JP2009112892A - Fluid treatment device - Google Patents

Fluid treatment device Download PDF

Info

Publication number
JP2009112892A
JP2009112892A JP2007285845A JP2007285845A JP2009112892A JP 2009112892 A JP2009112892 A JP 2009112892A JP 2007285845 A JP2007285845 A JP 2007285845A JP 2007285845 A JP2007285845 A JP 2007285845A JP 2009112892 A JP2009112892 A JP 2009112892A
Authority
JP
Japan
Prior art keywords
fluid
stirring tank
treated
stirring
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007285845A
Other languages
Japanese (ja)
Other versions
JP5648986B2 (en
Inventor
Shinichi Enomura
眞一 榎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Technique Co Ltd
Original Assignee
M Technique Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Technique Co Ltd filed Critical M Technique Co Ltd
Priority to JP2007285845A priority Critical patent/JP5648986B2/en
Publication of JP2009112892A publication Critical patent/JP2009112892A/en
Application granted granted Critical
Publication of JP5648986B2 publication Critical patent/JP5648986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid treatment device which enables rapid/uniform chemical reaction to take place and is suitable for mass production. <P>SOLUTION: This fluid treatment device includes a stirring tank with the inner peripheral surface of a circular sectional shape and a stirring implement arranged with a slight gap left with the inner peripheral surface of the stirring tank. In addition, the stirring tank has a fluid inlet formed at least, at two spots and a fluid outlet at least, at one spot. From one, at one spot, of the fluid inlets, a first fluid for treatment, containing one of reaction products, of the fluids for treatment, is introduced into the stirring tank, and from the fluid inlet at the other spot, a second fluid for treatment, containing the other reaction product different from the above reaction product, is introduced into the stirring tank via a different flow path from for the first fluid for treatment. Further, at least, either one of the stirring tank or the stirring implement rotates at a higher velocity than the other and consequently, the fluid for treatment is changed into a thin film. Thus, the reaction products contained at least, in the first fluid for treatment and the second fluid for treatment, are made to react chemically with each other in the thin film. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、少なくとも二つの被処理流体を反応させる流体処理装置に関する。   The present invention relates to a fluid processing apparatus for reacting at least two fluids to be processed.

特許第3072467号公報Japanese Patent No. 3072467 特開平9-75698号公報JP-A-9-75698 特開平11-347388号公報Japanese Patent Laid-Open No. 11-347388 特開2000-15073号公報JP 2000-15073 A 特開2001-300281号公報Japanese Patent Laid-Open No. 2001-300281 特開2003-47836号公報Japanese Patent Laid-Open No. 2003-47836

マイクロ化学プラントは、マイクロスケールの空間内での混合、化学反応、分離などを利用した装置であり、大型タンク等を用いた従来のバッチ方式のプラントと比較して多くの有利点を備える。例えば複数の流体の混合や化学反応を短時間かつ微量の試料で行えること、装置が小型である為実験室レベルで生成物の製造技術を確立できればナンバリングアップを行うことで容易に量産用の設備化が出来ること、爆発などの危険を伴う反応にも適用可能であること、多品種少量生産を必要とする化合物の生成などにも容易に適応できること、需要量に合わせた生産量の調整が容易に出来ることなどである。このため化学工業や医薬品工業の分野では、流体の混合もしくは反応を行い材料や製品を製造するための好適な流体処理装置として注目され、近年その研究開発が盛んに行なわれている。   A microchemical plant is a device that utilizes mixing, chemical reaction, separation, etc. in a microscale space, and has many advantages over a conventional batch-type plant using a large tank or the like. For example, it is possible to mix multiple fluids and perform chemical reactions with a small amount of sample in a short time, and because the equipment is small, if the production technology of the product can be established at the laboratory level, the equipment for mass production can be easily obtained by numbering up. Can be applied to reactions involving dangers such as explosions, can be easily adapted to the production of compounds that require high-mix low-volume production, and production volume can be easily adjusted to meet demand It can be done. For this reason, in the fields of chemical industry and pharmaceutical industry, it has been attracting attention as a suitable fluid processing apparatus for producing materials and products by mixing or reacting fluids, and its research and development has been actively conducted in recent years.

マイクロ化学プラントにおける代表的な流体処理装置としてマイクロミキサやマイクロリアクタが挙げられる。マイクロミキサやマイクロリアクタは、それぞれ流路幅が数十μm〜1mm程度のオーダーである微少な流路を有し、この流路に導かれた複数種類の流体を互いに接触させることで混合もしくは反応を生起するものである。   A typical fluid processing apparatus in a microchemical plant includes a micromixer and a microreactor. Micromixers and microreactors each have a small flow channel with a flow channel width on the order of several tens of μm to 1 mm, and mixing or reacting by bringing a plurality of types of fluids led to this flow channel into contact with each other. It is what happens.

しかしながら、一般的なマイクロミキサやマイクロリアクタを用いる場合にはマイクロ化学デバイス及びシステムの利点は数あるにも関わらず、実際にはマイクロ流路が狭くなればなるほどその圧力損失は流路の4乗に反比例すること、つまり実際には流体を送り込むポンプが無いくらい大きな送液圧力が必要となること、また生成物が流路に詰まる現象や反応によって生じる泡によるマイクロ流路の閉鎖など、その問題も多い。さらにナンバリングアップで解決されて来たスケールアップについても実際には積層可能数は数十が限界であり、自ずと製品価値の高い製品に的が絞られやすい。本発明はこの様な問題に鑑みてなされたものであり、薄膜中で直接反応させることにより、温度の均一性が高く、反応容器の攪拌における均一性が高いことから所望の反応状態を容易に実施出来、さらに自己排出性により生成物の詰まりも無く、大きな圧力も必要とせず、また生産性が高く、ナンバリングアップでない従来のスケールアップを可能とする流体処理装置の提供を目的とする。   However, in the case of using a general micromixer or microreactor, despite the advantages of microchemical devices and systems, in fact, the smaller the microchannel, the more the pressure loss becomes the fourth power of the channel. There are also problems such as being inversely proportional, that is, a liquid feeding pressure that is so large that there is no pump that actually feeds the fluid, and the phenomenon that the product clogs the flow path and the micro flow path is closed by bubbles generated by the reaction. Many. Furthermore, with regard to scale-up that has been solved by numbering-up, the number of stackable layers is actually limited to several tens, and it is easy to focus on products with high product value. The present invention has been made in view of such problems, and by reacting directly in a thin film, the temperature uniformity is high, and the uniformity in stirring of the reaction vessel is high, so that the desired reaction state can be easily achieved. It is an object of the present invention to provide a fluid processing apparatus that can be implemented and does not clog products due to self-discharge, does not require a large pressure, has high productivity, and enables conventional scale-up without numbering up.

具体的には、特許文献1〜6に記載された装置を改良した流体処理装置を提供する。   Specifically, the fluid processing apparatus which improved the apparatus described in patent documents 1-6 is provided.

なお、上記の各文献に記載の装置は、液体と液体、又は液体と粉体の混合物を攪拌槽に投入して攪拌するための装置であって、あらかじめ混合すると発熱したり有害な副生成物が発生してしまうような物質の組み合わせには使用できないという問題があった。   The apparatus described in each of the above-mentioned documents is an apparatus for stirring a liquid and liquid or a mixture of liquid and powder into a stirring tank, and generates heat or harmful by-products when mixed in advance. There is a problem that it cannot be used for a combination of substances that may cause the occurrence of the problem.

また、特許文献1及び2に記載の発明においては、上記混合物とは別に、添加物を攪拌槽に投入できるようにされているが、添加物投入のためのパイプの先端が攪拌槽の内部空間に設けられているため、上記の混合物に添加物を加える場合、落下した添加物が攪拌用の羽根に当たって攪拌槽内に不均一に飛び散ること等により、上記混合物に対して添加物が均一に混合できない恐れがある。よって、少なくとも二つの被処理流体を反応させようとする場合、このような方法ではうまくいかない可能性がある。   In addition, in the inventions described in Patent Documents 1 and 2, an additive can be introduced into the stirring tank separately from the mixture, but the tip of the pipe for adding the additive is an internal space of the stirring tank. Therefore, when an additive is added to the above mixture, the additive is uniformly mixed with the above mixture, for example, when the dropped additive hits a stirring blade and splashes unevenly in the stirring tank. There is a fear that it cannot be done. Therefore, when trying to react at least two fluids to be treated, such a method may not work.

前記課題を解決するための手段として、請求項1に係る発明は、反応物を含む少なくとも二つの被処理流体を薄膜状態とした上で反応させる流体処理装置において、少なくとも、中心軸に直交する断面形状が円形である内周面を有する攪拌槽と、該攪拌槽の内周面と同心で、外端が攪拌槽の内周面と僅かな間隙を在して付設される攪拌具とを有し、上記の撹拌槽には、少なくとも二箇所の流体入口と、少なくとも一箇所の流体出口とを備え、上記流体入口のうち一箇所からは、上記被処理流体のうち、反応物の一つを含む第一の被処理流体を攪拌槽内に導入し、上記流体入口のうちで上記以外の一箇所からは、前記反応物とは異なる反応物の一つを含む第二の被処理流体を、上記第一の被処理流体とは異なる流路より攪拌槽内に導入するものであり、攪拌槽と攪拌具との少なくとも一方が他方に対し、上記中心軸を中心として高速回転し、該回転に伴う、撹拌槽内に導入された被処理流体の回転により、該被処理流体を遠心力で攪拌槽の中心軸を取り巻くように内周面に圧着させ、薄膜状態を形成し、当該形成された薄膜中で少なくとも上記第一の被処理流体と第二の被処理流体とに含まれる反応物同士を反応させることを特徴とする流体処理装置を提供する。
なお、上記の「中心軸」とは仮想の軸である。より詳しくは、攪拌槽2のうち少なくとも被処理流体が薄膜となる部分が回転対称形状に形成されており、その対称中心に一致する仮想の軸である。攪拌具あるいは攪拌槽はこの中心軸を中心に回転する。よって、この中心軸に一致する現実の軸体が攪拌槽内に存在することは必須ではない。
As a means for solving the above-mentioned problems, the invention according to claim 1 is a fluid processing apparatus in which at least two fluids containing reactants are reacted in a thin film state, and at least a cross section orthogonal to the central axis. A stirring tank having a circular inner peripheral surface, and a stirring tool concentric with the inner peripheral surface of the stirring tank and attached at an outer end with a slight gap from the inner peripheral surface of the stirring tank. The stirring tank includes at least two fluid inlets and at least one fluid outlet. From one of the fluid inlets, one of the reactants in the fluid to be treated is supplied. The first treated fluid containing is introduced into the stirring tank, and from one place other than the above among the fluid inlets, the second treated fluid containing one of the reactants different from the reactants, What is introduced into the agitation tank from a different flow path from the first fluid to be treated Yes, at least one of the stirring tank and the stirring tool is rotated at high speed around the central axis with respect to the other, and the fluid to be treated is rotated by the rotation of the fluid to be treated introduced into the stirring tank along with the rotation. A centrifugal force is applied to the inner peripheral surface so as to surround the central axis of the stirring tank to form a thin film state, which is included in at least the first processed fluid and the second processed fluid in the formed thin film. The fluid processing apparatus is characterized by reacting the reactants to be reacted.
The “center axis” is a virtual axis. More specifically, at least a portion of the stirring tank 2 where the fluid to be treated is a thin film is formed in a rotationally symmetric shape, and is a virtual axis that coincides with the center of symmetry. The stirrer or stirring tank rotates around this central axis. Therefore, it is not essential that an actual shaft body corresponding to the central axis exists in the stirring tank.

また、請求項2に係る発明は、上記流体入口のうち少なくとも一箇所が、上記撹拌槽の内周面のうち、当該流体入口以外の流体入口から攪拌槽内に導入された被処理流体が上記の薄膜状態を形成する部分に開口されており、これにより、前記形成された薄膜中で上記の反応物同士を直接反応させることができることを特徴とする、請求項1に記載の流体処理装置を提供する。   Further, in the invention according to claim 2, at least one of the fluid inlets is such that the fluid to be treated introduced into the stirring tank from a fluid inlet other than the fluid inlet is an inner peripheral surface of the stirring tank. The fluid processing apparatus according to claim 1, wherein the reactants are directly reacted with each other in the formed thin film. provide.

また、請求項3に係る発明は、上記少なくとも二箇所の流体入口が、上記の流体出口よりも下方に設けられたものであって、攪拌槽における、上記中心軸を取り巻く面である側面に共に備えられたものであるか、あるいは、上記中心軸に交わる面である端面に共に備えられたものであるか、あるいは、上記側面と上記端面とに各々備えられたものであることを特徴とする、請求項1または2に記載の流体処理装置を提供する。   Further, the invention according to claim 3 is characterized in that the at least two fluid inlets are provided below the fluid outlet, and both sides of the agitating tank are the surfaces surrounding the central axis. It is provided, or is provided together on an end surface that is a surface intersecting with the central axis, or is provided on each of the side surface and the end surface. A fluid processing apparatus according to claim 1 or 2 is provided.

また、請求項4に係る発明は、上記の攪拌槽が固定されており、上記の攪拌具が回転することを特徴とする、請求項1〜3のいずれかに記載の流体処理装置を提供する。   The invention according to claim 4 provides the fluid processing apparatus according to any one of claims 1 to 3, wherein the stirring tank is fixed and the stirring tool rotates. .

また、請求項5に係る発明は、上記の攪拌槽が、中心軸が垂直方向を向くように配位されており、上記流体入口のうち少なくとも一箇所における、攪拌槽への上記被処理流体の導入が、上記撹拌槽内での被処理流体の流れ方向に沿うようになされ、攪拌槽に対する導入角度につき、上記流体入口の中心を通る水平断面における、攪拌槽の径方向を基準とした角度(α1)が0°〜90°であることを特徴とする、請求項1〜4のいずれかに記載の流体処理装置を提供する。   In the invention according to claim 5, the agitation tank is arranged so that a central axis thereof is oriented in a vertical direction, and the fluid to be treated to the agitation tank at least at one of the fluid inlets is arranged. The introduction is made along the flow direction of the fluid to be treated in the agitation tank, and the angle relative to the radial direction of the agitation tank in the horizontal cross section passing through the center of the fluid inlet with respect to the introduction angle with respect to the agitation tank ( The fluid processing apparatus according to claim 1, wherein α1) is 0 ° to 90 °.

また、請求項6に係る発明は、上記の攪拌槽が、中心軸が垂直方向を向くように配位されており、上記流体入口のうち少なくとも一箇所における、攪拌槽への上記各被処理流体の導入が、上記撹拌槽内での被処理流体の流れ方向に沿うようになされ、攪拌槽に対する導入角度につき、攪拌槽の中心軸と上記流体入口の中心とを通る垂直断面における仰角(β1)が0°〜90°であることを特徴とする、請求項1〜5のいずれかに記載の流体処理装置を提供する。   Further, in the invention according to claim 6, the agitation tank is arranged such that a central axis thereof is oriented in the vertical direction, and each of the fluids to be treated to the agitation tank at at least one of the fluid inlets. Is introduced along the flow direction of the fluid to be treated in the stirring tank, and the elevation angle (β1) in a vertical cross section passing through the central axis of the stirring tank and the center of the fluid inlet with respect to the introduction angle with respect to the stirring tank The fluid processing device according to any one of claims 1 to 5, wherein the angle is 0 ° to 90 °.

また、請求項7に係る発明は、上記流体入口のうち、上記とは異なる少なくとも一箇所が、攪拌槽の下側端面に設けられたことを特徴とする、請求項5または6に記載の流体処理装置を提供する。   The invention according to claim 7 is the fluid according to claim 5 or 6, wherein at least one of the fluid inlets different from the above is provided on a lower end surface of the stirring tank. A processing device is provided.

また、請求項8に係る発明は、上記の攪拌槽が、中心軸が垂直方向を向くように配位されており、この攪拌槽からの上記各被処理流体の排出が、上記撹拌槽内での被処理流体の流れ方向に沿うようになされ、攪拌槽に対する排出角度につき、上記流体出口の中心を通る水平断面における、攪拌槽の径方向を基準とした角度(α2)が0°〜90°であることを特徴とする、請求項1〜7のいずれかに記載の流体処理装置を提供する。   Further, in the invention according to claim 8, the stirring tank is arranged so that the central axis thereof is oriented in the vertical direction, and the discharge of each fluid to be treated from the stirring tank is performed in the stirring tank. The angle (α2) relative to the radial direction of the stirring tank in the horizontal section passing through the center of the fluid outlet is 0 ° to 90 ° with respect to the discharge angle with respect to the stirring tank. The fluid processing apparatus according to claim 1, wherein the fluid processing apparatus is provided.

また、請求項9に係る発明は、上記攪拌具の外端部における、攪拌槽の内面に対する周速度が5m/s以上であることを特徴とする、請求項1〜8のいずれかに記載の流体処理装置を提供する。   Moreover, the invention which concerns on Claim 9 is a peripheral speed with respect to the inner surface of a stirring tank in the outer end part of the said stirring tool being 5 m / s or more, It is described in any one of Claims 1-8 characterized by the above-mentioned. A fluid treatment apparatus is provided.

また、請求項10に係る発明は、上記攪拌具の外端部における、攪拌槽の内面に対する上記の間隙が3mm以下であることを特徴とする、請求項1〜9のいずれかに記載の流体処理装置を提供する。   The invention according to claim 10 is the fluid according to any one of claims 1 to 9, wherein the gap between the outer end of the stirring tool and the inner surface of the stirring tank is 3 mm or less. A processing device is provided.

また、請求項11に係る発明は、上記の攪拌槽に、攪拌槽内を減圧状態にしたり、不活性ガス雰囲気にするための調整用パイプが設けられたことを特徴とする、請求項1〜10のいずれかに記載の流体処理装置を提供する。   The invention according to claim 11 is characterized in that the above-mentioned stirring tank is provided with an adjustment pipe for reducing the pressure in the stirring tank or bringing it into an inert gas atmosphere. A fluid processing apparatus according to any one of 10 is provided.

また、請求項12に係る発明は、反応物を含む少なくとも二つの被処理流体を薄膜状態とした上で反応させる流体処理方法において、少なくとも、中心軸に直交する断面形状が円形である内周面を有する攪拌槽と、該攪拌槽の内周面と同心で、外端が攪拌槽の内周面と僅かな間隙を在して付設される攪拌具とを用い、被処理流体のうち、反応物の一つを含む第一の被処理流体を攪拌槽内に導入し、前記反応物とは異なる反応物の一つを含む第二の被処理流体を、上記第一の被処理流体とは異なる流路より攪拌槽内に導入するものであり、攪拌槽と攪拌具との少なくとも一方を他方に対し、上記中心軸を中心として高速回転させ、該回転に伴う、撹拌槽内に導入された被処理流体の回転により、該被処理流体を遠心力で攪拌槽の中心軸を取り巻くように内周面に圧着させ、薄膜状態を形成し、当該形成された薄膜中で少なくとも上記第一の被処理流体と第二の被処理流体とに含まれる反応物同士を反応させることを特徴とする流体処理方法を提供する。   According to a twelfth aspect of the present invention, there is provided a fluid processing method in which at least two fluids containing reactants are reacted in a thin film state, and at least an inner peripheral surface having a circular cross section perpendicular to the central axis. Using a stirring tank having an inner diameter of the stirring tank and a concentrating tool attached to the outer end of the stirring tank with a slight gap between the inner peripheral surface of the stirring tank and the reaction fluid. A first treated fluid containing one of the substances is introduced into the stirring tank, and a second treated fluid containing one of the reactants different from the reactant is referred to as the first treated fluid. It is to be introduced into the stirring tank from a different flow path, and at least one of the stirring tank and the stirring tool is rotated at high speed around the central axis with respect to the other, and is introduced into the stirring tank accompanying the rotation. By rotating the fluid to be treated, the fluid to be treated is wrapped around the central axis of the stirring tank by centrifugal force. And forming a thin film state, and reacting at least the reactants contained in the first fluid to be treated and the second fluid to be treated in the formed thin film. A fluid processing method is provided.

また、請求項13に係る発明は、上記被処理流体のうち少なくとも一つが上記攪拌槽内にて薄膜状態とされた上、この薄膜状態の被処理流体に直接、その他の被処理流体が加えられることを特徴とする、請求項12に記載の流体処理方法を提供する。   In the invention according to claim 13, at least one of the fluids to be treated is brought into a thin film state in the stirring tank, and another fluid to be treated is directly added to the fluid to be treated in the thin film state. The fluid processing method according to claim 12 is provided.

本発明は、断面形状が円形である内周面を有する攪拌槽と、攪拌槽の内周面と僅かな間隙を在して付設される攪拌具とを有し、流体入口のうち一箇所からは、反応物の一つを含む第一の被処理流体を攪拌槽内に導入し、流体入口のうち他の一箇所からは、前記反応物とは異なる反応物の一つを含む第二の被処理流体を導入するものであり、攪拌槽と攪拌具との少なくとも一方が他方に対して高速回転することにより、該被処理流体を遠心力で攪拌槽の内周面に圧着させて薄膜状態を形成し、当該形成された薄膜中で少なくとも上記第一の被処理流体と第二の被処理流体とに含まれる反応物同士を反応させることを特徴とし、これにより、第一の被処理流体の薄膜中に直接、少なくとももう一方の被処理流体を独立した別流路より直接投入し、反応させることができるので、反応の高速均一化を可能とする。   The present invention has a stirring tank having an inner peripheral surface having a circular cross-sectional shape, and a stirring tool provided with a slight gap from the inner peripheral surface of the stirring tank, and is provided from one of the fluid inlets. Introduces a first fluid to be treated containing one of the reactants into the stirring tank, and the second fluid containing one of the reactants different from the reactant from the other one of the fluid inlets. A fluid to be treated is introduced, and at least one of the stirring tank and the stirring tool rotates at a high speed with respect to the other so that the fluid to be treated is pressed against the inner peripheral surface of the stirring tank by a centrifugal force to form a thin film state. And reacting at least the reactants contained in the first treated fluid and the second treated fluid in the formed thin film, whereby the first treated fluid is characterized in that Directly put at least the other fluid to be treated directly into the thin film from an independent flow path, Since it is possible to respond, to allow high-speed homogenization of the reaction.

特に、請求項2に係る発明においては、上記流体入口のうち少なくとも一箇所が、上記撹拌槽の内周面のうち、当該流体入口以外から攪拌槽内に導入された被処理流体が上記の薄膜状態を形成する部分に開口されている。このようにして、被処理流体を導入する箇所が固定されているため、反応状態の管理が容易である。   In particular, in the invention according to claim 2, at least one of the fluid inlets is a fluid to be treated introduced into the stirring tank from other than the fluid inlet on the inner peripheral surface of the stirring tank. Opened in the part forming the state. In this way, since the location where the fluid to be treated is introduced is fixed, the reaction state can be easily managed.

また、被処理流体が撹拌槽の内周面に薄膜状に保持されるから、撹拌槽の外面から加熱または冷却する場合であっても、熱伝導が迅速かつ均一に行なわれ、反応条件に重要な影響を与える熱的因子に関しても利点があり、これによっても、反応において高速均一化を可能とする。   In addition, since the fluid to be treated is held in the form of a thin film on the inner peripheral surface of the agitation tank, even when heating or cooling from the outer surface of the agitation tank, heat conduction is performed quickly and uniformly, which is important for reaction conditions. There are also advantages with regard to thermal factors that have a significant impact, which also allows for high speed homogenization in the reaction.

また、薄膜状態の被処理流体を反応するときに、当該薄膜の外側を減圧することにより、被処理流体中に含まれている空気や溶存酸素など、また被処理流体から発生する気体、低沸点の有機溶剤などの脱気もしくは脱溶剤が可能となり、容易に所望とする反応状態をなしうる。   In addition, when reacting a fluid to be processed in a thin film state, the outside of the thin film is decompressed, so that air or dissolved oxygen contained in the fluid to be processed, gases generated from the fluid to be processed, low boiling point, etc. Thus, it is possible to degas or remove the organic solvent, and the desired reaction state can be easily achieved.

すなわち本発明における、少なくとも二つの流体を反応させる流体処理装置においては、これまで不可欠であった予備混合工程を不要とし、かつ、予備混合状態における各種反応物の不均等配位や不均等熱履歴、不均等エネルギー投下の影響を排除し、常に新しい反応場を与えるため、均一な反応物を得ることが可能となった。またさらに、自己排出性により生成物の詰まりもなく大きな圧力を必要とせず生産性が高くスケールアップが可能となった。   That is, in the fluid processing apparatus for reacting at least two fluids in the present invention, the premixing step that has been indispensable so far is not necessary, and the non-uniform coordination and non-uniform heat history of various reactants in the premixed state. In order to eliminate the effects of non-uniform energy drop and always provide a new reaction field, it became possible to obtain a uniform reaction product. Furthermore, the self-discharging property does not cause clogging of the product and does not require a large pressure, resulting in high productivity and scale-up.

以下、図面を参照しつつ本発明の実施の形態の一例について説明する。各図において、「1」は流体処理装置である。「2」は攪拌槽であり、「3」は攪拌槽2の蓋で、この蓋3に軸受け及び密封装置4が取り付けられて駆動軸5を支持している。軸5の下端には、攪拌具として攪拌羽根6が固定されている。「7」は攪拌羽根6の駆動用モータで、モータ軸7−1が軸5に接続されている。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. In each figure, “1” is a fluid processing apparatus. “2” is a stirring tank, “3” is a lid of the stirring tank 2, and a bearing and a sealing device 4 are attached to the lid 3 to support the drive shaft 5. A stirring blade 6 is fixed to the lower end of the shaft 5 as a stirring tool. “7” is a motor for driving the stirring blade 6, and the motor shaft 7-1 is connected to the shaft 5.

図1に示した例では、攪拌槽2は円筒状のものであるが、攪拌槽2の形状はこれに限られるものではなく、少なくとも、中心軸に直交する断面形状が円形である内周面を有していれば良く、例えば円錐状、円錐台状(図4参照)、弾丸状、半円球状、球状などであっても良い。上記のように攪拌槽を円錐状などの、中心軸に直交する断面形状が変化するものとした場合は、図4に示すように、上側をより大径としても良いし、その逆に、下側をより大径としても良く、その他種々のパターンで断面形状を変化させたものとできる。   In the example shown in FIG. 1, the stirring tank 2 is cylindrical, but the shape of the stirring tank 2 is not limited to this, and at least an inner peripheral surface having a circular cross-sectional shape orthogonal to the central axis. For example, it may have a conical shape, a truncated cone shape (see FIG. 4), a bullet shape, a semispherical shape, a spherical shape, or the like. When the cross-sectional shape perpendicular to the central axis is changed, such as a conical shape, as described above, the upper side may have a larger diameter as shown in FIG. The side may have a larger diameter, and the cross-sectional shape may be changed in various other patterns.

また、中心軸に沿う方向の断面における内周面の形状も、図1に示すように直線であっても良いし、放物線などの曲線であっても良く、被処理流体の攪拌に支障がない範囲において種々の形状で実施することができる。   Further, the shape of the inner peripheral surface in the cross section in the direction along the central axis may be a straight line as shown in FIG. 1 or a curve such as a parabola, and there is no problem in stirring the fluid to be processed. It can be implemented with various shapes in the range.

また、図1に示した例では、攪拌槽2が上下方向に、つまり、攪拌槽2の中心軸が垂直方向を向くように配位されているが、これに限定されるものではなく、攪拌槽2の中心軸が斜め方向を向くように配位されていても良い。また、攪拌具の回転速度を速めるなどして、攪拌槽2内で被処理流体を薄膜状態とすることができるのであれば、攪拌槽2の中心軸が水平方向を向くように配位されていても良い。   In the example shown in FIG. 1, the stirring tank 2 is arranged in the vertical direction, that is, the central axis of the stirring tank 2 faces the vertical direction. However, the present invention is not limited to this. You may coordinate so that the center axis | shaft of the tank 2 may face a diagonal direction. If the fluid to be treated can be made into a thin film state in the agitation tank 2 by increasing the rotation speed of the agitator, the center axis of the agitation tank 2 is arranged so as to face the horizontal direction. May be.

攪拌槽2の下側端面である底部8には、反応物を含む流体であって、攪拌槽2に導入される少なくとも二つの被処理流体の内、第一被処理流体L1を通すための第一導入管11が接続される。この第一被処理流体L1は、図示しないが第一被処理流体L1が入ったタンクからの圧力気体による送液やポンプなどの手段により第一導入管11に通される。この第一導入管11の先端は攪拌槽2の内周面に開口している。この部分が第一流体入口11aである。この第一流体入口11aよりも上流側には第一バルブ11−1が設けられている。この第一バルブ11−1は第一被処理流体L1の流量を調整するためのものである。そして、この第一バルブ11−1と共に、第一導入管11における流体入口11aよりも下流側に第二バルブ11−2が設けられている。この第二バルブ11−2は、第一被処理流体L1として別途の流体を追加して送液する場合や、反応処理が終了した場合、あるいは清掃時にドレンバルブとして利用するものである。上記により、攪拌槽2に第一被処理流体L1を導入する第一導入路P1が構成される。   The bottom 8 which is the lower end surface of the stirring tank 2 is a fluid containing a reaction product, and a first fluid L1 for passing the first processed fluid L1 out of at least two processed fluids introduced into the stirring tank 2. One introduction pipe 11 is connected. Although not shown in the drawing, the first treated fluid L1 is passed through the first introduction pipe 11 by means such as liquid feeding by a pressure gas from a tank containing the first treated fluid L1 or a pump. The tip of the first introduction pipe 11 is open to the inner peripheral surface of the stirring tank 2. This portion is the first fluid inlet 11a. A first valve 11-1 is provided upstream of the first fluid inlet 11a. This 1st valve | bulb 11-1 is for adjusting the flow volume of the 1st to-be-processed fluid L1. Along with the first valve 11-1, a second valve 11-2 is provided downstream of the fluid inlet 11a in the first introduction pipe 11. The second valve 11-2 is used as a drain valve when a separate fluid is added as the first fluid to be treated L1 and fed, when the reaction process is completed, or at the time of cleaning. As described above, the first introduction path P1 for introducing the first treated fluid L1 into the stirring tank 2 is configured.

攪拌槽2の下部側面部9aには、上記少なくとも二つの被処理流体の内、上記第一被処理流体L1とは異なる第二被処理流体L2を通すための第二導入管12が接続される。この第二被処理流体L2は、図示しないが第二被処理流体L2が入ったタンクからの圧力気体による送液やポンプなどの手段により第二導入管12に通される。この第二導入管12の先端は、上記第一導入管11と同じく上記攪拌槽2の内周面に開口している。この部分が第二流体入口12aである。上記により、第一導入路P1とは異なる流路であって、攪拌槽2に第二被処理流体L2を導入する第二導入路P2が構成される。   Connected to the lower side surface portion 9a of the agitation tank 2 is a second introduction pipe 12 for passing a second treated fluid L2 different from the first treated fluid L1 out of the at least two treated fluids. . Although not shown, the second treated fluid L2 is passed through the second introduction pipe 12 by means such as liquid feeding by a pressure gas from a tank containing the second treated fluid L2 or a pump. The tip of the second introduction pipe 12 is open to the inner peripheral surface of the agitation tank 2 like the first introduction pipe 11. This portion is the second fluid inlet 12a. As described above, the second introduction path P2 that is different from the first introduction path P1 and introduces the second treated fluid L2 into the stirring tank 2 is configured.

攪拌槽2の上部側面部9bには、所望の反応状態となった被処理流体の排出管13が接続され、排出路P3より該被処理流体が排出される。上記と同様、この排出管13の先端は攪拌槽2の内周面に開口している。この部分が流体出口13aである。攪拌槽2の内部では、図2(A)に矢印で示したように、被処理流体が重力に抗して上昇するようになっているため、この排出管13は上記の各導入管11,12よりも上方に設けられている。   The upper side surface portion 9b of the agitation tank 2 is connected to a discharge pipe 13 for the fluid to be processed that has reached a desired reaction state, and the fluid to be processed is discharged from the discharge path P3. Similarly to the above, the tip of the discharge pipe 13 is open to the inner peripheral surface of the stirring tank 2. This portion is the fluid outlet 13a. Inside the agitation tank 2, as shown by the arrow in FIG. 2 (A), the fluid to be treated rises against gravity, so that the discharge pipe 13 is connected to each of the introduction pipes 11, It is provided above 12.

図1に示した例では、第一導入管11が攪拌槽2の底面8に設けられ、第二導入管12が攪拌槽2の下部側面部9aに設けられ、排出管13が攪拌槽2の上部側面部9bに設けられているが、本発明はこの例の構成に限られるものではない。例えば、三つ以上の被処理流体を攪拌槽2に導入するために、図4及び5に示すように導入管を三つ以上設けても良い(図上の11,12',12")。また、複数の流体入口が、攪拌槽2の側面に共に備えられたものであるか、あるいは、攪拌槽2の端面に共に備えられたものであっても良い。また、排出管を二つ以上設けても良い。   In the example shown in FIG. 1, the first introduction pipe 11 is provided on the bottom surface 8 of the stirring tank 2, the second introduction pipe 12 is provided on the lower side surface portion 9 a of the stirring tank 2, and the discharge pipe 13 is provided on the stirring tank 2. Although provided in the upper side surface portion 9b, the present invention is not limited to the configuration of this example. For example, in order to introduce three or more fluids to be treated into the stirring tank 2, three or more introduction pipes may be provided as shown in FIGS. 4 and 5 (11, 12 ′, 12 ″ on the drawing). The plurality of fluid inlets may be provided together on the side surface of the stirring tank 2, or may be provided together on the end face of the stirring tank 2. Also, two or more discharge pipes may be provided. It may be provided.

この例では、攪拌槽2の内面は滑らかな表面状態とされている。このようにすることにより、攪拌羽根6の回転に伴い、攪拌槽2内に被処理流体の流れを円滑に生じさせることができ、駆動用モータ7の負荷を低減することができる。逆に、被処理流体の種類によっては、攪拌槽2の内面に凹凸や固定羽根を設けることにより、攪拌槽2内における被処理流体に渦流を発生させるなどして流れを乱し、これによって反応を促進できるものとしても良い。   In this example, the inner surface of the stirring tank 2 is in a smooth surface state. By doing in this way, the flow of the to-be-processed fluid can be smoothly produced in the stirring tank 2 with rotation of the stirring blade 6, and the load of the drive motor 7 can be reduced. On the contrary, depending on the type of fluid to be treated, by providing irregularities and fixed blades on the inner surface of the agitation tank 2, the flow of fluid in the agitation tank 2 is turbulent, for example, by generating eddy currents, thereby reacting It is good also as what can promote.

蓋3には、バルブ14−1を介して調整用パイプ14が貫通している。攪拌槽2内を減圧状態にする場合は、バルブ14−1より真空源に接続すれば良いし、攪拌槽2内を不活性ガス雰囲気などにする場合は、バルブ14-1を不活性ガス源に接続すれば良い。またこれらの措置が不必要な場合は、調整用パイプ14を設置しなくても良い。また、減圧及び不活性ガス雰囲気の両方が必要な場合は調整用パイプ14を複数本設置すれば良い。   The adjustment pipe 14 passes through the lid 3 via a valve 14-1. When the pressure in the stirring tank 2 is reduced, the valve 14-1 may be connected to a vacuum source. When the atmosphere in the stirring tank 2 is set to an inert gas atmosphere, the valve 14-1 is set as an inert gas source. Connect to. If these measures are unnecessary, the adjustment pipe 14 need not be installed. Further, when both decompression and inert gas atmosphere are required, a plurality of adjustment pipes 14 may be installed.

図1に示した例では、上記排出管13の下方位置に、攪拌槽2の内方に突出するフランジ状の堰板15が設けられている。この堰板15は、この例では攪拌槽2の内周面を上下に二分するように設けられており、攪拌槽2の下半分における反応後の被処理流体が、各導入管11,12からの被処理流体の供給に伴って、この堰板15を乗り越えて攪拌槽2の上半分に移動する。このように堰板15を設けることにより、攪拌槽2の下半分において薄膜状態とされた被処理流体の膜厚が、攪拌層2の内周面から内側方向に突出した堰板15の寸法と一致する。よって、堰板15の寸法を調整することにより、上記被処理流体の薄膜を所望の膜厚とした上で反応させることができる。なお、この堰板15については本発明において必須ではなく、省略しても良い。また、この例における堰板15は、図示のように攪拌槽2の上半分部分と下半分部分との間に挟まれるように水平に設けられているが、攪拌槽2の内周面に溶接などにより直接取り付けられたものや、攪拌槽2と一体に形成されたものであっても良い。また、この堰板15を伸縮可能な構造としておき、被処理流体の種類などによって、攪拌槽2の内周面からの突出寸法を変更できるようにしても良い。また、水平ではなく、例えば螺旋状に設けても良い。   In the example shown in FIG. 1, a flange-shaped weir plate 15 protruding inward of the stirring tank 2 is provided at a position below the discharge pipe 13. In this example, the dam plate 15 is provided so as to bisect the inner peripheral surface of the stirring tank 2, and the fluid to be treated after the reaction in the lower half of the stirring tank 2 flows from the introduction pipes 11 and 12. As the to-be-processed fluid is supplied, it moves over the barrier plate 15 and moves to the upper half of the stirring tank 2. By providing the weir plate 15 in this way, the film thickness of the fluid to be treated in the lower half of the stirring tank 2 is such that the thickness of the weir plate 15 projecting inward from the inner peripheral surface of the stirring layer 2 Match. Therefore, by adjusting the dimensions of the dam plate 15, the thin film of the fluid to be treated can be reacted with a desired film thickness. The barrier plate 15 is not essential in the present invention and may be omitted. Further, the weir plate 15 in this example is provided horizontally so as to be sandwiched between the upper half portion and the lower half portion of the stirring tank 2 as shown in the figure, but welded to the inner peripheral surface of the stirring tank 2. For example, it may be directly attached to the stirring tank 2 or may be formed integrally with the stirring tank 2. Further, the weir plate 15 may be configured to be extendable and contractible so that the projecting dimension from the inner peripheral surface of the stirring tank 2 can be changed depending on the type of fluid to be treated. Moreover, you may provide not spirally, for example, spirally.

図1に示した例は、堰板15を攪拌槽2内の一箇所に設けたものであるが、図5に示すように導入管12を三つ以上設けた場合などにおいては、二箇所以上に堰板15を設けておき、複数の被処理流体が攪拌槽2内で順次加えられ、反応していくようにしても良い。   In the example shown in FIG. 1, the weir plate 15 is provided in one place in the stirring tank 2, but in the case where three or more introduction pipes 12 are provided as shown in FIG. 5, two or more places are provided. A plurality of fluids to be processed may be sequentially added in the agitation tank 2 to react with each other.

また攪拌槽2には、反応に最も適した温度条件とするために、攪拌槽2内の被処理流体を加熱あるいは冷却するための温度調整機構を設けても良い。図1に示した例では、攪拌槽2の外面に流体状の熱媒体を流通できるジャケット16を設けているが、これに限らず、電気ヒーターやペルチェ素子など、電気的もしくは化学的に加熱あるいは冷却作用をなすことのできる素子を攪拌槽2に取り付けても良い。   The stirring tank 2 may be provided with a temperature adjusting mechanism for heating or cooling the fluid to be treated in the stirring tank 2 in order to obtain a temperature condition most suitable for the reaction. In the example shown in FIG. 1, the jacket 16 capable of circulating a fluid heat medium is provided on the outer surface of the agitation tank 2. However, the invention is not limited to this. An element capable of performing a cooling action may be attached to the stirring tank 2.

上記の他、攪拌槽2に温度や圧力、また、薄膜の波打ちや偏りなどを感知するセンサーを設けても良い。   In addition to the above, the agitation tank 2 may be provided with a sensor that senses temperature, pressure, and undulations and bias of the thin film.

この例では攪拌具として、攪拌槽2の内周面と同心に設けられた駆動軸5の下端に攪拌羽根6が設けられている。この攪拌羽根6は、駆動軸5から径外方向に延びる腕部6−1を備えている。腕部6−1の外端には攪拌作用を良好にするための突片6−2が設けられている。図1に示した例では、図示左側の突片6−2は腕部6−1から上側に折り返すようにして設けられており、図示右側の突片6−2は腕部6−1から下側に折り返すようにして設けられている。この突片6−2は、被処理流体を攪拌槽2の内周面に沿って周方向に強制的に移動させるためのものであるため、外端形状が攪拌槽2の内周面に沿うように設けることが望ましい。よって、図示した以外に種々の形状で実施することができる。そして、この突片6−2の外端と攪拌槽2の内面との間には、僅かな間隙Sが設けられている。この間隙Sは、3mm以下、好ましくは2mm以下、より好ましくは1mm以下とされる。   In this example, a stirring blade 6 is provided at the lower end of the drive shaft 5 provided concentrically with the inner peripheral surface of the stirring tank 2 as a stirring tool. The stirring blade 6 includes an arm portion 6-1 that extends from the drive shaft 5 in the radially outward direction. A projecting piece 6-2 is provided at the outer end of the arm 6-1 to improve the stirring action. In the example shown in FIG. 1, the protruding piece 6-2 on the left side of the drawing is provided so as to be folded upward from the arm portion 6-1, and the protruding piece 6-2 on the right side of the drawing is lowered from the arm portion 6-1. It is provided so as to be folded back to the side. Since this protrusion 6-2 is for forcibly moving the fluid to be treated along the inner peripheral surface of the stirring tank 2 in the circumferential direction, the outer end shape is along the inner peripheral surface of the stirring tank 2. It is desirable to provide as follows. Therefore, it can be implemented in various shapes other than those shown in the drawings. A slight gap S is provided between the outer end of the projecting piece 6-2 and the inner surface of the stirring tank 2. The gap S is 3 mm or less, preferably 2 mm or less, more preferably 1 mm or less.

この攪拌羽根6を駆動モータ7により高速回転させると、上記第一導入路P1に属する第一導入管11より攪拌槽2内に導入された第一被処理流体L1は、攪拌羽根6の高速回転の遠心力により攪拌槽2の内周面に圧着されて薄膜状態を形成する。ここで、第一被処理流体L1は攪拌槽2の底部8に接続された第一導入管11から順次導入されていくため、これに伴い、上記のように薄膜状態とされた第一被処理流体L1には、図2(A)に示すような上向きスパイラル状の流れが発生する。なお、このスパイラル状の流れの速度は攪拌槽2への第一被処理流体L1の導入速度に比例する。この形成された薄膜状態の第一被処理流体L1中に直接、第二被処理流体L2を、上記第一導入路P1から独立した別流路である第二導入路P2に属する第二導入管12より攪拌槽2内に導入することで所望の反応状態とできる。攪拌羽根6の高速回転に伴い、薄膜状態の第一被処理流体L1もまた攪拌槽2の内周面に沿って高速回転するため、短時間で充分に前記状態とすることができる。   When the stirring blade 6 is rotated at high speed by the drive motor 7, the first fluid L1 introduced into the stirring tank 2 from the first introduction pipe 11 belonging to the first introduction path P1 is rotated at high speed. Is pressed against the inner peripheral surface of the agitation tank 2 to form a thin film state. Here, since the first treated fluid L1 is sequentially introduced from the first introduction pipe 11 connected to the bottom 8 of the agitation tank 2, the first treated fluid in the thin film state as described above is accordingly introduced. An upward spiral flow as shown in FIG. 2A is generated in the fluid L1. The speed of the spiral flow is proportional to the introduction speed of the first treated fluid L1 into the stirring tank 2. The second treated pipe L2 that belongs to the second introduction path P2 that is a separate flow path independent of the first introduction path P1 is directly fed into the formed first treated fluid L1 in the thin film state. The desired reaction state can be achieved by introducing into the stirring tank 2 from 12. As the stirring blade 6 rotates at high speed, the first fluid L1 in a thin film state also rotates at a high speed along the inner peripheral surface of the stirring tank 2, so that it can be sufficiently brought into the above state in a short time.

ここで上記「高速回転」とは、遠心力により被処理流体が攪拌槽2内で薄膜状態を形成できる回転数をいい、具体的には攪拌羽根6の外端部における周速度が5m/s以上、好ましくは10m/s以上、より好ましくは20m/s以上を意味する。   Here, the “high speed rotation” means a rotation speed at which the fluid to be treated can form a thin film state in the stirring tank 2 by centrifugal force. Specifically, the peripheral speed at the outer end of the stirring blade 6 is 5 m / s. As mentioned above, Preferably it means 10 m / s or more, More preferably, it means 20 m / s or more.

上記のように第二導入管12の第二流体入口12aは、撹拌槽2の内周面のうち、上記第一導入管11から攪拌槽2に導入された第一被処理流体L1が上記の薄膜状態を形成する部分に開口されているため、第一被処理流体L1の薄膜中に第二被処理流体L2を直接加え、各被処理流体L1,L2中の反応物同士を直接反応させることができる。   As described above, the second fluid inlet 12a of the second introduction pipe 12 has the first treated fluid L1 introduced from the first introduction pipe 11 to the stirring tank 2 out of the inner peripheral surface of the stirring tank 2 described above. Since the opening is formed in the portion forming the thin film state, the second processed fluid L2 is directly added to the thin film of the first processed fluid L1, and the reactants in the processed fluids L1 and L2 are directly reacted with each other. Can do.

このように本発明は、薄膜中での直接反応を可能としたものであるから、反応の高速均一化が可能である。また、これまでの流体処理で不可欠であった予備混合工程を不要とし、かつ、予備混合状態における反応物の不均等配位や不均等熱履歴、不均等エネルギー投下の影響を排除し、常に新しい反応場を与えるため、均一な反応物を得ることが可能となった。   As described above, since the present invention enables direct reaction in a thin film, the reaction can be made uniform at high speed. In addition, the premixing process, which has been indispensable in conventional fluid processing, is unnecessary, and the effects of non-uniform coordination of reactants, non-uniform heat history, and non-uniform energy injection in the pre-mixed state are eliminated, and always new. Since a reaction field is provided, a uniform reaction product can be obtained.

本発明の流体処理装置1は、第一被処理流体L1と第二被処理流体L2の導入量により、攪拌槽2内における各被処理流体L1,L2の流れの速度ならびに滞留時間を調整できるので、所望の反応状態にすることが簡単に出来得る。   The fluid processing apparatus 1 of the present invention can adjust the flow speed and residence time of each of the fluids L1 and L2 in the agitation tank 2 according to the introduction amounts of the first fluid L1 and the second fluid L2. Thus, a desired reaction state can be easily achieved.

また、被処理流体が反応などにより結晶析出を伴う場合、攪拌具の回転速度を調整することにより、析出した結晶を、所望の粒径と粒径分布を有するものとできる。   When the fluid to be treated is accompanied by crystal precipitation due to reaction or the like, the precipitated crystal can have a desired particle size and particle size distribution by adjusting the rotation speed of the stirring tool.

なお、本発明は、薄膜中で各被処理流体L1,L2が反応することを主とするものであるが、上記薄膜外での反応を排除するものではなく、付加的に薄膜外での反応がなされても良い。   In addition, although this invention is mainly what each to-be-processed fluid L1, L2 reacts in a thin film, it does not exclude reaction outside the said thin film, and reaction outside a thin film in addition. May be made.

図1に示した例は、攪拌槽2が固定されており攪拌羽根6が高速回転するものであるが、これとは逆に、攪拌羽根6を固定して攪拌槽2を高速回転させても構わないし、攪拌羽根6と攪拌槽2を両方回しても構わない。   In the example shown in FIG. 1, the stirring tank 2 is fixed and the stirring blade 6 rotates at a high speed. Conversely, the stirring blade 6 may be fixed and the stirring tank 2 may be rotated at a high speed. Alternatively, both the stirring blade 6 and the stirring tank 2 may be rotated.

また、図1に示した例では、攪拌羽根6が一組のみ設けられたものとされているが、図5に示すように複数組設けられたものとしても良い。また、一組の攪拌羽根6当たりの腕部6−1の数量も、適宜設定して良い。   Further, in the example shown in FIG. 1, only one set of stirring blades 6 is provided, but a plurality of sets may be provided as shown in FIG. The number of arm portions 6-1 per set of stirring blades 6 may also be set as appropriate.

この例では攪拌具として、図1に示したような攪拌羽根6を用いたが、羽根の形状を有するものに限られるものではなく、図4に示すような、攪拌槽2の内周面に沿うように設けた回転円筒6’としても実施できる。この回転円筒は中空で、貫通孔6’−1を多数有するものとされており、攪拌羽根6と同様、高速回転により被処理流体を薄膜状態とできる。   In this example, the stirring blade 6 as shown in FIG. 1 was used as a stirring tool, but the stirring blade 6 is not limited to the shape having the shape of the blade, and the inner peripheral surface of the stirring tank 2 as shown in FIG. It can also be implemented as a rotating cylinder 6 ′ provided along. This rotating cylinder is hollow and has a large number of through-holes 6 ′-1, and like the stirring blade 6, the fluid to be processed can be made into a thin film state by high-speed rotation.

本発明は、上記のように薄膜状態を形成した第一被処理流体L1中に、第一導入路P1から独立した別流路である第二導入路P2より第二被処理流体L2を直接導入することを最大の特徴とするので、以下さらに詳しく説明する。   In the present invention, the second treated fluid L2 is directly introduced into the first treated fluid L1 formed in the thin film state as described above from the second introducing passage P2, which is a separate flow path independent of the first introducing passage P1. Since this is the greatest feature, it will be described in more detail below.

攪拌槽2内における、攪拌羽根6などの攪拌具の位置と、第一導入路P1とは別流路である第二導入路P2より第二被処理流体L2を直接導入する導入位置との相対的関係は、目的とする反応状態に応じて調整する。すなわち、攪拌具の近傍における、薄膜状態とされた被処理流体は概ね乱流状態を形成し、均一混合下での反応などを目的とする場合有効であるし、攪拌具から離れた位置における薄膜状態の被処理流体は概ね層流状態を形成するため、分子拡散を重要視し均一反応を目的とする場合などに有効である。   The relative position between the position of the stirring tool such as the stirring blade 6 in the stirring tank 2 and the introduction position where the second treated fluid L2 is directly introduced from the second introduction path P2 which is a different flow path from the first introduction path P1. The target relationship is adjusted according to the target reaction state. That is, the fluid to be processed in the state of a thin film in the vicinity of the stirrer forms a turbulent state and is effective for the purpose of reaction under uniform mixing, etc., and the thin film at a position away from the stirrer Since the fluid to be treated generally forms a laminar flow state, it is effective when the molecular diffusion is regarded as important and a uniform reaction is intended.

また、攪拌槽2内において薄膜状態とされた第一被処理流体L1中に直接、独立した別流路である第二導入路P2より第二被処理流体L2を導入するための第二導入管12は、攪拌槽2に対して、図2(B)に示すように、第二流体入口12aの中心を通る水平断面X1(図1参照)における、攪拌槽2の径方向を基準とした角度α1を持って取り付けられている。α1は0°〜90°、より望ましくは、20°〜70°とされており、薄膜状態とされた第一被処理流体L1の、攪拌槽2の内周面に沿う流れ方向(図2(B)上の矢印方向)に、第二被処理流体L2の導入方向が対向することがなく、上記第一被処理流体L1の流れを必要以上に乱さない。   Further, a second introduction pipe for introducing the second treated fluid L2 directly from the second introduction path P2 which is an independent separate flow path into the first treated fluid L1 in a thin film state in the stirring tank 2. 12 is an angle with respect to the stirring tank 2 in the horizontal section X1 (see FIG. 1) passing through the center of the second fluid inlet 12a as a reference, as shown in FIG. 2B. It is attached with α1. α1 is set to 0 ° to 90 °, more preferably 20 ° to 70 °, and the flow direction of the first treated fluid L1 in a thin film state along the inner peripheral surface of the stirring tank 2 (FIG. 2 ( The direction of introduction of the second treated fluid L2 does not face the arrow direction B) above, and the flow of the first treated fluid L1 is not disturbed more than necessary.

また、この第二導入管12は攪拌槽2に対して、攪拌槽の中心軸と上記流体入口の中心とを通る垂直断面において、仰角β1を持って取り付けられている。β1は0°〜90°、より望ましくは、10°〜50°とされており、図1に示すように攪拌槽2が配位された場合において、薄膜状態とされた第一被処理流体L1の攪拌槽2内における上向きスパイラル状の流れ方向(図2(A)上の矢印方向)に、第二被処理流体L2の導入方向が対向することがなく、上記第一被処理流体L1の流れを必要以上に乱さない。   The second introduction pipe 12 is attached to the stirring tank 2 with an elevation angle β1 in a vertical cross section passing through the central axis of the stirring tank and the center of the fluid inlet. β1 is set to 0 ° to 90 °, more preferably 10 ° to 50 °. When the stirring tank 2 is coordinated as shown in FIG. The flow direction of the first treated fluid L1 does not oppose the direction in which the second treated fluid L2 is introduced in the upward spiral flow direction in the stirring tank 2 (the arrow direction in FIG. 2A). Do not disturb more than necessary.

この第二導入管12は攪拌槽2に対して、第一被処理流体L1の上記水平流れ方向に対する上記角度α1の方向性と上記垂直流れ方向に対する上記角度β1の両方の方向性とを両方有した方がより好ましい。このように第一被処理流体L1の流れ方向に対して順方向の位置関係とすることにより、第一導入路P1から独立した別流路である第二導入路P2より導入される第二被処理流体L2の導入に関して、ポンプなどの移送手段に関する動力は低減されるし、拡散条件を重要視する場合などにも有効である。   The second introduction pipe 12 has both the directivity of the angle α1 with respect to the horizontal flow direction of the first treated fluid L1 and the directivity of both the angle β1 with respect to the vertical flow direction with respect to the stirring tank 2. Is more preferable. In this way, by setting the positional relationship in the forward direction with respect to the flow direction of the first fluid to be treated L1, the second target to be introduced from the second introduction path P2, which is a separate flow path independent of the first introduction path P1. Regarding the introduction of the processing fluid L2, the power relating to the transfer means such as a pump is reduced, and it is also effective when importance is attached to the diffusion conditions.

そして、各被処理流体L1,L2が薄膜状態中で反応が所望状態になった後に攪拌槽2から排出される排出管13は、水平断面X2(図1参照)における、攪拌槽2の径方向を基準とした角度α2を持って取り付けられている。Α2は0°〜90°、より望ましくは、40°〜80°とされている。理由は、処理後流体への泡の混入防止や、攪拌槽2内の薄膜状態を乱さない為である。   And the discharge pipe 13 discharged | emitted from the stirring tank 2 after reaction to each to-be-processed fluid L1, L2 will be in a desired state in a thin film state is radial direction of the stirring tank 2 in horizontal cross section X2 (refer FIG. 1). It is attached with an angle α2 with reference to. The ridge 2 is 0 ° to 90 °, more preferably 40 ° to 80 °. The reason is to prevent bubbles from being mixed into the processed fluid and not disturb the state of the thin film in the stirring tank 2.

さらに、上記流体処理装置1において第二導入管12の第二流体入口12aにおける直径が20μm〜3000μm、好ましくは50μm〜1000μmである。これによって、反応速度が速く、析出を伴う反応の場合であっても、第二流体入口12a付近で析出した物質が第二流体入口12aを塞ぐような問題が発生せず、さらに第二流体入口12aから導入される第二被処理流体L2の流れによって攪拌槽2内に生まれるスパイラル状で層流である流れが乱れることを最小限に抑えた。これにより均一な反応において良好な結果を得ることができる。   Further, in the fluid processing apparatus 1, the diameter of the second introduction pipe 12 at the second fluid inlet 12a is 20 μm to 3000 μm, preferably 50 μm to 1000 μm. Thus, even when the reaction rate is high and the reaction is accompanied by precipitation, the problem that the substance deposited near the second fluid inlet 12a does not block the second fluid inlet 12a does not occur. The spiral and laminar flow generated in the agitation tank 2 due to the flow of the second treated fluid L2 introduced from 12a is minimized. Thereby, good results can be obtained in a uniform reaction.

また、上記に示したように、きわめて簡単な構造のため、かつ、被処理流体が接液する箇所が少ないため、流体処理装置1に不調が発生しにくく、歩留まりが向上し、洗浄性や滅菌性に優れている。   Further, as described above, since the structure is very simple and there are few places where the fluid to be treated comes into contact with the fluid, the fluid treatment apparatus 1 is less likely to malfunction, the yield is improved, and the cleaning performance and sterilization are improved. Excellent in properties.

また、攪拌槽2内にセラミック製、樹脂製、金属製、ガラス製などの小径メディア(ボールやビーズなど)を混入させ、被処理流体と該メディアとを一緒に高速回転させても構わない。これは特に、被処理流体が反応などにより結晶析出を伴う場合、析出した結晶を微細化する効果がある。   Further, a small-diameter medium (such as a ball or a bead) made of ceramic, resin, metal, glass, or the like may be mixed in the stirring tank 2 and the fluid to be processed and the medium may be rotated at a high speed together. In particular, this has an effect of refining the precipitated crystal when the fluid to be treated is accompanied by crystal precipitation due to reaction or the like.

本発明の流体処理装置1に適する被処理流体の例を以下に例示する。攪拌槽2中で被処理流体に含まれる反応物の反応がなされるものとしては、特に限定はされないが、酸化反応、還元反応、中和反応、加水分解反応、脱水反応、縮合反応、重合反応、置換反応、転移、付加反応、カップリング反応、吸着反応などの各種反応やラジカル反応やアシル化反応、ニトロ化反応、インドール反応、ヒドロキシル化反応、ジアゾ化反応などに代表される有機化合物の反応などが挙げられる。   Examples of fluids to be processed that are suitable for the fluid processing apparatus 1 of the present invention are illustrated below. The reaction of the reactant contained in the fluid to be treated in the agitation tank 2 is not particularly limited, but is an oxidation reaction, a reduction reaction, a neutralization reaction, a hydrolysis reaction, a dehydration reaction, a condensation reaction, a polymerization reaction. Reactions of organic compounds represented by various reactions such as substitution reaction, transfer reaction, addition reaction, coupling reaction, adsorption reaction, radical reaction, acylation reaction, nitration reaction, indole reaction, hydroxylation reaction, diazotization reaction, etc. Etc.

特に上記のうち、反応により結晶析出を伴うものとしては、特に限定はされないが、金属イオンを還元剤で還元して金属固体、または金属粒子を析出させる場合の還元反応や、四塩化チタンやチタンイソプロポキシドのようなセラミック原料を加水分解してセラミック粒子またはセラミックの前駆体を析出させる場合の加水分解反応、またはバリウムイオンを含む溶液と硫酸イオンを含む溶液を混合して硫酸バリウムが析出する場合に代表されるような中和反応などが挙げられる。また、ナノドット、量子ドット、ナノクリスタルに代表される化合物半導体のように、陽イオンと陰イオンが反応し、化合物半導体粒子が析出する場合なども挙げられる。さらに、シアン顔料の濃硫酸溶液を水に加えた時にシアン顔料粒子が析出する場合のアシッドペースティング処理のような場合にも実施できるし、また、薬物粒子が溶解している溶液を、その薬物粒子の溶解度が低い溶媒に投入し、薬物粒子を析出させる場合、つまりある物質に対する溶解度の高い溶媒(良溶媒)と良溶媒に対して溶解度の低い溶媒(貧溶媒)をもちいて析出を行う方法なども実施できる。さらに、その溶解度の差を利用した析出の場合には、前記のように各々の溶媒に対する物質の溶解度の差を利用しても実施できるし、例えば温度変化によって溶解度が変化する場合には、例えば高温状態で溶解している物質の溶液に、低温の溶液を混合する事で、液全体の溶解度を下げ、物質を析出させても実施できる。その他溶解度に変化を与える要因としては、溶液のpHなども挙げられる。   Of those described above, those accompanied by crystal precipitation by the reaction are not particularly limited. However, reduction reactions in the case where metal ions are reduced with a reducing agent to precipitate metal solids or metal particles, titanium tetrachloride or titanium Hydrolysis of ceramic raw materials such as isopropoxide to precipitate ceramic particles or ceramic precursors, or barium sulfate is precipitated by mixing a solution containing barium ions and a solution containing sulfate ions Examples thereof include neutralization reactions as typified by cases. Moreover, the case where a cation and an anion react, and a compound semiconductor particle precipitates like the compound semiconductor represented by the nanodot, the quantum dot, and the nanocrystal, etc. are mentioned. Furthermore, it can be carried out in the case of an acid pasting process in which cyan pigment particles are precipitated when a concentrated sulfuric acid solution of cyan pigment is added to water, and a solution in which drug particles are dissolved is used as the drug. When depositing drug particles by putting them in a solvent with low particle solubility, that is, using a solvent (good solvent) with high solubility in a substance and a solvent (poor solvent) with low solubility in a good solvent Etc. can also be implemented. Further, in the case of precipitation using the difference in solubility, it can be carried out by using the difference in solubility of substances in each solvent as described above. For example, when the solubility changes due to temperature change, for example, By mixing a low-temperature solution with a solution of a substance dissolved in a high temperature state, the solubility of the whole liquid is lowered and the substance can be precipitated. Other factors that change the solubility include the pH of the solution.

本発明の実施形態の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of embodiment of this invention. 本発明の実施形態の一例に係る、第二導入管の攪拌槽への取り付け状況を示すものであり、(A)は要部縦断面図、(B)は要部横断面図である。The attachment state to the stirring tank of the 2nd introduction pipe | tube based on an example of embodiment of this invention is shown, (A) is a principal part longitudinal cross-sectional view, (B) is a principal part cross-sectional view. 本発明の実施形態の一例に係る、排出管の攪拌槽への取り付け状況を示す、要部横断面図である。It is a principal part cross-sectional view which shows the attachment condition to the stirring tank of the discharge pipe based on an example of embodiment of this invention. 本発明の他の実施形態の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of other embodiment of this invention. 本発明の更に他の実施形態の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of other embodiment of this invention.

符号の説明Explanation of symbols

1 流体処理装置
2 攪拌槽
3 攪拌槽の蓋
4 密封装置
5 駆動軸
6 攪拌具(攪拌羽根)
7 駆動用モータ
8 攪拌槽の底部
11 第一導入管
12 第二導入管
13 排出管
L1 第一被処理流体
L2 第二被処理流体
P1 第一導入路
P2 第二導入路
P3 排出路
S 間隙
α1 被処理流体の導入角度(水平断面)
α2 被処理流体の排出角度(水平断面)
β1 被処理流体の導入角度(仰角)
DESCRIPTION OF SYMBOLS 1 Fluid processing apparatus 2 Stirrer tank 3 Stirrer tank lid 4 Sealing device 5 Drive shaft 6 Stirrer (stirrer blade)
7 Driving motor 8 Bottom of stirring tank 11 First introduction pipe 12 Second introduction pipe 13 Discharge pipe L1 First treated fluid L2 Second treated fluid P1 First introduction path P2 Second introduction path P3 Discharge path S Gap α1 Introduction angle of fluid to be treated (horizontal section)
α2 Discharge angle of fluid to be treated (horizontal section)
β1 Introduction angle (elevation angle) of fluid to be treated

Claims (13)

反応物を含む少なくとも二つの被処理流体を薄膜状態とした上で反応させる流体処理装置において、
少なくとも、中心軸に直交する断面形状が円形である内周面を有する攪拌槽と、
該攪拌槽の内周面と同心で、外端が攪拌槽の内周面と僅かな間隙を在して付設される攪拌具とを有し、
上記の撹拌槽には、少なくとも二箇所の流体入口と、少なくとも一箇所の流体出口とを備え、
上記流体入口のうち一箇所からは、上記被処理流体のうち、反応物の一つを含む第一の被処理流体を攪拌槽内に導入し、上記流体入口のうちで上記以外の一箇所からは、前記反応物とは異なる反応物の一つを含む第二の被処理流体を、上記第一の被処理流体とは異なる流路より攪拌槽内に導入するものであり、
攪拌槽と攪拌具との少なくとも一方が他方に対し、上記中心軸を中心として高速回転し、
該回転に伴う、撹拌槽内に導入された被処理流体の回転により、該被処理流体を遠心力で攪拌槽の中心軸を取り巻くように内周面に圧着させ、薄膜状態を形成し、当該形成された薄膜中で少なくとも上記第一の被処理流体と第二の被処理流体とに含まれる反応物同士を反応させることを特徴とする流体処理装置。
In a fluid processing apparatus in which at least two fluids to be processed including reactants are reacted in a thin film state,
At least a stirring tank having an inner peripheral surface having a circular cross-sectional shape orthogonal to the central axis,
A stirring tool that is concentric with the inner peripheral surface of the stirring tank and has an outer end attached with a slight gap from the inner peripheral surface of the stirring tank;
The stirring tank includes at least two fluid inlets and at least one fluid outlet,
From one place among the fluid inlets, a first treated fluid containing one of the reactants among the treated fluids is introduced into a stirring tank, and from one place other than the above among the fluid inlets. Is for introducing a second fluid to be treated containing one of the reactants different from the reactant into the stirring tank from a flow path different from that of the first fluid to be treated,
At least one of the stirring tank and the stirring tool rotates at high speed around the central axis with respect to the other,
Due to the rotation of the fluid to be treated introduced into the stirring tank accompanying the rotation, the fluid to be treated is pressed against the inner peripheral surface so as to surround the central axis of the stirring tank by centrifugal force, forming a thin film state, A fluid processing apparatus characterized by reacting at least reactants contained in the first processed fluid and the second processed fluid in the formed thin film.
上記流体入口のうち少なくとも一箇所が、上記撹拌槽の内周面のうち、当該流体入口以外の流体入口から攪拌槽内に導入された被処理流体が上記の薄膜状態を形成する部分に開口されており、これにより、前記形成された薄膜中で上記の反応物同士を直接反応させることができることを特徴とする、請求項1に記載の流体処理装置。   At least one of the fluid inlets is opened in a portion of the inner peripheral surface of the stirring tank where a fluid to be treated introduced into the stirring tank from a fluid inlet other than the fluid inlet forms the thin film state. The fluid processing apparatus according to claim 1, wherein the reactants can directly react with each other in the formed thin film. 上記少なくとも二箇所の流体入口が、上記の流体出口よりも下方に設けられたものであって、攪拌槽における、上記中心軸を取り巻く面である側面に共に備えられたものであるか、あるいは、上記中心軸に交わる面である端面に共に備えられたものであるか、あるいは、上記側面と上記端面とに各々備えられたものであることを特徴とする、請求項1または2に記載の流体処理装置。   The at least two fluid inlets are provided below the fluid outlet, and are provided together on a side surface that is a surface surrounding the central axis in the stirring tank, or 3. The fluid according to claim 1, wherein the fluid is provided on an end surface that is a surface intersecting with the central axis, or is provided on each of the side surface and the end surface. Processing equipment. 上記の攪拌槽が固定されており、上記の攪拌具が回転することを特徴とする、請求項1〜3のいずれかに記載の流体処理装置。   The fluid processing apparatus according to claim 1, wherein the stirring tank is fixed, and the stirring tool rotates. 上記の攪拌槽が、中心軸が垂直方向を向くように配位されており、
上記流体入口のうち少なくとも一箇所における、攪拌槽への上記被処理流体の導入が、上記撹拌槽内での被処理流体の流れ方向に沿うようになされ、
攪拌槽に対する導入角度につき、上記流体入口の中心を通る水平断面における、攪拌槽の径方向を基準とした角度(α1)が0°〜90°であることを特徴とする、請求項1〜4のいずれかに記載の流体処理装置。
The above stirring tank is arranged so that the central axis faces the vertical direction,
At least one of the fluid inlets, the introduction of the fluid to be treated into the stirring tank is made along the flow direction of the fluid to be treated in the stirring tank,
The angle (α1) based on the radial direction of the stirring tank in a horizontal section passing through the center of the fluid inlet is 0 ° to 90 ° with respect to the introduction angle with respect to the stirring tank. The fluid processing apparatus according to any one of the above.
上記の攪拌槽が、中心軸が垂直方向を向くように配位されており、
上記流体入口のうち少なくとも一箇所における、攪拌槽への上記各被処理流体の導入が、上記撹拌槽内での被処理流体の流れ方向に沿うようになされ、
攪拌槽に対する導入角度につき、攪拌槽の中心軸と上記流体入口の中心とを通る垂直断面における仰角(β1)が0°〜90°であることを特徴とする、請求項1〜5のいずれかに記載の流体処理装置。
The above stirring tank is arranged so that the central axis faces the vertical direction,
Introducing each of the fluids to be treated into the agitation tank in at least one of the fluid inlets is made to follow the flow direction of the fluid to be treated in the agitation tank,
The elevation angle (β1) in a vertical section passing through the central axis of the stirring tank and the center of the fluid inlet is 0 ° to 90 ° with respect to the introduction angle with respect to the stirring tank. The fluid processing apparatus according to 1.
上記流体入口のうち、上記とは異なる少なくとも一箇所が、攪拌槽の下側端面に設けられたことを特徴とする、請求項5または6に記載の流体処理装置。   The fluid processing apparatus according to claim 5 or 6, wherein at least one of the fluid inlets different from the above is provided on a lower end surface of the stirring tank. 上記の攪拌槽が、中心軸が垂直方向を向くように配位されており、
この攪拌槽からの上記各被処理流体の排出が、上記撹拌槽内での被処理流体の流れ方向に沿うようになされ、
攪拌槽に対する排出角度につき、上記流体出口の中心を通る水平断面における、攪拌槽の径方向を基準とした角度(α2)が0°〜90°であることを特徴とする、請求項1〜7のいずれかに記載の流体処理装置。
The above stirring tank is arranged so that the central axis faces the vertical direction,
The discharge of each fluid to be processed from the stirring tank is made to follow the flow direction of the fluid to be processed in the stirring tank,
The discharge angle with respect to the agitation tank is characterized in that an angle (α2) based on the radial direction of the agitation tank in a horizontal section passing through the center of the fluid outlet is 0 ° to 90 °. The fluid processing apparatus according to any one of the above.
上記攪拌具の外端部における、攪拌槽の内面に対する周速度が5m/s以上であることを特徴とする、請求項1〜8のいずれかに記載の流体処理装置。   The fluid processing apparatus according to claim 1, wherein a peripheral speed of the outer end portion of the stirring tool with respect to the inner surface of the stirring tank is 5 m / s or more. 上記攪拌具の外端部における、攪拌槽の内面に対する上記の間隙が3mm以下であることを特徴とする、請求項1〜9のいずれかに記載の流体処理装置。   The fluid processing apparatus according to any one of claims 1 to 9, wherein the gap between the outer end of the stirring tool and the inner surface of the stirring tank is 3 mm or less. 上記の攪拌槽に、攪拌槽内を減圧状態にしたり、不活性ガス雰囲気にするための調整用パイプが設けられたことを特徴とする、請求項1〜10のいずれかに記載の流体処理装置。   The fluid processing apparatus according to any one of claims 1 to 10, wherein the stirring tank is provided with an adjustment pipe for reducing the pressure in the stirring tank or bringing the atmosphere into an inert gas atmosphere. . 反応物を含む少なくとも二つの被処理流体を薄膜状態とした上で反応させる流体処理方法において、
少なくとも、中心軸に直交する断面形状が円形である内周面を有する攪拌槽と、
該攪拌槽の内周面と同心で、外端が攪拌槽の内周面と僅かな間隙を在して付設される攪拌具とを用い、
被処理流体のうち、反応物の一つを含む第一の被処理流体を攪拌槽内に導入し、前記反応物とは異なる反応物の一つを含む第二の被処理流体を、上記第一の被処理流体とは異なる流路より攪拌槽内に導入するものであり、
攪拌槽と攪拌具との少なくとも一方を他方に対し、上記中心軸を中心として高速回転させ、
該回転に伴う、撹拌槽内に導入された被処理流体の回転により、該被処理流体を遠心力で攪拌槽の中心軸を取り巻くように内周面に圧着させ、薄膜状態を形成し、当該形成された薄膜中で少なくとも上記第一の被処理流体と第二の被処理流体とに含まれる反応物同士を反応させることを特徴とする流体処理方法。
In a fluid processing method in which at least two fluids containing reactants are reacted in a thin film state,
At least a stirring tank having an inner peripheral surface having a circular cross-sectional shape orthogonal to the central axis,
Using a stirring tool that is concentric with the inner peripheral surface of the stirring tank and the outer end is attached with a slight gap from the inner peripheral surface of the stirring tank,
Among the fluids to be treated, a first fluid to be treated containing one of the reactants is introduced into the stirring tank, and a second fluid to be treated containing one of the reactants different from the reactant is added to the second fluid to be treated. It is to be introduced into the agitation tank from a different flow path from the one treated fluid,
Rotate at least one of the stirring vessel and the stirring tool at high speed around the central axis with respect to the other,
Due to the rotation of the fluid to be treated introduced into the stirring tank accompanying the rotation, the fluid to be treated is crimped to the inner peripheral surface so as to surround the central axis of the stirring tank by centrifugal force, forming a thin film state, A fluid treatment method comprising reacting at least reactants contained in the first fluid to be treated and the second fluid to be treated in the formed thin film.
上記被処理流体のうち少なくとも一つが上記攪拌槽内にて薄膜状態とされた上、この薄膜状態の被処理流体に直接、その他の被処理流体が加えられることを特徴とする、請求項12に記載の流体処理方法。   13. At least one of the fluids to be treated is made into a thin film state in the agitation tank, and another fluid to be treated is directly added to the fluid to be treated in the thin film state. The fluid processing method as described.
JP2007285845A 2007-11-02 2007-11-02 Fluid processing apparatus and fluid processing method Active JP5648986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285845A JP5648986B2 (en) 2007-11-02 2007-11-02 Fluid processing apparatus and fluid processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285845A JP5648986B2 (en) 2007-11-02 2007-11-02 Fluid processing apparatus and fluid processing method

Publications (2)

Publication Number Publication Date
JP2009112892A true JP2009112892A (en) 2009-05-28
JP5648986B2 JP5648986B2 (en) 2015-01-07

Family

ID=40780634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285845A Active JP5648986B2 (en) 2007-11-02 2007-11-02 Fluid processing apparatus and fluid processing method

Country Status (1)

Country Link
JP (1) JP5648986B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071097A (en) * 2011-09-29 2013-04-22 Yoichi Chiba Crystallizer
WO2017209256A1 (en) 2016-06-02 2017-12-07 エム・テクニック株式会社 Silicon compound-coated metal particles
WO2018066717A1 (en) 2016-10-07 2018-04-12 エム・テクニック株式会社 Production method for organic pigment composition, coating film production method, and method for evaluating brightness of coating film
US9949898B2 (en) 2015-10-05 2018-04-24 M. Technique Co., Ltd. Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
WO2018084153A1 (en) 2016-11-04 2018-05-11 エム・テクニック株式会社 Pigment composition for green filter and method for producing same
WO2018150477A1 (en) 2017-02-14 2018-08-23 エム・テクニック株式会社 Silicon-doped metal oxide particles, and uv-absorbing composition containing silicon-doped metal oxide particles
WO2022202489A1 (en) * 2021-03-26 2022-09-29 月島機械株式会社 Crystallization device, crystallization system, and crystallization method
WO2022215238A1 (en) 2021-04-08 2022-10-13 エム・テクニック株式会社 Silicon-compound-coated metal magnesium particles
WO2022230420A1 (en) * 2021-04-28 2022-11-03 月島機械株式会社 Crystallization method, crystallization device, and crystallization system
JP2023507713A (en) * 2019-11-27 2023-02-27 スマートダイリヴァリー ゲーエムベーハー REACTOR AND METHOD FOR MANUFACTURING FORMULATIONS
WO2023218673A1 (en) 2022-05-12 2023-11-16 エム・テクニック株式会社 Manufacturing method for single crystal spherical silicon nanoparticles
JP7461668B2 (en) 2016-02-02 2024-04-04 エム・テクニック株式会社 Method for producing oxide particles having controlled color properties, oxide particles, and coating or film-like composition containing the oxide particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223392A (en) * 1989-11-10 1991-10-02 Cie Raffinage & Distrib Total Fr Sa Method and device for contacting hydrocarbon charge with hot solid particles in ascending fluidized bed tubular reactor
JPH0975698A (en) * 1995-07-10 1997-03-25 Tokushu Kika Kogyo Kk Method and apparatus for high seed agitation
JPH11347388A (en) * 1998-06-12 1999-12-21 Tokushu Kika Kogyo Co Ltd High speed stirrer
JP2005133135A (en) * 2003-10-29 2005-05-26 Fuji Photo Film Co Ltd Method of continuously producing metal particulate, and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223392A (en) * 1989-11-10 1991-10-02 Cie Raffinage & Distrib Total Fr Sa Method and device for contacting hydrocarbon charge with hot solid particles in ascending fluidized bed tubular reactor
JPH0975698A (en) * 1995-07-10 1997-03-25 Tokushu Kika Kogyo Kk Method and apparatus for high seed agitation
JPH11347388A (en) * 1998-06-12 1999-12-21 Tokushu Kika Kogyo Co Ltd High speed stirrer
JP2005133135A (en) * 2003-10-29 2005-05-26 Fuji Photo Film Co Ltd Method of continuously producing metal particulate, and device therefor

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071097A (en) * 2011-09-29 2013-04-22 Yoichi Chiba Crystallizer
US10182975B2 (en) 2015-10-05 2019-01-22 M. Technique Co., Ltd. Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
EP4249552A2 (en) 2015-10-05 2023-09-27 M. Technique Co., Ltd. Metal oxide particles and method for producing same
US9949898B2 (en) 2015-10-05 2018-04-24 M. Technique Co., Ltd. Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
US10835458B2 (en) 2015-10-05 2020-11-17 M. Technique Co., Ltd. Silicon oxide-coated oxide composition for coating in which weather resistance is required, and method of producing composition for coating
US10350148B2 (en) 2015-10-05 2019-07-16 M. Technique Co., Ltd. Composition for laminated coating film comprising iron oxide particles coated with silicon oxide
JP7461668B2 (en) 2016-02-02 2024-04-04 エム・テクニック株式会社 Method for producing oxide particles having controlled color properties, oxide particles, and coating or film-like composition containing the oxide particles
US11247912B2 (en) 2016-06-02 2022-02-15 M. Technique Co., Ltd. Method for producing oxide particles with controlled color characteristics
EP4180397A1 (en) 2016-06-02 2023-05-17 M Technique Co., Ltd. Oxide particles with controlled color characteristics, and coating composition or film-like composition containing said oxide particles
EP3730209A1 (en) 2016-06-02 2020-10-28 M. Technique Co., Ltd. Oxide particles with controlled color characteristics, and coating composition or film-like composition containing said oxide particles
WO2017209256A1 (en) 2016-06-02 2017-12-07 エム・テクニック株式会社 Silicon compound-coated metal particles
US10882109B2 (en) 2016-06-02 2021-01-05 M. Techinque Co., Ltd. Silicon compound-coated metal particles
US10906097B2 (en) 2016-06-02 2021-02-02 M. Technique Co., Ltd. Ultraviolet and/or near-infrared blocking agent composition for transparent material
US11033960B2 (en) 2016-06-02 2021-06-15 M. Technique Co., Ltd. Oxide particles with controlled color characteristics, and coating composition or film-like composition containing said oxide particles
US11052461B2 (en) 2016-06-02 2021-07-06 M. Technique Co., Ltd. Method of producing silicon compound coated oxide particles, silicon compound coated oxide particles, and silicon compound coated oxide composition containing the same
JP7421026B2 (en) 2016-06-02 2024-01-24 エム・テクニック株式会社 Oxide particles with controlled color properties and coating or film compositions containing the oxide particles
EP4303273A2 (en) 2016-06-02 2024-01-10 M. Technique Co., Ltd. Method for producing oxide particles with controlled color characteristics
JP2022031334A (en) * 2016-06-02 2022-02-18 エム・テクニック株式会社 Oxide particles with controlled color characteristics, and coating composition or film-like composition containing the oxide particles
WO2017208522A1 (en) 2016-06-02 2017-12-07 エム・テクニック株式会社 Ultraviolet and/or near-infrared blocking agent composition for transparent material
EP4183746A1 (en) 2016-06-02 2023-05-24 M Technique Co., Ltd. Oxide particles with controlled color characteristics, and coating composition or film-like composition containing said oxide particles
EP4183482A1 (en) 2016-06-02 2023-05-24 M Technique Co., Ltd. Oxide particles with controlled color characteristics, and coating composition or film-like composition containing said oxide particles
WO2018066717A1 (en) 2016-10-07 2018-04-12 エム・テクニック株式会社 Production method for organic pigment composition, coating film production method, and method for evaluating brightness of coating film
US11613693B2 (en) 2016-10-07 2023-03-28 M. Technique Co., Ltd. Method of producing organic pigment composition, method of producing coating film, and method of evaluating luminance of coating film
WO2018084153A1 (en) 2016-11-04 2018-05-11 エム・テクニック株式会社 Pigment composition for green filter and method for producing same
US11180658B2 (en) 2016-11-04 2021-11-23 M. Technique Co., Ltd. Pigment composition for green filter and production method thereof
US11591239B2 (en) 2017-02-14 2023-02-28 M. Technique Co., Ltd. Silicon doped metal oxide particles, and composition for UV absorption comprising silicon doped metal oxide particles
WO2018150477A1 (en) 2017-02-14 2018-08-23 エム・テクニック株式会社 Silicon-doped metal oxide particles, and uv-absorbing composition containing silicon-doped metal oxide particles
JP2023507713A (en) * 2019-11-27 2023-02-27 スマートダイリヴァリー ゲーエムベーハー REACTOR AND METHOD FOR MANUFACTURING FORMULATIONS
WO2022202489A1 (en) * 2021-03-26 2022-09-29 月島機械株式会社 Crystallization device, crystallization system, and crystallization method
WO2022215238A1 (en) 2021-04-08 2022-10-13 エム・テクニック株式会社 Silicon-compound-coated metal magnesium particles
WO2022230420A1 (en) * 2021-04-28 2022-11-03 月島機械株式会社 Crystallization method, crystallization device, and crystallization system
JP2022170211A (en) * 2021-04-28 2022-11-10 月島機械株式会社 Crystallization method, crystallization device and crystallization system
JP7214782B2 (en) 2021-04-28 2023-01-30 月島機械株式会社 Crystallization method, crystallizer, and crystallizer system
WO2023218617A1 (en) 2022-05-12 2023-11-16 エム・テクニック株式会社 Single-crystal spherical silicon nanoparticles
WO2023218673A1 (en) 2022-05-12 2023-11-16 エム・テクニック株式会社 Manufacturing method for single crystal spherical silicon nanoparticles

Also Published As

Publication number Publication date
JP5648986B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648986B2 (en) Fluid processing apparatus and fluid processing method
KR101482057B1 (en) Liquid treating apparatus, and treating method
JP4407177B2 (en) Reaction method using microreactor
US8636974B2 (en) Titanium dioxide superfine particles and method for producing the same
US11439973B2 (en) Immediately-before-stirring-type fluid processing device and processing method
US20060286015A1 (en) Methods of operating surface reactors and reactors employing such methods
JP2006341232A (en) Fluid treatment apparatus and fluid treatment method
KR20120090935A (en) Tubular flow reactor
JP2007252979A (en) Method for manufacturing compound by micro-reactor, its micro-reactor and distributor for micro-reactor
KR101912136B1 (en) Method for increasing production of fine particles using forced thin-film fluid treatment device
EP2716352A1 (en) Microbubble-generating device, microbubble-generating method, and gas-liquid reaction method using same
JP6975987B2 (en) Forced thin film flow reactor and its operation method
WO2010061430A1 (en) Fluid treatment equipment and treatment method
JP4958298B2 (en) Fluid processing equipment
JP2007254176A (en) Method for manufacturing fine particle, static mixer used for manufacturing fine particle and method for mixing plurality of fluids by use of static mixer
US20070074773A1 (en) Fluidic device
KR101912138B1 (en) Method for preventing adhesion of processed object using forced thin-film fluid processing device
KR101171333B1 (en) Vortices reaction apparatus using inclined cylinder
JP5821071B2 (en) Fluid processing apparatus and processing method
JP2007326066A (en) Reaction apparatus
JP4459246B2 (en) Micro mixer
JP6074649B2 (en) Fluid processing apparatus and fluid processing method provided with stable discharge mechanism of fluid to be processed
JP4933464B2 (en) Microreactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130618

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5648986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250