WO2023280536A1 - Hydrodynamic retarder - Google Patents

Hydrodynamic retarder Download PDF

Info

Publication number
WO2023280536A1
WO2023280536A1 PCT/EP2022/066270 EP2022066270W WO2023280536A1 WO 2023280536 A1 WO2023280536 A1 WO 2023280536A1 EP 2022066270 W EP2022066270 W EP 2022066270W WO 2023280536 A1 WO2023280536 A1 WO 2023280536A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
sensor
annular gap
retarder
outlet opening
Prior art date
Application number
PCT/EP2022/066270
Other languages
German (de)
French (fr)
Inventor
Alexander Schreiber
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Priority to CN202280047267.9A priority Critical patent/CN117597274A/en
Publication of WO2023280536A1 publication Critical patent/WO2023280536A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/08Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels using fluid or powdered medium
    • B60T1/087Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels using fluid or powdered medium in hydrodynamic, i.e. non-positive displacement, retarders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T10/00Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope
    • B60T10/02Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope with hydrodynamic brake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/04Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders with blades causing a directed flow, e.g. Föttinger type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/001Temperature

Definitions

  • the invention relates to a hydrodynamic retarder with a device for detecting a working medium temperature.
  • Hydrodynamic retarders are generally known as wear-free retarders which are used, for example, in motor vehicles, in particular commercial vehicles or rail vehicles.
  • the hydrodynamic retarders consist of a working space, which is formed by a primary impeller and a secondary impeller. In this working space, in which the two impellers rotate in opposite directions, there is a liquid working medium when the retarder is braking, which forms a circulatory flow between the impellers.
  • the typical retarder comprises a rotatably mounted and drivable rotor and a stator which is firmly connected to a housing of the retarder or the like.
  • Such a retarder is known from DE102010010222 A1.
  • a temperature sensor is used to monitor the retarder during operation.
  • a temperature sensor is proposed, which protrudes into the working space or a volume area for supplying or removing the working medium, or is in thermally conductive connection with a component arranged in the working space.
  • the temperature sensor is preferably arranged in the area of the ring channel for emptying the working space. This arrangement allows a very simple construction. Furthermore, the temperature sensor arranged in this way enables a temperature measurement in braking operation and in non-braking operation.
  • a further construction of a retarder with a temperature sensor is known from CN105697610 A.
  • a method for precisely detecting the hydraulic oil temperature of the retarder is proposed.
  • the housing includes a working oil chamber over has an oil outlet opening, the oil temperature of the oil which is passed through this oil outlet opening being measured.
  • the object of the invention is to propose a retarder structure with a sensor, with which an improved reaction time can be achieved.
  • the retarder housing consists of at least the stator housing and the rotor housing.
  • the stator is inserted in the stator housing and coupled to it in a torque-proof manner.
  • the rotor is rotatably mounted in the rotor housing, wherein the rotor can be driven via a shaft and is mounted so that it can be moved axially on the shaft, so that the rotor can be moved into a braking operating position and a non-braking operating position, with an annular gap between the rotor in the non-braking operating position and rotor housing is provided.
  • the device for detecting the temperature of the working medium comprises a sensor which is positioned in the rotor housing in such a way that the sensor tip extends into the annular gap.
  • the sensor tip is the part of the sensor that is used to record the actual temperature change.
  • an outlet opening is provided in the rotor housing, with the outlet opening and the sensor being arranged in a plane transverse to the axis of rotation, and with the sensor and the outlet opening being arranged offset from one another over the circumference.
  • the annular gap can have a bulge in the area of the outlet opening.
  • a skimming tube can also be inserted in the outlet opening, one end of which extends into the bulge and the annular gap.
  • the sensor is preferably used in a sensor space that enlarges the annular gap in the area around the sensor, so that it is ensured that the sensor tip is flushed.
  • the sensor is arranged in the upper area of the annular gap or the retarder, with the sensor axis extending into the annular gap at an angle a of 30° to 50°, preferably 35° to 40°, to the rotor tangent, counter to the direction of rotor rotation.
  • the upper area is defined by the fact that the point of intersection of the sensor axis and rotor tangent is in an angular range d to the vertical retarder axis of 20° to 40°, more preferably 30° to 35°. This upper arrangement is crucial to ensure that no working medium accumulates in the sensor space and the measured values are thereby falsified.
  • the outlet opening is arranged in the lower region of the annular gap, with the axis of the outlet opening extending into the annular gap (20a) at an angle ⁇ of 20° to 40°, more preferably of 25° to 35°, inclined to the central axis in the direction of rotor rotation.
  • the lower area is defined in that the point of intersection of the axis of the outlet opening and the rotor tangent is in an angular range g to the vertical retarder axis of 15° to 30°, more preferably 20° to 25°.
  • FIG. 1 Sectional view of the retarder in the installed position
  • Fig. 2 Longitudinal section of the retarder with the rotor in the non-braking position
  • FIGS. 1 to 3 show sectional views of the retarder, the sectioned components are not hatched in order to simplify the illustration.
  • FIG. 1 shows a sectional representation of the retarder 1 according to the invention in the installation position in which it is or must be used in the vehicle.
  • the section runs in the plane of the sensor 7 and the return channel 10, with the rotor 3 being in the non-braking position.
  • the rotor 3 is mounted on the shaft 6 in such a way that the rotor 3 can move from a non-braking position to a braking position along the shaft axis.
  • This functionality is sufficiently known from the StdT, so that a more detailed description with reference to the StdT is not given here.
  • the rotor 3 In the non-braking mode as well as in the braking mode, the rotor 3 is driven in the direction of the arrow and even in the non-braking mode there must always be a certain residual working medium volume in the working chamber 18 .
  • This residual working medium volume causes a reduction in idling losses and ensures cooling of the retarder.
  • the return channel 10 In order to set the residual working medium volume, the return channel 10 is provided with the skimming tube 9 used, via which a volume flow can be directed into the transverse channel 11 and from there back into the oil tank.
  • the dimension y or the angle y can be used to further define the lower area, ie the arrangement of the skimming tube 9 or the outlet channel 10 on the circumference.
  • the skimming tube 9 has been rotated against the direction of rotation of the rotor 3 by an angle ⁇ of approximately 21°, although other angles ⁇ of 15° to 30°, preferably 20° to 25°, are also conceivable.
  • angle ⁇ of approximately 21°, although other angles ⁇ of 15° to 30°, preferably 20° to 25°, are also conceivable.
  • a good skimming effect is achieved in this way and the arrangement of the skimming in the lower area means that no larger accumulation of working medium can take place, but a residual volume of working medium nevertheless remains in the annular gap 20a.
  • an angle ⁇ in the direction of rotation of the rotor 3 can also be realized.
  • the sensor 7 is installed or screwed into the sensor chamber 8 in the upper area of the rotor housing 2 .
  • the dimension x or the angle d can be used to further define the upper area, ie the arrangement of the sensor 7 on the circumference.
  • the sensor 7 has been rotated by an angle d of approximately 31° in the direction of rotation of the rotor 3, although other angles d of 20° to 40°, preferably 30° to 35°, are also conceivable. It is crucial that no working medium can accumulate in the sensor space 8 permanently. Alternatively, an angle d counter to the direction of rotation of the rotor 3 can also be realized.
  • FIGS. 2 and 3 each show a sectional view in the longitudinal direction through the retarder 1, the section being placed in such a way that the sensor 7 and the outlet channel 10 are shown.
  • Figures 2, 3 differ in the rotor position, in Figure 2, the non-braking position and Figure 3, the braking position of the rotor 3 is shown.
  • the rotor 3 In the non-braking position, the rotor 3 is in a position in which the gap between the stator 4 and the rotor 3 is at a maximum and the working space 18 reaches its maximum size.
  • a radial annular gap 20a is formed between the rotor 3 and the rotor housing 2, and the rotor space 19 is reduced to a minimum. In this way it is achieved that the remaining working volume is conveyed by the rotation of the rotor 3 in the annular gap 20a to the sensor 7 and from there to the skimming point.
  • a small volume of working medium is constantly pumped into the working chamber 18 in non-braking operation.
  • the working medium causes a reduction in no-load losses and ensures no-load cooling.
  • the return channel 10, which is connected to the working medium reservoir, is provided for regulating the filling level in the working chamber 18.
  • the skimming tube 9 in the return channel 10 protrudes into the bulge 21 and the ring channel 20a and thus enables a defined skimming off of the working medium volume, which is fed back into the circuit via the return channel.
  • the aim of the invention is to detect the change in temperature of the working medium as directly as possible even in non-braking operation.
  • the sensor 7 more precisely, its sensor tip—protrudes directly into the annular gap 21a, so that the working medium that has just been conveyed through the annular gap 20a flows directly around the sensor tip.
  • FIG. 3 differs from FIG. 2 in that the rotor is shown in the braking position.
  • a very large working medium volume is conveyed into the working chamber 18 via the inlet chamber 13 and the inlet channel 14 .
  • the working medium is then pumped out of the working chamber again by the pumping effect between the stator 4 and the rotor 3 and returns through the outlet opening 17 and the outlet chamber 15 into a circuit with the cooler (not shown).
  • Working medium also passes through an annular gap 20b into the rotor space 19 during braking operation, with the annular gap 20b being formed between the stator 4 and the rotor 3 in this rotor position. Temperature detection is thus also ensured during braking. reference list

Abstract

A hydrodynamic retarder having a device for detecting a working medium temperature is proposed. In the proposed design, the retarder housing consists of at least the stator housing and the rotor housing. The stator is inserted in the stator housing and coupled to the latter for rotation therewith. The rotor is mounted rotatably in the rotor housing, wherein the rotor is mounted so as to be driveable via a shaft and so as to be axially displaceable on the shaft such that the rotor is movable into a braking operating position and into a non-braking operating position, wherein, in the non-braking operating position, an annular gap is provided between the rotor and the rotor housing. According to the invention, it is proposed that the device for detecting the working medium temperature comprises a sensor which is positioned in the rotor housing in such a manner that the sensor tip reaches into the annular gap.

Description

Hydrodynamischer Retarder Hydrodynamic retarder
Die Erfindung betrifft einen hydrodynamischen Retarder mit einer Einrichtung zur Erfassung einer Arbeitsmediumtemperatur. The invention relates to a hydrodynamic retarder with a device for detecting a working medium temperature.
Hydrodynamische Retarder sind als verschleißfreie Dauerbremsen, welche beispielsweise in Kraftfahrzeugen, insbesondere Nutzfahrzeugen oder Schienenfahrzeugen, eingesetzt werden, allgemein bekannt. Die hydrodynamischen Retarder bestehen dabei aus einem Arbeitsraum, welcher von einem primären Schaufelrad und einem sekundären Schaufelrad gebildet wird. In diesem Arbeitsraum, in welchem sich die beiden Schaufelräder gegeneinander drehen, befindet sich im Bremsbetrieb des Retarders ein flüssiges Arbeitsmedium, welches eine Kreislaufströmung zwischen den Schaufelrädern ausbildet. Der typische Retarder umfasst einen drehbar gelagerten und antreibbaren Rotor und einen Stator der fest mit einem Gehäuse des Retarders oder dergleichen verbunden. Hydrodynamic retarders are generally known as wear-free retarders which are used, for example, in motor vehicles, in particular commercial vehicles or rail vehicles. The hydrodynamic retarders consist of a working space, which is formed by a primary impeller and a secondary impeller. In this working space, in which the two impellers rotate in opposite directions, there is a liquid working medium when the retarder is braking, which forms a circulatory flow between the impellers. The typical retarder comprises a rotatably mounted and drivable rotor and a stator which is firmly connected to a housing of the retarder or the like.
Ein derartiger Retarder ist aus der DE102010010222 A1 bekannt. Um den Retarder im Betrieb überwachen zu können, wird ein Temperatursensor eingesetzt. Um die Funktionalität des Retarders zu verbessern, wird ein Temperatursensor vorgeschlagen, der in den Arbeitsraum oder einen Volumenbereich zur Zufuhr oder Abfuhr des Arbeitsmediums ragt oder in wärmeleitender Verbindung mit einem im Arbeitsraum angeordneten Bauteil steht. Vorzugsweise ist der Temperatursensor im Bereich des Ringkanals zur Entleerung des Arbeitsraums angeordnet. Diese Anordnung erlaubt einen sehr einfachen Aufbau. Weiterhin ermöglicht der so angeordnete Temperatursensor eine Temperaturmessung im Bremsbetrieb und im Nicht- Bremsbetrieb. Such a retarder is known from DE102010010222 A1. A temperature sensor is used to monitor the retarder during operation. In order to improve the functionality of the retarder, a temperature sensor is proposed, which protrudes into the working space or a volume area for supplying or removing the working medium, or is in thermally conductive connection with a component arranged in the working space. The temperature sensor is preferably arranged in the area of the ring channel for emptying the working space. This arrangement allows a very simple construction. Furthermore, the temperature sensor arranged in this way enables a temperature measurement in braking operation and in non-braking operation.
Ein weiter Aufbau eines Retarders mit Temperatursensor ist aus der CN105697610 A bekannt. Dabei wird ein Verfahren zum genauen Erfassen der Hydrauliköltemperatur des Retarders vorgeschlagen. Das Gehäuse umfasst eine Arbeitsölkammer, die über eine Ölauslassöffnung verfügt, wobei die Öltemperatur des Öls, welches durch diese Ölauslassöffnung geleitet wird, gemessen wird. A further construction of a retarder with a temperature sensor is known from CN105697610 A. A method for precisely detecting the hydraulic oil temperature of the retarder is proposed. The housing includes a working oil chamber over has an oil outlet opening, the oil temperature of the oil which is passed through this oil outlet opening being measured.
Mit steigenden Anforderungen an die Regelbarkeit des Retarders wird die Trägheit der Temperaturmessung, die mit den bekannten Sensoranordnungen zu erreichen ist, zu einem begrenzenden Parameter. With increasing demands on the controllability of the retarder, the inertia of the temperature measurement, which can be achieved with the known sensor arrangements, becomes a limiting parameter.
Die Aufgabe der Erfindung ist es, einen Retarderaufbau mit Sensor vorzuschlagen, mit dem eine verbesserte Reaktionszeit zu erreichen ist. The object of the invention is to propose a retarder structure with a sensor, with which an improved reaction time can be achieved.
Die Aufgabe wird erfindungsgemäß durch eine Ausführung entsprechend dem unabhängigen Anspruch gelöst. Weitere vorteilhafte Ausführungsformen der vorliegenden Erfindung finden sich in den Unteransprüchen. The object is achieved according to the invention by an embodiment corresponding to the independent claim. Further advantageous embodiments of the present invention can be found in the dependent claims.
Es wird ein hydrodynamischer Retarder mit einer Einrichtung zur Erfassung einer Arbeitsmediumtemperatur entsprechend dem Oberbegriff des Anspruchs 1 vorgeschlagen. Bei der vorgeschlagenen Ausführung besteht das Retardergehäuse aus zumindest dem Statorgehäuse und dem Rotorgehäuse. Der Stator ist im Statorgehäuse eingesetzt und mit diesem drehfest gekoppelt. Der Rotor ist im Rotorgehäuse drehbar gelagert angeordnet, wobei der Rotor über eine Welle antreibbar und auf der Welle axial verschiebbar gelagert ist, so dass der Rotor in eine Bremsbetriebsstellung und eine Nicht-Bremsbetriebsstellung bewegbar ist, wobei in der Nicht-Bremsbetriebsstellung ein Ringspalt zwischen Rotor und Rotorgehäuse vorgesehen ist. A hydrodynamic retarder with a device for detecting a working medium temperature according to the preamble of claim 1 is proposed. In the proposed embodiment, the retarder housing consists of at least the stator housing and the rotor housing. The stator is inserted in the stator housing and coupled to it in a torque-proof manner. The rotor is rotatably mounted in the rotor housing, wherein the rotor can be driven via a shaft and is mounted so that it can be moved axially on the shaft, so that the rotor can be moved into a braking operating position and a non-braking operating position, with an annular gap between the rotor in the non-braking operating position and rotor housing is provided.
Erfindungsgemäß wird vorgeschlagen, dass die Einrichtung zur Erfassung der Arbeitsmediumtemperatur einen Sensor umfasst, der derart im Rotorgehäuse positioniert ist, dass die Sensorspitze in den Ringspalt hineinreicht. Wobei die Sensorspitze der Teil des Sensors ist, mittels dem die eigentliche Temperaturänderung erfasst wird. Weiterhin ist eine Auslassöffnung im Rotorgehäuse vorgesehen, wobei die Auslassöffnung und der Sensor in einer Ebene quer zur Drehachse angeordnet sind, und wobei der Sensor und die Auslassöffnung über den Umfang versetzt zueinander angeordnet sind. According to the invention it is proposed that the device for detecting the temperature of the working medium comprises a sensor which is positioned in the rotor housing in such a way that the sensor tip extends into the annular gap. The sensor tip is the part of the sensor that is used to record the actual temperature change. Furthermore, an outlet opening is provided in the rotor housing, with the outlet opening and the sensor being arranged in a plane transverse to the axis of rotation, and with the sensor and the outlet opening being arranged offset from one another over the circumference.
In einer bevorzugten Ausführung kann der Ringspalt im Bereich der Auslassöffnung eine Ausbuchtung aufweisen. In a preferred embodiment, the annular gap can have a bulge in the area of the outlet opening.
Zur Verbesserung der Abschöpfwirkung kann weiterhin in der Auslassöffnung ein Abschöpfrohr eingesetzt sein, welches mit einem Ende in die Ausbuchtung und den Ringspalt hineinreicht. To improve the skimming effect, a skimming tube can also be inserted in the outlet opening, one end of which extends into the bulge and the annular gap.
Vorzugsweise ist der Sensor in einem Sensorraum eingesetzt, der den Ringspalt im Bereich um den Sensor vergrößert, so dass die Umspülung der Sensorspitze gewährleistet ist. The sensor is preferably used in a sensor space that enlarges the annular gap in the area around the sensor, so that it is ensured that the sensor tip is flushed.
Der Sensor ist im oberen Bereich des Ringspaltes bzw. des Retarders angeordnet, wobei die Sensorachse mit einem Winkel a von 30° bis 50 °, weiterhin bevorzugt von 35° bis 40°, zur Rotortangente, entgegen der Rotordrehrichtung, geneigt in den Ringspalt hineinreicht. Dabei wird der obere Bereich dadurch definiert, dass der Schnittpunkt von Sensorachse und Rotortangente in einem Winkelbereich d zur senkrechten Retarderachse von 20° bis 40°, weiterhin bevorzugt von 30° bis 35°, liegt. Diese obere Anordnung ist entscheidend dafür, dass sich im Sensorraum kein Arbeitsmedium ansammelt und die Messwerte dadurch verfälscht werden. The sensor is arranged in the upper area of the annular gap or the retarder, with the sensor axis extending into the annular gap at an angle a of 30° to 50°, preferably 35° to 40°, to the rotor tangent, counter to the direction of rotor rotation. The upper area is defined by the fact that the point of intersection of the sensor axis and rotor tangent is in an angular range d to the vertical retarder axis of 20° to 40°, more preferably 30° to 35°. This upper arrangement is crucial to ensure that no working medium accumulates in the sensor space and the measured values are thereby falsified.
Die Auslassöffnung ist im unteren Bereich des Ringspaltes angeordnet, wobei die Achse der Auslassöffnung mit einem Winkel ß von 20° bis 40°, weiterhin bevorzugt von 25° bis 35°, zur Mittelachse in Rotordrehrichtung geneigt in den Ringspalt (20a) hineinreicht. Dabei wird der untere Bereich dadurch definiert, dass der Schnittpunkt der Achse der Auslassöffnung und der Rotortangente in einem Winkelbereich g zur senkrechten Retarderachse von 15° bis 30°, weiterhin bevorzugt von 20° bis 25°, liegt. lm Folgenden wird die Erfindung anhand von Figuren erläutert. Die Figuren zeigen im Einzelnen: The outlet opening is arranged in the lower region of the annular gap, with the axis of the outlet opening extending into the annular gap (20a) at an angle β of 20° to 40°, more preferably of 25° to 35°, inclined to the central axis in the direction of rotor rotation. The lower area is defined in that the point of intersection of the axis of the outlet opening and the rotor tangent is in an angular range g to the vertical retarder axis of 15° to 30°, more preferably 20° to 25°. The invention is explained below with reference to figures. The figures show in detail:
Fig. 1 Schnittdarstellung des Retarders in Einbaulage Fig. 2 Längsschnitt des Retarders mit Rotor in Nicht-BremsstellungFig. 1 Sectional view of the retarder in the installed position Fig. 2 Longitudinal section of the retarder with the rotor in the non-braking position
Fig. 3 Längsschnitt des Retarders mit Rotor in Bremsstellung Fig. 3 longitudinal section of the retarder with the rotor in the braking position
Obwohl die Skizzen Figur 1 bis 3 Schnittdarstellungen des Retarders darstellen, wurde auf die Schraffur der geschnittenen Bauteile verzichtet, um die Darstellung zu vereinfachen. Although the sketches in FIGS. 1 to 3 show sectional views of the retarder, the sectioned components are not hatched in order to simplify the illustration.
Figur 1 zeigt eine Schnittdarstellung des erfindungsgemäßen Retarders 1 in der Einbaulage, in der er im Fahrzeug eingesetzt wird bzw. werden muss. Der Schnitt verläuft in der Ebene von Sensor 7 und Rücklaufkanal 10, wobei sich der Rotor 3 in der Nicht-Bremsstellung befindet. Der Rotor 3 ist auf der Welle 6 derart gelagert, wobei der Rotor 3 sich von einer Nicht-Bremsstellung in eine Bremsstellung entlang der Wellenachse bewegen kann. Diese Funktionalität ist aus dem StdT hinreichend bekannt, so dass hier auf die nähere Beschreibung, mit Verweis auf den StdT, verzichtet wird. FIG. 1 shows a sectional representation of the retarder 1 according to the invention in the installation position in which it is or must be used in the vehicle. The section runs in the plane of the sensor 7 and the return channel 10, with the rotor 3 being in the non-braking position. The rotor 3 is mounted on the shaft 6 in such a way that the rotor 3 can move from a non-braking position to a braking position along the shaft axis. This functionality is sufficiently known from the StdT, so that a more detailed description with reference to the StdT is not given here.
Im Nicht-Bremsbetrieb wie auch im Bremsbetrieb wird der Rotor 3 in Pfeilrichtung angetrieben und selbst im Nicht-Bremsbetrieb muss immer ein gewisses Restarbeitsmediumvolumen im Arbeitsraum 18 vorhanden sein. Dieses Restarbeitsmediumvolumen bewirkt eine Reduzierung der Leerlaufverluste und sorgt für eine Kühlung des Retarders. Um das Restarbeitsmediumvolumen einzustellen ist der Rücklaufkanal 10 mit dem eingesetzten Abschöpfrohr 9 vorgesehen, über den ein Volumenstrom in den Querkanal 11 und von dort zurück in den Ölbehälter geleitet werden kann. Das Abschöpfrohr 9 ragt in die Ausbuchtung 21 des Ringspalts 20a zwischen Rotor 3 und Rotorgehäuse 2 hinein, so dass ein Umfangsabschnitt des Abschöpfrohrs 9 eine Leitvorrichtung bildet, über die ein Teil des Arbeitsmediumstroms aus dem Ringspalt 20a in den Auslasskanal 10 geleitet wird. Weiterhin ist das Abschöpfrohr 9 bzw. die Achse 23 des Auslasskanals 10 in Drehrichtung des Rotors um den Winkel von ß = 20° bis 40°, hier gewählt 30°, gegenüber der Vertikalen geneigt. Zur weiteren Definition des unteren Bereichs, also der Anordnung des Abschöpfrohrs 9 bzw. des Auslasskanals 10 am Umfang, kann das Maß y oder der Winkel y verwendet werden. In der dargestellten Ausführung ist das Abschöpfrohr 9 gegen die Drehrichtung des Rotors 3 um einen Winkel y von ca. 21° gedreht worden, wobei auch andere Winkel y von 15° bis 30°, weiterhin bevorzugt von 20° bis 25°, denkbar sind. So wird eine gute Abschöpfwirkung erreicht und die Anordnung der Abschöpfung im unteren Bereich bewirkt, dass keine größere Ansammlung von Arbeitsmedium erfolgen kann, aber trotzdem ein Restvolumen Arbeitsmedium im Ringspalt 20a verbleibt. Alternativ ist auch ein Winkel y in Drehrichtung des Rotors 3 realisierbar. In the non-braking mode as well as in the braking mode, the rotor 3 is driven in the direction of the arrow and even in the non-braking mode there must always be a certain residual working medium volume in the working chamber 18 . This residual working medium volume causes a reduction in idling losses and ensures cooling of the retarder. In order to set the residual working medium volume, the return channel 10 is provided with the skimming tube 9 used, via which a volume flow can be directed into the transverse channel 11 and from there back into the oil tank. The skimming tube 9 protrudes into the bulge 21 of the annular gap 20a between the rotor 3 and the rotor housing 2, so that a peripheral section of the skimming tube 9 forms a guide device over which part of the working medium flow from the annular gap 20a is passed into the outlet channel 10. Furthermore, the skimming pipe 9 or the axis 23 of the outlet channel 10 is inclined in the direction of rotation of the rotor by an angle of β=20° to 40°, 30° selected here, relative to the vertical. The dimension y or the angle y can be used to further define the lower area, ie the arrangement of the skimming tube 9 or the outlet channel 10 on the circumference. In the illustrated embodiment, the skimming tube 9 has been rotated against the direction of rotation of the rotor 3 by an angle γ of approximately 21°, although other angles γ of 15° to 30°, preferably 20° to 25°, are also conceivable. A good skimming effect is achieved in this way and the arrangement of the skimming in the lower area means that no larger accumulation of working medium can take place, but a residual volume of working medium nevertheless remains in the annular gap 20a. Alternatively, an angle γ in the direction of rotation of the rotor 3 can also be realized.
Der Sensor 7 ist im oberen Bereich des Rotorgehäuses 2 in den Sensorraum 8 eingebaut bzw. geschraubt. Dabei ist die Sensorachse 22 gegenüber der Tangente des Rotors 3 um den Winkel von a = 30° bis 50°, bevorzugt um einen Winkel von a = 35° bis 40°, gegen die Drehrichtung des Rotors 3 geneigt. Zur weiteren Definition des oberen Bereiches, also der Anordnung des Sensors 7 am Umfang, kann das Maß x oder den Winkel d verwendet werden. In der dargestellten Ausführung ist der Sensor 7 in Drehrichtung des Rotors 3 um einen Winkel d von ca 31° gedreht worden, wobei auch andere Winkel d von 20° bis 40°, weiterhin bevorzugt von 30° bis 35°, denkbar sind. Entscheidend ist, dass sich kein Arbeitsmedium dauerhaft im Sensorraum 8 ansammeln kann. Alternativ ist auch ein Winkel d entgegen der Drehrichtung des Rotors 3 realisierbar. The sensor 7 is installed or screwed into the sensor chamber 8 in the upper area of the rotor housing 2 . The sensor axis 22 is inclined relative to the tangent of the rotor 3 by an angle of a=30° to 50°, preferably by an angle of a=35° to 40°, against the direction of rotation of the rotor 3 . The dimension x or the angle d can be used to further define the upper area, ie the arrangement of the sensor 7 on the circumference. In the illustrated embodiment, the sensor 7 has been rotated by an angle d of approximately 31° in the direction of rotation of the rotor 3, although other angles d of 20° to 40°, preferably 30° to 35°, are also conceivable. It is crucial that no working medium can accumulate in the sensor space 8 permanently. Alternatively, an angle d counter to the direction of rotation of the rotor 3 can also be realized.
Figuren 2 und 3 zeigen je eine Schnittansicht in Längsrichtung durch den Retarder 1 , wobei der Schnitt derart gelegt wurde, dass der Sensor 7 und der Auslasskanal 10 dargestellt wird. Die Figuren 2, 3 unterscheiden sich durch die Rotorstellung, wobei in Figur 2 die Nicht-Bremsstellung und in Figur 3 die Bremsstellung des Rotors 3 dargestellt ist. ln der Nicht-Bremsstellung ist der Rotor 3 in einer Stellung, in der der Spalt zwischen Stator 4 und Rotor 3 ein Maximum aufweist und der Arbeitsraum 18 die Maximalgröße erreicht. In dieser Stellung bildet sich ein radialer Ringspalt 20a zwischen Rotor 3 und Rotorgehäuse 2 und der Rotorraum 19 ist auf ein Minimum reduziert. So wird erreicht, dass das Restarbeitsvolumen durch die Drehung des Rotors 3 im Ringspalt 20a zum Sensor 7 und von dort zur Abschöpfstelle gefördert wird. FIGS. 2 and 3 each show a sectional view in the longitudinal direction through the retarder 1, the section being placed in such a way that the sensor 7 and the outlet channel 10 are shown. Figures 2, 3 differ in the rotor position, in Figure 2, the non-braking position and Figure 3, the braking position of the rotor 3 is shown. In the non-braking position, the rotor 3 is in a position in which the gap between the stator 4 and the rotor 3 is at a maximum and the working space 18 reaches its maximum size. In this position, a radial annular gap 20a is formed between the rotor 3 and the rotor housing 2, and the rotor space 19 is reduced to a minimum. In this way it is achieved that the remaining working volume is conveyed by the rotation of the rotor 3 in the annular gap 20a to the sensor 7 and from there to the skimming point.
Wie aus dem StdT bekannt, wird im Nicht-Bremsbetrieb ständig ein kleines Volumen von Arbeitsmedium in den Arbeitsraum 18 gepumpt. Das Arbeitsmedium bewirkt eine Reduzierung der Leerlaufverlust und gewährleistet die Leerlaufkühlung. Zur Regelung des Füllgrades im Arbeitsraum 18 ist der Rücklaufkanal 10, der mit dem Arbeitsmediumvorratsbehälter verbunden ist, vorgesehen. Das Abschöpfrohr 9 im Rücklaufkanal 10 ragt in die Ausbuchung 21 und den Ringkanal 20a und ermöglicht so eine definierte Abschöpfung des Arbeitsmediumvolumens, welches über den Rücklaufkanal in den Kreislauf zurückgeführt wird. As is known from the StdT, a small volume of working medium is constantly pumped into the working chamber 18 in non-braking operation. The working medium causes a reduction in no-load losses and ensures no-load cooling. The return channel 10, which is connected to the working medium reservoir, is provided for regulating the filling level in the working chamber 18. The skimming tube 9 in the return channel 10 protrudes into the bulge 21 and the ring channel 20a and thus enables a defined skimming off of the working medium volume, which is fed back into the circuit via the return channel.
Ziel der Erfindung ist es, die Temperaturänderung des Arbeitsmediums auch im Nicht- Bremsbetrieb möglichst direkt zu erfassen. Der Sensor 7 - genauer dessen Sensorspitze - ragt deshalb direkt in den Ringspalt 21a, so dass die Sensorspitze direkt von dem gerade durch den Ringspalt 20a geförderte Arbeitsmedium umströmt wird. The aim of the invention is to detect the change in temperature of the working medium as directly as possible even in non-braking operation. The sensor 7—more precisely, its sensor tip—protrudes directly into the annular gap 21a, so that the working medium that has just been conveyed through the annular gap 20a flows directly around the sensor tip.
Figur 3 unterscheidet sich dadurch von Figur 2, dass der Rotor in Bremsstellung dargestellt ist. Zum Bremsen wird ein sehr großes Arbeitsmediumvolumen über den Einlassraum 13 und den Einlasskanal 14 in den Arbeitsraum 18 gefördert. Durch die Pumpwirkung zwischen Stator 4 und Rotor 3 wird das Arbeitsmedium anschließend wieder aus dem Arbeitsraum gepumpt und gelangt durch die Auslassöffnung 17 und den Auslassraum 15 zurück in einen nicht dargestellten Kreislauf mit dem Kühler. FIG. 3 differs from FIG. 2 in that the rotor is shown in the braking position. For braking, a very large working medium volume is conveyed into the working chamber 18 via the inlet chamber 13 and the inlet channel 14 . The working medium is then pumped out of the working chamber again by the pumping effect between the stator 4 and the rotor 3 and returns through the outlet opening 17 and the outlet chamber 15 into a circuit with the cooler (not shown).
Auch im Bremsbetrieb gelangt Arbeitsmedium durch einem Ringspalt 20b in den Rotorraum 19, wobei der Ringspalt 20b in dieser Rotorstellung zwischen Stator 4 und Rotor 3 gebildet wird. Die Temperaturerfassung ist somit auch im Bremsbetrieb sichergestellt. Bezugszeichenliste Working medium also passes through an annular gap 20b into the rotor space 19 during braking operation, with the annular gap 20b being formed between the stator 4 and the rotor 3 in this rotor position. Temperature detection is thus also ensured during braking. reference list
1 Retarder 1 retarder
2 Rotorgehäuse 3 Rotor 2 Rotor housing 3 Rotor
4 Stator 4 stator
5 Statorgehäuse 5 stator housing
6 Welle 7 Sensor 8 Sensorraum 6 shaft 7 sensor 8 sensor space
9 Abschöpfrohr 9 skimming tube
10 Rücklaufkanal 11 Querkanal 12 Verschlussschraube 13 Einlassraum 10 return channel 11 transverse channel 12 screw plug 13 inlet space
14 Einlasskanal 14 inlet channel
15 Auslassraum 15 outlet space
16 Steg 17 Auslassöffnung 18 Arbeitsraum 16 web 17 outlet opening 18 working space
19 Rotorraum 19 Rotor Room
20a, b Ringspalt 21 Ausbuchtung 22 Sensorachse 20a, b annular gap 21 bulge 22 sensor axis
23 Achse 23 axis
24 Retarderachse 24 retarder axle

Claims

Patentansprüche patent claims
1. Hydrodynamischer Retarder mit einer Einrichtung zur Erfassung einer Arbeitsmediumtemperatur, umfassend ein Statorgehäuse (5), in dem ein Stator (4) drehfest angeordnet ist, und ein Rotorgehäuse (2), in dem ein Rotor (3) drehbar gelagert angeordnet ist, wobei der Rotor über eine Welle (6) antreibbar und auf der Welle (6) axial verschiebbar gelagert ist, so dass der Rotor (3) in eine Bremsbetriebsstellung und eine Nicht-Bremsbetriebsstellung bewegbar ist, wobei in der Nicht-Bremsbetriebsstellung ein Ringspalt (20a) zwischen Rotor (3) und Rotorgehäuse (2) vorgesehen ist, dadurch gekennzeichnet, dass die Einrichtung zur Erfassung der Arbeitsmediumtemperatur einen Sensor (7) umfasst, der derart im Rotorgehäuse (2) positioniert ist, dass die Sensorspitze in den Ringspalt (20a) hineinreicht. 1. Hydrodynamic retarder with a device for detecting a working medium temperature, comprising a stator housing (5) in which a stator (4) is arranged in a rotationally fixed manner, and a rotor housing (2) in which a rotor (3) is arranged in a rotatably mounted manner, wherein the rotor can be driven via a shaft (6) and is mounted in an axially displaceable manner on the shaft (6), so that the rotor (3) can be moved into a braking operating position and a non-braking operating position, with an annular gap (20a) in the non-braking operating position between the rotor (3) and the rotor housing (2), characterized in that the device for detecting the temperature of the working medium comprises a sensor (7) which is positioned in the rotor housing (2) in such a way that the sensor tip extends into the annular gap (20a). .
2. Hydrodynamischer Retarder (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass eine Auslassöffnung (10) im Rotorgehäuse (2) vorgesehen ist, wobei die Auslassöffnung (10) und der Sensor (7) in einer Ebene quer zur Drehachse angeordnet sind, und wobei der Sensor (7) und die Auslassöffnung (10) über den Umfang versetzt zueinander angeordnet sind. 2. Hydrodynamic retarder (1) according to claim 1, characterized in that an outlet opening (10) is provided in the rotor housing (2), the outlet opening (10) and the sensor (7) being arranged in a plane transverse to the axis of rotation, and the sensor (7) and the outlet opening (10) being offset from one another over the circumference.
3. Hydrodynamischer Retarder (1 ) nach Anspruch 2, dadurch gekennzeichnet, dass der Ringspalt (20a) im Bereich der Auslassöffnung (10) eine Ausbuchtung (21) aufweist. 3. Hydrodynamic retarder (1) according to claim 2, characterized in that the annular gap (20a) in the region of the outlet opening (10) has a bulge (21).
4. Hydrodynamischer Retarder (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass in der Auslassöffnung ein Abschöpfrohr (9) eingesetzt ist, welches mit einem Ende in die Ausbuchtung (21) und den Ringspalt (20a) hineinreicht. 4. Hydrodynamic retarder (1) according to claim 3, characterized in that a skimming tube (9) is inserted in the outlet opening, one end of which extends into the bulge (21) and the annular gap (20a).
5. Hydrodynamischer Retarder (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der Sensor (7) in einem Sensorraum (8) eingesetzt ist. 5. Hydrodynamic retarder (1) according to claim 1, characterized in that the sensor (7) is used in a sensor space (8).
6. Hydrodynamischer Retarder (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass der Sensorraum (8) derart gegenüber dem Ringspalt (20a) angeordnet ist, dass die Sensorachse (22) mit einem Winkel a von 30° bis 50 °, zur Rotortangente entgegen der Rotordrehrichtung geneigt in den Ringspalt (20a) hineinreicht und der Schnittpunkt von Sensorachse (22) und Rotortangente in einem Winkelbereich d zu einer senkrechten Retarderachse (24) von 20° bis 40° liegt, so dass sich im Nicht-Bremsbetrieb kein Arbeitsmedium im Sensorraum (8) verbleibt. 6. Hydrodynamic retarder (1) according to claim 5, characterized in that the sensor chamber (8) is arranged opposite the annular gap (20a) in such a way that the sensor axis (22) is at an angle a of 30° to 50° to the rotor tangent in the direction of rotation of the rotor extends into the annular gap (20a) at an incline and the point of intersection of the sensor axis (22) and the rotor tangent lies in an angle range d to a vertical retarder axis (24) of 20° to 40°, so that no working medium is in the sensor space when the brakes are not in operation (8) remains.
7. Hydrodynamischer Retarder (1 ) nach Anspruch 2, dadurch gekennzeichnet, dass die Auslassöffnung (10) derart gegenüber dem Ringspalt (20a) angeordnet ist, dass die Achse (23) der Auslassöffnung (10) mit einem Winkel ß von 20° bis 40°, zur senkrechten Retarderachse (24) in Rotordrehrichtung geneigt in den Ringspalt (20a) hineinreicht und der Schnittpunkt von Achse (23) der Auslassöffnung (10) und Rotortangente in einem Winkelbereich g zur senkrechten Retarderachse (24) von 15° bis 30° liegt 7. Hydrodynamic retarder (1) according to claim 2, characterized in that the outlet opening (10) is arranged opposite the annular gap (20a) in such a way that the axis (23) of the outlet opening (10) is at an angle ß of 20° to 40° °, extends into the annular gap (20a) at an angle to the vertical retarder axis (24) in the direction of rotor rotation and the point of intersection of the axis (23) of the outlet opening (10) and the rotor tangent is in an angular range g to the vertical retarder axis (24) of 15° to 30°
PCT/EP2022/066270 2021-07-06 2022-06-15 Hydrodynamic retarder WO2023280536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280047267.9A CN117597274A (en) 2021-07-06 2022-06-15 Hydraulic retarder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021117381.7A DE102021117381A1 (en) 2021-07-06 2021-07-06 Hydrodynamic retarder
DE102021117381.7 2021-07-06

Publications (1)

Publication Number Publication Date
WO2023280536A1 true WO2023280536A1 (en) 2023-01-12

Family

ID=82163500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/066270 WO2023280536A1 (en) 2021-07-06 2022-06-15 Hydrodynamic retarder

Country Status (3)

Country Link
CN (1) CN117597274A (en)
DE (1) DE102021117381A1 (en)
WO (1) WO2023280536A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010222A1 (en) 2010-03-03 2011-09-08 Voith Patent Gmbh Hydrodynamic retarder and method of operating a hydrodynamic retarder
DE102010026274A1 (en) * 2010-07-06 2012-01-12 Voith Patent Gmbh Brake system and method for setting a braking torque of such
DE102013226580A1 (en) * 2013-12-19 2015-06-25 Voith Patent Gmbh Hydrodynamic machine with wear protection
CN105697610A (en) 2016-03-01 2016-06-22 宁波华盛联合制动科技有限公司 Housing structure used for precisely sensing oil temperature of hydraulic retarder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005056468B4 (en) 2005-11-26 2007-07-26 Voith Turbo Gmbh & Co. Kg Hydrodynamic machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010222A1 (en) 2010-03-03 2011-09-08 Voith Patent Gmbh Hydrodynamic retarder and method of operating a hydrodynamic retarder
DE102010026274A1 (en) * 2010-07-06 2012-01-12 Voith Patent Gmbh Brake system and method for setting a braking torque of such
DE102013226580A1 (en) * 2013-12-19 2015-06-25 Voith Patent Gmbh Hydrodynamic machine with wear protection
CN105697610A (en) 2016-03-01 2016-06-22 宁波华盛联合制动科技有限公司 Housing structure used for precisely sensing oil temperature of hydraulic retarder

Also Published As

Publication number Publication date
DE102021117381A1 (en) 2023-01-12
CN117597274A (en) 2024-02-23

Similar Documents

Publication Publication Date Title
DE2854656C2 (en) Centrifugal pump with one impeller and two upstream axial impellers
EP2690266B1 (en) Turbine for a combustion engine
EP2006564B1 (en) Hydrodynamic machine
EP3350446B1 (en) Flushable device for measuring flow processes of fluids
EP1097070B1 (en) Hydraulic unit
WO2023280536A1 (en) Hydrodynamic retarder
EP1071885A1 (en) Side channel pump
EP0021315B1 (en) Piston machine, particularly piston pump
WO2014170113A1 (en) Retarder with idling pump
WO2003033319A2 (en) Hydrodynamic braking system provided with a retarder
DE3032304A1 (en) ROTARY PISTON ENGINE.
EP3768974B1 (en) Pump with detection of absolute angle of rotation
DE112013005092B4 (en) Clutch lubrication
DE102014225578A1 (en) Pumping device for a braking system of a vehicle
EP0763659B1 (en) Pump
EP3757060A1 (en) Assembly for dispensing liquid from a tank wagon containing several chambers
DE102017001429B4 (en) Electric machine with a device for guiding cooling air
DE10242735A1 (en) Hydrodynamic speed reduction system for motor vehicles, has a sliding rotator and variable gap to the stator and at least three seals
EP0070555A2 (en) Apparatus for supplying vehicles with liquid, especially cryogenic fuels
EP3784906B1 (en) Controllable lubricating oil delivery system for internal combustion engines
WO2018019318A1 (en) Rotor/stator system with an inlet funnel for an eccentric screw pump
WO2016180570A1 (en) Displacement pump, method for operating a displacement pump, steering system, and gearing
DE10022901C2 (en) Mixing device for feeding and dosing a liquid into a sludge suspension
WO2017045799A1 (en) Displacement pump, method for operating a displacement pump, steering system, and gearing
DE102015112664B4 (en) Annular gear pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22733132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE