has a much lower density than liquid, the air curtain cannot sufficiently prevent backflow.
  • the pure water flowing through the second flow path LP2 can prevent formation of the backflow flow path LPb. Backflow can be reliably prevented by pushing back the backflow liquid with pure water. It becomes possible to prevent the generation of deposits DE.
  • FIG. 3 is a schematic cross-sectional view of a plasma processing apparatus 300 of Example 2.
  • the plasma processing apparatus 300 includes a plasma-treated water generator 301 and a tank 302 .
  • the plasma-treated water generating section 301 includes a channel space 310, a plasma generating space PG2, a first electrode 331, a second electrode 332, a microwave introducing section 340, and a dielectric section 350.
  • the channel space 310 functions as a channel LP as indicated by the dotted arrow.
  • pure water flows through the flow path LP.
  • the flow path space 310 has a constricted portion RP2 at and near the communicating portion with the plasma generating space PG2.
  • the narrowed portion RP2 is a region with a reduced cross-sectional area, and can reduce the pressure of the plasma generation space PG2 by the venturi effect.
  • the plasma generation space PG2 is a space formed so as to spread outward in the direction perpendicular to the flow path LP.
  • a ring-shaped first electrode 331 and a ring-shaped second electrode 332 are disposed facing each other with a gap in the plasma generation space PG2.
  • the microwave introduction part 340 is a part for propagating microwaves to the plasma generation space PG2.
  • the dielectric portion 350 is a portion that covers the outer periphery of the plasma generation space PG2 to insulate the plasma generation space PG2 from the outside.
  • a tank 302 is a part that holds a liquid 303 to be plasma-processed.
  • the liquid 303 is an aqueous solution of silver nitrate.
  • the plasma processing method according to Example 2 will be described by taking the case of producing metal nanoparticles as an example.
  • the silver nitrate aqueous solution is held in the tank 302 .
  • pure water is allowed to flow through the flow path LP. Due to the venturi effect, the air pressure in the plasma generation space PG2 is lowered.
  • microwaves generated by a microwave generating section are radiated into the microwave introducing section 340 .
  • plasma is generated in the plasma generation space PG2.
  • the generated plasma irradiates pure water flowing through the flow path LP with plasma products.
  • the pure water flowing through the flow path LP is plasma-treated to generate plasma-treated water containing chemically active species.
  • the plasma-treated water is discharged downward from the channel space 310, flows into the tank 302, and is mixed with the silver nitrate aqueous solution.
  • Silver nanoparticles are generated by the chemically active species contained in the plasma-treated water reacting with the silver nitrate aqueous solution.
  • Plasma treatment can be applied to the silver nitrate aqueous solution through the plasma-treated water. Since there is no need to irradiate the silver nitrate aqueous solution with plasma, the components contained in the silver nitrate aqueous solution do not affect the first electrode 331 and the second electrode 332 . Long-term continuous plasma processing becomes possible.
  • the liquid 303 to be plasma-treated is not limited to being held in the tank 302 .
  • a second channel for flowing the liquid 303 may be provided.
  • the plasma-treated water flowing through the flow path LP may join the liquid 303 flowing through the second flow path. Since plasma processing can be performed continuously in-line, processing efficiency can be improved compared to batch processing.
  • FIG. 4 shows a schematic perspective view of a plasma processing apparatus 400 of Example 3.
  • the plasma processing apparatus 400 of Example 3 differs from the plasma processing apparatus 100 (FIG. 1) of Example 1 in that it includes a rectifying section 403 and the like. Parts similar to those of the plasma processing apparatus 100 are denoted by the same reference numerals, and description thereof is omitted. Also, in FIG. 4, the external pipe 140 is indicated by a dashed line, and the supply flow path LP0 and the first flow path LP1 are indicated by dotted lines.
  • the plasma processing apparatus 400 mainly includes an outer tube 140, an inner tube 401, a pump 402, a plurality of rectifying sections 403, a tank 404, a particle size distribution measuring device 405, and a control device 406.
  • the inner tube 401 has a structure in which the first outer conductor 120 and the second outer conductor 130 are combined. As described in Embodiment 1, the plasma generation space PG1 and the second flow path LP2 are arranged in the region where the first outer conductor 120 and the second outer conductor 130 face each other.
  • the inner tube 401 and the outer tube 140 are arranged so that their central axes CA coincide with each other.
  • a ring-shaped first flow path LP ⁇ b>1 surrounding the outer circumference of the inner tube 401 is formed between the inner tube 401 and the outer tube 140 .
  • the first flow path LP1 has a route from the upper end UE of the inner pipe 401 and the outer pipe 140 to the lower end LE.
  • a throttle portion RP is provided on the path of the first flow path LP1.
  • a ring-shaped first channel inlet LP1E is formed at the upper end UE.
  • a plurality of rectifiers 403 are formed in the vicinity of the upper end UE. That is, the plurality of rectifying portions 403 are arranged on the route to the throttle portion RP of the first flow path LP1.
  • Each of the plurality of rectifying portions 403 is a plate-like member radially connecting the outer circumference of the first outer conductor 120 and the inner circumference of the outer tube 140 .
  • Each of the straightening portions 403 extends in the axial direction (z direction) of the central axis CA and has an inclination A1 with respect to the axial direction (z direction).
  • the magnitude of the slope A1 is not particularly limited. Also, the inclination A1 may be configured to be variable.
  • the pump 402 is a supply unit that discharges the silver nitrate aqueous solution to the first flow path LP1.
  • the silver nitrate aqueous solution discharged from the pump 402 is supplied to the first channel inlet LP1E via the supply channel LP0.
  • the supply flow path LP0 has an annularly branched flow path so as to supply the entire ring-shaped first flow path inlet LP1E.
  • the flow rate of the silver nitrate aqueous solution supplied from the pump 402 can be adjusted by the rotation speed of the pump 402 .
  • the rotation speed of the pump 402 can be controlled by the controller 406 .
  • the control device 406 is not particularly limited, and may be a PC, for example.
  • a silver nitrate aqueous solution is introduced vertically downward (-z direction) into the first channel inlet LP1E.
  • the flow direction of the silver nitrate aqueous solution introduced is changed by the rectifying section 403 by the inclination A1. Therefore, the first flow path LP1 output from the rectifying section 403 becomes a swirl flow swirling around the central axis.
  • the first flow path LP1 reaches the throttle portion RP while maintaining the swirling state. Therefore, in the throttle portion RP, the flow of the silver nitrate aqueous solution has a velocity component that swirls around the central axis CA.
  • the flow velocity of the silver nitrate aqueous solution in the constricted portion RP has not only a z-direction velocity component but also x- and y-direction velocity components.
  • the flow velocity of the silver nitrate aqueous solution in the constricted portion RP is not particularly limited, and may be, for example, 10 m/s or more.
  • a silver nitrate aqueous solution containing silver nanoparticles is discharged from the lower end LE.
  • the discharged silver nitrate aqueous solution passes through the particle size distribution measuring device 405 and is stored in the tank 404 .
  • the particle size distribution measuring device 405 can measure the particle size distribution of the silver nanoparticles in the discharged silver nitrate aqueous solution in real time.
  • the type of particle size distribution measuring device 405 is not particularly limited.
  • a measurement result of the particle size distribution is transmitted to the control device 406 .
  • the control device 406 feedback-controls the flow rate of the silver nitrate aqueous solution based on the measurement result of the particle size distribution. A specific description will be given.
  • the introduction concentration of the plasma-treated water joining from the second flow path LP2 into the aqueous silver nitrate solution can be controlled. That is, since the flow rate per unit time of the plasma-treated water supplied from the second flow path LP2 and the concentration of chemically active species in the plasma-treated water are constant, the smaller the flow rate of the silver nitrate aqueous solution per unit time, the more silver nitrate The concentration of chemically active species in the aqueous solution can be increased.
  • the concentration of the chemically active species increases, so the amount of chemical reaction can be increased, so the particle size distribution of the silver nanoparticles can be shifted to the larger side.
  • the particle size distribution of the silver nanoparticles can be controlled within a predetermined range by appropriately feedback-controlling the rotation speed of the pump 402 based on the real-time measurement result of the particle size distribution.
  • a second flow path LP2 is formed on the inner side (on the side of the central axis CA) in the vicinity of the narrowed portion RP.
  • the technique of Example 3 can generate a velocity component that revolves around the central axis CA in the flow of the silver nitrate aqueous solution.
  • a centrifugal force that presses the silver nitrate aqueous solution against the outer tube 140 can be generated at the throttle portion RP. Since the silver nitrate aqueous solution can be kept away from the second flow path LP2, backflow can be reliably prevented.
  • the venturi effect can be generated at the constricted portion RP, so that the plasma generation space PG1 can be decompressed.
  • the centrifugal force applied to the silver nitrate aqueous solution in the constricted portion RP is 1 G or more.
  • the structure of the rectifying section is not limited to the example of FIG. 4, and may have various structures.
  • the straightening section can be formed on at least one of the outer wall surface of the inner tube 401 and the inner wall surface of the outer tube 140 .
  • the rectifying portion can have a projection shape protruding from the wall surface or a groove shape recessed from the wall surface.
  • the rectifying portion 403a may be a wall-shaped protrusion formed on the outer peripheral wall surface of the first outer conductor 120.
  • FIG. At least a portion of the rectifying portion 403a may be arranged within the range of the region R1 in which the first inclined surface 122 is formed. Note that the illustration of the external tube 140 is omitted in FIG. 5 for ease of viewing.
  • nozzles 402n that are inclined with respect to the axial direction (z direction) of the central axis CA may be provided.
  • the silver nitrate aqueous solution in a swirl state having an inclination A2 with respect to the axial direction can be introduced into the first flow path LP1.
  • the silver nitrate aqueous solution may be introduced from one point of the ring-shaped first channel inlet LP1E.
  • the technique of the present specification can be widely applied to various liquids, and can stably form a new chemical reaction field using plasma. As a result, it can be expected to be applied as a new process reaction field for chemical reactions.
  • the field of application of plasma processing herein is not limited to nanoparticle generation, and can be applied to various fields. For example, it can be used for organic matter decomposition treatment and disinfectant water production.
  • the liquid to be plasma treated is not limited to pure water, and may be various liquids. For example, it may be a liquid in which no solid solute is dissolved. Since the deposit DE is not deposited, plasma can be continuously generated. Specific examples include alcohols, carboxylic acids, aldehydes, nitric acid, hydrochloric acid, carbonic acid, and aqueous ammonia.
  • the means for depressurizing the plasma generation spaces PG1 and PG2 is not limited to means using the venturi effect, and various means can be used.
  • the pressure may be reduced using a pump.
  • the plasma used in the technology of this specification is not limited to low-pressure plasma. Atmospheric plasma may also be used.
  • DC discharge DC pulse discharge, high-frequency discharge, or the like may be used.
  • Pure water is an example of the first liquid.
  • a silver nitrate aqueous solution is an example of the second liquid.
  • the second channel LP2 and the channel space 310 are examples of contact means.
  • First outer conductor 120 is an example of a first tube.
  • the second outer conductor 130 is an example of a second tube.
  • Pump 402 is an example of a supply.
  • a plasma processing apparatus comprising: [Aspect 2]
  • the plasma generating means is a plasma generation space for generating the plasma; depressurizing means for depressurizing the plasma generating space;
  • the plasma processing apparatus according to aspect 1, comprising: [Aspect 3]
  • the decompression means is a first flow path having a constricted portion with a narrow cross-sectional area, the first flow path through which the first liquid or the second liquid flows,
  • the plasma processing apparatus according to aspect 2 wherein the constricted portion is connected to the plasma generation space.
  • the first flow path has a path extending from one end of the inner tube and the outer tube to the other end, and the narrowed portion is provided on the path,
  • the plasma processing apparatus according to any one of modes 5 to 7, wherein a direction in which the second liquid is discharged by the supply unit is inclined with respect to an axial direction of the central axis.
  • the inner tube is a first tube having a first electrode at a first end; a second tube having a second electrode at a second end; and The first tube, the second tube, and the external tube are arranged so that their central axes are aligned with each other, The first end and the second end face each other in a non-contact state, The first flow path is formed between the outer peripheries of the first and second tubes and the inner perimeter of the outer tube,
  • the plasma according to any one of aspects 5 to 8, wherein the second flow path and the plasma generation space are formed in the regions where the first end and the second end face each other.
  • the plasma processing apparatus according to any one of modes 2 to 9, further comprising a propagation space configured to allow microwaves to propagate to the plasma generation space.
  • the first liquid is a liquid in which a solid solute is not dissolved;
  • a plasma processing method comprising: [Aspect 13] 13.
  • Plasma processing apparatus 120 First outer conductor 121: First electrode 130: Second outer conductor 131: Second electrode 140: Outer tube JP: Junction point RP: Constriction part LP1: First flow path LP2: Second 2 flow paths PG1: plasma generation space

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

Provided is a plasma treatment device capable of reliably generating plasma. This plasma treatment device is provided with a plasma generation means for generating plasma. The plasma treatment device is provided with an irradiation means for irradiating a first liquid with the generated plasma. The plasma treatment device is provided with a contact means for bringing the first liquid irradiated with the plasma into contact with a second liquid.

Description

プラズマ処理装置およびプラズマ処理方法Plasma processing apparatus and plasma processing method
 本出願は、2021年7月8日に出願された日本国特許出願第2021-113787号に基づく優先権を主張する。その出願の全ての内容はこの明細書中に参照により援用されている。本明細書では、液体にプラズマを照射するプラズマ処理装置およびプラズマ処理方法に関する技術を開示する。 This application claims priority based on Japanese Patent Application No. 2021-113787 filed on July 8, 2021. The entire contents of that application are incorporated herein by reference. This specification discloses a technology related to a plasma processing apparatus and a plasma processing method for irradiating a liquid with plasma.
 例えば特開2019-57381号公報には、マイクロ波プラズマを処理対象の液体へ照射する技術が開示されている。 For example, Japanese Patent Application Laid-Open No. 2019-57381 discloses a technique of irradiating a liquid to be processed with microwave plasma.
 処理対象の液体に含まれている成分によって、プラズマ発生部が影響を受けてしまい、プラズマ発生が困難になってしまう場合がある。 The components contained in the liquid to be processed may affect the plasma generation part, making it difficult to generate plasma.
 本明細書では、プラズマ処理装置を開示する。プラズマ処理装置は、プラズマを発生させるプラズマ発生手段を備える。プラズマ処理装置は、発生させたプラズマを第1の液体に照射する照射手段を備える。プラズマ処理装置は、プラズマが照射された第1の液体を第2の液体に接触させる接触手段を備える。 This specification discloses a plasma processing apparatus. The plasma processing apparatus includes plasma generating means for generating plasma. The plasma processing apparatus includes irradiation means for irradiating the first liquid with the generated plasma. The plasma processing apparatus includes contact means for bringing the plasma-irradiated first liquid into contact with the second liquid.
 第1の液体を第2の液体に接触させる態様は様々であってよい。例えば、両液体を混合することで接触させることができる。本明細書のプラズマ処理装置では、第1の液体にプラズマ照射することで、化学活性種などを含んだ高反応性の第1の液体を生成することができる。そして第1の液体を第2の液体に接触させすることで、第2の液体に対してプラズマ処理することが可能となる。第2の液体にプラズマを照射する必要がないため、プラズマ発生手段に悪影響を及ぼす成分が第2の液体に含まれている場合においても、その成分によってプラズマ発生手段が影響を受けることがない。 There may be various modes of bringing the first liquid into contact with the second liquid. For example, both liquids can be brought into contact by mixing. In the plasma processing apparatus of the present specification, a highly reactive first liquid containing chemically active species and the like can be generated by irradiating the first liquid with plasma. By bringing the first liquid into contact with the second liquid, plasma processing can be performed on the second liquid. Since it is not necessary to irradiate the second liquid with plasma, even if the second liquid contains a component that adversely affects the plasma generating means, the plasma generating means will not be affected by the component.
 プラズマ発生手段は、プラズマを発生させるプラズマ発生空間を備えていてもよい。プラズマ発生手段は、プラズマ発生空間を減圧する減圧手段を備えていてもよい。 The plasma generation means may have a plasma generation space for generating plasma. The plasma generation means may include decompression means for depressurizing the plasma generation space.
 減圧手段は、断面積が狭くなっている絞り部を備える第1の流路を備えていてもよい。第1の流路は、第1の液体または第2の液体を流してもよい。絞り部がプラズマ発生空間に接続していてもよい。 The decompression means may comprise a first flow path comprising a constricted portion with a narrow cross-sectional area. The first channel may carry the first liquid or the second liquid. The narrowed portion may be connected to the plasma generation space.
 プラズマ処理装置は、第1の流路と合流する第2の流路を備えていてもよい。第2の流路は、プラズマ発生空間に接続していてもよい。第1の流路に第2の液体が流れてもよい。第2の流路に第1の液体が流れてもよい。 The plasma processing apparatus may include a second flow path that merges with the first flow path. The second channel may be connected to the plasma generation space. A second liquid may flow through the first channel. A first liquid may flow through the second channel.
 プラズマ処理装置は、内部管と、内部管の外周を覆う外部管と、を備えていてもよい。プラズマ発生空間および第2の流路は、内部管に配置されていてもよい。内部管と外部管とは、互いに中心軸が一致するように配置されていてもよい。内部管と外部管との間に、内部管の外周を取り囲んでいる第1の流路が形成されていてもよい。第1の流路は、内部管および外部管の一端から他端へ至る経路を有するとともに、絞り部を経路上に備えていてもよい。絞り部において、第2の液体の流れは、中心軸まわりに旋回する速度成分を有していてもよい。 The plasma processing apparatus may include an inner tube and an outer tube that surrounds the inner tube. The plasma-generating space and the second flow path may be arranged in the inner tube. The inner tube and the outer tube may be arranged so that their central axes coincide with each other. A first flow path may be formed between the inner tube and the outer tube, surrounding the outer periphery of the inner tube. The first flow path may have a path extending from one end of the inner tube and the outer tube to the other end, and may include a constricted portion on the path. In the constricted portion, the flow of the second liquid may have a velocity component that swirls around the central axis.
 プラズマ処理装置は、絞り部に至るまでの第1の流路上に配置されている少なくとも1つの整流部をさらに備えていてもよい。整流部は、中心軸の軸方向に延びているとともに中心軸の軸方向に対して傾きを有していてもよい。 The plasma processing apparatus may further include at least one straightening section arranged on the first flow path up to the throttle section. The rectifying portion may extend in the axial direction of the central axis and be inclined with respect to the axial direction of the central axis.
 整流部は、内部管の外周の壁面または外部管の内周の壁面の少なくとも一方に形成されていてもよい。整流部は、壁面から突出している突起形状または壁面から窪んでいる溝形状を備えていてもよい。 The straightening section may be formed on at least one of the wall surface of the outer circumference of the inner tube and the wall surface of the inner circumference of the outer tube. The straightening section may have a projection shape protruding from the wall surface or a groove shape recessed from the wall surface.
 プラズマ処理装置は、第1の流路に第2の液体を吐出する供給部をさらに備えていてもよい。供給部による第2の液体の吐出方向は、中心軸の軸方向に対して傾きを有していてもよい。 The plasma processing apparatus may further include a supply section for discharging the second liquid into the first flow path. The direction in which the second liquid is discharged by the supply unit may be inclined with respect to the axial direction of the central axis.
 内部管は、第1電極を第1端部に備える第1管と、第2電極を第2端部に備える第2管と、を備えていてもよい。第1管と第2管と外部管とは、互いに中心軸が一致するように配置されていてもよい。第1端部と第2端部とが非接触状態で対向していてもよい。第1管および第2管の外周と外部管の内周との間に第1の流路が形成されていてもよい。第1端部と第2端部との対向している領域に、第2の流路およびプラズマ発生空間が形成されていてもよい。 The inner tube may comprise a first tube having a first electrode at a first end and a second tube having a second electrode at a second end. The first tube, the second tube, and the external tube may be arranged so that their central axes are aligned with each other. The first end and the second end may face each other in a non-contact state. A first flow path may be formed between the outer circumferences of the first and second tubes and the inner circumference of the outer tube. A second flow path and a plasma generating space may be formed in regions where the first end and the second end face each other.
 プラズマ処理装置は、プラズマ発生空間にマイクロ波を伝播することが可能に構成されている伝播空間をさらに備えていてもよい。 The plasma processing apparatus may further include a propagation space configured to allow microwaves to propagate to the plasma generation space.
 第1の液体は、固体溶質が溶解していない液体であってもよい。第2の液体は、固体溶質が溶解している液体であってもよい。 The first liquid may be a liquid in which no solid solute is dissolved. The second liquid may be a liquid in which a solid solute is dissolved.
 本明細書が開示するプラズマ処理方法の一態様は、プラズマを第1の液体に照射する照射工程を備える。プラズマ処理方法は、第1の液体を第2の液体に接触させる接触工程を備える。 One aspect of the plasma processing method disclosed in this specification includes an irradiation step of irradiating the first liquid with plasma. The plasma processing method comprises a contacting step of contacting the first liquid with the second liquid.
 照射工程では、プラズマを減圧環境で発生させてもよい。 In the irradiation process, plasma may be generated in a reduced pressure environment.
 接触工程では、第2の液体を流しながら第1の液体を接触させてもよい。照射工程では、第2の液体の流れにより得られるベンチュリ効果によって減圧環境を生成してもよい。 In the contacting step, the first liquid may be brought into contact while the second liquid is flowing. In the irradiation step, a reduced pressure environment may be created by the venturi effect provided by the flow of the second liquid.
 接触工程では、プラズマを発生させる空間にマイクロ波を入射してもよい。 In the contact process, microwaves may be injected into the space where plasma is generated.
実施例1のプラズマ処理装置100の概略断面図である。1 is a schematic cross-sectional view of a plasma processing apparatus 100 of Example 1. FIG. 比較例のプラズマ処理装置200の概略断面図である。2 is a schematic cross-sectional view of a plasma processing apparatus 200 of a comparative example; FIG. 実施例2のプラズマ処理装置300の概略断面図である。FIG. 3 is a schematic cross-sectional view of a plasma processing apparatus 300 of Example 2; 実施例3のプラズマ処理装置400の概略斜視図である。FIG. 11 is a schematic perspective view of a plasma processing apparatus 400 of Example 3; 変形例のプラズマ処理装置400aの概略斜視図である。It is a schematic perspective view of the plasma processing apparatus 400a of a modification.
(プラズマ処理装置100の構成)
 図1は、実施例1のプラズマ処理装置100の概略断面図である。z方向は、鉛直上向きを示している。プラズマ処理装置100は、第1の外導体120と、第2の外導体130と、外部管140と、絶縁スペーサ180と、を備える。
(Configuration of plasma processing apparatus 100)
FIG. 1 is a schematic cross-sectional view of a plasma processing apparatus 100 of Example 1. FIG. The z-direction indicates vertically upward. The plasma processing apparatus 100 includes a first outer conductor 120 , a second outer conductor 130 , an outer tube 140 and an insulating spacer 180 .
 第1の外導体120および第2の外導体130は、中心軸CAを共有する円筒形状である。第1の外導体120および第2の外導体130の材質は、銅、黄銅、またはその他の金属である。第1の外導体120は、流路空間CH1、プラズマ伝播空間MP1、第1電極121を備えている。流路空間CH1は、流体を流すことが可能な空間である。流路空間CH1は、第1の外導体120を液体で冷却する機能も有している。プラズマ伝播空間MP1は、不図示のマイクロ波発生部で発生させたマイクロ波を伝播させる空間である。第1電極121は、第1の外導体120の第1端部E1に配置されている。 The first outer conductor 120 and the second outer conductor 130 have a cylindrical shape sharing the central axis CA. The material of the first outer conductor 120 and the second outer conductor 130 is copper, brass, or other metals. The first outer conductor 120 includes a channel space CH1, a plasma propagation space MP1, and a first electrode 121. As shown in FIG. The channel space CH1 is a space through which a fluid can flow. The channel space CH1 also has a function of cooling the first outer conductor 120 with liquid. The plasma propagation space MP1 is a space for propagating microwaves generated by a microwave generator (not shown). The first electrode 121 is arranged at the first end E<b>1 of the first outer conductor 120 .
 第2の外導体130は、流路空間CH2および第2電極131を備えている。流路空間CH2は、後述するように、第2流路LP2の一部を形成する空間である。流路空間CH2は、中心軸CAに対して回転対称に複数配置されている。第2電極131は、第2の外導体130の第2端部E2に配置されている。第2電極131は、第2端部E2から突出している。第1電極121および第2電極131の形状は、略同一の直径を有する円環状である。 The second outer conductor 130 includes a channel space CH2 and a second electrode 131. The channel space CH2 is a space that forms part of the second channel LP2, as will be described later. A plurality of channel spaces CH2 are arranged rotationally symmetrically with respect to the central axis CA. The second electrode 131 is arranged at the second end E2 of the second outer conductor 130 . The second electrode 131 protrudes from the second end E2. The shapes of the first electrode 121 and the second electrode 131 are circular rings having substantially the same diameter.
 第1の外導体120の第1端部E1と第2の外導体130の第2端部E2とは、リング状の絶縁スペーサ180を介して接続されている。第1の外導体120と第2の外導体130とは、不図示のボルトによって固定されていてもよい。 The first end E1 of the first outer conductor 120 and the second end E2 of the second outer conductor 130 are connected via a ring-shaped insulating spacer 180 . The first outer conductor 120 and the second outer conductor 130 may be fixed by bolts (not shown).
 第1端部E1と第2端部E2との対向している領域には、プラズマ発生空間PG1が形成されている。プラズマ発生空間PG1は、円環形状の空間である。プラズマ発生空間PG1には、第1電極121および第2電極131が対向して配置されている。第1電極121および第2電極131の間には、スリットS1が形成されている。スリットS1の幅は0.05mm以上1mm以下の程度である。 A plasma generation space PG1 is formed in a region where the first end E1 and the second end E2 face each other. The plasma generation space PG1 is an annular space. A first electrode 121 and a second electrode 131 are arranged facing each other in the plasma generation space PG1. A slit S<b>1 is formed between the first electrode 121 and the second electrode 131 . The width of the slit S1 is about 0.05 mm or more and 1 mm or less.
 第1端部E1と第2端部E2との間には、隙間G1およびG2が形成されている。隙間G1は、絶縁スペーサ180の内側に形成されており、流路空間CH1とCH2とを接続する流路として機能する。隙間G2は、第1の外導体120および第2の外導体130の外周に形成されており、プラズマ発生空間PG1と外周空間OS1とを接続する流路として機能する。流路空間CH1、隙間G1、流路空間CH2、隙間G2によって、点線の矢印で示すように、第2流路LP2が形成されている。第2流路LP2は、流路空間CH1からプラズマ発生空間PG1を経由して第1流路LP1に合流する流路である。なお、プラズマ発生空間PG1は、第2流路LP2を流れる液体により浸されるおそれはないため、安定してプラズマを発生させることができる。 Between the first end E1 and the second end E2, gaps G1 and G2 are formed. The gap G1 is formed inside the insulating spacer 180 and functions as a channel connecting the channel spaces CH1 and CH2. The gap G2 is formed around the outer circumferences of the first outer conductor 120 and the second outer conductor 130, and functions as a flow path connecting the plasma generation space PG1 and the outer circumference space OS1. A second flow path LP2 is formed by the flow path space CH1, the gap G1, the flow path space CH2, and the gap G2, as indicated by the dotted arrow. The second flow path LP2 is a flow path that joins the first flow path LP1 from the flow path space CH1 via the plasma generation space PG1. Since the plasma generation space PG1 is not likely to be immersed in the liquid flowing through the second flow path LP2, plasma can be stably generated.
 また隙間G2は、水平方向(x方向)に対して斜め下向きに延びる領域を備えている。これにより、第1流路LP1を流れる流体がプラズマ発生空間PG1まで逆流してしまうことを、重力によって抑制することができる。 Also, the gap G2 has a region extending obliquely downward with respect to the horizontal direction (x direction). As a result, gravity can be used to prevent the fluid flowing through the first flow path LP1 from flowing back to the plasma generation space PG1.
 外部管140は、第1の外導体120および第2の外導体130の外側に配置されている。外部管140の形状は、円筒形状であり、第1の外導体120および第2の外導体130と中心軸CAを共有している。外部管140の材質は、例えばガラスである。 The outer tube 140 is arranged outside the first outer conductor 120 and the second outer conductor 130 . The outer tube 140 has a cylindrical shape and shares the central axis CA with the first outer conductor 120 and the second outer conductor 130 . The material of the outer tube 140 is glass, for example.
 第1の外導体120および第2の外導体130の外周と外部管140の内周との間には、外周空間OS1が形成されている。外周空間OS1は、点線の矢印で示すように、第1流路LP1として機能する。第1の外導体120は、第1端部E1に近づくほど外部管140側に突出している、第1の傾斜面122を有する。また第2の外導体130は、第2端部E2に近づくほど外部管140側に突出している、第2の傾斜面132を有する。これにより、第1流路LP1と第2流路LP2との合流地点JPの近傍において、断面積が狭くなっている絞り部RPが形成されている。 An outer space OS1 is formed between the outer circumferences of the first outer conductor 120 and the second outer conductor 130 and the inner circumference of the outer tube 140 . The outer space OS1 functions as the first flow path LP1, as indicated by the dotted arrow. The first outer conductor 120 has a first inclined surface 122 protruding toward the outer tube 140 toward the first end E1. The second outer conductor 130 also has a second slanted surface 132 protruding toward the outer tube 140 toward the second end E2. As a result, a narrowed portion RP having a narrow cross-sectional area is formed in the vicinity of the confluence point JP between the first flow path LP1 and the second flow path LP2.
 第1流路LP1を流れる液体の流速は、絞り部RPの周辺で非常に大きくなる。ベンチュリ効果により、液体の圧力を小さくすることができる。例えば、1気圧下の液体を0.1気圧程度まで下降させることができる。プラズマ発生空間PG1は、隙間G2を介して絞り部RPに接続しているため、プラズマ発生空間PG1を減圧することができる。ポンプ等を用いずに減圧することができるため、プラズマ処理装置100の簡素化が可能となる。 The flow velocity of the liquid flowing through the first flow path LP1 becomes extremely large around the throttle portion RP. The venturi effect can reduce the pressure of the liquid. For example, a liquid under 1 atmosphere can be lowered to about 0.1 atmosphere. Since the plasma generation space PG1 is connected to the throttle portion RP through the gap G2, the plasma generation space PG1 can be decompressed. Since the pressure can be reduced without using a pump or the like, the plasma processing apparatus 100 can be simplified.
(プラズマ処理方法)
 実施例1に係るプラズマ処理方法を、金属ナノ粒子を製造する場合を例として説明する。まず、金属または金属化合物を含有する溶液を準備する。本実施例では硝酸銀水溶液を用いた。AgNOの濃度は0.1mol/Lとした。そして、第1流路LP1に硝酸銀水溶液を流す。ベンチュリ効果により、プラズマ発生空間PG1の周辺の気圧が低下する。本実施例では、流量は55L/minとした。またプラズマ発生空間PG1の圧力は0.2気圧程度であった。また、第2流路LP2に純水を流す。本実施例では、流量は250mL/minとした。
(Plasma treatment method)
The plasma processing method according to Example 1 will be described using a case of producing metal nanoparticles as an example. First, a solution containing a metal or metal compound is prepared. In this example, an aqueous solution of silver nitrate was used. The AgNO 3 concentration was 0.1 mol/L. Then, an aqueous solution of silver nitrate is allowed to flow through the first flow path LP1. Due to the venturi effect, the air pressure around the plasma generation space PG1 is lowered. In this example, the flow rate was set at 55 L/min. Also, the pressure in the plasma generation space PG1 was about 0.2 atm. Also, pure water is allowed to flow through the second flow path LP2. In this example, the flow rate was set at 250 mL/min.
 次に、不図示のマイクロ波発生部で発生させたマイクロ波を、プラズマ伝播空間MP1内に放射する。マイクロ波は、プラズマ伝播空間MP1の内部を矢印M1の向きに伝播し、プラズマ発生空間PG1まで到達する。本実施例では、マイクロ波の周波数は2.45GHz、マイクロ波の電力は1kWとした。 Next, microwaves generated by a microwave generator (not shown) are radiated into the plasma propagation space MP1. The microwave propagates in the direction of the arrow M1 inside the plasma propagation space MP1 and reaches the plasma generation space PG1. In this example, the microwave frequency was 2.45 GHz and the microwave power was 1 kW.
 そして、第1の外導体120および第2の外導体130に、表面電流を誘起する。その結果、第1電極121と第2電極131との間に比較的強い電界が加わる。これにより、第1電極121と第2電極131との間で放電が生じるとともにプラズマ発生空間PG1にプラズマが発生する。プラズマ発生空間PG1で発生したプラズマは、第2流路LP2を流れる純水にプラズマ生成物を照射する。ここで、プラズマ生成物とは、電子と、陽イオンと、ラジカルと、紫外線と、を含む。これにより、第2流路LP2を流れる純水はプラズマ処理され、化学活性種を含んだプラズマ処理水が生成される。 A surface current is then induced in the first outer conductor 120 and the second outer conductor 130 . As a result, a relatively strong electric field is applied between the first electrode 121 and the second electrode 131 . As a result, discharge occurs between the first electrode 121 and the second electrode 131, and plasma is generated in the plasma generation space PG1. The plasma generated in the plasma generation space PG1 irradiates the pure water flowing through the second flow path LP2 with plasma products. Here, plasma products include electrons, positive ions, radicals, and ultraviolet rays. As a result, the pure water flowing through the second flow path LP2 is plasma-treated to generate plasma-treated water containing chemically active species.
 プラズマ処理水は、ベンチュリ効果による圧力差によって即座に合流地点JPに導入され、硝酸銀水溶液に混合される。すなわちプラズマ処理水が硝酸銀水溶液に接触する。これにより、プラズマ処理水に含まれている化学活性種が失活する前に、化学活性種を硝酸銀水溶液に化学反応させることができる。よって、銀ナノ粒子を生成することができる。この銀ナノ粒子は、粒径20nm以上50nm以下の程度の銀粒子が凝集した凝集体である。第1流路LP1を流れる硝酸銀水溶液に対して、インラインで連続的にプラズマ処理することができる。バッチ処理に比して、銀ナノ粒子の生成効率を高めることが可能となる。 The plasma-treated water is immediately introduced to the confluence point JP due to the pressure difference due to the venturi effect, and is mixed with the silver nitrate aqueous solution. That is, the plasma-treated water comes into contact with the silver nitrate aqueous solution. As a result, the chemically active species contained in the plasma-treated water can be chemically reacted with the silver nitrate aqueous solution before the chemically active species are deactivated. Thus, silver nanoparticles can be produced. The silver nanoparticles are aggregates in which silver particles having a particle size of about 20 nm or more and 50 nm or less are aggregated. The silver nitrate aqueous solution flowing through the first flow path LP1 can be continuously plasma-treated in-line. Compared to batch processing, it is possible to increase the production efficiency of silver nanoparticles.
(課題および効果)
 まず、図2の比較例のプラズマ処理装置200を用いて、課題を説明する。比較例のプラズマ処理装置200(図2)は、第2流路LP2を備えていない点が、実施例1のプラズマ処理装置100(図1)と異なっている。すなわち比較例のプラズマ処理装置200は、第1流路LP1を流れる硝酸銀水溶液に対して、直接にプラズマを照射する装置である。プラズマ発生空間PG1がベンチュリ効果で減圧されることによって、合流地点JPからプラズマ発生空間PG1へ向かって逆流流路LPbが形成されてしまう場合がある。硝酸銀水溶液がプラズマ発生空間PG1まで逆流すると、硝酸銀水溶液の液滴DRが第1電極121および第2電極131に付着する。硝酸銀水溶液は固体溶質が溶解している液体であるため、固体溶質が固化し、堆積物DEが第1電極121および第2電極131に堆積してしまう。放電が停止し、プラズマ処理が実行できなくなってしまう。
(Challenges and effects)
First, the problem will be described using the plasma processing apparatus 200 of the comparative example shown in FIG. The plasma processing apparatus 200 (FIG. 2) of the comparative example differs from the plasma processing apparatus 100 (FIG. 1) of Example 1 in that the second flow path LP2 is not provided. That is, the plasma processing apparatus 200 of the comparative example is an apparatus that directly irradiates the silver nitrate aqueous solution flowing through the first flow path LP1 with plasma. When the pressure in the plasma generation space PG1 is reduced by the venturi effect, a reverse flow passage LPb may be formed from the confluence point JP toward the plasma generation space PG1. When the silver nitrate aqueous solution flows backward to the plasma generation space PG1, droplets DR of the silver nitrate aqueous solution adhere to the first electrode 121 and the second electrode 131 . Since the silver nitrate aqueous solution is a liquid in which a solid solute is dissolved, the solid solute is solidified and deposits DE are deposited on the first electrode 121 and the second electrode 131 . Discharge stops and plasma processing cannot be performed.
 一方、実施例1のプラズマ処理装置100では、プラズマ発生空間PG1を経由して第1流路LP1に合流する第2流路LP2を備えている。第2流路LP2を流れる純水にプラズマ照射することで、化学活性種などを含んだ高反応性のプラズマ処理水を生成することができる。そしてプラズマ処理水を第1流路LP1を流れる硝酸銀水溶液に混合することで、銀ナノ粒子を生成することができる。すなわち、プラズマ処理水を介して、硝酸銀水溶液に対してプラズマ処理することができる。プラズマ処理水の生成領域と、硝酸銀水溶液のプラズマ処理領域とを完全に分離することが可能となる。硝酸銀水溶液にプラズマを照射する必要がないため、堆積物DEを形成する成分が硝酸銀水溶液に含まれている場合においても、その成分によって第1電極121および第2電極131が影響を受けることがない。また純水は固体溶質が溶解していない液体であるため、堆積物DEが発生しない。長時間の連続プラズマ処理が可能となる。 On the other hand, the plasma processing apparatus 100 of Example 1 includes a second flow path LP2 that merges with the first flow path LP1 via the plasma generation space PG1. By irradiating the pure water flowing through the second flow path LP2 with plasma, it is possible to generate highly reactive plasma-treated water containing chemically active species and the like. By mixing the plasma-treated water with the silver nitrate aqueous solution flowing through the first flow path LP1, silver nanoparticles can be generated. That is, the silver nitrate aqueous solution can be plasma-treated through the plasma-treated water. It is possible to completely separate the plasma-treated water generation region and the plasma-treated silver nitrate aqueous solution region. Since it is not necessary to irradiate the silver nitrate aqueous solution with plasma, even if the silver nitrate aqueous solution contains a component that forms the deposit DE, the component does not affect the first electrode 121 and the second electrode 131. . Further, since pure water is a liquid in which solid solutes are not dissolved, deposits DE are not generated. Long-term continuous plasma processing becomes possible.
 比較例のプラズマ処理装置200(図2)において、逆流流路LPbの形成を防止するために、例えば気体によりエアカーテンを形成することが考えられる。しかし気体は液体に比して密度が非常に低いため、エアカーテンでは十分に逆流を防止することができない。実施例1のプラズマ処理装置100では、第2流路LP2を流れる純水によって、逆流流路LPbの形成を防止することができる。純水で逆流液体を押し戻すことにより、逆流を確実に防止することができる。堆積物DEの発生を防止することが可能となる。 In the plasma processing apparatus 200 (FIG. 2) of the comparative example, it is conceivable to form an air curtain with gas, for example, in order to prevent the formation of the backflow flow path LPb. However, since gas has a much lower density than liquid, the air curtain cannot sufficiently prevent backflow. In the plasma processing apparatus 100 of the first embodiment, the pure water flowing through the second flow path LP2 can prevent formation of the backflow flow path LPb. Backflow can be reliably prevented by pushing back the backflow liquid with pure water. It becomes possible to prevent the generation of deposits DE.
 図3は、実施例2のプラズマ処理装置300の概略断面図である。プラズマ処理装置300は、プラズマ処理水生成部301およびタンク302を備えている。プラズマ処理水生成部301は、流路空間310、プラズマ発生空間PG2、第1電極331、第2電極332、マイクロ波導入部340、誘電体部350を備えている。流路空間310は、点線の矢印で示すように、流路LPとして機能する。本実施例では、流路LPには純水が流れる。流路空間310は、プラズマ発生空間PG2との連通部分およびその近傍において、絞り部RP2を備えている。絞り部RP2は断面積が減少している領域であり、ベンチュリ効果によってプラズマ発生空間PG2を減圧することができる。 FIG. 3 is a schematic cross-sectional view of a plasma processing apparatus 300 of Example 2. FIG. The plasma processing apparatus 300 includes a plasma-treated water generator 301 and a tank 302 . The plasma-treated water generating section 301 includes a channel space 310, a plasma generating space PG2, a first electrode 331, a second electrode 332, a microwave introducing section 340, and a dielectric section 350. The channel space 310 functions as a channel LP as indicated by the dotted arrow. In this embodiment, pure water flows through the flow path LP. The flow path space 310 has a constricted portion RP2 at and near the communicating portion with the plasma generating space PG2. The narrowed portion RP2 is a region with a reduced cross-sectional area, and can reduce the pressure of the plasma generation space PG2 by the venturi effect.
 プラズマ発生空間PG2は、流路LPに直交する方向の外側に広がるように形成された空間である。プラズマ発生空間PG2には、間隙をもって対向配置された、環状の第1電極331および第2電極332が配置されている。マイクロ波導入部340は、プラズマ発生空間PG2にマイクロ波を伝播するための部位である。誘電体部350は、プラズマ発生空間PG2の外周を覆うことで、プラズマ発生空間PG2と外部との絶縁を図る部位である。タンク302は、プラズマ処理対象の液体303を保持する部位である。本実施例では、液体303は硝酸銀水溶液を用いた。 The plasma generation space PG2 is a space formed so as to spread outward in the direction perpendicular to the flow path LP. A ring-shaped first electrode 331 and a ring-shaped second electrode 332 are disposed facing each other with a gap in the plasma generation space PG2. The microwave introduction part 340 is a part for propagating microwaves to the plasma generation space PG2. The dielectric portion 350 is a portion that covers the outer periphery of the plasma generation space PG2 to insulate the plasma generation space PG2 from the outside. A tank 302 is a part that holds a liquid 303 to be plasma-processed. In this embodiment, the liquid 303 is an aqueous solution of silver nitrate.
(プラズマ処理方法)
 実施例2に係るプラズマ処理方法を、金属ナノ粒子を製造する場合を例として説明する。まず、硝酸銀水溶液をタンク302に保持する。そして、流路LPに純水を流す。ベンチュリ効果より、プラズマ発生空間PG2の気圧が低下する。次に、不図示のマイクロ波発生部で発生させたマイクロ波をマイクロ波導入部340内に放射する。
(Plasma treatment method)
The plasma processing method according to Example 2 will be described by taking the case of producing metal nanoparticles as an example. First, the silver nitrate aqueous solution is held in the tank 302 . Then, pure water is allowed to flow through the flow path LP. Due to the venturi effect, the air pressure in the plasma generation space PG2 is lowered. Next, microwaves generated by a microwave generating section (not shown) are radiated into the microwave introducing section 340 .
 第1電極331と第2電極332との間に電界を加えることで、プラズマ発生空間PG2にプラズマが発生する。発生したプラズマは、流路LPを流れる純水にプラズマ生成物を照射する。これにより、流路LPを流れる純水はプラズマ処理され、化学活性種を含んだプラズマ処理水が生成される。プラズマ処理水は流路空間310から下方へ吐出され、タンク302に流入し、硝酸銀水溶液に混合される。プラズマ処理水に含まれている化学活性種が硝酸銀水溶液と反応することで、銀ナノ粒子が生成される。 By applying an electric field between the first electrode 331 and the second electrode 332, plasma is generated in the plasma generation space PG2. The generated plasma irradiates pure water flowing through the flow path LP with plasma products. As a result, the pure water flowing through the flow path LP is plasma-treated to generate plasma-treated water containing chemically active species. The plasma-treated water is discharged downward from the channel space 310, flows into the tank 302, and is mixed with the silver nitrate aqueous solution. Silver nanoparticles are generated by the chemically active species contained in the plasma-treated water reacting with the silver nitrate aqueous solution.
(効果)
 プラズマ処理水を介して、硝酸銀水溶液に対してプラズマ処理することが可能となる。硝酸銀水溶液にプラズマを照射する必要がないため、硝酸銀水溶液に含まれている成分によって第1電極331および第2電極332が影響を受けることがない。長時間の連続プラズマ処理が可能となる。
(effect)
Plasma treatment can be applied to the silver nitrate aqueous solution through the plasma-treated water. Since there is no need to irradiate the silver nitrate aqueous solution with plasma, the components contained in the silver nitrate aqueous solution do not affect the first electrode 331 and the second electrode 332 . Long-term continuous plasma processing becomes possible.
(実施例2の変形例)
 プラズマ処理対象の液体303は、タンク302に保持する形態に限られない。例えば、液体303を流す第2の流路を備えていてもよい。そして、流路LPを流れるプラズマ処理水を、第2の流路を流れる液体303に合流させてもよい。インラインで連続的にプラズマ処理することができるため、バッチ処理に比して処理効率を高めることが可能となる。
(Modification of Example 2)
The liquid 303 to be plasma-treated is not limited to being held in the tank 302 . For example, a second channel for flowing the liquid 303 may be provided. Then, the plasma-treated water flowing through the flow path LP may join the liquid 303 flowing through the second flow path. Since plasma processing can be performed continuously in-line, processing efficiency can be improved compared to batch processing.
(プラズマ処理装置400の構成)
 図4に、実施例3のプラズマ処理装置400の概略斜視図を示す。実施例3のプラズマ処理装置400は、実施例1のプラズマ処理装置100(図1)に対して、整流部403等を備えている点が異なっている。プラズマ処理装置100と同様の部位には同一符号を付すことで、説明を省略する。また図4では、外部管140を一点鎖線で示すとともに、供給流路LP0および第1流路LP1を点線で示している。
(Configuration of plasma processing apparatus 400)
FIG. 4 shows a schematic perspective view of a plasma processing apparatus 400 of Example 3. As shown in FIG. The plasma processing apparatus 400 of Example 3 differs from the plasma processing apparatus 100 (FIG. 1) of Example 1 in that it includes a rectifying section 403 and the like. Parts similar to those of the plasma processing apparatus 100 are denoted by the same reference numerals, and description thereof is omitted. Also, in FIG. 4, the external pipe 140 is indicated by a dashed line, and the supply flow path LP0 and the first flow path LP1 are indicated by dotted lines.
 プラズマ処理装置400は、外部管140、内部管401、ポンプ402、複数の整流部403、タンク404、粒子径分布測定装置405、制御装置406、を主に備えている。内部管401は、第1の外導体120および第2の外導体130が組み合わされた構造を備えている。実施例1で説明したように、第1の外導体120および第2の外導体130が対向している領域には、プラズマ発生空間PG1および第2流路LP2が配置されている。内部管401と外部管140とは、互いに中心軸CAが一致するように配置されている。内部管401と外部管140との間に、内部管401の外周を取り囲んでいるリング形状の第1流路LP1が形成されている。第1流路LP1は、内部管401および外部管140の上端UEから下端LEへ至る経路を有している。また第1流路LP1の経路上には、絞り部RPが備えられている。 The plasma processing apparatus 400 mainly includes an outer tube 140, an inner tube 401, a pump 402, a plurality of rectifying sections 403, a tank 404, a particle size distribution measuring device 405, and a control device 406. The inner tube 401 has a structure in which the first outer conductor 120 and the second outer conductor 130 are combined. As described in Embodiment 1, the plasma generation space PG1 and the second flow path LP2 are arranged in the region where the first outer conductor 120 and the second outer conductor 130 face each other. The inner tube 401 and the outer tube 140 are arranged so that their central axes CA coincide with each other. A ring-shaped first flow path LP<b>1 surrounding the outer circumference of the inner tube 401 is formed between the inner tube 401 and the outer tube 140 . The first flow path LP1 has a route from the upper end UE of the inner pipe 401 and the outer pipe 140 to the lower end LE. A throttle portion RP is provided on the path of the first flow path LP1.
 上端UEには、リング状の第1流路入口LP1Eが形成されている。上端UEの近傍には、複数の整流部403が形成されている。すなわち複数の整流部403は、第1流路LP1の絞り部RPに至るまでの経路上に配置されている。複数の整流部403の各々は、第1の外導体120の外周と外部管140の内周とを径方向に接続している、板状部材である。整流部403の各々は、中心軸CAの軸方向(z方向)に延びているとともに、軸方向(z方向)に対して傾きA1を有している。傾きA1の大きさは特に限定されない。また傾きA1は、可変に構成されていてもよい。 A ring-shaped first channel inlet LP1E is formed at the upper end UE. A plurality of rectifiers 403 are formed in the vicinity of the upper end UE. That is, the plurality of rectifying portions 403 are arranged on the route to the throttle portion RP of the first flow path LP1. Each of the plurality of rectifying portions 403 is a plate-like member radially connecting the outer circumference of the first outer conductor 120 and the inner circumference of the outer tube 140 . Each of the straightening portions 403 extends in the axial direction (z direction) of the central axis CA and has an inclination A1 with respect to the axial direction (z direction). The magnitude of the slope A1 is not particularly limited. Also, the inclination A1 may be configured to be variable.
 ポンプ402は、第1流路LP1に硝酸銀水溶液を吐出する供給部である。ポンプ402から吐出された硝酸銀水溶液は、供給流路LP0を介して、第1流路入口LP1Eに供給される。図4の点線で示すように、供給流路LP0は、リング状の第1流路入口LP1Eの全体に供給されるように、環状に分岐した流路を備えている。ポンプ402から供給される硝酸銀水溶液の流量は、ポンプ402の回転数によって調整可能である。またポンプ402の回転数は、制御装置406によって制御可能である。制御装置406は特に限定されず、例えばPCであってもよい。 The pump 402 is a supply unit that discharges the silver nitrate aqueous solution to the first flow path LP1. The silver nitrate aqueous solution discharged from the pump 402 is supplied to the first channel inlet LP1E via the supply channel LP0. As indicated by the dotted line in FIG. 4, the supply flow path LP0 has an annularly branched flow path so as to supply the entire ring-shaped first flow path inlet LP1E. The flow rate of the silver nitrate aqueous solution supplied from the pump 402 can be adjusted by the rotation speed of the pump 402 . Also, the rotation speed of the pump 402 can be controlled by the controller 406 . The control device 406 is not particularly limited, and may be a PC, for example.
 第1流路入口LP1Eには、硝酸銀水溶液が、垂直下方(-z方向)に向かって導入される。導入された硝酸銀水溶液の流れの方向は、整流部403によって、傾きA1だけ変更される。よって、整流部403から出力される第1流路LP1は、中心軸まわりに旋回する旋廻流となる。第1流路LP1は、旋回状態を維持したまま絞り部RPに到達する。よって絞り部RPにおいて、硝酸銀水溶液の流れは、中心軸CAまわりに旋回する速度成分を有している。すなわち、絞り部RPにおける硝酸銀水溶液の流速は、z方向の速度成分のみならず、x、y方向の速度成分を有している。絞り部RPにおける硝酸銀水溶液の流速は、特に限定されず、例えば10m/s以上であってもよい。 A silver nitrate aqueous solution is introduced vertically downward (-z direction) into the first channel inlet LP1E. The flow direction of the silver nitrate aqueous solution introduced is changed by the rectifying section 403 by the inclination A1. Therefore, the first flow path LP1 output from the rectifying section 403 becomes a swirl flow swirling around the central axis. The first flow path LP1 reaches the throttle portion RP while maintaining the swirling state. Therefore, in the throttle portion RP, the flow of the silver nitrate aqueous solution has a velocity component that swirls around the central axis CA. That is, the flow velocity of the silver nitrate aqueous solution in the constricted portion RP has not only a z-direction velocity component but also x- and y-direction velocity components. The flow velocity of the silver nitrate aqueous solution in the constricted portion RP is not particularly limited, and may be, for example, 10 m/s or more.
 下端LEからは、銀ナノ粒子を含んだ硝酸銀水溶液が吐出される。吐出された硝酸銀水溶液は、粒子径分布測定装置405を通過して、タンク404に貯蔵される。粒子径分布測定装置405では、吐出された硝酸銀水溶液中の銀ナノ粒子の粒子径分布を、リアルタイム測定することができる。粒子径分布測定装置405の種類は、特に限定されない。粒子径分布の測定結果は、制御装置406へ送信される。 A silver nitrate aqueous solution containing silver nanoparticles is discharged from the lower end LE. The discharged silver nitrate aqueous solution passes through the particle size distribution measuring device 405 and is stored in the tank 404 . The particle size distribution measuring device 405 can measure the particle size distribution of the silver nanoparticles in the discharged silver nitrate aqueous solution in real time. The type of particle size distribution measuring device 405 is not particularly limited. A measurement result of the particle size distribution is transmitted to the control device 406 .
 制御装置406は、粒子径分布の測定結果に基づいて、硝酸銀水溶液の流量をフィードバック制御する。具体的に説明する。硝酸銀水溶液の流速を変化させることにより、第2流路LP2から合流するプラズマ処理水の硝酸銀水溶液中への導入濃度を制御することができる。すなわち、第2流路LP2から供給されるプラズマ処理水の単位時間あたりの流量およびプラズマ処理水中の化学活性種の濃度が一定であるため、硝酸銀水溶液の単位時間あたりの流量を小さくするほど、硝酸銀水溶液中の化学活性種の濃度を高くすることができる。化学活性種の濃度が高いほど、化学反応量を高めることができるため、銀ナノ粒子の粒子径分布を大きい方へシフトさせることができる。これにより、粒子径分布のリアルタイム測定結果に基づいて、ポンプ402の回転数を適宜フィードバック制御することで、銀ナノ粒子の粒子径分布を予め定めた範囲内に制御することが可能となる。 The control device 406 feedback-controls the flow rate of the silver nitrate aqueous solution based on the measurement result of the particle size distribution. A specific description will be given. By changing the flow velocity of the aqueous silver nitrate solution, the introduction concentration of the plasma-treated water joining from the second flow path LP2 into the aqueous silver nitrate solution can be controlled. That is, since the flow rate per unit time of the plasma-treated water supplied from the second flow path LP2 and the concentration of chemically active species in the plasma-treated water are constant, the smaller the flow rate of the silver nitrate aqueous solution per unit time, the more silver nitrate The concentration of chemically active species in the aqueous solution can be increased. As the concentration of the chemically active species increases, the amount of chemical reaction can be increased, so the particle size distribution of the silver nanoparticles can be shifted to the larger side. As a result, the particle size distribution of the silver nanoparticles can be controlled within a predetermined range by appropriately feedback-controlling the rotation speed of the pump 402 based on the real-time measurement result of the particle size distribution.
(効果)
 図1に示すように、絞り部RPの近傍において、内部側(中心軸CA側)には、第2流路LP2が形成されている。そして実施例3の技術では、硝酸銀水溶液の流れに、中心軸CAまわりに旋回する速度成分を発生させることができる。これにより、絞り部RPにおいて、硝酸銀水溶液を外部管140に押し付けるような遠心力を発生させることができる。硝酸銀水溶液を第2流路LP2から遠ざけることができるため、逆流を確実に防止することが可能となる。また旋回流を用いる場合においても、絞り部RPでベンチュリ効果を発生させることができるため、プラズマ発生空間PG1を減圧することが可能となる。なお、絞り部RPにおいて硝酸銀水溶液にかかる遠心力は、1G以上であることが好ましい。
(effect)
As shown in FIG. 1, a second flow path LP2 is formed on the inner side (on the side of the central axis CA) in the vicinity of the narrowed portion RP. The technique of Example 3 can generate a velocity component that revolves around the central axis CA in the flow of the silver nitrate aqueous solution. As a result, a centrifugal force that presses the silver nitrate aqueous solution against the outer tube 140 can be generated at the throttle portion RP. Since the silver nitrate aqueous solution can be kept away from the second flow path LP2, backflow can be reliably prevented. Moreover, even when a swirling flow is used, the venturi effect can be generated at the constricted portion RP, so that the plasma generation space PG1 can be decompressed. In addition, it is preferable that the centrifugal force applied to the silver nitrate aqueous solution in the constricted portion RP is 1 G or more.
(実施例3の変形例)
 整流部の構造は、図4の例に限定されず、様々な構造を備えていてもよい。整流部は、内部管401の外周の壁面、または、外部管140の内周の壁面の少なくとも一方に形成することができる。また整流部は、壁面から突出している突起形状、または、壁面から窪んでいる溝形状を備えることができる。例えば、変形例のプラズマ処理装置400aに示すように、整流部403aは、第1の外導体120の外周壁面に形成された、壁形状の突起であってもよい。整流部403aは、第1の傾斜面122が形成されている領域R1の範囲内に、少なくとも一部が配置されていてもよい。なお図5では、見易さのため、外部管140の記載を省略している。
(Modification of Example 3)
The structure of the rectifying section is not limited to the example of FIG. 4, and may have various structures. The straightening section can be formed on at least one of the outer wall surface of the inner tube 401 and the inner wall surface of the outer tube 140 . Further, the rectifying portion can have a projection shape protruding from the wall surface or a groove shape recessed from the wall surface. For example, as shown in a modified plasma processing apparatus 400a, the rectifying portion 403a may be a wall-shaped protrusion formed on the outer peripheral wall surface of the first outer conductor 120. FIG. At least a portion of the rectifying portion 403a may be arranged within the range of the region R1 in which the first inclined surface 122 is formed. Note that the illustration of the external tube 140 is omitted in FIG. 5 for ease of viewing.
 ポンプから硝酸銀水溶液を吐出する態様は、様々であってよい。例えば図5に示すように、中心軸CAの軸方向(z方向)に対して傾きを有するノズル402nを備えていてもよい。これにより、軸方向に対して傾きA2を有した旋回流状態の硝酸銀水溶液を、第1流路LP1に導入することができる。また図5に示すように、リング状の第1流路入口LP1Eの1か所から、硝酸銀水溶液を導入してもよい。 There may be various modes of discharging the silver nitrate aqueous solution from the pump. For example, as shown in FIG. 5, nozzles 402n that are inclined with respect to the axial direction (z direction) of the central axis CA may be provided. As a result, the silver nitrate aqueous solution in a swirl state having an inclination A2 with respect to the axial direction can be introduced into the first flow path LP1. Alternatively, as shown in FIG. 5, the silver nitrate aqueous solution may be introduced from one point of the ring-shaped first channel inlet LP1E.
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the embodiments of the present invention have been described in detail above, they are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
(変形例)
 本明細書の技術は、様々な液体に広範に適用することが可能であり、プラズマを用いた新しい化学反応場を安定に形成することができる。これにより、化学反応の新しいプロセス反応場としての応用が期待できる。本明細書のプラズマ処理の利用分野は、ナノ粒子生成に限られず、様々な分野に適用可能である。例えば、有機物分解処理、消毒水製造に用いることができる。
(Modification)
The technique of the present specification can be widely applied to various liquids, and can stably form a new chemical reaction field using plasma. As a result, it can be expected to be applied as a new process reaction field for chemical reactions. The field of application of plasma processing herein is not limited to nanoparticle generation, and can be applied to various fields. For example, it can be used for organic matter decomposition treatment and disinfectant water production.
 本明細書では、銀ナノ粒子を生成する場合を説明したが、この形態に限られず、様々な種類のナノ粒子を生成することができる。例えば塩化金酸水溶液を用いた場合には、金ナノ粒子を生成することができる。 In this specification, the case of generating silver nanoparticles has been described, but it is not limited to this form, and various types of nanoparticles can be generated. For example, when a chloroauric acid aqueous solution is used, gold nanoparticles can be produced.
 プラズマ処理する液体は純水に限られず、様々な液体であってよい。例えば、固体溶質が溶解していない液体でもよい。堆積物DEが堆積しないため、プラズマの連続発生が可能となる。具体例としては、アルコール、カルボン酸、アルデヒド、硝酸、塩酸、炭酸、アンモニア水が挙げられる。 The liquid to be plasma treated is not limited to pure water, and may be various liquids. For example, it may be a liquid in which no solid solute is dissolved. Since the deposit DE is not deposited, plasma can be continuously generated. Specific examples include alcohols, carboxylic acids, aldehydes, nitric acid, hydrochloric acid, carbonic acid, and aqueous ammonia.
 プラズマ発生空間PG1およびPG2を減圧する手段は、ベンチュリ効果を用いた手段に限られず、様々な手段が使用可能である。例えばポンプを用いて減圧してもよい。 The means for depressurizing the plasma generation spaces PG1 and PG2 is not limited to means using the venturi effect, and various means can be used. For example, the pressure may be reduced using a pump.
 本明細書の技術で用いるプラズマは、減圧プラズマに限られない。常圧プラズマを用いてもよい。 The plasma used in the technology of this specification is not limited to low-pressure plasma. Atmospheric plasma may also be used.
 本明細書の技術で用いるプラズマの発生手段は様々であってよい。例えば、直流放電、直流パルス放電、高周波放電などであってもよい。 Various plasma generating means may be used in the technology of this specification. For example, DC discharge, DC pulse discharge, high-frequency discharge, or the like may be used.
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in this specification or drawings demonstrate technical usefulness by themselves or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques exemplified in this specification or drawings can simultaneously achieve a plurality of purposes, and achieving one of them has technical utility in itself.
 純水は、第1の液体の一例である。硝酸銀水溶液は、第2の液体の一例である。第2流路LP2および流路空間310は、接触手段の一例である。第1の外導体120は、第1管の一例である。第2の外導体130は、第2管の一例である。ポンプ402は、供給部の一例である。 Pure water is an example of the first liquid. A silver nitrate aqueous solution is an example of the second liquid. The second channel LP2 and the channel space 310 are examples of contact means. First outer conductor 120 is an example of a first tube. The second outer conductor 130 is an example of a second tube. Pump 402 is an example of a supply.
 以下に、本技術の態様を列挙する。
[態様1]
 プラズマを発生させるプラズマ発生手段と、
 発生させた前記プラズマを第1の液体に照射する照射手段と、
 前記プラズマが照射された前記第1の液体を第2の液体に接触させる接触手段と、
 を備える、プラズマ処理装置。
[態様2]
 前記プラズマ発生手段は、
  前記プラズマを発生させるプラズマ発生空間と、
  前記プラズマ発生空間を減圧する減圧手段と、
 を備えている、態様1に記載のプラズマ処理装置。
[態様3]
 前記減圧手段は、断面積が狭くなっている絞り部を備える第1の流路であって、前記第1の液体または前記第2の液体を流す前記第1の流路を備えており、
 前記絞り部が前記プラズマ発生空間に接続している、態様2に記載のプラズマ処理装置。
[態様4]
 前記第1の流路と合流する第2の流路を備え、
 前記第2の流路は、前記プラズマ発生空間に接続しており、
 前記第1の流路に前記第2の液体が流れ、
 前記第2の流路に前記第1の液体が流れる、態様3に記載のプラズマ処理装置。
[態様5]
 内部管と、
 前記内部管の外周を覆う外部管と、
 を備え、
 前記プラズマ発生空間および前記第2の流路は、前記内部管に配置されており、
 前記内部管と前記外部管とは、互いに中心軸が一致するように配置されており、
 前記内部管と前記外部管との間に、前記内部管の外周を取り囲んでいる前記第1の流路が形成されており、
 前記第1の流路は、前記内部管および前記外部管の一端から他端へ至る経路を有するとともに、前記絞り部を経路上に備えており、
 前記絞り部において、前記第2の液体の流れは、前記中心軸まわりに旋回する速度成分を有している、態様4に記載のプラズマ処理装置。
[態様6]
 前記絞り部に至るまでの前記第1の流路上に配置されている少なくとも1つの整流部をさらに備えており、
 前記整流部は、前記中心軸の軸方向に延びているとともに前記中心軸の軸方向に対して傾きを有している、態様5に記載のプラズマ処理装置。
[態様7]
 前記整流部は、前記内部管の外周の壁面または前記外部管の内周の壁面の少なくとも一方に形成されており、
 前記整流部は、前記壁面から突出している突起形状または前記壁面から窪んでいる溝形状を備えている、
 態様6に記載のプラズマ処理装置。
[態様8]
 前記第1の流路に前記第2の液体を吐出する供給部をさらに備えており、
 前記供給部による前記第2の液体の吐出方向は、前記中心軸の軸方向に対して傾きを有している、態様5~7の何れか1項に記載のプラズマ処理装置。
[態様9]
 前記内部管は、
  第1電極を第1端部に備える第1管と、
  第2電極を第2端部に備える第2管と、
 を備えており、
 前記第1管と前記第2管と前記外部管とは、互いに中心軸が一致するように配置されており、
 前記第1端部と前記第2端部とが非接触状態で対向しており、
 前記第1管および前記第2管の外周と前記外部管の内周との間に前記第1の流路が形成されており、
 前記第1端部と前記第2端部との対向している領域に、前記第2の流路および前記プラズマ発生空間が形成されている、態様5~8の何れか1項に記載のプラズマ処理装置。
[態様10]
 前記プラズマ発生空間にマイクロ波を伝播することが可能に構成されている伝播空間をさらに備える、態様2~9の何れか1項に記載のプラズマ処理装置。
[態様11]
 前記第1の液体は、固体溶質が溶解していない液体であり、
 前記第2の液体は、固体溶質が溶解している液体である、態様1~10の何れか1項に記載のプラズマ処理装置。
[態様12]
 プラズマを第1の液体に照射する照射工程と、
 前記第1の液体を第2の液体に接触させる接触工程と、
 を備える、プラズマ処理方法。
[態様13]
 前記照射工程では、前記プラズマを減圧環境で発生させる、態様12に記載のプラズマ処理方法。
[態様14]
 前記接触工程では、前記第2の液体を流しながら前記第1の液体を接触させ、
 前記照射工程では、前記第2の液体の流れにより得られるベンチュリ効果によって前記減圧環境を生成する、態様13に記載のプラズマ処理方法。
[態様15]
 前記接触工程では、前記プラズマを発生させる空間にマイクロ波を入射する、態様12~14の何れか1項に記載のプラズマ処理方法。
Aspects of the present technology are listed below.
[Aspect 1]
a plasma generating means for generating plasma;
irradiation means for irradiating the generated plasma onto the first liquid;
contacting means for bringing the plasma-irradiated first liquid into contact with a second liquid;
A plasma processing apparatus comprising:
[Aspect 2]
The plasma generating means is
a plasma generation space for generating the plasma;
depressurizing means for depressurizing the plasma generating space;
The plasma processing apparatus according to aspect 1, comprising:
[Aspect 3]
The decompression means is a first flow path having a constricted portion with a narrow cross-sectional area, the first flow path through which the first liquid or the second liquid flows,
The plasma processing apparatus according to aspect 2, wherein the constricted portion is connected to the plasma generation space.
[Aspect 4]
A second flow path that merges with the first flow path,
The second flow path is connected to the plasma generation space,
the second liquid flows through the first channel;
The plasma processing apparatus according to aspect 3, wherein the first liquid flows through the second channel.
[Aspect 5]
an inner tube;
an outer tube covering the outer periphery of the inner tube;
with
The plasma generating space and the second flow path are arranged in the inner tube,
The inner tube and the outer tube are arranged so that their central axes are aligned with each other,
the first flow path surrounding the outer circumference of the internal pipe is formed between the internal pipe and the external pipe;
The first flow path has a path extending from one end of the inner tube and the outer tube to the other end, and the narrowed portion is provided on the path,
The plasma processing apparatus according to aspect 4, wherein the flow of the second liquid in the constricted portion has a velocity component that revolves around the central axis.
[Aspect 6]
further comprising at least one straightening section arranged on the first flow path up to the throttle section;
The plasma processing apparatus according to aspect 5, wherein the rectifying section extends in the axial direction of the central axis and is inclined with respect to the axial direction of the central axis.
[Aspect 7]
The straightening section is formed on at least one of an outer peripheral wall surface of the inner tube and an inner peripheral wall surface of the outer tube,
The straightening section has a projection shape protruding from the wall surface or a groove shape recessed from the wall surface,
The plasma processing apparatus according to aspect 6.
[Aspect 8]
further comprising a supply unit for discharging the second liquid into the first flow path,
8. The plasma processing apparatus according to any one of modes 5 to 7, wherein a direction in which the second liquid is discharged by the supply unit is inclined with respect to an axial direction of the central axis.
[Aspect 9]
The inner tube is
a first tube having a first electrode at a first end;
a second tube having a second electrode at a second end;
and
The first tube, the second tube, and the external tube are arranged so that their central axes are aligned with each other,
The first end and the second end face each other in a non-contact state,
The first flow path is formed between the outer peripheries of the first and second tubes and the inner perimeter of the outer tube,
The plasma according to any one of aspects 5 to 8, wherein the second flow path and the plasma generation space are formed in the regions where the first end and the second end face each other. processing equipment.
[Aspect 10]
The plasma processing apparatus according to any one of modes 2 to 9, further comprising a propagation space configured to allow microwaves to propagate to the plasma generation space.
[Aspect 11]
the first liquid is a liquid in which a solid solute is not dissolved;
The plasma processing apparatus according to any one of modes 1 to 10, wherein the second liquid is a liquid in which a solid solute is dissolved.
[Aspect 12]
an irradiation step of irradiating the first liquid with plasma;
a contacting step of contacting the first liquid with a second liquid;
A plasma processing method comprising:
[Aspect 13]
13. The plasma processing method according to aspect 12, wherein in the irradiation step, the plasma is generated in a reduced pressure environment.
[Aspect 14]
In the contacting step, the first liquid is brought into contact while the second liquid is flowing;
14. The plasma processing method according to aspect 13, wherein in the irradiation step, the reduced-pressure environment is generated by a venturi effect obtained by the flow of the second liquid.
[Aspect 15]
15. The plasma processing method according to any one of modes 12 to 14, wherein in the contact step, microwaves are incident on the space for generating the plasma.
 100:プラズマ処理装置  120:第1の外導体  121:第1電極  130:第2の外導体  131:第2電極  140:外部管  JP:合流地点  RP:絞り部  LP1:第1流路  LP2:第2流路  PG1:プラズマ発生空間 100: Plasma processing apparatus 120: First outer conductor 121: First electrode 130: Second outer conductor 131: Second electrode 140: Outer tube JP: Junction point RP: Constriction part LP1: First flow path LP2: Second 2 flow paths PG1: plasma generation space

Claims (15)

  1.  プラズマを発生させるプラズマ発生手段と、
     発生させた前記プラズマを第1の液体に照射する照射手段と、
     前記プラズマが照射された前記第1の液体を第2の液体に接触させる接触手段と、
     を備える、プラズマ処理装置。
    a plasma generating means for generating plasma;
    irradiation means for irradiating the generated plasma onto the first liquid;
    contacting means for bringing the plasma-irradiated first liquid into contact with a second liquid;
    A plasma processing apparatus comprising:
  2.  前記プラズマ発生手段は、
      前記プラズマを発生させるプラズマ発生空間と、
      前記プラズマ発生空間を減圧する減圧手段と、
     を備えている、請求項1に記載のプラズマ処理装置。
    The plasma generating means is
    a plasma generation space for generating the plasma;
    depressurizing means for depressurizing the plasma generating space;
    2. The plasma processing apparatus of claim 1, comprising:
  3.  前記減圧手段は、断面積が狭くなっている絞り部を備える第1の流路であって、前記第1の液体または前記第2の液体を流す前記第1の流路を備えており、
     前記絞り部が前記プラズマ発生空間に接続している、請求項2に記載のプラズマ処理装置。
    The decompression means is a first flow path having a constricted portion with a narrow cross-sectional area, the first flow path through which the first liquid or the second liquid flows,
    3. The plasma processing apparatus according to claim 2, wherein said narrowed portion is connected to said plasma generation space.
  4.  前記第1の流路と合流する第2の流路を備え、
     前記第2の流路は、前記プラズマ発生空間に接続しており、
     前記第1の流路に前記第2の液体が流れ、
     前記第2の流路に前記第1の液体が流れる、請求項3に記載のプラズマ処理装置。
    A second flow path that merges with the first flow path,
    The second flow path is connected to the plasma generation space,
    the second liquid flows through the first channel;
    4. The plasma processing apparatus according to claim 3, wherein said first liquid flows through said second channel.
  5.  内部管と、
     前記内部管の外周を覆う外部管と、
     を備え、
     前記プラズマ発生空間および前記第2の流路は、前記内部管に配置されており、
     前記内部管と前記外部管とは、互いに中心軸が一致するように配置されており、
     前記内部管と前記外部管との間に、前記内部管の外周を取り囲んでいる前記第1の流路が形成されており、
     前記第1の流路は、前記内部管および前記外部管の一端から他端へ至る経路を有するとともに、前記絞り部を経路上に備えており、
     前記絞り部において、前記第2の液体の流れは、前記中心軸まわりに旋回する速度成分を有している、請求項4に記載のプラズマ処理装置。
    an inner tube;
    an outer tube covering the outer periphery of the inner tube;
    with
    The plasma generating space and the second flow path are arranged in the inner tube,
    The inner tube and the outer tube are arranged so that their central axes are aligned with each other,
    the first flow path surrounding the outer circumference of the internal pipe is formed between the internal pipe and the external pipe;
    The first flow path has a path extending from one end of the inner tube and the outer tube to the other end, and the narrowed portion is provided on the path,
    5. The plasma processing apparatus according to claim 4, wherein the flow of said second liquid in said constricted portion has a velocity component that swirls around said central axis.
  6.  前記絞り部に至るまでの前記第1の流路上に配置されている少なくとも1つの整流部をさらに備えており、
     前記整流部は、前記中心軸の軸方向に延びているとともに前記中心軸の軸方向に対して傾きを有している、請求項5に記載のプラズマ処理装置。
    further comprising at least one straightening section arranged on the first flow path up to the throttle section;
    6. The plasma processing apparatus according to claim 5, wherein said rectifying section extends in the axial direction of said central axis and has an inclination with respect to the axial direction of said central axis.
  7.  前記整流部は、前記内部管の外周の壁面または前記外部管の内周の壁面の少なくとも一方に形成されており、
     前記整流部は、前記壁面から突出している突起形状または前記壁面から窪んでいる溝形状を備えている、
     請求項6に記載のプラズマ処理装置。
    The straightening section is formed on at least one of an outer peripheral wall surface of the inner tube and an inner peripheral wall surface of the outer tube,
    The straightening section has a projection shape protruding from the wall surface or a groove shape recessed from the wall surface,
    The plasma processing apparatus according to claim 6.
  8.  前記第1の流路に前記第2の液体を吐出する供給部をさらに備えており、
     前記供給部による前記第2の液体の吐出方向は、前記中心軸の軸方向に対して傾きを有している、請求項5に記載のプラズマ処理装置。
    further comprising a supply unit for discharging the second liquid into the first flow path,
    6. The plasma processing apparatus according to claim 5, wherein a direction in which said second liquid is discharged by said supply unit is inclined with respect to an axial direction of said central axis.
  9.  前記内部管は、
      第1電極を第1端部に備える第1管と、
      第2電極を第2端部に備える第2管と、
     を備えており、
     前記第1管と前記第2管と前記外部管とは、互いに中心軸が一致するように配置されており、
     前記第1端部と前記第2端部とが非接触状態で対向しており、
     前記第1管および前記第2管の外周と前記外部管の内周との間に前記第1の流路が形成されており、
     前記第1端部と前記第2端部との対向している領域に、前記第2の流路および前記プラズマ発生空間が形成されている、請求項5に記載のプラズマ処理装置。
    The inner tube is
    a first tube having a first electrode at a first end;
    a second tube having a second electrode at a second end;
    and
    The first tube, the second tube, and the external tube are arranged so that their central axes are aligned with each other,
    The first end and the second end face each other in a non-contact state,
    The first flow path is formed between the outer peripheries of the first and second tubes and the inner perimeter of the outer tube,
    6. The plasma processing apparatus according to claim 5, wherein said second flow path and said plasma generating space are formed in regions where said first end and said second end face each other.
  10.  前記プラズマ発生空間にマイクロ波を伝播することが可能に構成されている伝播空間をさらに備える、請求項2に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2, further comprising a propagation space configured to allow microwaves to propagate to said plasma generation space.
  11.  前記第1の液体は、固体溶質が溶解していない液体であり、
     前記第2の液体は、固体溶質が溶解している液体である、請求項1~10の何れか1項に記載のプラズマ処理装置。
    the first liquid is a liquid in which a solid solute is not dissolved;
    The plasma processing apparatus according to any one of claims 1 to 10, wherein said second liquid is a liquid in which a solid solute is dissolved.
  12.  プラズマを第1の液体に照射する照射工程と、
     前記第1の液体を第2の液体に接触させる接触工程と、
     を備える、プラズマ処理方法。
    an irradiation step of irradiating the first liquid with plasma;
    a contacting step of contacting the first liquid with a second liquid;
    A plasma processing method comprising:
  13.  前記照射工程では、前記プラズマを減圧環境で発生させる、請求項12に記載のプラズマ処理方法。 The plasma processing method according to claim 12, wherein in said irradiation step, said plasma is generated in a reduced pressure environment.
  14.  前記接触工程では、前記第2の液体を流しながら前記第1の液体を接触させ、
     前記照射工程では、前記第2の液体の流れにより得られるベンチュリ効果によって前記減圧環境を生成する、請求項13に記載のプラズマ処理方法。
    In the contacting step, the first liquid is brought into contact while the second liquid is flowing;
    14. The plasma processing method according to claim 13, wherein in said irradiation step, said reduced-pressure environment is generated by a venturi effect obtained by the flow of said second liquid.
  15.  前記接触工程では、前記プラズマを発生させる空間にマイクロ波を入射する、請求項12~14の何れか1項に記載のプラズマ処理方法。 The plasma processing method according to any one of claims 12 to 14, wherein in said contacting step, microwaves are incident on the space for generating said plasma.
PCT/JP2022/026329 2021-07-08 2022-06-30 Plasma treatment device and plasma treatment method WO2023282185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533091A JPWO2023282185A1 (en) 2021-07-08 2022-06-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021113787 2021-07-08
JP2021-113787 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282185A1 true WO2023282185A1 (en) 2023-01-12

Family

ID=84801709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026329 WO2023282185A1 (en) 2021-07-08 2022-06-30 Plasma treatment device and plasma treatment method

Country Status (2)

Country Link
JP (1) JPWO2023282185A1 (en)
WO (1) WO2023282185A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050010A (en) * 2013-08-30 2015-03-16 国立大学法人名古屋大学 Plasma generation apparatus and utilization of the same
JP2015223528A (en) * 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Liquid treatment device and liquid treatment method
JP2018187601A (en) * 2017-05-11 2018-11-29 パナソニックIpマネジメント株式会社 Washing machine rinse water purification device and washing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050010A (en) * 2013-08-30 2015-03-16 国立大学法人名古屋大学 Plasma generation apparatus and utilization of the same
JP2015223528A (en) * 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Liquid treatment device and liquid treatment method
JP2018187601A (en) * 2017-05-11 2018-11-29 パナソニックIpマネジメント株式会社 Washing machine rinse water purification device and washing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BENIDRIS EL BATOUL; GHEZZAR MOUFFOK REDOUANE; MA ALEXANDRE; OUDDANE BAGHDAD; ADDOU AHMED: "Water purification by a new hybrid plasma-sensitization-coagulation process", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 178, 23 January 2017 (2017-01-23), NL , pages 253 - 260, XP029907979, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2017.01.041 *

Also Published As

Publication number Publication date
JPWO2023282185A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US10477665B2 (en) Microwave plasma torch generating laminar flow for materials processing
TWI427669B (en) Apparatus for treating large area substrate using hollow cathode plasma
US7862782B2 (en) Apparatus and methods for producing nanoparticles in a dense fluid medium
JP2005503250A (en) Method for producing powder comprising composite particles and apparatus for carrying out the method
US20090133714A1 (en) Method for surface treating substrate and plasma treatment apparatus
JP2005235464A (en) Plasma generator
JP2005523142A (en) Protective coating composition
KR20130041810A (en) Plasma treatment of substrates
JP2011058064A (en) Plasma treatment apparatus in liquid, method for producing metal nanoparticle, and method for producing metal-carried matter
WO2016104522A1 (en) Process and device for producing nanoparticles, and nanoparticles produced thereby
TW201419947A (en) Plasma treatment of substrates
JP2009112892A (en) Fluid treatment device
JP2005276618A (en) Device and method for generating microplasma
JP3939556B2 (en) Micro mixer
WO2023282185A1 (en) Plasma treatment device and plasma treatment method
JP2014156622A (en) Thin film formation method and thin film formation apparatus by atmospheric pressure induction coupling plasma
Wang et al. Effect of electrode configurations on the characteristics of the ring–ring typed atmospheric pressure plasma jet and its modification on polymer film
JP5635788B2 (en) Deposition equipment
JP2003109799A (en) Plasma treatment apparatus
JPH0357199A (en) Microwave hot plasma torch
Jin et al. A Magnetic Field Induced Cold Atmospheric Pressure Air Plasma Jet
JP5849218B2 (en) Deposition equipment
Ihara et al. Improving the efficiency of a water-treatment system based on water cavitation and plasma using a nozzle-less reactor
JP2005203209A (en) Gas activation device
JP5390315B2 (en) Metal carrier manufacturing apparatus and metal carrier manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023533091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE