WO2023281648A1 - 遠隔操作システム - Google Patents

遠隔操作システム Download PDF

Info

Publication number
WO2023281648A1
WO2023281648A1 PCT/JP2021/025584 JP2021025584W WO2023281648A1 WO 2023281648 A1 WO2023281648 A1 WO 2023281648A1 JP 2021025584 W JP2021025584 W JP 2021025584W WO 2023281648 A1 WO2023281648 A1 WO 2023281648A1
Authority
WO
WIPO (PCT)
Prior art keywords
haptic
target
remote control
marker
information
Prior art date
Application number
PCT/JP2021/025584
Other languages
English (en)
French (fr)
Inventor
正樹 春名
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/025584 priority Critical patent/WO2023281648A1/ja
Priority to CN202180100061.3A priority patent/CN117580689A/zh
Priority to JP2022508872A priority patent/JP7109699B1/ja
Priority to EP21949282.4A priority patent/EP4368351A4/en
Publication of WO2023281648A1 publication Critical patent/WO2023281648A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • B25J13/025Hand grip control means comprising haptic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40122Manipulate virtual object, for trajectory planning of real object, haptic display
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40553Haptic object recognition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40619Haptic, combination of tactile and proprioceptive sensing

Definitions

  • the present disclosure relates to a remote control system for operating an edge device by a person remote from the edge device.
  • Patent Document 1 discloses a motion detection device that detects the motion of an operator's finger for remotely controlling an articulated robot.
  • a remote control system in which an operator operates an edge device by wire.
  • a conventional remote control system contributes to improving the operator's operability and realism by transmitting haptic information in the activity environment of the edge device to the operator.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a remote control system that avoids enlargement and complication of the operation device.
  • the remote control system includes an edge device that contacts a target, an operator operation for operating the edge device, and motion transmission corresponding to the operator operation.
  • a motion control transmission device for outputting information to the edge device and a visual display device for displaying images of the target and the edge device.
  • the edge device includes a haptic sensor that detects a haptic sense of a target, and a force that converts the haptic sense detected by the haptic sensor into a signal specifying the intensity of light corresponding to the magnitude of the detected haptic sense. It has a haptic light transducer and a light intensity controlled light emitter that emits light of an intensity corresponding to the signal obtained by the haptic light transducer.
  • the remote control system according to the present disclosure has the effect that it is possible to avoid the operation device from becoming large and complicated.
  • FIG. 1 shows a configuration of a remote control system according to Embodiment 1;
  • FIG. 1 shows an operator, a visual presentation device, and an exercise operation transmission device according to Embodiment 1.
  • FIG. 1 is a perspective view showing an edge device, an imaging device, and a target according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing imaging information provided to the visual presentation device in a state where the end effector of the edge device of the remote control system according to Embodiment 1 is not in contact with the target;
  • FIG. 4 is a diagram showing imaging information provided to the visual presentation device in a state where the end effector of the edge device of the remote control system according to Embodiment 1 is in contact with the target;
  • FIG. 11 is a diagram showing functions of a visual-based sensory transmission device included in a remote control system according to Embodiment 3;
  • FIG. 11 is a diagram showing image pickup information output from an image pickup device in a state where an end effector of an edge device of a remote control system according to Embodiment 3 is not in contact with a target;
  • FIG. 11 is a diagram showing image pickup information output from an image pickup device in a state where an end effector of an edge device of a remote control system according to Embodiment 3 is in contact with a target;
  • FIG. 11 is a diagram showing functions of a visual-based sensory transmission device included in a remote control system according to Embodiment 3;
  • FIG. 11 is a diagram showing image pickup information output from an image pickup device in a state where an end effector of an edge device of a remote control system according to Embodiment 3 is not in contact with a target;
  • FIG. 11 is a diagram showing image pickup information output from an image pickup device in a state where an
  • FIG. 12 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the third embodiment is in contact with the target;
  • FIG. 10 is a diagram showing functions of a visual-based sensory transmission device included in a remote control system according to Embodiment 5;
  • FIG. 14 is a diagram showing imaging information output from an imaging device in a state in which an end effector of an edge device of a remote control system according to Embodiment 5 is not in contact with a target;
  • FIG. 14 is a diagram showing a visual-based sensory transmission video output from the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to Embodiment 5 is not in contact with the target;
  • FIG. 11 is a diagram showing functions of a visual-based sensory transmission device included in a remote control system according to Embodiment 6;
  • FIG. 12 is a perspective view showing an edge device and an imaging device of a remote control system according to Embodiment 6, and a target that is an activity environment of the edge device;
  • FIG. 14 is a diagram showing image pickup information output from an image pickup device in a state where the end effector of the edge device of the remote control system according to Embodiment 6 is not in contact with the target and the end effector is not shielded by the target; Vision-based sensations that are outputs of the vision-based sensory transmission device when the end effector of the edge device of the remote control system according to Embodiment 6 is not in contact with the target and the end effector is not shielded by the target.
  • FIG. 14 is a diagram showing imaging information output from an imaging device in a state in which the end effector of the edge device of the remote control system according to Embodiment 6 is not in contact with the target and the end effector is shielded by the target; Vision-based sensations that are outputs of the vision-based sensory transmission device in a state in which the end effector of the edge device of the remote control system according to Embodiment 6 is not in contact with the target and the end effector is shielded by the target.
  • FIG. 12 is a diagram showing imaging information output from an imaging device in a state in which the end effector of the edge device of the remote control system according to Embodiment 6 is in contact with the target and the end effector is shielded by the target;
  • Visually-based sensory transmission that is the output of the visually-based sensory transmission device in a state in which the end effector of the edge device of the remote control system according to Embodiment 6 is in contact with the target and the end effector is shielded by the target.
  • Diagram showing video FIG. 12 is a diagram showing functions of a visual-based sensory transmission device included in a remote control system according to Embodiment 7; FIG.
  • FIG. 14 is a diagram showing functions of a visual-based sensory transmission device included in the remote control system according to the eighth embodiment; The figure which shows the structure of the remote control system which concerns on Embodiment 9.
  • FIG. 21 is a diagram showing image pickup information output from an image pickup device in a state where an end effector of an edge device of a remote control system according to Embodiment 9 is not in contact with a target;
  • FIG. 21 is a diagram showing image pickup information output from an image pickup device in a state where an end effector of an edge device of a remote control system according to Embodiment 9 is not in contact with a target;
  • FIG. 21 is a diagram showing image pickup information output from an image pickup device in a state where an end effector of an edge device of a remote control system according to Embodiment 9 is not in contact with a target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the ninth embodiment is not in contact with the target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the ninth embodiment is not in contact with the target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the ninth embodiment is not in contact with the target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the ninth embodiment is in contact with the target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the ninth embodiment is in contact with the target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the ninth embodiment is in contact with the target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the ninth embodiment is in contact with the target;
  • FIG. 22 is a diagram showing imaging information that is an output of an imaging device in a state where the tool of the edge device of the remote control system according to Embodiment 10 is not in contact with the target;
  • FIG. 20 is a diagram showing imaging information provided to a visual presentation device in a state in which a tool possessed by an edge device of a remote control system according to Embodiment 10 is in contact with a target;
  • FIG. 11 shows a configuration of a remote control system according to an eleventh embodiment
  • FIG. 22 is a diagram showing imaging information that is an output of an imaging device in a state where the tool of the edge device of the remote control system according to the eleventh embodiment is not in contact with the target
  • FIG. 22 is a diagram showing imaging information output from an imaging device in a state where a tool of an edge device of a remote control system according to Embodiment 11 is in contact with a target
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the tool of the edge device of the remote control system according to the eleventh embodiment is not in contact with the target
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is the output of the visual-based sensory transmission device in a state where the tool of the edge device of the remote control system according to the eleventh embodiment is in contact with the target;
  • FIG. 123 is a diagram showing imaging information output from an imaging device in a state where a tool of an edge device of a remote control system according to Embodiment 12 is not in contact with a target;
  • FIG. 123 is a diagram showing imaging information output from an imaging device in a state where a tool of an edge device of a remote control system according to Embodiment 12 is not in contact with a target;
  • FIG. 123 is a diagram showing imaging information output from an imaging device in a state where a tool of an edge device of a remote control system according to Embodiment 12 is not in contact with a target;
  • FIG. 123 is a diagram showing a visual-based sensory transmission image that is the output of the visual-based sensory transmission device in a state where the tool of the edge device of the remote control system according to the twelfth embodiment is not in contact with the target;
  • FIG. 123 is a diagram showing a visual-based sensory transmission image that is the output of the visual-based sensory transmission device in a state where the tool of the edge device of the remote control system according to the twelfth embodiment is not in contact with the target;
  • FIG. 123 is a diagram showing a visual-based sensory transmission image that is the output of the visual-based sensory transmission device in a state where the tool of the edge device of the remote control system according to the twelfth embodiment is not in contact with the target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of a visual-based sensory transmission device in a state where a tool of an edge device of a remote control system according to Embodiment 12 is in contact with a target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of a visual-based sensory transmission device in a state where a tool of an edge device of a remote control system according to Embodiment 12 is in contact with a target;
  • FIG. 22 is a diagram showing a visual-based sensory transmission image that is an output of a visual-based sensory transmission device in a state where a tool of an edge device of a remote control system according to Embodiment 12 is in contact with a target;
  • FIG. 13 shows a configuration of a remote control system according to a thirteenth embodiment;
  • FIG. 22 is a diagram showing functions of a vision-based sensory transmission device included in the remote control system according to the thirteenth embodiment;
  • FIG. 122 is a diagram showing imaging information that is an output of an imaging device in a state where a tool possessed by an edge device of the remote control system according to the thirteenth embodiment is in contact with the target;
  • FIG. 142 is a diagram showing a visual-based sensory transmission image that is the output of the visual-based sensory transmission device in a state where the tool of the edge device of the remote control system according to the thirteenth embodiment is in contact with the target;
  • FIG. 22 is a diagram showing imaging information that is an output of an imaging device in a state where an end effector of an edge device of a remote control system according to Embodiment 14 is in contact with a target;
  • FIG. 123 is a diagram showing a visual-based sensory transmission image that is an output of the visual-based sensory transmission device in a state where the end effector of the edge device of the remote control system according to the fourteenth embodiment is in contact with the target;
  • FIG. 22 is a diagram showing imaging information that is an output of an imaging device in a state where a tool possessed by an edge device of a remote control system according to Embodiment 15 is in contact with a target;
  • FIG. 20 is a diagram showing a vision-based sensory transmission image that is an output of a vision-based sensory transmission device in a state where a tool of an edge device of a remote control system according to Embodiment 15 is in contact with a target;
  • FIG. 4 is a diagram showing a processor when some of the plurality of components of the remote operation system according to Embodiment 1 are realized by the processor;
  • FIG. 4 is a diagram showing a processing circuit when some of the plurality of components of the remote control system according to Embodiment 1 are realized by the processing circuit;
  • FIG. 1 is a diagram showing the configuration of a remote control system 1 according to Embodiment 1.
  • the remote control system 1 has an exercise operation transmission device 1200 that receives an operator operation 1000a, which is an exercise operation of an operator 1000, as an input. Also shown in FIG. 1 is an operator 1000 .
  • Exercise operation transmission device 1200 outputs exercise transmission information 1200a corresponding to operator operation 1000a.
  • the remote control system 1 further has an edge device 2000 that contacts the target 4000 .
  • the operator operation 1000 a is an instruction for operating the edge device 2000 .
  • a target 4000 is also shown in FIG.
  • the exercise operation transmission device 1200 receives an operator operation 1000 a for operating the edge device 2000 and outputs exercise transmission information 1200 a corresponding to the operator operation 1000 a to the edge device 2000 .
  • the edge device 2000 is operated by exercise transmission information 1200 a output from the exercise operation transmission device 1200 .
  • the target 4000 exerts an interaction 4000a with the edge device 2000 when the edge device 2000 operates.
  • Target 4000 is the active environment of edge device 2000 .
  • the remote control system 1 further has an imaging device 3000 that images the target 4000 and the edge device 2000 .
  • the imaging device 3000 outputs imaging information 3000a indicating imaging results.
  • the remote control system 1 further includes a visual presentation device 1100 that receives imaging information 3000a output from the imaging device 3000 and provides the operator 1000 with image information 1100a corresponding to the imaging information 3000a. In other words, the visual presentation device 1100 displays images of the target 4000 and edge device 2000 .
  • the edge device 2000 has an end effector 2100 intended for interaction with a target 4000 and a haptic sense device 2300 attached to the end effector 2100 for detecting a haptic sense with respect to the target 4000 .
  • the haptic sense device 2300 outputs haptic sense information 2300a indicating the detected haptic sense.
  • the edge device 2000 further includes a haptic optical converter 2700 that converts the haptic information 2300a output from the haptic sensing device 2300 into a light intensity signal 2700a.
  • the haptic light converter 2700 converts the haptic sense detected by the haptic sense device 2300 into a light intensity signal 2700a that specifies the intensity of light corresponding to the magnitude of the sensed haptic sense.
  • the edge device 2000 further comprises a light intensity controlled light emitter 2600 attached to the end effector 2100 and emitting light at an intensity corresponding to the light intensity signal 2700 a obtained by the haptic light transducer 2700 .
  • the intensity of light emitted by light intensity controlled light emitter 2600 is controlled by light intensity signal 2700a.
  • FIG. 2 is a diagram showing the operator 1000, the visual presentation device 1100, and the movement operation transmission device 1200 according to the first embodiment.
  • FIG. 3 is a perspective view showing the edge device 2000, imaging device 3000 and target 4000 according to the first embodiment.
  • FIG. 4 is a diagram showing imaging information 3000a provided to the visual presentation device 1100 when the end effector 2100 of the edge device 2000 of the remote control system 1 according to Embodiment 1 is not in contact with the target 4000.
  • FIG. The light intensity controlled light emitter 2600 is not illuminated.
  • FIG. 5 is a diagram showing imaging information 3000a provided to the visual presentation device 1100 while the end effector 2100 of the edge device 2000 of the remote control system 1 according to Embodiment 1 is in contact with the target 4000.
  • FIG. The light intensity control type light emitter 2600 is illuminated corresponding to the state of contact detected by the haptic detection device 2300 .
  • the remote control system 1 may further have a temperature sensor arranged in parallel with the haptic sensing device 2300 .
  • the remote control system 1 may have a temperature sensor instead of the haptic sensing device 2300 .
  • a current proportional to the magnitude of the haptic sense sensed by the haptic sense device 2300 is attached to the end effector 2100 .
  • the light intensity controlled light emitter 2600 is lit by supplying current.
  • the imaging device 3000 images the end effector 2100 and the target 4000, and provides the visual presentation device 1100 with imaging information 3000a indicating the result of imaging.
  • the visual presentation device 1100 displays video information 1100a corresponding to the imaging information 3000a.
  • the operator 1000 recognizes the contact between the end effector 2100 and the target 4000 based on the image information 1100a displayed by the visual presentation device 1100, and operates the exercise operation transmission device 1200.
  • the operation interface of the operator 1000 does not require a drive unit, it is possible to avoid the increase in size and complexity of the operation device.
  • the operator 1000 to whom the haptic information 2300a is presented in the form of an image recognizes the haptic sensation generated by the edge device 2000 in the brain so as not to contradict the presented video, so that the operator 1000 must perform an operation that does not cause discomfort. can be done. Since the operator 1000 can obtain the haptic information 2300a by gazing at the contact point area of the visual presentation device 1100, the operator can concentrate on the work.
  • the remote control system 1 enables the operator 1000 to detect the interaction 4000a between the end effector 2100 and the target 4000 from visual information. Since the remote control system 1 can visually transmit the haptic information 2300a to the operator 1000, the operation interface of the operator 1000 does not require a drive unit. Therefore, the remote control system 1 can avoid the enlargement and complication of the operation device. By concentrating on the visual presentation device 1100, the operator 1000 can obtain the haptic information 2300a that does not cause a sense of discomfort, and therefore can obtain relatively high operability. When a temperature sensor is arranged, the operator 1000 can obtain temperature information that does not make him feel uncomfortable.
  • Embodiment 2 The configuration of the remote control system according to the second embodiment is the same as the configuration of the remote control system 1 according to the first embodiment. However, the function of the light intensity controlled light emitter 2600 differs between the second embodiment and the first embodiment. In the second embodiment, the light intensity control type light emitter 2600 does not emit light by changing the light intensity, but expresses the contact state of the haptic detection device 2300 with the target 4000 by changing the hue and the lighting frequency. to emit light.
  • the remote control system according to the second embodiment has the light intensity control type light emitter 2600 having a function different from that of the first embodiment, the contact state of the haptic sensor 2300 with the target 4000 is temperature and tactile sensation. , or both can be communicated to the operator 1000 .
  • FIG. 6 is a diagram showing the configuration of a remote control system 3 according to Embodiment 3.
  • the remote control system 3 has an exercise operation transmission device 1200 that receives an operator operation 1000a, which is an exercise operation of the operator 1000, as an input.
  • An operator 1000 is also shown in FIG.
  • Exercise operation transmission device 1200 outputs exercise transmission information 1200a corresponding to operator operation 1000a.
  • the remote control system 3 further has an edge device 2000 that contacts the target 4000 .
  • the operator operation 1000 a is an instruction for operating the edge device 2000 .
  • a target 4000 is also shown in FIG.
  • the exercise operation transmission device 1200 receives an operator operation 1000 a for operating the edge device 2000 and outputs exercise transmission information 1200 a corresponding to the operator operation 1000 a to the edge device 2000 .
  • the edge device 2000 is operated by exercise transmission information 1200 a output from the exercise operation transmission device 1200 .
  • the target 4000 exerts an interaction 4000a with the edge device 2000 when the edge device 2000 operates.
  • the remote control system 3 further has an imaging device 3000 that images the edge device 2000 and the target 4000 .
  • the imaging device 3000 outputs imaging information 3000a indicating imaging results.
  • the remote control system 3 receives imaging information 3000a output from the imaging device 3000, marker information 3300a output from the edge device 2000, and haptic information 2300a output from the edge device 2000, and generates a vision-based sensory transfer image 3200a. It further has a visual-based sensory transfer device 3200 for generating.
  • the remote control system 3 further has a visual presentation device 1100 that receives a vision-based sensory transfer image 3200a as an input and provides the operator 1000 with image information 1100a corresponding to the vision-based sensory transfer image 3200a.
  • the marker information 3300a is, for example, a color, a shape, or a feature point that can be image-extracted from the imaging information 3000a of the passive marker 2500, or information combining two or more of them.
  • the marker information 3300a is a combination of red color information and circle shape information.
  • the edge device 2000 has an end effector 2100 intended for interaction with a target 4000 and a haptic sense device 2300 attached to the end effector 2100 for detecting a haptic sense with respect to the target 4000 .
  • the haptic sense device 2300 outputs haptic sense information 2300a indicating the detected haptic sense.
  • the edge device 2000 further comprises a passive marker 2500 having markers that are spatially identifiable with the imaging device 3000 .
  • the passive marker 2500 is an AR (Augmented Reality) marker that can be extracted from the imaging information 3000a captured by the imaging device 3000, or a member having a feature point.
  • the passive marker 2500 outputs marker information 3300a.
  • FIG. 7 is a diagram showing the functions of the vision-based sensory transmission device 3200 included in the remote control system 3 according to the third embodiment.
  • the vision-based sensory transmission device 3200 has a marker point identification function 3251 that uses the marker information 3300a to identify the position of the passive marker 2500 based on the imaging information 3000a to generate marker point identification information 3251a.
  • the vision-based sensory transmission device 3200 further has a visual haptic image generation function 3250 that generates visual haptic image information 3250a based on the haptic information 2300a.
  • the visual haptic image generation function 3250 is a function for generating visual haptic image information 3250a representing an image corresponding to the haptic information 2300a representing the haptic sense detected by the haptic sense device 2300.
  • the visual-based sensory transfer device 3200 further has a superimposing function 3252 that generates a visual-based sensory transfer image 3200a based on the visual haptic image information 3250a and the marker point identification information 3251a.
  • the superimposition function 3252 combines marker point identification information 3251 a obtained by the marker point identification function 3251 , visual haptic image information 3250 a obtained by the visual haptic image generation function 3250 , and imaging obtained by the imaging device 3000 . This is a function of superimposing the information 3000a.
  • FIG. 8 is a diagram showing imaging information 3000a output from the imaging device 3000 when the end effector 2100 of the edge device 2000 of the remote control system 3 according to Embodiment 3 is not in contact with the target 4000.
  • FIG. Passive marker 2500 is detected as marker point identification information 3251a.
  • FIG. 9 is a diagram showing imaging information 3000a output from the imaging device 3000 when the end effector 2100 of the edge device 2000 of the remote control system 3 according to Embodiment 3 is in contact with the target 4000.
  • Passive marker 2500 is detected as marker point identification information 3251a
  • haptic sense device 2300 is detecting haptic sense.
  • FIG. 10 shows a visual-based sensory transmission image 3200a that is the output of the visual-based sensory transmission device 3200 in a state in which the end effector 2100 of the edge device 2000 of the remote control system 3 according to Embodiment 3 is in contact with the target 4000. It is a figure which shows.
  • a superimposed image 3201 representing the haptic information 2300a is displayed at the position where the passive marker 2500 is detected as the marker point identification information 3251a in FIG.
  • the remote control system 3 may further have a temperature sensor arranged in parallel with the haptic sensing device 2300 .
  • the remote control system 3 may have a temperature sensor instead of the haptic sensing device 2300 .
  • the remote control system 3 may recognize the shape of the fingertip of the end effector 2100 and display the superimposed image 3201 on the fingertip.
  • the remote control system 3 enables the operator 1000 to detect the interaction 4000a between the end effector 2100 and the target 4000 from visual information.
  • the remote control system 3 can avoid enlargement and complication of the control device.
  • the operator 1000 can obtain the haptic information 2300a that does not cause a sense of discomfort, and therefore can obtain relatively high operability.
  • the operator 1000 can obtain temperature information that does not make him feel uncomfortable. Since the remote control system 3 can superimpose a visual haptic image intended by the designer on the contact point, it is possible to provide an image that matches the operator 1000 or the scene.
  • Embodiment 4 The configuration of the remote control system according to the fourth embodiment is the same as the configuration of the remote control system 3 according to the third embodiment. However, the superimposed image 3201 differs between the fourth embodiment and the third embodiment. In Embodiment 3, the superimposed image 3201 indicates the intensity of the lighting image. In Embodiment 4, the superimposed image 3201 does not indicate the intensity of the lighting image, but expresses the contact state of the haptic detection device 2300 with the target 4000 by changes in hue and lighting frequency.
  • the remote control system according to Embodiment 4 can transmit one or both of temperature and tactile sensation to the operator 1000 as the state of contact with the target 4000 .
  • Embodiment 5 The configuration of the remote control system according to the fifth embodiment is the same as the configuration of the remote control system 3 according to the third embodiment. However, the functions of the visual-based sensory transmission device 3200 of the fifth embodiment are different from the functions of the visual-based sensory transmission device 3200 of the third embodiment. In Embodiment 5, differences from Embodiment 3 will be mainly described.
  • FIG. 11 is a diagram showing the functions of the vision-based sensory transmission device 3200 that the remote control system according to Embodiment 5 has.
  • the vision-based sensory transmission device 3200 has a marker point identification function 3251 that uses the marker information 3300a to identify the position of the passive marker 2500 based on the imaging information 3000a to generate marker point identification information 3251a.
  • the vision-based sensory transmission device 3200 further has a visual haptic image generation function 3250 that generates visual haptic image information 3250a based on the haptic information 2300a.
  • the vision-based sensory transmission device 3200 further has a marker filter function 3253 that generates marker filter information 3253a for filtering the detected passive markers 2500.
  • the visual-based sensory transfer device 3200 further has a superimposing function 3252 that generates a visual-based sensory transfer image 3200a based on the visual haptic image information 3250a, the marker point identification information 3251a, and the marker filter information 3253a.
  • the remote control system according to Embodiment 5 performs filtering to reduce visual load.
  • the remote control system according to Embodiment 5 does not display passive marker 2500 depending on conditions.
  • FIG. 12 is a diagram showing imaging information 3000a output from the imaging device 3000 when the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 5 is not in contact with the target 4000.
  • FIG. Passive marker 2500 is detected as marker point identification information 3251a.
  • FIG. 13 shows a visual-based sensory transmission image 3200a that is the output of the visual-based sensory transmission device 3200 when the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 5 is not in contact with the target 4000.
  • FIG. 4 is a diagram showing; A superimposed image 3201 representing marker filter information 3253a, which is filtering information, is displayed at the position where the passive marker 2500 is detected as the marker point identification information 3251a in the visual-based sensory transmission image 3200a.
  • the remote control system according to Embodiment 5 enables the operator 1000 to detect the interaction 4000a between the end effector 2100 and the target 4000 from visual information.
  • the remote control system according to Embodiment 5 can avoid the increase in size and complexity of the control device. By concentrating on the visual presentation device 1100, the operator 1000 can obtain the haptic information 2300a that does not cause a sense of discomfort, and therefore can obtain relatively high operability.
  • the image of the passive marker 2500 can be replaced with an image preset by the designer.
  • the remote control system according to Embodiment 5 can reduce the recognition load on the operator 1000 .
  • Embodiment 6 The configuration of the remote control system according to the sixth embodiment is the same as the configuration of the remote control system 3 according to the third embodiment. However, the functions of the visual-based sensory transmission device 3200 of the sixth embodiment are different from the functions of the visual-based sensory transmission device 3200 of the third embodiment. In Embodiment 6, differences from Embodiment 3 will be mainly described.
  • FIG. 14 is a diagram showing the functions of the vision-based sensory transmission device 3200 included in the remote control system according to the sixth embodiment.
  • the vision-based sensory transmission device 3200 has a marker point identification function 3251 that uses the marker information 3300a to identify the position of the passive marker 2500 based on the imaging information 3000a to generate marker point identification information 3251a.
  • the vision-based sensory transmission device 3200 further has a visual haptic image generation function 3250 that generates visual haptic image information 3250a based on the haptic information 2300a.
  • the vision-based sensory transmission device 3200 further has a marker filter function 3253 that generates marker filter information 3253a for filtering the detected passive markers 2500.
  • the vision-based sensory transmission device 3200 further has a marker point estimation function 3254 that generates marker point estimation information 3254a based on the imaging information 3000a and the marker point identification information 3251a.
  • the marker point estimation function 3254 is used when the other passive marker 2500 is captured. This is a function of estimating the missing marker point based on the imaging information 3000a and the marker point identification information 3251a when it exists in the information 3000a.
  • the visual-based sensory transfer device 3200 includes a superimposing function 3252 that generates a visual-based sensory transfer image 3200a based on visual haptic video information 3250a, marker point identification information 3251a, marker filter information 3253a, and marker point estimation information 3254a. have more.
  • FIG. 15 is a perspective view showing the edge device 2000 and imaging device 3000 of the remote control system according to Embodiment 6, and the target 4000 which is the activity environment of the edge device 2000.
  • FIG. 15 is a perspective view showing the edge device 2000 and imaging device 3000 of the remote control system according to Embodiment 6, and the target 4000 which is the activity environment of the edge device 2000.
  • FIG. 16 shows the imaging apparatus 3000 in a state in which the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 6 is not in contact with the target 4000 and the end effector 2100 is not shielded by the target 4000.
  • Passive marker 2500 is detected as marker point identification information 3251a.
  • FIG. 17 shows the visual base sensation when the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 6 is not in contact with the target 4000 and the end effector 2100 is not blocked by the target 4000.
  • 3200a shows a visual-based sensory-transmitted image 3200a, which is the output of a communication device 3200.
  • FIG. In the visual-based sensory transfer image 3200a a superimposed image 3201 representing marker filter information 3253a, which is filtering information, is displayed at the position where the passive marker 2500 is detected as the marker point identification information 3251a in FIG.
  • FIG. 18 shows the imaging apparatus 3000 in a state in which the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 6 is not in contact with the target 4000 and the end effector 2100 is shielded by the target 4000.
  • a passive marker 2500 is detected as marker point identification information 3251a and marker point estimation information 3254a.
  • FIG. 19 shows a visual base sensation in a state in which the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 6 is not in contact with the target 4000 and the end effector 2100 is shielded by the target 4000.
  • 3200a shows a visual-based sensory-transmitted image 3200a, which is the output of a communication device 3200.
  • FIG. In the visual-based sensory transfer image 3200a a superimposed image 3201 that expresses the marker filter information 3253a, which is the filtering information, at the position where the passive marker 2500 is detected as the marker point identification information 3251a and the marker point estimation information 3254a in FIG. is displayed.
  • FIG. 20 shows the imaging device 3000 in a state in which the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 6 is in contact with the target 4000 and the end effector 2100 is shielded by the target 4000.
  • FIG. 10 is a diagram showing imaging information 3000a as an output; A passive marker 2500 is detected as marker point identification information 3251a and marker point estimation information 3254a.
  • FIG. 21 shows vision-based sensory transmission in a state in which the end effector 2100 of the edge device 2000 of the remote control system according to Embodiment 6 is in contact with the target 4000 and the end effector 2100 is shielded by the target 4000.
  • 3200a shows a visual-based sensory-transmitted video 3200a, which is the output of device 3200.
  • FIG. In the visual-based sensory transfer image 3200a a superimposed image 3201 representing the haptic information 2300a is displayed at the position where the passive marker 2500 is detected as the marker point identification information 3251a and the marker point estimation information 3254a in FIG. there is
  • the vision-based sensory transmission device 3200 stores the position of the blocked passive marker 2500 at the time when the passive marker 2500 is blocked by the marker point estimation function 3254, Marker point estimation information 3254a is derived by adding the vector that the marker point identification information 3251a of another passive marker 2500 that is not shielded has moved to the position of the shielded passive marker 2500 stored in the time that has elapsed since the time that was passed. do.
  • the remote control system according to Embodiment 6 enables the operator 1000 to detect the interaction 4000a between the end effector 2100 and the target 4000 from visual information.
  • the remote control system according to Embodiment 6 can avoid the increase in size and complexity of the control device. By concentrating on the visual presentation device 1100, the operator 1000 can obtain the haptic information 2300a that does not cause a sense of discomfort, and therefore can obtain relatively high operability.
  • the remote control system according to Embodiment 6 in a scene in which contact involving haptic sensation between edge device 2000 and target 4000 does not occur, the image of passive marker 2500 can be replaced with an image preset by the designer. It becomes possible. In other words, the remote control system according to Embodiment 6 can reduce the recognition load on the operator 1000 . Even when passive marker 2500 is hidden behind a shield, the point of hidden passive marker 2500 can be estimated, and the remote control system according to Embodiment 6 can improve operability for operator 1000 .
  • Embodiment 7 The configuration of the remote control system according to the seventh embodiment is the same as the configuration of the remote control system according to the sixth embodiment. However, the functions of the visual-based sensory transmission device 3200 of the seventh embodiment are different from the functions of the visual-based sensory transmission device 3200 of the sixth embodiment. In Embodiment 7, differences from Embodiment 6 will be mainly described.
  • FIG. 22 is a diagram showing functions of a vision-based sensory transmission device 3200 included in a remote control system according to Embodiment 7.
  • FIG. The vision-based sensory transmission device 3200 of Embodiment 7 has all the functions of the vision-based sensory transmission device 3200 of Embodiment 6, except for the marker filter function 3253 .
  • the image of the passive marker 2500 is displayed in advance by the designer. can be replaced with the video set to In Embodiment 7, although the effect of reducing the recognition load on the operator 1000 is not obtained, the effect of reducing the calculation load for simplifying the configuration of the remote control system is obtained.
  • Embodiment 8 The configuration of the remote control system according to the eighth embodiment is the same as the configuration of the remote control system 3 according to the third embodiment. However, the functions of the visual-based sensory transmission device 3200 of the eighth embodiment are different from the functions of the visual-based sensory transmission device 3200 of the third embodiment. In the eighth embodiment, differences from the third embodiment will be mainly described.
  • FIG. 23 is a diagram showing the functions of the vision-based sensory transmission device 3200 included in the remote control system according to the eighth embodiment.
  • the vision-based sensory transmission device 3200 has a marker point identification function 3251 that uses the marker information 3300a to identify the position of the passive marker 2500 based on the imaging information 3000a to generate marker point identification information 3251a.
  • the visual sense transmission device 3200 uses marker filter image selection information 3255b, which is image selection information effective as a marker filter, and image pattern selection information effective as a haptic image. It further has an image analysis function 3255 that generates certain haptic video pattern selection information 3255a. Furthermore, based on the imaging information 3000a, the image analysis function 3255 includes haptic image pattern selection information 3255a that selects a haptic image pattern that is easy for humans to recognize, and marker filter image that selects an image that is naturally familiar. This is a function for generating selection information 3255b.
  • the vision-based sensory transmission device 3200 further has a visual haptic image generation function 3250 that generates visual haptic image information 3250a based on the haptic information 2300a and haptic image pattern selection information 3255a.
  • the vision-based sensory transmission device 3200 further has a marker filter function 3253 that generates marker filter information 3253a based on the marker filter image selection information 3255b to filter the detected passive markers 2500.
  • the vision-based sensory transmission device 3200 further has a marker point estimation function 3254 that generates marker point estimation information 3254a based on the imaging information 3000a and the marker point identification information 3251a.
  • the visual-based sensory transfer device 3200 includes a superimposing function 3252 that generates a visual-based sensory transfer image 3200a based on visual haptic video information 3250a, marker point identification information 3251a, marker filter information 3253a, and marker point estimation information 3254a. have more.
  • the video selection criteria are set to the same color as the end effector for the filter video, and a color that stands out among the imaging information for the visual haptic video.
  • the remote control system according to Embodiment 8 enables the operator 1000 to detect the interaction 4000a between the end effector 2100 and the target 4000 from visual information.
  • the remote control system according to Embodiment 8 can avoid an increase in size and complexity of the control device. By concentrating on the visual presentation device 1100, the operator 1000 can obtain haptic information that does not cause a sense of discomfort, and thus can obtain relatively high operability.
  • the remote control system according to the eighth embodiment in a scene in which the edge device 2000 and the target 4000, which is the activity environment of the edge device 2000, do not contact each other with a haptic sensation, the image of the passive marker 2500 is displayed in advance by the designer. can be replaced with the video set to In other words, the remote control system according to the eighth embodiment can reduce the recognition load on the operator 1000 .
  • the remote control system according to the eighth embodiment can improve the operability of the operator 1000.
  • the remote control system according to the eighth embodiment can present a visual haptic image pattern that is easy for humans to perceive when haptic is detected, and the marker naturally fits in when haptic is not detected. Images can be presented, and operability for the operator 1000 can be improved.
  • FIG. 24 is a diagram showing the configuration of a remote control system 9 according to the ninth embodiment.
  • the remote control system 9 includes a motion control transmission device 1200, an edge device 2000, an imaging device 3000, a vision-based sensory transmission device 3200, and a visual presentation device included in the remote control system according to any one of Embodiments 3 to 8. 1100.
  • passive marker 2500 possessed by edge device 2000 is changed to active marker 2400 .
  • Operator 1000 and target 4000 are also shown in FIG.
  • the remote control system 9 further has an active marker control device 3300 that receives imaging information 3000a and generates an active marker control signal 3300b detectable by the imaging device 3000 and marker information 3300a. Active marker control signal 3300 b is output to active marker 2400 . The marker information 3300 a is output to the vision-based sensory transfer device 3200 .
  • FIGS. 25, 26, and 27 are an imaging output of the imaging device 3000 in a state in which the end effector 2100 of the edge device 2000 of the remote control system 9 according to Embodiment 9 is not in contact with the target 4000.
  • FIG. 30 is a diagram showing information 3000a;
  • the active marker control device 3300 receives imaging information 3000a, generates a color, shape, or color and shape that can be easily detected from the imaging device 3000, and outputs an active marker control signal 3300b to the active marker 2400.
  • the active marker 2400 is illuminated in "blue” color which is not included in the imaging information 3000a.
  • the active marker 2400 is illuminated in a “yellow” color that is not included in the imaging information 3000a.
  • the active marker 2400 is illuminated with a "green” color that is not included in the imaging information 3000a.
  • FIGS. 28, 29 and 30 shows the output of the vision-based sensory transmission device 3200 when the end effector 2100 of the edge device 2000 of the remote control system 9 according to Embodiment 9 is not in contact with the target 4000.
  • 3200a is a visual-based sensory transfer video 3200a.
  • Visually-based sensory transfer images 3200a in each of FIGS. 28, 29, and 30 superimpose a fixed superimposed image 3201 on the position of the active marker 2400 that changes according to the imaging information 3000a.
  • the visual-based sensory transmission image 3200a presented to the operator 1000 shows that the information of the change of the active marker 2400 is blocked.
  • FIGS. 31, 32, and 33 shows the output of the vision-based sensory transmission device 3200 when the end effector 2100 of the edge device 2000 of the remote control system 9 according to Embodiment 9 is in contact with the target 4000.
  • 3200a is a visual-based sensory transfer video 3200a.
  • the operator 1000 is presented with a superimposed image 3201 that matches the state of contact between the haptic sensing device 2300 and the target 4000 by means of the visual-based sensory transfer image 3200a in each of FIGS.
  • the remote control system 9 can identify the position of the active marker 2400 based on the imaging information 3000a.
  • the effect of making it possible is obtained.
  • the remote control system 9 can improve detection stability of the active marker 2400 .
  • the remote control system 9 superimposes a fixed image on the position of the active marker 2400 identified based on the imaging information 3000a, thereby blocking transmission of information about image changes that are unnecessary for the operator 1000 to the operator 1000. As a result, the range of use of the remote control system 9 can be expanded without hindering the operability of the operator 1000 .
  • FIG. 34 is a diagram showing the configuration of the remote control system 10 according to the tenth embodiment.
  • the remote control system 10 has all the components of the remote control system 1 according to the first embodiment.
  • the edge device 2000 of the remote control system 10 also has a tool 2200 attached to the end effector 2100 .
  • the haptic sensing device 2300 and the light intensity controlled light emitter 2600 are attached to the tip portion that contacts the target 4000 .
  • FIG. 35 is a diagram showing imaging information 3000a output from the imaging device 3000 when the tool 2200 of the edge device 2000 of the remote control system 10 according to Embodiment 10 is not in contact with the target 4000.
  • FIG. The haptic sensing device 2300 and the light intensity controlled light emitter 2600 are placed at the point of contact of the tool 2200 with the target 4000 .
  • the light intensity controlled light emitter 2600 is not illuminated.
  • FIG. 36 is a diagram showing imaging information 3000a provided to the visual presentation device 1100 while the tool 2200 of the edge device 2000 of the remote control system 10 according to Embodiment 10 is in contact with the target 4000.
  • FIG. The light intensity control type light emitter 2600 lights up corresponding to the state of contact between the haptic sensing device 2300 and the target 4000 .
  • the remote control system 10 enables the operator 1000 to detect the interaction 4000a of the tool 2200 with the target 4000 from visual information.
  • the remote control system 10 can avoid enlargement and complication of the control device.
  • the operator 1000 can obtain the haptic information 2300a that does not cause a sense of discomfort, and therefore can obtain relatively high operability.
  • the light intensity control type light emitter 2600 does not emit light by changing the light intensity, but expresses the contact state of the haptic sensor 2300 with the target 4000 by changing the hue and the lighting frequency. may emit light.
  • FIG. 37 is a diagram showing the configuration of the remote control system 11 according to the eleventh embodiment.
  • the remote control system 11 has all the components of any of the remote control systems according to the third to eighth embodiments.
  • the edge device 2000 of the remote control system 11 further has a tool 2200 attached to the end effector 2100 .
  • the haptic sensing device 2300 and the passive marker 2500 are attached to the tip that contacts the target 4000 .
  • FIG. 38 is a diagram showing imaging information 3000a output from the imaging device 3000 when the tool 2200 of the edge device 2000 of the remote control system 11 according to the eleventh embodiment is not in contact with the target 4000.
  • FIG. Passive marker 2500 is detected as marker point identification information 3251a.
  • FIG. 39 is a diagram showing imaging information 3000a output from the imaging device 3000 when the tool 2200 of the edge device 2000 of the remote control system 11 according to the eleventh embodiment is in contact with the target 4000.
  • Passive marker 2500 is detected as marker point identification information 3251a
  • haptic sense device 2300 is detecting haptic sense.
  • FIG. 40 shows a visual-based sensory transmission image 3200a that is the output of the visual-based sensory transmission device 3200 when the tool 2200 of the edge device 2000 of the remote control system 11 according to Embodiment 11 is not in contact with the target 4000.
  • FIG. 4 is a diagram showing; In FIG. 38, a superimposed image 3201 representing marker filter information 3253a, which is filtering information, is displayed at the position where the passive marker 2500 is detected as the marker point identification information 3251a.
  • FIG. 41 shows a visual-based sensory transmission image 3200a that is the output of the visual-based sensory transmission device 3200 in a state where the tool 2200 of the edge device 2000 of the remote control system 11 according to the eleventh embodiment is in contact with the target 4000.
  • FIG. 4 is a diagram showing; A superimposed image 3201 representing the haptic information 2300a is displayed at the position where the passive marker 2500 is detected as the marker point identification information 3251a in FIG.
  • the remote control system 11 enables the operator 1000 to detect the interaction 4000a of the tool 2200 with the target 4000 from visual information.
  • the remote control system 11 can avoid enlargement and complication of the operation device.
  • the operator 1000 can obtain the haptic information 2300a that does not cause a sense of discomfort, and therefore can obtain relatively high operability.
  • FIG. 42 is a diagram showing the configuration of the remote control system 12 according to the twelfth embodiment.
  • Remote operation system 12 is a system in which passive marker 2500 of remote operation system 11 according to Embodiment 11 is changed to active marker 2400 .
  • the haptic sensing device 2300 and the active marker 2400 are attached to the tip that contacts the target 4000 .
  • the remote control system 12 further has an active marker control device 3300 that receives imaging information 3000a and generates an active marker control signal 3300b detectable by the imaging device 3000 and marker information 3300a. Active marker control signal 3300 b is output to active marker 2400 . The marker information 3300 a is output to the vision-based sensory transfer device 3200 .
  • the active marker control device 3300 receives imaging information 3000 a , generates a color, shape, or color and shape that can be easily detected from the imaging device 3000 and outputs an active marker control signal 3300 b to the active marker 2400 .
  • the active marker 2400 is illuminated with a "blue" color that is not included in the imaging information 3000a.
  • the active marker 2400 is illuminated in a “yellow” color that is not included in the imaging information 3000a.
  • the active marker 2400 is illuminated with a "green” color that is not included in the imaging information 3000a.
  • FIGS. 46, 47 and 48 shows the output of the vision-based sensory transmission device 3200 when the tool 2200 of the edge device 2000 of the remote control system 12 according to Embodiment 12 is not in contact with the target 4000.
  • Fig. 32 shows a visual-based sensory transfer video 3200a; An image based on the imaging information 3000a changes from moment to moment. 46, 47 and 48, which are presented to the operator 1000 as a result, by superimposing a fixed superimposed image 3201 on the position of the active marker 2400 that changes according to the imaging information 3000a. , the information of changes in the active marker 2400 is blocked.
  • FIGS. 49, 50, and 51 shows the output of the vision-based sensory transmission device 3200 when the tool 2200 of the edge device 2000 of the remote control system 12 according to Embodiment 12 is in contact with the target 4000.
  • Fig. 32 shows a visual-based sensory transfer video 3200a; 49, 50 and 51, the operator 1000 is presented with a superimposed image 3201 that matches the state of contact between the haptic sensing device 2300 and the target 4000 in the visual-based sensory transfer image 3200a.
  • the remote control system 12 can stably identify the position of the active marker 2400 based on the imaging information 3000a.
  • the effect of becoming is obtained.
  • the remote control system 12 superimposes a fixed image on the position identified based on the imaging information 3000a, thereby making it possible for the operator 1000 to block unnecessary image change information, which hinders the operability of the operator 1000.
  • the range of use of the remote control system 12 can be expanded.
  • FIG. 52 is a diagram showing the configuration of the remote control system 13 according to the thirteenth embodiment.
  • the remote control system 13 is a system in which the motion transmission information 1200a is input to the vision-based sensory transmission device 3200 of the remote control system 12 according to the twelfth embodiment.
  • FIG. 53 is a diagram showing functions of a vision-based sensory transmission device 3200 included in the remote control system 13 according to the thirteenth embodiment.
  • the vision-based sensory transmission device 3200 has an edge device model storage unit 3400 that stores edge device model information 3400 a that is model information of the edge device 2000 .
  • the edge device model storage unit 3400 stores geometric information of points where the edge device 2000 contacts the target 4000 .
  • the edge device model storage unit 3400 is realized by a semiconductor memory.
  • Visual haptic image information 3250a is generated.
  • marker point identification information 3251a is a visual-based sensory transfer image 3200a.
  • marker filter information 3253a is a visual-based sensory transfer image 3200a.
  • marker point estimation information 3254a is a visual-based sensory transfer image 3200a.
  • FIG. 54 is a diagram showing imaging information 3000a output from the imaging device 3000 when the tool 2200 of the edge device 2000 of the remote control system 13 according to the thirteenth embodiment is in contact with the target 4000.
  • FIG. Tool 2200 has two active markers 2400 .
  • FIG. 55 shows a visual-based sensory transmission video 3200a that is the output of the visual-based sensory transmission device 3200 in a state where the tool 2200 of the edge device 2000 of the remote control system 13 according to the thirteenth embodiment is in contact with the target 4000.
  • FIG. 4 is a diagram showing; In the visual-based sensory transmission video 3200a, the position of the tip of the tool 2200 is calculated based on the vectors in the image calculated from the positions of the two active markers 2400 and the pre-stored edge device model information 3400a. Visual haptic image information 3250a is superimposed on the image.
  • the remote control system 13 according to the thirteenth embodiment has the effect even when the position where the active marker 2400 is attached is not the contact point with the target 4000. It is possible to present the haptic information 2300a at the position where it contacts the target 4000, and it is possible to expand the range of selection of the size of the active marker 2400 and the mounting method.
  • Embodiment 14 In Embodiment 13, active marker 2400 is attached to tool 2200 . In Embodiment 14, active marker 2400 is attached to end effector 2100 rather than tool 2200 . In other words, the component to which the active marker 2400 is attached differs between the thirteenth embodiment and the fourteenth embodiment.
  • FIG. 56 is a diagram showing imaging information 3000a output from the imaging device 3000 when the end effector 2100 of the edge device 2000 of the remote control system according to the fourteenth embodiment is in contact with the target 4000.
  • FIG. FIG. 57 shows a visual-based sensory transmission image 3200a that is the output of the visual-based sensory transmission device 3200 in a state where the end effector 2100 of the edge device 2000 of the remote control system according to the fourteenth embodiment is in contact with the target 4000.
  • FIG. 4 is a diagram showing; As shown in FIGS. 56 and 57, in the fourteenth embodiment, active marker 2400 is attached to end effector 2100 rather than tool 2200 .
  • the remote control system according to the fourteenth embodiment can detect the target even when the position where the active marker 2400 is attached is not the contact point with the target 4000 . It is possible to present the haptic information 2300a at the position where the marker 4000 is in contact with the active marker 2400, and the range of selection of the size and mounting method of the active marker 2400 can be further expanded.
  • Embodiment 15 the haptic sensing device 2300 is attached to the tool 2200 .
  • the haptic sensing device 2300 is attached to the end effector 2100 instead of the tool 2200 . That is, the thirteenth embodiment and the fifteenth embodiment are different in the component to which the haptic sensor 2300 is attached.
  • FIG. 58 is a diagram showing imaging information 3000a output from the imaging device 3000 when the tool 2200 of the edge device 2000 of the remote control system according to the fifteenth embodiment is in contact with the target 4000.
  • FIG. FIG. 59 shows a vision-based sensory transmission video 3200a that is the output of the vision-based sensory transmission device 3200 in a state where the tool 2200 of the edge device 2000 of the remote control system according to the fifteenth embodiment is in contact with the target 4000. It is a diagram. As shown in FIGS. 58 and 59 , in the fifteenth embodiment, the haptic sensing device 2300 is attached to the end effector 2100 instead of the tool 2200 .
  • the remote control system according to the fifteenth embodiment has the advantage that the position where the haptic sensor 2300 is attached is not the point of contact with the target 4000.
  • the haptic information 2300a can be presented at a position where the haptic sensor 2300 also contacts the target 4000, and the range of selection of the size and mounting method of the haptic sensor 2300 can be further expanded.
  • the haptic sensing device 2300 may be attached to the end effector 2100 instead of the tool 2200 .
  • the position where haptic sensing device 2300 is attached is not the point of contact with target 4000 . Even in this case, it is possible to present the haptic information 2300a at a position where it contacts the target 4000, and the effect is obtained that the range of selection of the size and mounting method of the haptic sensor 2300 can be further expanded.
  • Embodiment 16 In the sixteenth embodiment, although not shown, the configuration in which the active marker 2400 is attached to a location other than the contact point with the target 4000 as shown in the thirteenth and fourteenth embodiments is the same as in the third, fourth, and fourth embodiments. 5, 6, 7, 8 and 11 configurations.
  • Embodiment 16 in addition to the effects obtained in Embodiments 3, 4, 5, 6, 7, 8 and 11, when the position where haptic sensor 2300 is attached is not the point of contact with target 4000 , it is possible to present the haptic information 2300a at the position where it contacts the target 4000, and the effect is obtained that the range of selection of the size and attachment method of the haptic sensor 2300 can be further expanded.
  • Embodiment 17 the configuration of attaching the haptic sense device 2300 to a location other than the contact point with the target 4000 as shown in the fifteenth embodiment is the same as in the third, fourth, fifth, and sixth embodiments. , 7, 8, 11 and 16 configurations.
  • the position where haptic sensor 2300 is attached is the point of contact with target 4000. Even if it is not, it is possible to present the haptic information 2300a at the position where it contacts the target 4000, and it is possible to further expand the range of selection of the size and attachment method of the haptic sensor 2300.
  • Embodiment 18 the haptic sensing device 2300 in any one of Embodiments 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16 and 17 is , has the capability of being detectable even before contact with the target 4000 .
  • the edge device 2000 can It is possible to make the operator 1000 visually recognize the situation in which the target 4000 is likely to come into contact with the target 4000, and the operability of the operator 1000 can be improved.
  • Embodiment 19 In Embodiment 19, although not shown, in any of Embodiments 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17 and 18
  • the haptic detection device 2300 detects the target 4000, not only the visual haptic image information 3250a, but also the detection distance, the detection force, the detected tactile sensation, or a combination of these three, such as loudness, pitch, It has the function of transmitting timbre, or auditory information combining these three at the same time.
  • Embodiment 19 Therefore, when the haptic detection device 2300 detects the target 4000, the operator 1000 can recognize the target 4000 not only visually but also audibly, and the operability of the operator 1000 can be improved. can get.
  • FIG. 60 is a diagram showing processor 500 when some of the plurality of components of remote control system 1 according to Embodiment 1 are implemented by processor 500 .
  • the functions of some of the components of remote control system 1 may be implemented by processor 500 executing programs stored in memory 600 .
  • the processor 500 is a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, DSP (Digital Signal Processor), or system LSI (Large Scale Integration). Also shown in FIG. 60 is memory 600 .
  • processor 500 When the functions of some of the components of the remote control system 1 are implemented by the processor 500, the functions are implemented by the processor 500 and software, firmware, or a combination of software and firmware. be.
  • Software or firmware is written as a program and stored in memory 600 .
  • Processor 500 reads and executes programs stored in memory 600 to implement functions of some of the components of remote control system 1 .
  • the remote control system 1 can be configured such that some of the steps executed by the remote control system 1 are It has a memory 600 for storing programs to be executed. It can be said that the program stored in the memory 600 causes the computer to execute some of the multiple components of the remote control system 1 .
  • the memory 600 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Or a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disk), or the like.
  • the memory 600 also stores obstacle information, target shape information, and shape deformation information.
  • Memory 600 may also be used for temporary memory while processor 500 is performing operations.
  • the program executed by the processor 500 may be stored in a computer-readable storage medium in an installable or executable format and provided as a computer product.
  • the program executed by processor 500 may be provided to remote control system 1 via a communication network such as the Internet.
  • FIG. 61 is a diagram showing a processing circuit 700 in which some of the multiple components of the remote control system 1 according to Embodiment 1 are implemented by the processing circuit 700.
  • the processing circuit 700 is dedicated hardware.
  • the processing circuit 700 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. is. Some of the multiple components of the remote control system 1 may be realized by dedicated hardware separate from the rest.
  • part of the multiple functions may be implemented by software or firmware, and the rest of the multiple functions may be implemented by dedicated hardware.
  • the multiple functions of the remote control system 1 can be realized by hardware, or by a combination of one or both of software and firmware and hardware.
  • a part of the multiple components of each of the remote control systems of Embodiments 2 to 18 may be implemented by a processor.
  • the processor is similar to processor 500 described above. In that case, the processor executes a program stored in the memory to implement functions of some of the multiple components of each of the remote control systems of Embodiments 2 to 18. do.
  • the above memory is a memory similar to memory 600 .
  • a part of the plurality of components of each remote control system of Embodiments 2 to 18 may be implemented by a processing circuit.
  • the processing circuit is similar to the processing circuit 700 described above.
  • Remote control system 500 processor, 600 memory, 700 processing circuit, 1000 operator, 1000a operator operation, 1100 visual presentation device, 1100a video information, 1200 movement operation transmission device, 1200a Motion transmission information, 2000 Edge device, 2100 End effector, 2200 Tool, 2300 Force tactile sense device, 2300a Force tactile sense information, 2400 Active marker, 2500 Passive marker, 2600 Light intensity control type light emitter, 2700 Force tactile light transducer, 2700a Light intensity signal, 3000 imaging device, 3000a imaging information, 3200 vision-based sensory transmission device, 3200a vision-based sensory transmission image, 3201 superimposed image, 3250 visual force-tactile image generation function, 3250a visual force-tactile image information, 3251 marker point Identification function, 3251a Marker point identification information, 3252 Superimposition function, 3253 Marker filter function, 3253a Marker filter information, 3254 Marker point estimation function, 3254a Marker point estimation information, 3255 Image analysis function, 3255a Haptic image pattern selection information, 3255

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

遠隔操作システム(1)は、ターゲット(4000)に接触するエッジ機器(2000)と、エッジ機器(2000)を操作するためのオペレータ操作(1000a)を受け付けて運動伝達情報(1200a)をエッジ機器(2000)に出力する運動操作伝達装置(1200)と、ターゲット(4000)及びエッジ機器(2000)の映像を表示する視覚提示装置(1100)とを有する。エッジ機器(2000)は、ターゲット(4000)に対する力触覚を検知する力触覚検知装置(2300)と、力触覚検知装置(2300)によって検知された力触覚を光の強度を特定する光強度信号(2700a)に変換する力触覚光変換器(2700)と、光強度信号(2700a)に対応する強度の光を発する光強度制御式発光器(2600)とを有する。

Description

遠隔操作システム
 本開示は、エッジ機器から離れた場所にいる人がエッジ機器を操作するための遠隔操作システムに関する。
 特許文献1は、多関節ロボットを遠隔操作するための操作者の指の動きを検出する動き検出装置を開示している。従来、オペレータがバイワイヤでエッジ機器を操作する遠隔操作システムが知られている。従来の遠隔操作システムは、エッジ機器の活動環境における力触覚情報をオペレータに伝達することでオペレータの操作性及び臨場感の向上に寄与する。
国際公開第2019/224994号
 従来の遠隔操作システムは、エッジ機器の力触覚情報を物理的な力でオペレータにフィードバックする。そのため、従来の遠隔操作システムには、オペレータの操作インターフェースに駆動部が必要であり、操作装置が大型化及び複雑化するという課題がある。
 本開示は、上記に鑑みてなされたものであって、操作装置が大型化及び複雑化することを回避する遠隔操作システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る遠隔操作システムは、ターゲットに接触するエッジ機器と、エッジ機器を操作するためのオペレータ操作を受け付けてオペレータ操作に対応する運動伝達情報をエッジ機器に出力する運動操作伝達装置と、ターゲット及びエッジ機器の映像を表示する視覚表示装置と、を有する。エッジ機器は、ターゲットに対する力触覚を検知する力触覚検知装置と、力触覚検知装置によって検知された力触覚を検知された力触覚の大きさに対応する光の強度を特定する信号に変換する力触覚光変換器と、力触覚光変換器によって得られた信号に対応する強度の光を発する光強度制御式発光器と、を有する。
 本開示に係る遠隔操作システムは、操作装置が大型化及び複雑化することを回避することができるという効果を奏する。
実施の形態1に係る遠隔操作システムの構成を示す図 実施の形態1におけるオペレータ、視覚提示装置及び運動操作伝達装置を示す図 実施の形態1におけるエッジ機器、撮像装置及びターゲットを示す斜視図 実施の形態1に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態で視覚提示装置に提供される撮像情報を示す図 実施の形態1に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態で視覚提示装置に提供される撮像情報を示す図 実施の形態3に係る遠隔操作システムの構成を示す図 実施の形態3に係る遠隔操作システムが有する視覚ベース感覚伝達装置の機能を示す図 実施の形態3に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態3に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態での撮像装置の出力である撮像情報を示す図 実施の形態3に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態5に係る遠隔操作システムが有する視覚ベース感覚伝達装置の機能を示す図 実施の形態5に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態5に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態6に係る遠隔操作システムが有する視覚ベース感覚伝達装置の機能を示す図 実施の形態6に係る遠隔操作システムのエッジ機器及び撮像装置と、エッジ機器の活動環境であるターゲットとを示す斜視図 実施の形態6に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触しておらず、かつエンドエフェクタがターゲットで遮蔽されていない状態での撮像装置の出力である撮像情報を示す図 実施の形態6に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触しておらず、かつエンドエフェクタがターゲットで遮蔽されていない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態6に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触しておらず、かつエンドエフェクタがターゲットで遮蔽されている状態での撮像装置の出力である撮像情報を示す図 実施の形態6に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触しておらず、かつエンドエフェクタがターゲットで遮蔽されている状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態6に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していて、かつエンドエフェクタがターゲットで遮蔽されている状態での撮像装置の出力である撮像情報を示す図 実施の形態6に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していて、かつエンドエフェクタがターゲットで遮蔽されている状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態7に係る遠隔操作システムが有する視覚ベース感覚伝達装置の機能を示す図 実施の形態8に係る遠隔操作システムが有する視覚ベース感覚伝達装置の機能を示す図 実施の形態9に係る遠隔操作システムの構成を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態9に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態10に係る遠隔操作システムの構成を示す図 実施の形態10に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態10に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態で視覚提示装置に提供される撮像情報を示す図 実施の形態11に係る遠隔操作システムの構成を示す図 実施の形態11に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態11に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での撮像装置の出力である撮像情報を示す図 実施の形態11に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態11に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態12に係る遠隔操作システムの構成を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での撮像装置の出力である撮像情報を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触していない状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態12に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態13に係る遠隔操作システムの構成を示す図 実施の形態13に係る遠隔操作システムが有する視覚ベース感覚伝達装置の機能を示す図 実施の形態13に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での撮像装置の出力である撮像情報を示す図 実施の形態13に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態14に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態での撮像装置の出力である撮像情報を示す図 実施の形態14に係る遠隔操作システムのエッジ機器が有するエンドエフェクタがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態15に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での撮像装置の出力である撮像情報を示す図 実施の形態15に係る遠隔操作システムのエッジ機器が有するツールがターゲットに接触している状態での視覚ベース感覚伝達装置の出力である視覚ベース感覚伝達映像を示す図 実施の形態1に係る遠隔操作システムが有する複数の構成要素のうちの一部がプロセッサによって実現される場合のプロセッサを示す図 実施の形態1に係る遠隔操作システムが有する複数の構成要素のうちの一部が処理回路によって実現される場合の処理回路を示す図
 以下に、実施の形態に係る遠隔操作システムを図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係る遠隔操作システム1の構成を示す図である。遠隔操作システム1は、オペレータ1000の運動操作であるオペレータ操作1000aを入力とする運動操作伝達装置1200を有する。図1には、オペレータ1000も示されている。運動操作伝達装置1200は、オペレータ操作1000aに対応する運動伝達情報1200aを出力する。
 遠隔操作システム1は、ターゲット4000に接触するエッジ機器2000を更に有する。オペレータ操作1000aは、エッジ機器2000を操作するための指示である。図1には、ターゲット4000も示されている。運動操作伝達装置1200は、エッジ機器2000を操作するためのオペレータ操作1000aを受け付けてオペレータ操作1000aに対応する運動伝達情報1200aをエッジ機器2000に出力する。エッジ機器2000は、運動操作伝達装置1200から出力される運動伝達情報1200aで操作される。ターゲット4000は、エッジ機器2000が動作した場合にエッジ機器2000との間で相互作用4000aを及ぼし合う。ターゲット4000は、エッジ機器2000の活動環境である。
 遠隔操作システム1は、ターゲット4000とエッジ機器2000とを撮像する撮像装置3000を更に有する。撮像装置3000は、撮像の結果を示す撮像情報3000aを出力する。遠隔操作システム1は、撮像装置3000から出力される撮像情報3000aを入力とし、撮像情報3000aに対応する映像情報1100aをオペレータ1000に提供する視覚提示装置1100を更に有する。つまり、視覚提示装置1100は、ターゲット4000及びエッジ機器2000の映像を表示する。
 エッジ機器2000は、ターゲット4000とのインタラクションを目的とするエンドエフェクタ2100と、エンドエフェクタ2100に取り付けられていてターゲット4000に対する力触覚を検知する力触覚検知装置2300とを有する。力触覚検知装置2300は、検知した力触覚を示す力触覚情報2300aを出力する。
 エッジ機器2000は、力触覚検知装置2300から出力される力触覚情報2300aを光強度信号2700aに変換する力触覚光変換器2700を更に有する。力触覚光変換器2700は、力触覚検知装置2300によって検知された力触覚を検知された力触覚の大きさに対応する光の強度を特定する信号である光強度信号2700aに変換する。エッジ機器2000は、エンドエフェクタ2100に取り付けられていて力触覚光変換器2700によって得られた光強度信号2700aに対応する強度の光を発する光強度制御式発光器2600を更に有する。光強度制御式発光器2600が発する光の強度は、光強度信号2700aによって制御される。
 図2は、実施の形態1におけるオペレータ1000、視覚提示装置1100及び運動操作伝達装置1200を示す図である。図3は、実施の形態1におけるエッジ機器2000、撮像装置3000及びターゲット4000を示す斜視図である。
 図4は、実施の形態1に係る遠隔操作システム1のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していない状態で視覚提示装置1100に提供される撮像情報3000aを示す図である。光強度制御式発光器2600は、点灯していない。
 図5は、実施の形態1に係る遠隔操作システム1のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触している状態で視覚提示装置1100に提供される撮像情報3000aを示す図である。力触覚検知装置2300が検知する接触の状態に対応して、光強度制御式発光器2600は点灯している。遠隔操作システム1は、力触覚検知装置2300と並列して配置される温度センサを更に有してもよい。遠隔操作システム1は、力触覚検知装置2300の代わりに温度センサを有してもよい。
 エンドエフェクタ2100に取付けられている力触覚検知装置2300がターゲット4000と接触して力触覚を検知すると、力触覚検知装置2300によって検知された力触覚の大きさに比例した電流がエンドエフェクタ2100に取付けられている光強度制御式発光器2600に供給される。電流が供給されることにより、光強度制御式発光器2600は点灯する。
 撮像装置3000は、エンドエフェクタ2100とターゲット4000とを撮像し、撮像の結果を示す撮像情報3000aを視覚提示装置1100に提供する。視覚提示装置1100は、撮像情報3000aに対応する映像情報1100aを表示する。オペレータ1000は、視覚提示装置1100によって表示された映像情報1100aをもとにエンドエフェクタ2100とターゲット4000との接触を認識し、運動操作伝達装置1200を操作する。
 実施の形態1によれば、オペレータ1000の操作インターフェースに駆動部が必要ないため、操作装置の大型化及び複雑化を回避することができる。力触覚情報2300aが映像で提示されるオペレータ1000は、エッジ機器2000に発生する力触覚が提示される映像と矛盾しないように力触覚を脳内で認知するため、違和感を覚えない操作を行うことができる。オペレータ1000は、視覚提示装置1100のコンタクトポイント領域を注視することで力触覚情報2300aを得ることができるため、集中した作業を行うことが可能である。
 実施の形態1に係る遠隔操作システム1により、オペレータ1000は、エンドエフェクタ2100のターゲット4000との相互作用4000aを視覚情報から検知することが可能となる。遠隔操作システム1が力触覚情報2300aを視覚的にオペレータ1000に伝達することができるため、オペレータ1000の操作インターフェースに駆動部は必要ない。そのため、遠隔操作システム1は、操作装置の大型化及び複雑化を回避することができる。オペレータ1000は、視覚提示装置1100に集中することで違和感を覚えない力触覚情報2300aを得ることができるため、比較的高い操作性を得ることができる。温度センサが配置された場合、オペレータ1000は違和感を覚えない温度情報を得ることができる。
実施の形態2.
 実施の形態2に係る遠隔操作システムの構成は、実施の形態1に係る遠隔操作システム1の構成と同じである。しかしながら、実施の形態2と実施の形態1とでは、光強度制御式発光器2600の機能が異なる。実施の形態2では、光強度制御式発光器2600は、光の強度を変えて発光するのではなく、力触覚検知装置2300のターゲット4000との接触の状態を色相及び点灯周波数の変化で表現して発光する。
 実施の形態2に係る遠隔操作システムは、実施の形態1の機能と異なる機能を有する光強度制御式発光器2600を有するので、力触覚検知装置2300のターゲット4000との接触の状態として温度及び触感の一方又は双方をオペレータ1000に伝達することができる。
実施の形態3.
 図6は、実施の形態3に係る遠隔操作システム3の構成を示す図である。遠隔操作システム3は、オペレータ1000の運動操作であるオペレータ操作1000aを入力とする運動操作伝達装置1200を有する。図6には、オペレータ1000も示されている。運動操作伝達装置1200は、オペレータ操作1000aに対応する運動伝達情報1200aを出力する。
 遠隔操作システム3は、ターゲット4000に接触するエッジ機器2000を更に有する。オペレータ操作1000aは、エッジ機器2000を操作するための指示である。図6には、ターゲット4000も示されている。運動操作伝達装置1200は、エッジ機器2000を操作するためのオペレータ操作1000aを受け付けてオペレータ操作1000aに対応する運動伝達情報1200aをエッジ機器2000に出力する。エッジ機器2000は、運動操作伝達装置1200から出力される運動伝達情報1200aで操作される。ターゲット4000は、エッジ機器2000が動作した場合にエッジ機器2000との間で相互作用4000aを及ぼし合う。
 遠隔操作システム3は、エッジ機器2000とターゲット4000とを撮像する撮像装置3000を更に有する。撮像装置3000は、撮像の結果を示す撮像情報3000aを出力する。遠隔操作システム3は、撮像装置3000から出力される撮像情報3000aとエッジ機器2000から出力されるマーカ情報3300aとエッジ機器2000から出力される力触覚情報2300aとを入力として視覚ベース感覚伝達映像3200aを生成する視覚ベース感覚伝達装置3200を更に有する。遠隔操作システム3は、視覚ベース感覚伝達映像3200aを入力とし、視覚ベース感覚伝達映像3200aに対応する映像情報1100aをオペレータ1000に提供する視覚提示装置1100を更に有する。マーカ情報3300aとは、例えばパッシブマーカ2500を撮像情報3000aから画像抽出可能な色、形状、特徴点のいずれか、あるいは、2つ以上を組み合わせた情報である。パッシブマーカ2500が赤色の円形である場合には、マーカ情報3300aは、赤色という色の情報と円形という形状の情報との組み合わせになる。
 エッジ機器2000は、ターゲット4000とのインタラクションを目的とするエンドエフェクタ2100と、エンドエフェクタ2100に取り付けられていてターゲット4000に対する力触覚を検知する力触覚検知装置2300とを有する。力触覚検知装置2300は、検知した力触覚を示す力触覚情報2300aを出力する。エッジ機器2000は、撮像装置3000で空間同定が可能なマーカを有するパッシブマーカ2500を更に有する。パッシブマーカ2500は、撮像装置3000で撮像される撮像情報3000aから抽出が可能な、AR(Augmented Reality)マーカ、又は、特徴点を有する部材である。パッシブマーカ2500は、マーカ情報3300aを出力する。
 図7は、実施の形態3に係る遠隔操作システム3が有する視覚ベース感覚伝達装置3200の機能を示す図である。視覚ベース感覚伝達装置3200は、マーカ情報3300aを利用してパッシブマーカ2500の位置を撮像情報3000aをもとに同定してマーカポイント同定情報3251aを生成するマーカポイント同定機能3251を有する。視覚ベース感覚伝達装置3200は、力触覚情報2300aをもとに視覚的力触覚映像情報3250aを生成する視覚的力触覚映像生成機能3250を更に有する。視覚的力触覚映像生成機能3250は、力触覚検知装置2300によって検知された力触覚を示す力触覚情報2300aに対応する映像を示す視覚的力触覚映像情報3250aを生成する機能である。
 視覚ベース感覚伝達装置3200は、視覚的力触覚映像情報3250aとマーカポイント同定情報3251aとをもとに視覚ベース感覚伝達映像3200aを生成する重畳機能3252を更に有する。重畳機能3252は、マーカポイント同定機能3251によって得られたマーカポイント同定情報3251aと、視覚的力触覚映像生成機能3250によって得られた視覚的力触覚映像情報3250aと、撮像装置3000によって得られた撮像情報3000aとを重畳する機能である。
 図8は、実施の形態3に係る遠隔操作システム3のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していない状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500が、マーカポイント同定情報3251aとして検出されている。
 図9は、実施の形態3に係る遠隔操作システム3のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触している状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500がマーカポイント同定情報3251aとして検出されており、力触覚検知装置2300が力触覚を検知している。
 図10は、実施の形態3に係る遠隔操作システム3のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触している状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図9でパッシブマーカ2500がマーカポイント同定情報3251aとして検出された位置に、力触覚情報2300aを映像で表現した重畳映像3201が表示されている。遠隔操作システム3は、力触覚検知装置2300と並列に配列される温度センサを更に有してもよい。遠隔操作システム3は、力触覚検知装置2300の代わりに温度センサを有してもよい。
 なお、パッシブマーカ2500は取り付けられなくてもよい。その場合、遠隔操作システム3は、エンドエフェクタ2100の指先の形状を認識し、指先に重畳映像3201を表示してもよい。
 実施の形態3に係る遠隔操作システム3により、オペレータ1000は、エンドエフェクタ2100のターゲット4000との相互作用4000aを視覚情報から検知することが可能となる。遠隔操作システム3は、操作装置の大型化及び複雑化を回避することができる。オペレータ1000は、視覚提示装置1100に集中することで違和感を覚えない力触覚情報2300aを得ることができるため、比較的高い操作性を得ることができる。温度センサが配置された場合、オペレータ1000は違和感を覚えない温度情報を得ることができる。遠隔操作システム3は、設計者が意図した視覚的力触覚映像をコンタクトポイントに重畳することができるので、オペレータ1000又はシーンに合わせた映像を提供することができる。
実施の形態4.
 実施の形態4に係る遠隔操作システムの構成は、実施の形態3に係る遠隔操作システム3の構成と同じである。しかしながら、実施の形態4と実施の形態3とでは、重畳映像3201が異なる。実施の形態3では、重畳映像3201は点灯映像の強度を示す。実施の形態4では、重畳映像3201は、点灯映像の強度を示すのではなく、力触覚検知装置2300のターゲット4000との接触の状態を色相及び点灯周波数の変化で表現する。
 実施の形態4に係る遠隔操作システムは、ターゲット4000との接触の状態として温度及び触感の一方又は双方をオペレータ1000に伝達することができる。
実施の形態5.
 実施の形態5に係る遠隔操作システムの構成は、実施の形態3に係る遠隔操作システム3の構成と同じである。しかしながら、実施の形態5の視覚ベース感覚伝達装置3200が有する機能は、実施の形態3の視覚ベース感覚伝達装置3200が有する機能と異なる。実施の形態5では、実施の形態3との相違点を主に説明する。
 図11は、実施の形態5に係る遠隔操作システムが有する視覚ベース感覚伝達装置3200の機能を示す図である。視覚ベース感覚伝達装置3200は、マーカ情報3300aを利用してパッシブマーカ2500の位置を撮像情報3000aをもとに同定してマーカポイント同定情報3251aを生成するマーカポイント同定機能3251を有する。視覚ベース感覚伝達装置3200は、力触覚情報2300aをもとに視覚的力触覚映像情報3250aを生成する視覚的力触覚映像生成機能3250を更に有する。
 視覚ベース感覚伝達装置3200は、検出されたパッシブマーカ2500をフィルタリングするためのマーカフィルタ情報3253aを生成するマーカフィルタ機能3253を更に有する。視覚ベース感覚伝達装置3200は、視覚的力触覚映像情報3250aとマーカポイント同定情報3251aとマーカフィルタ情報3253aとをもとに視覚ベース感覚伝達映像3200aを生成する重畳機能3252を更に有する。
 エンドエフェクタ2100の指先に力触覚検知センサ又はマーカがつくと、指先における視覚的な認知についての負荷が高くなる。実施の形態5に係る遠隔操作システムは、視覚的な負荷を低減するためにフィルタリングを行う。実施の形態5に係る遠隔操作システムは、条件によってはパッシブマーカ2500を表示しない。
 図12は、実施の形態5に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していない状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500が、マーカポイント同定情報3251aとして検出されている。
 図13は、実施の形態5に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していない状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。視覚ベース感覚伝達映像3200aには、パッシブマーカ2500がマーカポイント同定情報3251aとして検出された位置にフィルタリング情報であるマーカフィルタ情報3253aを映像で表現した重畳映像3201が表示されている。
 実施の形態5に係る遠隔操作システムにより、オペレータ1000は、エンドエフェクタ2100のターゲット4000との相互作用4000aを視覚情報から検知することが可能となる。実施の形態5に係る遠隔操作システムは、操作装置の大型化及び複雑化を回避することができる。オペレータ1000は、視覚提示装置1100に集中することで違和感を覚えない力触覚情報2300aを得ることができるため、比較的高い操作性を得ることができる。
 実施の形態5では、エッジ機器2000とターゲット4000との力触覚を伴うコンタクトが発生していないシーンにおいて、パッシブマーカ2500の映像を設計者が事前に設定した映像に置き換えることが可能となる。つまり、実施の形態5に係る遠隔操作システムは、オペレータ1000の認知についての負荷を軽減することができる。
実施の形態6.
 実施の形態6に係る遠隔操作システムの構成は、実施の形態3に係る遠隔操作システム3の構成と同じである。しかしながら、実施の形態6の視覚ベース感覚伝達装置3200が有する機能は、実施の形態3の視覚ベース感覚伝達装置3200が有する機能と異なる。実施の形態6では、実施の形態3との相違点を主に説明する。
 図14は、実施の形態6に係る遠隔操作システムが有する視覚ベース感覚伝達装置3200の機能を示す図である。視覚ベース感覚伝達装置3200は、マーカ情報3300aを利用してパッシブマーカ2500の位置を撮像情報3000aをもとに同定してマーカポイント同定情報3251aを生成するマーカポイント同定機能3251を有する。視覚ベース感覚伝達装置3200は、力触覚情報2300aをもとに視覚的力触覚映像情報3250aを生成する視覚的力触覚映像生成機能3250を更に有する。
 視覚ベース感覚伝達装置3200は、検出されたパッシブマーカ2500をフィルタリングするためのマーカフィルタ情報3253aを生成するマーカフィルタ機能3253を更に有する。
 視覚ベース感覚伝達装置3200は、撮像情報3000aとマーカポイント同定情報3251aとをもとにマーカポイント推定情報3254aを生成するマーカポイント推定機能3254を更に有する。マーカポイント推定機能3254は、エッジ機器2000がパッシブマーカ2500を複数有する場合であって、パッシブマーカ2500のひとつがターゲット4000により遮蔽されて撮像情報3000aから消失した場合に、他のパッシブマーカ2500が撮像情報3000aに存在するとき、撮像情報3000aとマーカポイント同定情報3251aとをもとに消失したマーカポイントを推定する機能である。
 視覚ベース感覚伝達装置3200は、視覚的力触覚映像情報3250aとマーカポイント同定情報3251aとマーカフィルタ情報3253aとマーカポイント推定情報3254aとをもとに視覚ベース感覚伝達映像3200aを生成する重畳機能3252を更に有する。
 図15は、実施の形態6に係る遠隔操作システムのエッジ機器2000及び撮像装置3000と、エッジ機器2000の活動環境であるターゲット4000とを示す斜視図である。
 図16は、実施の形態6に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触しておらず、かつエンドエフェクタ2100がターゲット4000で遮蔽されていない状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500が、マーカポイント同定情報3251aとして検出されている。
 図17は、実施の形態6に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触しておらず、かつエンドエフェクタ2100がターゲット4000で遮蔽されていない状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。視覚ベース感覚伝達映像3200aには、図16でパッシブマーカ2500がマーカポイント同定情報3251aとして検出された位置に、フィルタリング情報であるマーカフィルタ情報3253aを映像で表現した重畳映像3201が表示されている。
 図18は、実施の形態6に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触しておらず、かつエンドエフェクタ2100がターゲット4000で遮蔽されている状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500が、マーカポイント同定情報3251a及びマーカポイント推定情報3254aとして検出されている。
 図19は、実施の形態6に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触しておらず、かつエンドエフェクタ2100がターゲット4000で遮蔽されている状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。視覚ベース感覚伝達映像3200aには、図18でパッシブマーカ2500がマーカポイント同定情報3251a及びマーカポイント推定情報3254aとして検出された位置に、フィルタリング情報であるマーカフィルタ情報3253aを映像で表現した重畳映像3201が表示されている。
 図20は、実施の形態6に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していて、かつエンドエフェクタ2100がターゲット4000で遮蔽されている状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500が、マーカポイント同定情報3251a及びマーカポイント推定情報3254aとして検出されている。
 図21は、実施の形態6に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していて、かつエンドエフェクタ2100がターゲット4000で遮蔽されている状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。視覚ベース感覚伝達映像3200aには、図20でパッシブマーカ2500がマーカポイント同定情報3251a及びマーカポイント推定情報3254aとして検出された位置に、力触覚情報2300aを映像で表現した重畳映像3201が表示されている。
 パッシブマーカ2500がターゲット4000で遮蔽された場合、視覚ベース感覚伝達装置3200は、マーカポイント推定機能3254により、パッシブマーカ2500が遮蔽された時刻での遮蔽されたパッシブマーカ2500の位置を記憶し、遮蔽された時刻から経過した時間で遮蔽されていない別のパッシブマーカ2500のマーカポイント同定情報3251aが移動したベクトルを記憶した遮蔽されたパッシブマーカ2500の位置に足し合わせることでマーカポイント推定情報3254aを導出する。
 実施の形態6に係る遠隔操作システムにより、オペレータ1000は、エンドエフェクタ2100のターゲット4000との相互作用4000aを視覚情報から検知することが可能となる。実施の形態6に係る遠隔操作システムは、操作装置の大型化及び複雑化を回避することができる。オペレータ1000は、視覚提示装置1100に集中することで違和感を覚えない力触覚情報2300aを得ることができるため、比較的高い操作性を得ることができる。
 実施の形態6に係る遠隔操作システムにより、エッジ機器2000とターゲット4000との力触覚を伴うコンタクトが発生していないシーンにおいて、パッシブマーカ2500の映像を設計者が事前に設定した映像に置き換えることが可能となる。つまり、実施の形態6に係る遠隔操作システムは、オペレータ1000の認知についての負荷を軽減することができる。パッシブマーカ2500が遮蔽物に隠れた場合にも隠れたパッシブマーカ2500のポイントを推定することが可能となり、実施の形態6に係る遠隔操作システムはオペレータ1000の操作性を向上させることができる。
実施の形態7.
 実施の形態7に係る遠隔操作システムの構成は、実施の形態6に係る遠隔操作システムの構成と同じである。しかしながら、実施の形態7の視覚ベース感覚伝達装置3200が有する機能は、実施の形態6の視覚ベース感覚伝達装置3200が有する機能と異なる。実施の形態7では、実施の形態6との相違点を主に説明する。
 図22は、実施の形態7に係る遠隔操作システムが有する視覚ベース感覚伝達装置3200の機能を示す図である。実施の形態7の視覚ベース感覚伝達装置3200は、実施の形態6の視覚ベース感覚伝達装置3200が有するすべての機能のうちのマーカフィルタ機能3253以外の機能を有する。
 実施の形態7に係る遠隔操作システムにより、エッジ機器2000とエッジ機器2000の活動環境であるターゲット4000との力触覚を伴うコンタクトが発生していないシーンにおいて、パッシブマーカ2500の映像を設計者が事前に設定した映像に置き換えることが可能となる。実施の形態7では、オペレータ1000の認知についての負荷を軽減する効果は得られないが、遠隔操作システムの構成を簡易にするための計算についての負荷を軽減する効果が得られる。
実施の形態8.
 実施の形態8に係る遠隔操作システムの構成は、実施の形態3に係る遠隔操作システム3の構成と同じである。しかしながら、実施の形態8の視覚ベース感覚伝達装置3200が有する機能は、実施の形態3の視覚ベース感覚伝達装置3200が有する機能と異なる。実施の形態8では、実施の形態3との相違点を主に説明する。
 図23は、実施の形態8に係る遠隔操作システムが有する視覚ベース感覚伝達装置3200の機能を示す図である。視覚ベース感覚伝達装置3200は、マーカ情報3300aを利用してパッシブマーカ2500の位置を撮像情報3000aをもとに同定してマーカポイント同定情報3251aを生成するマーカポイント同定機能3251を有する。
 視覚ベース感覚伝達装置3200は、マーカ情報3300aと撮像情報3000aとをもとにマーカフィルタとして効果的な映像選定情報であるマーカフィルタ映像選定情報3255bと力触覚映像として効果的な映像パターン選定情報である力触覚映像パターン選定情報3255aとを生成する画像分析機能3255を更に有する。更に言うと、画像分析機能3255は、撮像情報3000aをもとに、人が認知しやすい力触覚映像パターンを選定する力触覚映像パターン選定情報3255aと、自然に馴染んだ映像を選定するマーカフィルタ映像選定情報3255bとを生成する機能である。
 視覚ベース感覚伝達装置3200は、力触覚情報2300aと力触覚映像パターン選定情報3255aとをもとに視覚的力触覚映像情報3250aを生成する視覚的力触覚映像生成機能3250を更に有する。視覚ベース感覚伝達装置3200は、検出されたパッシブマーカ2500をフィルタリングするためにマーカフィルタ映像選定情報3255bをもとにマーカフィルタ情報3253aを生成するマーカフィルタ機能3253を更に有する。
 視覚ベース感覚伝達装置3200は、撮像情報3000aとマーカポイント同定情報3251aとをもとにマーカポイント推定情報3254aを生成するマーカポイント推定機能3254を更に有する。視覚ベース感覚伝達装置3200は、視覚的力触覚映像情報3250aとマーカポイント同定情報3251aとマーカフィルタ情報3253aとマーカポイント推定情報3254aとをもとに視覚ベース感覚伝達映像3200aを生成する重畳機能3252を更に有する。
 映像選定の基準は、例えば、フィルタ映像としてはエンドエフェクタと同系色とし、視覚的力触覚映像としては撮像情報のなかで目立つ色として設定する。フィルタ映像をエンドエフェクタと同系色とすることで、エンドエフェクタがターゲット4000と接触していない場合には、オペレータはパッシブマーカ2500の存在を意識することなく作業に集中することができる。
 実施の形態8に係る遠隔操作システムにより、オペレータ1000は、エンドエフェクタ2100のターゲット4000との相互作用4000aを視覚情報から検知することが可能となる。実施の形態8に係る遠隔操作システムは、操作装置の大型化及び複雑化を回避することができる。オペレータ1000は、視覚提示装置1100に集中することで違和感を覚えない力触覚情報を得ることができるため、比較的高い操作性を得ることができる。
 実施の形態8に係る遠隔操作システムにより、エッジ機器2000とエッジ機器2000の活動環境であるターゲット4000との力触覚を伴うコンタクトが発生していないシーンにおいて、パッシブマーカ2500の映像を設計者が事前に設定した映像に置き換えることが可能となる。つまり、実施の形態8に係る遠隔操作システムは、オペレータ1000の認知についての負荷を軽減することができる。
 パッシブマーカ2500が遮蔽物に隠れた場合にも隠れたパッシブマーカ2500のポイントを推定することが可能となり、実施の形態8に係る遠隔操作システムはオペレータ1000の操作性を向上させることができる。実施の形態8に係る遠隔操作システムは、力触覚を検知する場合、人が認知しやすい視覚的力触覚映像パターンを提示することが可能となり、力触覚を検知しない場合、マーカが自然に馴染んだ映像を提示することが可能となり、オペレータ1000の操作性を向上させることができる。
実施の形態9.
 図24は、実施の形態9に係る遠隔操作システム9の構成を示す図である。遠隔操作システム9は、実施の形態3から実施の形態8までのいずれかに係る遠隔操作システムが有する運動操作伝達装置1200、エッジ機器2000、撮像装置3000、視覚ベース感覚伝達装置3200及び視覚提示装置1100を有する。実施の形態9では、エッジ機器2000が有するパッシブマーカ2500は、アクティブマーカ2400に変更されている。図24には、オペレータ1000及びターゲット4000も示されている。
 遠隔操作システム9は、撮像情報3000aを入力とし、撮像装置3000で検出可能なアクティブマーカ制御信号3300bと、マーカ情報3300aとを生成するアクティブマーカ制御装置3300を更に有する。アクティブマーカ制御信号3300bは、アクティブマーカ2400に出力される。マーカ情報3300aは、視覚ベース感覚伝達装置3200に出力される。
 図25、図26及び図27の各々は、実施の形態9に係る遠隔操作システム9のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していない状態での撮像装置3000の出力である撮像情報3000aを示す図である。アクティブマーカ制御装置3300は、撮像情報3000aを入力として撮像装置3000から検出しやすい色、形状、又は、色及び形状を生成して、アクティブマーカ2400にアクティブマーカ制御信号3300bを出力する。
 例えば、図25では、撮像情報3000aに含まれない「青」色でアクティブマーカ2400は点灯している。図26では、撮像情報3000aに含まれない「黄」色でアクティブマーカ2400は点灯している。図27では、撮像情報3000aに含まれない「緑」色でアクティブマーカ2400は点灯している。
 図28、図29及び図30の各々は、実施の形態9に係る遠隔操作システム9のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触していない状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図28、図29及び図30の各々における視覚ベース感覚伝達映像3200aは、撮像情報3000aにより変化するアクティブマーカ2400の位置に固定の重畳映像3201を重畳することで、撮像情報3000aでは映像は時々刻々と変化するが、オペレータ1000に提示される視覚ベース感覚伝達映像3200aでは、アクティブマーカ2400の変化の情報が遮断されることを示している。
 図31、図32及び図33の各々は、実施の形態9に係る遠隔操作システム9のエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触している状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図31、図32及び図33の各々における視覚ベース感覚伝達映像3200aにより、力触覚検知装置2300のターゲット4000との接触の状況に合致した重畳映像3201がオペレータ1000に提示される。
 実施の形態9に係る遠隔操作システム9により、実施の形態3から実施の形態8までのいずれかで得られる効果に加えて、アクティブマーカ2400の位置を撮像情報3000aをもとに同定することが可能となるという効果が得られる。遠隔操作システム9は、アクティブマーカ2400の検出安定性を向上させることができる。遠隔操作システム9は、撮像情報3000aをもとに同定したアクティブマーカ2400の位置への固定映像の重畳により、オペレータ1000にとって不要な映像の変化の情報がオペレータ1000に伝わることを遮断することが可能となり、オペレータ1000の操作性を阻害することなく、遠隔操作システム9の使用範囲を拡張することができる。
実施の形態10.
 図34は、実施の形態10に係る遠隔操作システム10の構成を示す図である。遠隔操作システム10は、実施の形態1に係る遠隔操作システム1が有するすべての構成要素を有する。遠隔操作システム10のエッジ機器2000は、エンドエフェクタ2100に取り付けられたツール2200を更に有する。実施の形態10では、力触覚検知装置2300及び光強度制御式発光器2600は、ターゲット4000に接触する先端部に取り付けられている。
 図35は、実施の形態10に係る遠隔操作システム10のエッジ機器2000が有するツール2200がターゲット4000に接触していない状態での撮像装置3000の出力である撮像情報3000aを示す図である。力触覚検知装置2300及び光強度制御式発光器2600は、ツール2200のターゲット4000との接触点に配置されている。光強度制御式発光器2600は、点灯していない。
 図36は、実施の形態10に係る遠隔操作システム10のエッジ機器2000が有するツール2200がターゲット4000に接触している状態で視覚提示装置1100に提供される撮像情報3000aを示す図である。光強度制御式発光器2600は、力触覚検知装置2300とターゲット4000との接触の状態に対応して点灯している。
 実施の形態10に係る遠隔操作システム10により、オペレータ1000は、ツール2200のターゲット4000との相互作用4000aを視覚情報から検知することが可能となる。遠隔操作システム10は、操作装置の大型化及び複雑化を回避することができる。オペレータ1000は、視覚提示装置1100に集中することで違和感を覚えない力触覚情報2300aを得ることができるため、比較的高い操作性を得ることができる。
 実施の形態10では、光強度制御式発光器2600は、光の強度を変えて発光するのではなく、力触覚検知装置2300のターゲット4000との接触の状態を色相及び点灯周波数の変化で表現して発光してもよい。
実施の形態11.
 図37は、実施の形態11に係る遠隔操作システム11の構成を示す図である。遠隔操作システム11は、実施の形態3から実施の形態8までのいずれかの遠隔操作システムが有するすべての構成要素を有する。遠隔操作システム11のエッジ機器2000は、エンドエフェクタ2100に取り付けられたツール2200を更に有する。実施の形態11では、力触覚検知装置2300及びパッシブマーカ2500は、ターゲット4000に接触する先端部に取り付けられている。
 図38は、実施の形態11に係る遠隔操作システム11のエッジ機器2000が有するツール2200がターゲット4000に接触していない状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500が、マーカポイント同定情報3251aとして検出されている。
 図39は、実施の形態11に係る遠隔操作システム11のエッジ機器2000が有するツール2200がターゲット4000に接触している状態での撮像装置3000の出力である撮像情報3000aを示す図である。パッシブマーカ2500がマーカポイント同定情報3251aとして検出され、かつ、力触覚検知装置2300が力触覚を検知している。
 図40は、実施の形態11に係る遠隔操作システム11のエッジ機器2000が有するツール2200がターゲット4000に接触していない状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図38でパッシブマーカ2500がマーカポイント同定情報3251aとして検出された位置に、フィルタリング情報であるマーカフィルタ情報3253aを映像で表現した重畳映像3201が表示されている。
 図41は、実施の形態11に係る遠隔操作システム11のエッジ機器2000が有するツール2200がターゲット4000に接触している状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図39でパッシブマーカ2500がマーカポイント同定情報3251aとして検出された位置に、力触覚情報2300aを映像で表現した重畳映像3201が表示されている。
 実施の形態11に係る遠隔操作システム11により、オペレータ1000は、ツール2200のターゲット4000との相互作用4000aを視覚情報から検知することが可能となる。遠隔操作システム11は、操作装置の大型化及び複雑化を回避することができる。オペレータ1000は、視覚提示装置1100に集中することで違和感を覚えない力触覚情報2300aを得ることができるため、比較的高い操作性を得ることができる。
実施の形態12.
 図42は、実施の形態12に係る遠隔操作システム12の構成を示す図である。遠隔操作システム12は、実施の形態11に係る遠隔操作システム11のパッシブマーカ2500がアクティブマーカ2400に変更されたシステムである。実施の形態12では、力触覚検知装置2300及びアクティブマーカ2400は、ターゲット4000に接触する先端部に取り付けられている。
 遠隔操作システム12は、撮像情報3000aを入力とし、撮像装置3000で検出可能なアクティブマーカ制御信号3300bと、マーカ情報3300aとを生成するアクティブマーカ制御装置3300を更に有する。アクティブマーカ制御信号3300bは、アクティブマーカ2400に出力される。マーカ情報3300aは、視覚ベース感覚伝達装置3200に出力される。
 図43、図44及び図45の各々は、実施の形態12に係る遠隔操作システム12のエッジ機器2000が有するツール2200がターゲット4000に接触していない状態での撮像装置3000の出力である撮像情報3000aを示す図である。アクティブマーカ制御装置3300は、撮像情報3000aを入力とし、撮像装置3000から検出しやすい色、形状、又は、色及び形状を生成し、アクティブマーカ2400にアクティブマーカ制御信号3300bを出力する。
 例えば、図43では、撮像情報3000aに含まれない「青」色でアクティブマーカ2400は点灯している。図44では、撮像情報3000aに含まれない「黄」色でアクティブマーカ2400は点灯している。図45では、撮像情報3000aに含まれない「緑」色でアクティブマーカ2400は点灯している。
 図46、図47及び図48の各々は、実施の形態12に係る遠隔操作システム12のエッジ機器2000が有するツール2200がターゲット4000に接触していない状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。撮像情報3000aをもとにする映像は、時々刻々と変化する。オペレータ1000に結果的に提示される図46、図47及び図48の各々の視覚ベース感覚伝達映像3200aでは、撮像情報3000aにより変化するアクティブマーカ2400の位置に固定の重畳映像3201を重畳することで、アクティブマーカ2400の変化の情報が遮断される。
 図49、図50及び図51の各々は、実施の形態12に係る遠隔操作システム12のエッジ機器2000が有するツール2200がターゲット4000に接触している状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図49、図50及び図51の各々の視覚ベース感覚伝達映像3200aでは、力触覚検知装置2300のターゲット4000との接触の状況に合致した重畳映像3201がオペレータ1000に提示される。
 実施の形態12に係る遠隔操作システム12により、実施の形態11に係る遠隔操作システム11によって得られる効果に加えて、安定したアクティブマーカ2400の位置を撮像情報3000aをもとに同定することが可能となるという効果が得られる。遠隔操作システム12は、撮像情報3000aをもとに同定した位置への固定映像の重畳により、オペレータ1000にとって不要な映像の変化の情報を遮断することが可能となり、オペレータ1000の操作性を阻害することなく、遠隔操作システム12の使用範囲を拡張することができる。
実施の形態13.
 図52は、実施の形態13に係る遠隔操作システム13の構成を示す図である。遠隔操作システム13は、実施の形態12に係る遠隔操作システム12が有する視覚ベース感覚伝達装置3200に運動伝達情報1200aが入力されるシステムである。図53は、実施の形態13に係る遠隔操作システム13が有する視覚ベース感覚伝達装置3200の機能を示す図である。視覚ベース感覚伝達装置3200は、エッジ機器2000のモデル情報であるエッジ機器モデル情報3400aを記憶しているエッジ機器モデル記憶部3400を有する。エッジ機器モデル記憶部3400は、エッジ機器2000がターゲット4000とコンタクトするポイントの幾何学的な情報を記憶する。例えば、エッジ機器モデル記憶部3400は半導体メモリによって実現される。
 視覚ベース感覚伝達装置3200は、重畳機能3252により、視覚的力触覚映像情報3250aと、マーカポイント同定情報3251aと、マーカフィルタ情報3253aと、マーカポイント推定情報3254aと、運動伝達情報1200aと、エッジ機器モデル記憶部3400から出力されるエッジ機器モデル情報3400aとをもとに、視覚ベース感覚伝達映像3200aを生成する。
 図54は、実施の形態13に係る遠隔操作システム13のエッジ機器2000が有するツール2200がターゲット4000に接触している状態での撮像装置3000の出力である撮像情報3000aを示す図である。ツール2200は、二つのアクティブマーカ2400を有している。
 図55は、実施の形態13に係る遠隔操作システム13のエッジ機器2000が有するツール2200がターゲット4000に接触している状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。視覚ベース感覚伝達映像3200aでは、二つのアクティブマーカ2400の位置から算出される画像内でのベクトルと事前に記憶されているエッジ機器モデル情報3400aとをもとに算出されるツール2200の先端の位置に、視覚的力触覚映像情報3250aが重畳されている。
 実施の形態13に係る遠隔操作システム13により、実施の形態12に係る遠隔操作システム12によって得られる効果に加えて、アクティブマーカ2400が取り付けられている位置がターゲット4000との接触点でない場合においてもターゲット4000と接触する位置に力触覚情報2300aを提示することが可能となり、アクティブマーカ2400のサイズ及び取り付け方法の選択の幅を拡張することができるという効果が得られる。
実施の形態14.
 実施の形態13では、アクティブマーカ2400はツール2200に取り付けられている。実施の形態14では、アクティブマーカ2400は、ツール2200ではなく、エンドエフェクタ2100に取り付けられている。つまり、実施の形態13と実施の形態14とでは、アクティブマーカ2400が取り付けられている構成要素が異なる。
 図56は、実施の形態14に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触している状態での撮像装置3000の出力である撮像情報3000aを示す図である。図57は、実施の形態14に係る遠隔操作システムのエッジ機器2000が有するエンドエフェクタ2100がターゲット4000に接触している状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図56及び図57に示されるように、実施の形態14では、アクティブマーカ2400は、ツール2200ではなく、エンドエフェクタ2100に取り付けられている。
 実施の形態14に係る遠隔操作システムにより、実施の形態13に係る遠隔操作システム13によって得られる効果に加えて、アクティブマーカ2400が取り付けられている位置がターゲット4000との接触点でない場合においてもターゲット4000と接触する位置に力触覚情報2300aを提示することが可能となり、アクティブマーカ2400のサイズ及び取り付け方法の選択の幅を更に拡張することができるという効果が得られる。
実施の形態15.
 実施の形態13では、力触覚検知装置2300はツール2200に取り付けられている。実施の形態15では、力触覚検知装置2300は、ツール2200ではなく、エンドエフェクタ2100に取り付けられている。つまり、実施の形態13と実施の形態15とでは、力触覚検知装置2300が取り付けられている構成要素が異なる。
 図58は、実施の形態15に係る遠隔操作システムのエッジ機器2000が有するツール2200がターゲット4000に接触している状態での撮像装置3000の出力である撮像情報3000aを示す図である。図59は、実施の形態15に係る遠隔操作システムのエッジ機器2000が有するツール2200がターゲット4000に接触している状態での視覚ベース感覚伝達装置3200の出力である視覚ベース感覚伝達映像3200aを示す図である。図58及び図59に示されるように、実施の形態15では、力触覚検知装置2300は、ツール2200ではなく、エンドエフェクタ2100に取り付けられている。
 実施の形態15に係る遠隔操作システムにより、実施の形態13に係る遠隔操作システム13によって得られる効果に加えて、力触覚検知装置2300が取り付けられている位置がターゲット4000との接触点でない場合においてもターゲット4000と接触する位置に力触覚情報2300aを提示することが可能となり、力触覚検知装置2300のサイズ及び取り付け方法の選択の幅を更に拡張することができるという効果が得られる。
 実施の形態14においても、力触覚検知装置2300は、ツール2200ではなく、エンドエフェクタ2100に取り付けられてもよい。力触覚検知装置2300がエンドエフェクタ2100に取り付けられる場合、実施の形態14に係る遠隔操作システムによって得られる効果に加えて、力触覚検知装置2300が取り付けられている位置がターゲット4000との接触点でない場合においてもターゲット4000と接触する位置に力触覚情報2300aを提示することが可能となり、力触覚検知装置2300のサイズ及び取り付け方法の選択の幅を更に拡張することができるという効果が得られる。
実施の形態16.
 実施の形態16では、図示されないが、実施の形態13及び実施の形態14に示されるようにアクティブマーカ2400をターゲット4000との接触点以外の場所に取り付けるという構成が、実施の形態3、4、5、6、7、8及び11の構成に適用される。
 実施の形態16の構成により、実施の形態3、4、5、6、7、8及び11で得られる効果に加えて、力触覚検知装置2300が取り付けられる位置がターゲット4000との接触点でない場合においてもターゲット4000と接触する位置に力触覚情報2300aを提示することが可能となり、力触覚検知装置2300のサイズ及び取り付け方法の選択の幅を更に拡張することができるという効果が得られる。
実施の形態17.
 実施の形態17では、図示されないが、実施の形態15に示されるように力触覚検知装置2300をターゲット4000との接触点以外の場所に取り付けるという構成が、実施の形態3、4、5、6、7、8、11及び16の構成に適用される。
 実施の形態17の構成により、実施の形態3、4、5、6、7、8、11及び16で得られる効果に加えて、力触覚検知装置2300が取り付けられる位置がターゲット4000との接触点でない場合においてもターゲット4000と接触する位置に力触覚情報2300aを提示することが可能となり、力触覚検知装置2300のサイズ及び取り付け方法の選択の幅を更に拡張することができるという効果が得られる。
実施の形態18.
 実施の形態18では、図示されないが、実施の形態3、4、5、6、7、8、9、11、12、13、14、15、16及び17のいずれかにおける力触覚検知装置2300は、ターゲット4000と接触する前から検知可能な機能を有する。
 実施の形態18の構成により、実施の形態3、4、5、6、7、8、9、11、12、13、14、15、16及び17で得られる効果に加えて、エッジ機器2000がターゲット4000と接触しそうな状況をオペレータ1000に視覚的に認知させることが可能となり、オペレータ1000の操作性を向上させることができるという効果が得られる。
実施の形態19.
 実施の形態19では、図示されないが、実施の形態1、2、3、4、5、6、7、8、9、11、12、13、14、15、16、17及び18のいずれかにおいて力触覚検知装置2300が、ターゲット4000を検知した場合に視覚的力触覚映像情報3250aだけでなく、検知距離、検知力、検知触覚、あるいは、これら3つの組合せに応じた、音の大きな、音程、音色、あるいは、これら3つを組み合わせた聴覚情報を同時に伝達する機能を有する。
 実施の形態19の構成により、実施の形態1、2、3、4、5、6、7、8、9、11、12、13、14、15、16、17及び18で得られる効果に加えて、力触覚検知装置2300が、ターゲット4000を検知した場合に、オペレータ1000に視覚的だけでなく聴覚的に同時に認知させることが可能となり、オペレータ1000の操作性を向上させることができるという効果が得られる。
 請求の範囲の「視覚表示装置」は、明細書及び図面の「視覚提示装置」に対応する。
 図60は、実施の形態1に係る遠隔操作システム1が有する複数の構成要素のうちの一部がプロセッサ500によって実現される場合のプロセッサ500を示す図である。つまり、遠隔操作システム1が有する複数の構成要素のうちの一部の機能は、メモリ600に格納されるプログラムを実行するプロセッサ500によって実現されてもよい。プロセッサ500は、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、DSP(Digital Signal Processor)、又はシステムLSI(Large Scale Integration)である。図60には、メモリ600も示されている。
 遠隔操作システム1が有する複数の構成要素のうちの一部の機能がプロセッサ500によって実現される場合、当該機能は、プロセッサ500と、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせとによって実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、メモリ600に格納される。プロセッサ500は、メモリ600に記憶されたプログラムを読み出して実行することにより、遠隔操作システム1が有する複数の構成要素のうちの一部の機能を実現する。
 遠隔操作システム1が有する複数の構成要素のうちの一部の機能がプロセッサ500によって実現される場合、遠隔操作システム1は、遠隔操作システム1によって実行される複数のステップの一部が結果的に実行されることになるプログラムを格納するためのメモリ600を有する。メモリ600に格納されるプログラムは、遠隔操作システム1が有する複数の構成要素のうちの一部をコンピュータに実行させるものであるともいえる。
 メモリ600は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の不揮発性若しくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク又はDVD(Digital Versatile Disk)等である。
 例えば、メモリ600は、障害物情報、対象形状情報及び形状変形情報も記憶する。メモリ600は、プロセッサ500が処理を実行する際の一時メモリにも使用されてもよい。
 プロセッサ500が実行するプログラムは、インストール可能な形式又は実行可能な形式のファイルで、コンピュータが読み取り可能な記憶媒体に記憶されてコンピュータプロダクトとして提供されてもよい。プロセッサ500が実行するプログラムは、インターネット等の通信ネットワークを経由して遠隔操作システム1に提供されてもよい。
 図61は、実施の形態1に係る遠隔操作システム1が有する複数の構成要素のうちの一部が処理回路700によって実現される場合の処理回路700を示す図である。つまり、遠隔操作システム1が有する複数の構成要素のうちの一部は、処理回路700によって実現されてもよい。
 処理回路700は、専用のハードウェアである。処理回路700は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものである。遠隔操作システム1が有する複数の構成要素のうちの一部は、残部と別個の専用のハードウェアによって実現されてもよい。
 遠隔操作システム1が有する複数の機能について、当該複数の機能の一部がソフトウェア又はファームウェアで実現され、当該複数の機能の残部が専用のハードウェアで実現されてもよい。このように、遠隔操作システム1が有する複数の機能は、ハードウェアによって、又は、ソフトウェア及びファームウェアの一方若しくは双方とハードウェアとの組み合わせによって、実現することができる。
 実施の形態2から実施の形態18までの各々の遠隔操作システムが有する複数の構成要素のうちの一部は、プロセッサによって実現されてもよい。当該プロセッサは、上述のプロセッサ500と同様のプロセッサである。その場合、当該プロセッサは、メモリに格納されるプログラムを実行することによって、実施の形態2から実施の形態18までの各々の遠隔操作システムが有する複数の構成要素のうちの一部の機能を実現する。上記のメモリは、メモリ600と同様のメモリである。
 実施の形態2から実施の形態18までの各々の遠隔操作システムが有する複数の構成要素のうちの一部は、処理回路によって実現されてもよい。当該処理回路は、上述の処理回路700と同様の処理回路である。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
 1,3,9,10,11,12,13 遠隔操作システム、500 プロセッサ、600 メモリ、700 処理回路、1000 オペレータ、1000a オペレータ操作、1100 視覚提示装置、1100a 映像情報、1200 運動操作伝達装置、1200a 運動伝達情報、2000 エッジ機器、2100 エンドエフェクタ、2200 ツール、2300 力触覚検知装置、2300a 力触覚情報、2400 アクティブマーカ、2500 パッシブマーカ、2600 光強度制御式発光器、2700 力触覚光変換器、2700a 光強度信号、3000 撮像装置、3000a 撮像情報、3200 視覚ベース感覚伝達装置、3200a 視覚ベース感覚伝達映像、3201 重畳映像、3250 視覚的力触覚映像生成機能、3250a 視覚的力触覚映像情報、3251 マーカポイント同定機能、3251a マーカポイント同定情報、3252 重畳機能、3253 マーカフィルタ機能、3253a マーカフィルタ情報、3254 マーカポイント推定機能、3254a マーカポイント推定情報、3255 画像分析機能、3255a 力触覚映像パターン選定情報、3255b マーカフィルタ映像選定情報、3300 アクティブマーカ制御装置、3300a マーカ情報、3300b アクティブマーカ制御信号、3400 エッジ機器モデル記憶部、3400a エッジ機器モデル情報、4000 ターゲット、4000a 相互作用。

Claims (10)

  1.  ターゲットに接触するエッジ機器と、
     前記エッジ機器を操作するためのオペレータ操作を受け付けて前記オペレータ操作に対応する運動伝達情報を前記エッジ機器に出力する運動操作伝達装置と、
     前記ターゲット及び前記エッジ機器の映像を表示する視覚表示装置と、を備え、
     前記エッジ機器は、
      前記ターゲットに対する力触覚を検知する力触覚検知装置と、
      前記力触覚検知装置によって検知された力触覚を検知された前記力触覚の大きさに対応する光の強度を特定する信号に変換する力触覚光変換器と、
      前記力触覚光変換器によって得られた信号に対応する強度の光を発する光強度制御式発光器と、
     を有することを特徴とする遠隔操作システム。
  2.  ターゲットに接触するエッジ機器と、
     前記エッジ機器を操作するためのオペレータ操作を受け付けて前記オペレータ操作に対応する運動伝達情報を前記エッジ機器に出力する運動操作伝達装置と、
     前記ターゲット及び前記エッジ機器を撮像する撮像装置と、
     前記ターゲット及び前記エッジ機器の映像を表示する視覚表示装置と、
     視覚ベース感覚伝達装置と、を備え、
     前記エッジ機器は、
      前記ターゲットに対する力触覚を検知する力触覚検知装置と、
      パッシブマーカとを有し、
     前記視覚ベース感覚伝達装置は、
      前記パッシブマーカの位置を同定するマーカポイント同定機能と、
      前記力触覚検知装置によって検知された力触覚を示す力触覚情報に対応する映像を示す視覚的力触覚映像情報を生成する視覚的力触覚映像生成機能と、
      前記マーカポイント同定機能によって得られたマーカポイント同定情報と、前記視覚的力触覚映像生成機能によって得られた視覚的力触覚映像情報と、前記撮像装置によって得られた撮像情報とを重畳する重畳機能と、
     を有することを特徴とする遠隔操作システム。
  3.  前記視覚ベース感覚伝達装置は、検出された前記パッシブマーカをフィルタリングするためのマーカフィルタ情報を生成するマーカフィルタ機能を更に有する
     ことを特徴とする請求項2に記載の遠隔操作システム。
  4.  前記エッジ機器が前記パッシブマーカを複数有する場合であって、前記パッシブマーカのひとつが前記ターゲットにより遮蔽されて前記撮像情報から消失した場合に、
     前記視覚ベース感覚伝達装置は、他の前記パッシブマーカが前記撮像情報に存在するとき、前記撮像情報と前記マーカポイント同定情報とをもとに消失したマーカポイントを推定するマーカポイント推定機能を更に有する
     ことを特徴とする請求項2又は3に記載の遠隔操作システム。
  5.  前記視覚ベース感覚伝達装置は、前記撮像情報をもとに、人が認知しやすい力触覚映像パターンを選定する力触覚映像パターン選定情報と、自然に馴染んだ映像を選定するマーカフィルタ映像選定情報と、を生成する画像分析機能を更に有する
     ことを特徴とする請求項2から4のいずれか1項に記載の遠隔操作システム。
  6.  ターゲットに接触するエッジ機器と、
     前記エッジ機器を操作するためのオペレータ操作を受け付けて前記オペレータ操作に対応する運動伝達情報を前記エッジ機器に出力する運動操作伝達装置と、
     前記ターゲット及び前記エッジ機器を撮像する撮像装置と、
     前記ターゲット及び前記エッジ機器の映像を表示する視覚表示装置と、
     視覚ベース感覚伝達装置と、
     前記撮像装置によって得られた撮像情報をもとに検出可能なマーカを生成するためのアクティブマーカ制御信号とマーカ情報とを生成するアクティブマーカ制御装置と、を備え、
     前記エッジ機器は、
      前記ターゲットに対する力触覚を検知する力触覚検知装置と、
      前記アクティブマーカ制御装置によって生成された前記アクティブマーカ制御信号によって制御されるアクティブマーカと、を有し、
     前記視覚ベース感覚伝達装置は、
      前記アクティブマーカの位置を同定するマーカポイント同定機能と、
      前記力触覚検知装置によって検知された力触覚を示す力触覚情報に対応する映像を示す視覚的力触覚映像情報を生成する視覚的力触覚映像生成機能と、
      前記マーカポイント同定機能によって得られたマーカポイント同定情報と、前記視覚的力触覚映像生成機能によって得られた視覚的力触覚映像情報と、前記撮像装置によって得られた撮像情報とを重畳する重畳機能と、
     を有することを特徴とする遠隔操作システム。
  7.  前記エッジ機器に設けられた前記力触覚検知装置及び前記光強度制御式発光器は、前記ターゲットに接触する先端部に取り付けられている
     ことを特徴とする請求項1に記載の遠隔操作システム。
  8.  前記エッジ機器に設けられた前記力触覚検知装置及び前記パッシブマーカは、前記ターゲットに接触する先端部に取り付けられている
     ことを特徴とする請求項2から5のいずれか1項に記載の遠隔操作システム。
  9.  前記エッジ機器に設けられた前記力触覚検知装置及び前記アクティブマーカは、前記ターゲットに接触する先端部に取り付けられている
     ことを特徴とする請求項6に記載の遠隔操作システム。
  10.  前記視覚ベース感覚伝達装置は、前記エッジ機器が前記ターゲットとコンタクトするポイントの幾何学的な情報を記憶するエッジ機器モデル記憶部を有する
     ことを特徴とする請求項2から9のいずれか1項に記載の遠隔操作システム。
PCT/JP2021/025584 2021-07-07 2021-07-07 遠隔操作システム WO2023281648A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/025584 WO2023281648A1 (ja) 2021-07-07 2021-07-07 遠隔操作システム
CN202180100061.3A CN117580689A (zh) 2021-07-07 2021-07-07 远程操作系统
JP2022508872A JP7109699B1 (ja) 2021-07-07 2021-07-07 遠隔操作システム
EP21949282.4A EP4368351A4 (en) 2021-07-07 2021-07-07 REMOTE OPERATING SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025584 WO2023281648A1 (ja) 2021-07-07 2021-07-07 遠隔操作システム

Publications (1)

Publication Number Publication Date
WO2023281648A1 true WO2023281648A1 (ja) 2023-01-12

Family

ID=82652287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025584 WO2023281648A1 (ja) 2021-07-07 2021-07-07 遠隔操作システム

Country Status (4)

Country Link
EP (1) EP4368351A4 (ja)
JP (1) JP7109699B1 (ja)
CN (1) CN117580689A (ja)
WO (1) WO2023281648A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079824A (ja) * 2012-10-15 2014-05-08 Toshiba Corp 作業画面表示方法および作業画面表示装置
WO2016113836A1 (ja) * 2015-01-13 2016-07-21 株式会社日立製作所 マニプレータ制御方法、システム、およびマニプレータ
WO2019059364A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 遠隔制御マニピュレータシステムおよび制御装置
WO2019224994A1 (ja) 2018-05-25 2019-11-28 株式会社メルティンMmi 動き検出装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887884B1 (en) * 2012-08-27 2019-06-12 University Of Houston Robotic device and system software for image-guided and robot-assisted surgery
JP6938369B2 (ja) * 2014-03-28 2021-09-22 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 定量的な3次元イメージングに基づく触覚フィードバックを用いる手術システム
JP6420229B2 (ja) * 2015-12-10 2018-11-07 ファナック株式会社 仮想物体の画像をロボットの映像に重畳表示する映像表示装置を備えるロボットシステム
CA3062101A1 (en) * 2017-05-03 2018-11-08 Taiga Robotics Corp. Systems and methods for remotely controlling a robotic device
JP6948164B2 (ja) * 2017-06-12 2021-10-13 日立Geニュークリア・エナジー株式会社 作業用ロボットのアーム姿勢制御システムおよび方法
JP2020156800A (ja) * 2019-03-27 2020-10-01 ソニー株式会社 医療用アームシステム、制御装置、及び制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079824A (ja) * 2012-10-15 2014-05-08 Toshiba Corp 作業画面表示方法および作業画面表示装置
WO2016113836A1 (ja) * 2015-01-13 2016-07-21 株式会社日立製作所 マニプレータ制御方法、システム、およびマニプレータ
WO2019059364A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 遠隔制御マニピュレータシステムおよび制御装置
WO2019224994A1 (ja) 2018-05-25 2019-11-28 株式会社メルティンMmi 動き検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4368351A4

Also Published As

Publication number Publication date
EP4368351A1 (en) 2024-05-15
JPWO2023281648A1 (ja) 2023-01-12
CN117580689A (zh) 2024-02-20
JP7109699B1 (ja) 2022-07-29
EP4368351A4 (en) 2024-08-21

Similar Documents

Publication Publication Date Title
US11688162B2 (en) Drive assist device
CN105666505B (zh) 具备扩展现实对应显示器的机器人系统
JP6598617B2 (ja) 情報処理装置、情報処理方法およびプログラム
US10474411B2 (en) System and method for alerting VR headset user to real-world objects
US9815199B2 (en) Display control device, display control method, computer program product, and communication system
US10489981B2 (en) Information processing device, information processing method, and program for controlling display of a virtual object
JP5564300B2 (ja) ヘッドマウント型拡張現実映像提示装置及びその仮想表示物操作方法
US9697610B2 (en) Information processing device and information processing method
JP6601402B2 (ja) 制御装置、制御方法およびプログラム
US20120182155A1 (en) Danger presentation device, danger presentation system, danger presentation method and program
US9758098B2 (en) Vehicle periphery monitoring device
EP3422152A1 (en) Remote operation device, remote operation method, remote operation system, and program
JP2006167867A (ja) 遠隔操作装置
TW202105129A (zh) 具有用於閘控使用者介面元件的個人助理元件之人工實境系統
WO2016208261A1 (ja) 情報処理装置、情報処理方法およびプログラム
JP7428436B2 (ja) 随意のデュアルレンジ運動学を用いたプロキシコントローラスーツ
JP3933139B2 (ja) コマンド入力装置
US10334237B2 (en) Information processing device, display device, and information processing method
JP2003035515A (ja) 三次元位置検出方法,装置および三次元位置検出用のマーカ
US20220155881A1 (en) Sensing movement of a hand-held controller
JP2009031981A (ja) インタフェース装置、インタフェース方法及びインタフェースプログラム
WO2023281648A1 (ja) 遠隔操作システム
US12042240B2 (en) Augmented reality using eye tracking in a robot assisted surgical system
WO2020154971A1 (en) Electronic device and control method therefor
US20180164895A1 (en) Remote control apparatus, remote control method, remote control system, and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022508872

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100061.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021949282

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021949282

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE