WO2023280233A1 - 投影装置、光固化打印机和投影方法 - Google Patents

投影装置、光固化打印机和投影方法 Download PDF

Info

Publication number
WO2023280233A1
WO2023280233A1 PCT/CN2022/104195 CN2022104195W WO2023280233A1 WO 2023280233 A1 WO2023280233 A1 WO 2023280233A1 CN 2022104195 W CN2022104195 W CN 2022104195W WO 2023280233 A1 WO2023280233 A1 WO 2023280233A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
lens group
liquid crystal
crystal display
Prior art date
Application number
PCT/CN2022/104195
Other languages
English (en)
French (fr)
Inventor
陈美宋
Original Assignee
深圳市黑创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121555861.8U external-priority patent/CN217531909U/zh
Priority claimed from CN202110776536.2A external-priority patent/CN114932680A/zh
Priority claimed from CN202121551884.1U external-priority patent/CN217574083U/zh
Application filed by 深圳市黑创科技有限公司 filed Critical 深圳市黑创科技有限公司
Publication of WO2023280233A1 publication Critical patent/WO2023280233A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present application relates to the technical field of 3D printing, in particular to a projection device, a photocuring printer and a projection method.
  • the light-cured LCD 3D printing technology currently on the market utilizes the characteristics of solidification of liquid photosensitive resins under the irradiation of UV light, and uses ultraviolet light sources as display light sources; The thickness is cut horizontally and layered, and the cross-sectional image data of each layer is obtained, and sent to the LCD liquid crystal display device for image display.
  • the LCD liquid crystal display device emits UV light in the shape of the cross-sectional image to irradiate the liquid surface of the photosensitive resin and Solidification molding according to the cross-sectional image shape, so as to realize the 3D printing process of solidification molding layer by layer.
  • LCD 3D printing technology has the characteristics of large printing format, good format consistency, low cost, printing accuracy and detail resolution even better than DLP, but because LCD liquid crystal screen uses display technology, it cannot be used for long-distance projection , can only be tightly attached to the bottom of the tray for bottom projection display molding, but the printing speed is very slow, not only needs to be peeled off slowly, but also the LCD screen is easily crushed, which seriously shortens the life of the LCD screen.
  • the photosensitive resin reacts with ultraviolet rays, it generates too much heat. Sometimes, because of the excessive heat, it is easy to burn through the release film and LCD screen, which seriously shortens the service life of the LCD screen.
  • the FEP release film is a consumable product and needs to be replaced regularly. Because curing one layer requires the Z-axis motor to lift the release film, then lower it, constantly pulling and squeezing the release film.
  • the main purpose of this application is to provide a projection device, aiming at improving the projection distance of the liquid crystal display screen during printing by the photocuring printer.
  • the projection device proposed by this application includes:
  • a light emitting source, a collimating and uniform light array lens, a liquid crystal display, and a lens group provided with a plurality of lenses are sequentially arranged from top to bottom; the light emitting source is used to emit light of a curable photosensitive material;
  • the light emitted by the light emitting source passes through the collimating and uniform light array lens, and the collimating and uniform light array lens is used to change the light emitted by the light emitting source into a straight light;
  • the liquid crystal display screen is used for After receiving the control signal, a light-transmitting area matching the shape of the cross-sectional image required for printing is formed, and the light-transmitting area is used for the light to pass through;
  • the light passing through the liquid crystal display screen is projected to the lens group, and the lens group is used to convert the cross-sectional image formed by the light transmission area after receiving the light projected by the liquid crystal display screen, etc. Proportional projection out of the lens group.
  • the lens group is a combination of any two of convex lenses, concave lenses and concave-convex lenses.
  • the lens group includes an incident lens group close to the side of the liquid crystal display and an exit lens group facing the printing side, wherein the entrance lens group and the lenses in the exit lens group are formed by The centerline between the two is set symmetrically.
  • the lens group includes a first lens, a second lens, a third lens, and a fourth lens arranged at intervals from top to bottom, and the first lens and the second lens form an incident lens group , the third lens and the fourth lens form an outgoing lens group, the second lens and the third lens are arranged symmetrically along a horizontal line perpendicular to the central axis, the first lens and the fourth lens The lenses are also arranged symmetrically along the horizontal line, the first lens and the fourth lens are the same convex lens, and the second lens and the third lens are the same concave-convex lens.
  • the lens group includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens arranged at intervals from top to bottom, the first lens, the second lens
  • the second lens and the third lens form the incident lens group
  • the fourth lens, the fifth lens, and the sixth lens form the outgoing lens group
  • the third lens and the fourth lens are perpendicular to the central axis.
  • the horizontal line is arranged symmetrically, the second lens and the fifth lens are arranged symmetrically along the horizontal line perpendicular to the central axis, the first lens and the sixth lens are also arranged symmetrically along the horizontal line, the first lens and the sixth lens are the same double
  • the second lens and the fifth lens are the same single-sided convex lens
  • the third lens and the fourth lens are the same double-sided concave lens.
  • the focal length of the lens group is adjustable.
  • the light emitting source is an array-arranged UV LED light source or an array-arranged LD light source.
  • the projection device further includes a Fresnel lens, the light passing through the light transmission area passes through the Fresnel lens, and the Fresnel lens gathers the light and projects it To the lens group, the lens group is used to project the cross-sectional image formed by the light transmission area out of the lens group in equal proportions after receiving the light passing through the Fresnel lens.
  • the cross section of the lens group is smaller than the cross section of the Fresnel lens.
  • the Fresnel lens is in close contact with the liquid crystal display.
  • the present application also proposes a light-curing printer, including: a frame, the above-mentioned projection device, a material storage tank, a forming platform, and a lifting mechanism;
  • the projection device, the lifting mechanism and the storage tank are arranged on the frame, the storage tank is arranged under the projection device, and the storage tank is used to place liquid light-curing materials;
  • the forming platform is fixedly connected with the lifting mechanism, the forming platform is located above the material storage tank, and the lifting mechanism is used to drive the forming platform to extend into or move out of the material storage tank.
  • the lifting mechanism includes:
  • a motor installed on the frame and assembled with one end of the screw rod, the motor drives the screw rod to rotate and drives the forming platform through the slider.
  • the present application also proposes a projection method for light-curing printing, which includes the following steps: providing a light source, a collimated and uniform light array lens, and a liquid crystal display screen sequentially arranged from top to bottom, so that the light emitted by the light source passes through the collimated and uniform light After the array lens is dispersed into uniform parallel light, it enters the LCD screen;
  • a lens group is provided, and the lens group is placed under the liquid crystal display screen, so that the light imaging pattern passing through the liquid crystal display screen can project the light imaging pattern to the forming platform of the photocuring printer one-to-one through the lens group, so that the light imaging pattern located in the storage
  • the liquid surface of the photosensitive material on the surface of the forming platform in the trough solidifies and sticks to the forming platform.
  • the technical solution of the present application adopts the light emitting source, the collimating and uniform light array lens, the liquid crystal display and the lens group provided with a plurality of lenses arranged sequentially from top to bottom, and the light emitted by the light emitting source passes through the collimating and uniform light array lens sequentially.
  • a liquid crystal display screen, a lens group, and finally the lens group projects the cross-sectional image formed by the light-transmitting area of the liquid crystal display screen in equal proportions after receiving the light projected by the liquid crystal display screen.
  • the upper projection method can be adopted, which avoids crushing the liquid crystal display screen, and can also greatly increase the projection distance of the liquid crystal display screen, and the projected image through the lens group is the same size as the cross-sectional image of the liquid crystal display screen, and the image precision is high.
  • FIG. 1 is a schematic structural view of an embodiment of the photocuring printer of the present application
  • FIG. 2 is a schematic structural view of another embodiment of the photocuring printer of the present application.
  • FIG. 3 is a schematic flow chart of a projection method for photocuring printing in the present application.
  • FIG. 4 is a schematic structural view of another embodiment of the photocuring printer of the present application.
  • Fig. 5 is a schematic structural diagram of another embodiment of the photo-curing printer of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of the photocuring printer of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of the photocuring printer of the present application.
  • FIG. 8 is a schematic structural diagram of another embodiment of the photocuring printer of the present application.
  • FIG. 9 is a schematic diagram of the light from the liquid crystal screen through the lens group to the forming platform in the photo-curing printer of the present application.
  • label name label name 10 light source 45 third lens 11 the light 46 fourth lens 20 Collimating Uniform Light Array Lens 47 fifth lens 30 LCD 48 sixth lens 40 lens group 50 Forming platform 41 Entrance lens group 60 storage tank 42 Exit lens group 70 photosensitive resin 43 first lens 80 Molded parts 44 second lens 90 Fresnel lens
  • connection and “fixation” should be interpreted in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixing can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • the light-curing 3D printing technology currently on the market utilizes the characteristics of solidification of liquid photosensitive resin under the irradiation of UV light, adopts high-resolution DLP and LCD liquid crystal display technology, and uses ultraviolet light source as the display light source; then according to the slicing software Cut the three-dimensional data horizontally and layered along the Z axis according to the set layer thickness, obtain the cross-sectional image data of each layer, and send it to the DLP and LCD display devices for image display, and the DLP and LCD display devices send The UV light in the cross-sectional image shape is irradiated to the liquid surface of the photosensitive resin and solidified according to the cross-sectional image shape, thereby realizing the 3D printing process of layer-by-layer solidification and molding.
  • the equipment produced by this technology has high printing accuracy and good stability, but there are problems of high price and small printing format; and Due to the small size of the DMD chip in the DLP, the displayed image needs to pass through multiple lenses and then be magnified several times before being transmitted, resulting in certain distortion and poor format consistency.
  • Each device requires strict and complicated calibration processing To eliminate the deviation and achieve high-precision printing, and have higher environmental requirements for the whole machine;
  • LCD liquid crystal display technology There is also a light curing technology for surface forming that uses LCD liquid crystal display technology.
  • This technology has the characteristics of large printing format, good format consistency, low cost, printing accuracy and detail resolution even better than DLP.
  • Due to The LCD liquid crystal screen adopts display technology, which cannot be used for long-distance projection. It can only be tightly attached to the bottom of the material tray for bottom projection display molding.
  • the printing speed is very slow, not only need to be slowly peeled off, but also the LCD liquid crystal screen It is easy to be crushed and seriously shortens the service life of the LCD screen. In order to solve the above problems, it is necessary to increase the projection distance of the image displayed on the LCD liquid crystal screen.
  • the present application proposes a projection device.
  • the projection device includes a light emitting source 10, a collimating and uniform light array lens 20, a liquid crystal display 30 and a multi-lens arranged in sequence from top to bottom.
  • the lens group 40 the light source 10 is used to emit the light 11 of the photosensitive material that can be cured;
  • the emitted light 11 becomes a uniform light 11;
  • the liquid crystal display 30 is used to form a light-transmitting area matching the shape of the cross-sectional image required for printing after receiving the control signal, and the light-transmitting area is used for the light 11 to pass through;
  • the light 11 from the liquid crystal display 30 is projected to the lens group 40 , and the lens group 40 is used to project the cross-sectional image formed by the light transmission area out of the lens group 40 in equal proportions after receiving the light 11 projected from the liquid crystal display 30 .
  • the light emitting source 10 may use a UV array light source to increase the energy and irradiation range of the light 11 .
  • the UV array light source can emit UV light 11 to cure liquid photocurable materials, that is, ultraviolet (Ultraviolet, UV) is a general term for radiation with a frequency of 750PHz-30EHz in the electromagnetic spectrum and a wavelength of 400nm-10nm in vacuum.
  • the wavelength of UV light 11 is 355-460nm.
  • the UV array light source can be arranged in a plurality of single UV LED light source arrays, such as 3*3, 4*4, 3*4 arrangement, etc., so that the light source provided by the light source 10 has high energy, stable performance, and UV LED has the advantages of long life, no heat radiation, life is not affected by the number of opening and closing, and uniform irradiation.
  • the light source 10 can also use a single UV light source, for example, a single UV light source can be combined with a light guide plate or a reflector to increase the energy and irradiation range of the light 11 .
  • the light source 10 can also use an array of LD light sources to increase the energy and irradiation range of the light 11 .
  • the output power of a single LED is generally 5-15mW. Although there are 40-50mW LED products, they still cannot be compared with semiconductor laser tubes (LDs).
  • LDs semiconductor laser tubes
  • Now single-core semiconductor laser tubes The luminous power of the laser can reach 10W, and the brightness of a laser tube is equal to the sum of the brightness of hundreds of LEDs. Therefore, a relatively small laser product can achieve a large irradiation distance, which greatly improves the irradiation effect and improves the clarity.
  • the light 11 emitted by the light source has a scattering problem, that is, the phenomenon that part of the light 11 deviates from the original propagation direction.
  • a scattering problem that is, the phenomenon that part of the light 11 deviates from the original propagation direction.
  • the light power uniformity on the display screen 30 is not high, thus affecting the overall printing accuracy.
  • the collimating and uniform light array lens 20 is arranged under the light emitting source 10, and the flat surface of the collimating and uniform light array lens 20 is arranged opposite to the light emitting source 10, so that the light 11 emitted by the light emitting source 10 passes through the collimating From the flat surface of the straight and uniform light array lens 20 to the concave-convex surface, the propagation direction of the light path is perpendicular to the collimated and uniform light array lens 20, that is, the projection direction of the intersecting light 11 originally generated due to the difference in scattering or emission angles is uniformly converted into a vertical downward direction.
  • the straight and uniform light array lens 20 can comprise a plurality of sub-lenses, and each sub-lens corresponds to the UV LED light source array-LED setting. , and each frame can wrap a single LED, so that the light source emitted by a single LED can be projected in a uniform collimated manner through each sub-lens, thereby ensuring that the light 11 can enter the liquid crystal display 30 in a uniform manner in the future, better The cross-sectional image of the light-transmitting area of the liquid crystal display 30 is projected, thereby improving printing accuracy.
  • the liquid crystal display 30 may be an LCD (liquid-crystal display). In other embodiments, the liquid crystal display 30 may also be other display screens capable of selectively transmitting light.
  • LCD plays an important role in light-curing printers and is one of the core accessories of 3D printing.
  • LCD is an optical device that uses the light modulation characteristics of liquid crystals combined with the principle of polarizers for flat panels, mobile phones or other electronic modulations. Liquid crystals It does not emit light directly, but uses a backlight or reflector to produce a color or monochrome image. For different sizes of LCD, the signal interface is also different, including MIPI, RGB, EDP and LVDS.
  • LCDs used in light-curing 3D printers often do not require a backlight because they use UV LEDs as light sources.
  • LCD light-curing 3D printing technology adopts digital surface exposure method to form. Make the light source pass through the collimating and uniform light array lens 20, so that the light source is evenly distributed.
  • the computer program uses the LCD imaging principle of the liquid crystal screen, under the drive of the microcomputer and the display driving circuit, the computer program provides the image signal, and selectively appears on the liquid crystal screen. In the transparent area, the single-layer thick image is irradiated to complete the photocuring reaction, and the printed entity is finally obtained by curing layer by layer.
  • the LCD liquid crystal screen uses display technology, it cannot be used for long-distance projection, which limits the distance between the LCD liquid crystal screen and the photosensitive material to ensure printing accuracy and to ensure that the photosensitive material can be cured; this method also limits LCD
  • the liquid crystal screen can only be tightly attached to the bottom of the material tray for bottom projection display molding, which requires the use of pull-up 3D printing, that is, every time the forming platform 50 forms a layer of forming graphics, the forming platform 50 needs to be pulled and adjusted for the next step.
  • Layer printing in this process, the situation will be much more complicated due to the emergence of the release force, which refers to the force required when the forming platform 50 and the molded part 80 are separated from the storage tank 60 .
  • adjusting the projection distance or focal length by adding the lens group 40 under the liquid crystal display 30 can be understood as enabling the projection of the liquid crystal display 30 to achieve a longer-distance display. Therefore, in this way, now Due to the limitation of the liquid crystal display screen 30, some can only be changed by adopting the mode of down-projection and up-pull printing. Instead, the method of upper projection and sinking printing can be applied, which will bring technical changes to the entire industry.
  • the general understanding of upper projection and lower projection the desktop (small) is the light source below, through the window and The release film is pulled out after forming; for industrial large-scale, the light source is on the top, and the forming sinks below the liquid surface, and the liquid surface does not need a release film.
  • the model In sinking 3D printing, there is no pull/release force, so in general, the model can be placed at any angle.
  • the model molding requires a certain height, it is limited to the LCD screen that needs to be set close to it, so there is no way to change the projection mode while ensuring the printing accuracy and printing molding effect, and the setting of the lens group 40 makes the desktop (small) LCD
  • the 3D printer can also adopt the upper projection and sinking methods to improve the printing effect.
  • the light 11 passing through the light-transmitting area of the liquid crystal display 30 will enter the lens group 40, and the re-polymerization of the light 11 through the lens group 40 will increase the energy of the light 11, and then evenly project the light 11 out of the lens group 40.
  • the area of the light transmission area of the middle liquid crystal display screen 30 can be projected by the lens group 40 in equal proportions, and the lens group 40 can greatly avoid the projection error caused by the distortion of a single lens. In this way, while the liquid crystal display screen 30 is prevented from being crushed, the accuracy of the projected image can be guaranteed, and the advantages of high precision and high resolution of the LCD are retained.
  • the triangular figure as an example to briefly introduce the changes brought about by the LCD 3D printing mode set by the lens group 40 compared with the traditional LCD 3D printing mode.
  • the clearest projection distance of the traditional LCD display is about 5cm (LCD display The screen needs to be close to the bottom of the trough), that is, if you take a piece of white paper, when it is about 5cm away from the LCD display, the triangular graphics on the white paper will show the clearest effect and the brightness will be the deepest, gradually add white paper and LCD
  • the distance between the display screen greater than 5cm
  • the display effect of the triangular graphics on the white paper will change from the clearest and the darkest brightness to unclear and shallow brightness with the addition of the distance, and finally to the fact that no graphics can be received.
  • the function of the lens group 40 can lengthen the display distance of the projection, that is, only 5cm, that is, 50mm, can the display effect of the triangular figure be the clearest and the brightness the deepest, and it can be equal in size even at a longer distance.
  • the display effect is the clearest and the brightness is the deepest, such as 200mm, even in the industrial grade, the display effect is the clearest and the brightness is the deepest at 2000mm.
  • the projection distance after the lens group 40 needs to be obtained by changing the size of the lens group 40, that is, the lens in the lens group 40, such as the combination of a convex lens, a concave lens, and a concave-convex lens, requires a certain space, that is, the lens group 40
  • the whole has a certain height, and lens groups of different heights can realize different ranges of projection display, and the setting of lens groups can reduce the projection error caused by the distortion of a single lens.
  • the technical scheme of the present application adopts the light emitting source 10, the collimating uniform light array lens 20, the liquid crystal display screen 30 and the lens group 40 provided with a plurality of lenses sequentially arranged from top to bottom, and the light 11 emitted by the light emitting source 10 passes through sequentially.
  • the collimating and uniform light array lens 20, the liquid crystal display 30, and the lens group 40 after receiving the light 11 projected by the liquid crystal display 30, the final lens group 40 converts the cross-sectional image formed by the light transmission area of the liquid crystal display 30 into equal proportions projected out.
  • the lens group 40 is a combination of any two or three of convex lenses, concave lenses, and concave-convex lenses.
  • the lens group 40 is composed of 3-7 convex lenses or concave lenses or any two or three types of concave-convex lenses.
  • the concave-convex lens is a lens with a thicker central part. Convex lenses are divided into biconvex, plano-convex and concave-convex (or positive meniscus) and other forms.
  • Thin convex lens has converging effect, so it is also called concentrating lens, and thicker convex lens has the function of looking far, diverging or converging, which is related to the thickness of the lens.
  • the principle of the lens can be roughly as follows: the parallel light 11 (such as sunlight) is injected into the convex lens parallel to the axis (the line connecting the centers of the two spherical surfaces of the convex lens is called the main optical axis of the lens), and the light travels through the lens. After the two sides are refracted twice, they are concentrated on a point on the axis. This point is called the focal point of the convex lens (marked as F).
  • the convex lens has a focal point on both sides of the mirror.
  • Convex lenses can be used in magnifying glasses, glasses worn by people with presbyopia and hyperopia, microscopes, telescope lenses, etc.
  • the convex lens can form an upright magnified virtual image, an inverted magnified real image, an inverted equal-sized real image, and an inverted reduced real image; a concave lens can form an upright reduced virtual image.
  • the lens group 40 includes an incident lens group 41 on the side close to the liquid crystal display 30 and an exit lens group 42 on the printing side, wherein the The lenses in the incident lens group 41 and the outgoing lens group 42 are arranged symmetrically about the center line between them.
  • the lens group 40 formed by a combination of convex lenses and concave lenses as an example.
  • the lens group 40 includes an incident lens group 41 on the side close to the liquid crystal display 30 and an exit lens group 42 facing the printing side, that is, the incident lens
  • the group 41 can be a combination of convex lenses, concave lenses and concave-convex lenses
  • the output lens group 42 is also a combination of convex lenses, concave lenses and concave-convex lenses, and is symmetrical along the horizontal line.
  • the lens group 40 is set to be asymmetric so as to project the images in the light transmission area in equal proportions.
  • the incident lens group 41 may be a combination of two lenses
  • the exit lens group 42 may be a single lens.
  • the incident lens group 41 and the outgoing lens group 42 are all single different lenses (refer to FIG. 1), and the two lenses form the lens group 40. It can be understood that the symmetrically arranged incident lens group 41 or the outgoing lens group 42 choose one setting to form an asymmetric lens group 40.
  • the lens group 40 includes a first lens 43 , a second lens 44 , a third lens 45 , and a fourth lens 46 arranged at intervals from top to bottom.
  • the lens 43 and the second lens 44 form the incident lens group 41
  • the third lens 45 and the fourth lens 46 form the outgoing lens group 42
  • the second lens 44 and the third lens 45 are formed along the center
  • the horizontal line perpendicular to the axis is symmetrically arranged, and the first lens 43 and the fourth lens 46 are also symmetrically arranged along the horizontal line, and the first lens 43 and the fourth lens 46 are the same convex lens, so
  • the second lens 44 and the third lens 45 are the same concave-convex lens.
  • the first lens 43, the second lens 44, the third lens 45, and the fourth lens 46 are named after the lens 1, the lens 2, the lens 3, and the lens 4, and the lens 1, the lens 2, the lens 3, and the lens 4 use Symmetrical setting, lens 1 and lens 4 use the same lens, lens 2 and lens 3 use the same lens, the cross-section of lens 1 and lens 4 is different from that of lens 2 and lens 3 to ensure that light 11 enters, lens 1 and lens 3 4 has a first surface and a second surface, the first surfaces of lens 1 and lens 4 are arranged oppositely, lens 2 and lens 3 are arranged between lens 1 and lens 4, lens 2 and lens 3 have a third surface and a fourth surface , the third surfaces of the lens 2 and the lens 3 are relatively arranged, that is, the light 11 passing through the lens group 40 enters through the second surface of the lens 1, and is transmitted through the second surface of the lens 4, and the liquid crystal screen can be regarded as a light-transmitting switch, the computer transmits the cross-section to be printed to the LCD
  • the light 11 forms a barrier, and finally the cross-section formed by the light 11 transmitted by the lens 4 is in the same proportion as the cross-section of the light 11 emitted from the light-transmitting area.
  • FIG. 9 To change the way of understanding, refer to FIG. 9 , and consider the lens group 40 as the center of symmetry. The light-transmitting area is displayed symmetrically along the lens group 40 , so as to ensure clear final imaging, thereby ensuring the precision of the molded part 80 after curing the photosensitive material.
  • the lens group 40 includes a first lens 43, a second lens 44, a third lens 45, a fourth lens 46, a fifth lens 47, and a sixth lens 48 arranged at intervals from top to bottom.
  • the first lens 43 , the second lens 44 and the third lens 45 form the incident lens group 41
  • the fourth lens 46, the fifth lens 47, and the sixth lens 48 form the outgoing lens group 42
  • the fourth lens 46 is arranged symmetrically along the horizontal line perpendicular to the central axis
  • the second lens 44 and the fifth lens 47 are symmetrically arranged along the horizontal line perpendicular to the central axis
  • the first lens 43 and the sixth lens 48 are also arranged along the horizontal line.
  • the first lens 43 and the sixth lens 48 are the same double-sided convex lens
  • the second lens 44 and the fifth lens 47 are the same single-sided convex lens
  • the third lens 45 and the fourth lens 46 are the same double-sided convex lens. concave lens.
  • the material of the lens (lens) in the lens group 40 can be a material with high light transmission.
  • the lens material is glass.
  • the lens material can be acrylic and other materials with high light transmission.
  • the shape of the lens can be circular, square, etc., which is not limited.
  • the first lens 43 and the sixth lens 48 are the same single-sided convex lens
  • the second lens 44 and the fifth lens 47 are the same single-sided convex lens
  • the third lens 45 and the fifth lens 47 are the same single-sided convex lens.
  • the fourth lens 46 is the same single-sided concave lens.
  • the adjustable focal length of the lens group 40 there is a first preset distance between the lens group 40 and the liquid crystal display 30.
  • the first preset distance Set the distance range from 1mm to 600mm.
  • the first preset distance is the distance from the liquid crystal display 30 to the first lens 43 (lens 1), and the size of this distance is related to the setting and combination of the lens group 40, so as to ensure that the light projected at different distances is uniform.
  • the group 40 can accept most of the light projected by the LCD, and cooperate with the second preset distance from the fourth lens 46 (lens 4) to the molded part 80 (see the introduction below for details) to realize long-distance light projection, and the projected format High precision, projection imaging can reach 1:1.
  • the setting of the minimum value of the preset range can be understood that when the optimization of the lens group 40 is sufficient, one side of the lens group 40 can be set close to the liquid crystal display 30, and when the projection intensity of the liquid crystal display 30 is sufficient, the liquid crystal display 30 reaches the first
  • the distance between the lens 43 (lens 1 ) is about 600 mm, so as to ensure that the cross-sectional image of the light-transmitting area of the liquid crystal display 30 can be reflected in equal proportions.
  • the minimum distance between the liquid crystal display 30 and the first lens 43 (lens 1) is 1mm and the maximum is 600mm.
  • the height of 1mm can ensure that the lens is close enough to the liquid crystal display 30, and the lens group 40 can accept most of the liquid crystal display 30
  • the projected light is less than 1mm or greater than 600mm, which has too high requirements on the lens group 40, and the cost needs to be added.
  • the second preset distance is 171mm. It can be understood that the lens group 40 needs to be set at a certain distance for the size and accuracy of the image received and projected.
  • the liquid crystal display screen 30 to the first lens 43 ( The distance of the lens 1) is set at 171mm to ensure that the lens group 40 can realize long-distance projection, ensure the high precision of the projected format, realize equal-scale printing, and can also meet most printing needs. compact.
  • the first preset distance and the second preset distance may vary according to design requirements according to different configurations of the lens groups. If it is applied in the industry, the maximum range can reach about 2000mm or more. Of course, the change of the lens in the lens group will also affect the first preset distance and the second preset distance, such as the distance adjustment, the change of the thickness of the lens, etc. .
  • the focal length of the lens group is adjustable.
  • the lens group 40 has the function of fixing the focal length or manually adjusting the focal length or automatically adjusting the focal length.
  • the focal length is a measurement method for measuring the concentration or divergence of light in an optical system, and refers to the distance from the center of the lens to the focal point of light concentration. You can refer to the introduction above.
  • the distance between the lenses can be adjusted by hand, such as the rotation of the camera lens, and then the focal length can be adjusted.
  • the distance between the lens group and the liquid crystal display can be adjusted, so as to realize long and short distance printing, such as printing within the range of 1 mm to 600 mm.
  • the adjustment can be carried out by being driven by a screw rod.
  • the first preset distance is 171mm.
  • the light emitting source 10 , the collimating and uniform light array lens 20 , the liquid crystal display 30 and the lens group 40 provided with a plurality of lenses arranged sequentially from top to bottom are fixed in the projection device. It is not difficult to understand that the first preset distance can be changed with the adjustment of the focal length.
  • the projection device further includes a Fresnel lens 90 .
  • the light 11 passing through the light transmission area passes through the Fresnel lens 90, the Fresnel lens 90 gathers the light 11 and projects it to the lens group 40, and the lens group 40 is used to receive the light 11 passing through the Fresnel lens 90 Afterwards, the cross-sectional image formed by the light-transmitting area is projected out of the lens group 40 in equal proportions.
  • Fresnel lens 90 (Fresnel lens) is a flat surface on one side, and a series of concentric grooves on the other side replace the curved surface of the traditional lens, cast into a thin and light plastic plate. Each annular zone is equivalent to an independent refraction surface, and the cross section is like many small prisms, and these annular zones can make the incident light 11 converge to a common focal point.
  • Fresnel lens 90 in short, is that there are equidistant tooth patterns on one side of the lens through these tooth patterns, which can achieve the effect of bandpass (reflection or refraction) on the light in the specified spectral range.
  • Traditional Bandpass optical filters for ground optics are expensive.
  • the Fresnel lens 90 can greatly reduce the cost. Because these lenses are so thin, very little light energy is lost due to absorption. Due to this unique thread design, the Fresnel lens can mirror a wide range of incident light and gather it to a focal point.
  • a typical example is the PIR (Passive Infrared Detector). PIR is widely used in sirens. If you take one, you'll see that there is a little plastic cap on each PIR. This is the Fresnel mirror. The inside of the cap is engraved with teeth. This Fresnel mirror can limit the frequency peak of the incident light to about 10 microns (the peak of human infrared radiation).
  • the Fresnel thread lens is a compromise between efficiency and imaging quality.
  • a Fresnel lens 90 is arranged below the liquid crystal display screen 30, and the light spot with a cross-sectional image shape projected by the liquid crystal display screen 30 is focused by the Fresnel lens 90 and then projected to the lens group 40, and the lens group 40 The light spot with the shape of the cross-sectional image is projected to the plane of the photosensitive resin 70 in equal proportions to make it solidify, so as to project the cross-sectional image of the liquid crystal display 30 in a one-to-one ratio, and complete the printing of the cross-section of the layer.
  • the technical scheme of the present application adopts the light emitting source 10, the collimating uniform light array lens 20, the liquid crystal display 30, the Fresnel lens 90 and the lens group 40 arranged in order from top to bottom, and the light 11 emitted by the light emitting source 10 passes through the The collimating and uniform light array lens 20, the liquid crystal display 30, the Fresnel lens 90 and the lens group 40, the Fresnel lens 90 focuses the liquid crystal display 30 and projects a light spot with a cross-sectional image shape and then projects it to the lens group 40, In this way, it is ensured that the light 11 can pass through the lens group 40 completely, and the size of the lens group 40 can also be reduced to save cost.
  • the final lens group 40 projects the light spot with the cross-sectional image shape in proportion. The projection distance of the image displayed on the liquid crystal display 30 is increased.
  • the cross section of the lens group 40 is smaller than the cross section of the Fresnel lens 90 .
  • the Fresnel lens 90 can focus the liquid crystal display 30 to project a light spot with a cross-sectional image shape, so that the liquid crystal display 30 projects a light spot with a cross-sectional image shape that can be completely thrown into the lens group 40, so the lens group 40
  • the cross-sectional size of the Fresnel lens 90 may be smaller than the cross-sectional size of the Fresnel lens 90.
  • the Fresnel lens 90 is closely attached to the liquid crystal display screen 30 .
  • one side of the Fresnel lens 90 is a plane, and a series of concentric grooves are used on the other side.
  • the size of the Fresnel lens 90 can be greater than or equal to the liquid crystal display 30, and one side of the concentric grooves is close to the liquid crystal display 30. All incident light rays 11 emitted from the liquid crystal display screen 30 can be accepted, and the incident light rays 11 can be converged and then projected to the lens group 40 .
  • the lens group 40 and the Fresnel lens 90 which can be up and down the focal length range of the Fresnel lens 90, so as to ensure that the light spot with a cross-sectional image shape can be clearly The way is projected to the lens group 40.
  • the present application also proposes a light-curing printer, which includes a frame, a storage tank 60, a forming platform 50, a lifting mechanism, and a projection device.
  • a light-curing printer which includes a frame, a storage tank 60, a forming platform 50, a lifting mechanism, and a projection device.
  • the projection device refer to the above-mentioned embodiments. Since the light-curing printer adopts All the technical solutions of all the above-mentioned embodiments are described, so at least it has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.
  • the projection device, the lifting mechanism and the material storage tank 60 are arranged on the frame, and the material storage tank 60 is arranged under the projection device, and the material storage tank 60 is used to place liquid light-cured materials; the forming platform 50 is fixedly connected with the lifting mechanism, forming The platform 50 is located above the material storage tank 60 , and the lifting mechanism is used to drive the forming platform 50 to extend into or move out of the material storage tank 60 .
  • the working principle of the light-curing printer is to use the LCD imaging principle of the liquid crystal screen.
  • the computer program provides an image signal, and a selective transparent area appears on the LCD screen.
  • the ultraviolet light passes through the transparent area and irradiates the resin.
  • the photosensitive resin 70 consumables in the tank are exposed and cured.
  • the platform support lifts the cured part to allow the resin liquid to replenish and reflow.
  • the platform descends again, and the thin layer between the model and the release film is exposed to ultraviolet light again. .
  • the LCD 3D printer that forms images through this principle is also called "LCD 3D printer”.
  • 3DPrinter It also flashes the full layer on the resin tank, but the UV light is sent through the LCD, whose screen acts as a mask, showing only the pixels needed for the current layer.
  • LCD 3D printers use a series of UV LCDs as light sources. The light emitted by the LCD panel is directly irradiated on the construction area through the lens group 40 in a parallel manner.
  • the projection method is different from other LCD 3D printers, that is, the upper projection and sinking methods introduced above are used.
  • the forming platform 50 will first drop to the bottom of the storage tank 60 or The lifting mechanism controls the forming platform 50 to sink to different heights such as 5/8/10cm below the liquid surface. It is not necessary to let the forming platform 50 sink directly to the bottom of the storage tank 60.
  • the light intensity of the light source 10 can be adjusted by itself. When printing different materials, you can freely set different light intensities and powers. In the process of printing the model, the same model can be set in different parts, with different printing layer thicknesses, no release film, permanent material tank, no need to replace the release film and material tray, and the post-maintenance cost is extremely low.
  • the projection device is arranged above the molding platform 50 according to a second preset distance, the second preset distance is the distance from the lower surface of the lens group 40 to the upper surface of the molding platform 50, and the first Two preset distances range from 1mm to 600mm.
  • the forming platform 50 will lift up and take the molded part 80 out of the storage tank 60. Understandably, the molded part 80 needs a certain space, that is, the space reserved for the molded part 80 is at least 1mm. The maximum is 600mm. On the other hand, less than 1mm or greater than 600mm has too high requirements on the lens group 40, and the cost needs to be added.
  • the second preset distance is 171 mm, which can ensure most of the printing requirements.
  • the lens group 40 needs to occupy a certain space between the liquid crystal display screen 30 and the printing surface of the forming platform 50.
  • the group 40 needs to be set at a certain distance in order to receive and project the image size and precision. Therefore, setting the distance between the lens group 40 and the forming platform 50 at 171mm can realize long-distance light projection, ensure high precision of the projected format, and achieve equal proportions.
  • the distance from the liquid crystal display 30 to the first lens 43 is 171mm
  • the distance from the fourth lens 46 to the molded part 80 is set to 171mm, which ensures that the lens group 40 can accept most of the liquid crystal displays.
  • the light projected by the screen 30 and the format projected by the lens group 40 have high precision and uniform light, and the projection imaging can reach 1:1.
  • the lifting mechanism (not shown in the figure) includes a screw rod (not shown in the figure) installed on the frame and perpendicular to the forming platform 50; slidingly assembled on the screw rod and A slide block (not shown) fixedly connected with the forming platform 50; and a motor (not shown) mounted on the frame and assembled with one end of the screw mandrel, the motor drives the The screw rod rotates and drives the forming platform 50 through the slider.
  • the projection device is used to solidify the liquid photo-curable material into a solid product, and the storage tank 60 is arranged below the projection device for containing the liquid photo-curable material.
  • the frame is arranged close to the material storage tank 60, and one end of the frame goes deep into the material storage tank 60 and is connected with a forming platform 50 for placing 80 layers of molded parts.
  • the lifting mechanism is arranged between the forming platform 50 and the frame, and is used to drive the forming platform 50 to descend by one layer thickness each time the projection device finishes printing a product layer on the forming platform 50 .
  • the lifting mechanism 11 is a lifting mechanism adopted by conventional printers on the market, and the specific mechanism can refer to existing printers, which are not specifically shown in the drawings of this solution.
  • This application also proposes a projection method for photocuring printing, as shown in Figure 3, including the following steps: providing a light source, a collimating and uniform light array lens, and a liquid crystal display that are sequentially arranged from top to bottom, so that the light emitted by the light source can be transmitted through After being collimated and homogenized by the array lens, the uniform parallel light is dispersed into the LCD screen;
  • a lens group is provided, and the lens group is placed under the liquid crystal display screen, so that the light imaging pattern passing through the liquid crystal display screen can project the light imaging pattern to the forming platform of the photocuring printer one-to-one through the lens group, so that the light imaging pattern located in the storage
  • the liquid surface of the photosensitive material on the surface of the forming platform in the trough solidifies and sticks to the forming platform.

Abstract

本申请公开一种投影装置、光固化打印机和投影方法,其中,投影装置包括从上到下依次布设的发光源、准直匀光阵列透镜、液晶显示屏以及设置有多个透镜的透镜组;发光源用于发射能够固化的光敏材料的光线;发光源发射的光线透过准直匀光阵列透镜,准直匀光阵列透镜用于将发光源所发射光线变为匀直的光线;液晶显示屏用于在接收控制信号后形成与打印所需截面图像形状相匹配的透光区,透光区用以供光线穿过;透过液晶显示屏的光线投射到透镜组,透镜组用于在接收液晶显示屏投射出的光线后,将透光区形成的截面图像等比例的投射出透镜组。

Description

投影装置、光固化打印机和投影方法
本申请要求于2021年7月8日申请的、申请号为202110776536.2、202121555861.8以及202121551884.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D打印技术领域,特别涉及一种投影装置、光固化打印机和投影方法。
背景技术
目前市面上面成型的光固化的LCD 3D打印技术是利用液态光敏树脂在UV光的照射下发生凝固的特点,采用紫外光源作为显示光源;然后根据切片软件将三维数据沿Z轴方向根据设置的层厚进行水平分层切割,获取每一层的横截面图像数据,并发送给LCD液晶屏显示设备进行图像显示,LCD液晶屏显示设备发出横截面图像形状的UV光照射到光敏树脂的液面并按截面图像形状凝固成型,从而实现的逐层固化成型的3D打印的过程。LCD 3D打印技术具有打印幅面大、幅面一致性好,成本低的特点、打印精度和细节分辨率甚至比DLP更好的特点,但由于LCD液晶屏采用的是显示技术,不能进行远距离投光,只能紧紧贴到料盘底部,进行底部投光显示成型,但这样的打印速度很慢,不仅需要缓慢剥离,且LCD液晶屏容易被压坏,严重缩短LCD液晶屏的使用寿命。另外,光敏树脂和紫外线反应时发热过大,有时因为热量过大,容易烧穿离型膜和液晶屏,严重缩短LCD液晶屏的使用寿命,FEP离型膜是易耗品,需要定期更换,因为固化一层需要Z轴电机抬升离型,再下降,不断拉扯和挤压离型膜。
技术问题
本申请的主要目的是提供一种投影装置,旨在提高光固化打印机在打印中液晶显示屏的投影距离。
技术解决方案
为实现上述目的,本申请提出的投影装置,包括:
从上到下依次布设的发光源、准直匀光阵列透镜、液晶显示屏以及设置有多个透镜的透镜组;所述发光源用于发射能够固化的光敏材料的光线;
所述发光源发射的光线透过所述准直匀光阵列透镜,所述准直匀光阵列透镜用于将所述发光源所发射光线变为匀直的光线;所述液晶显示屏用于在接收控制信号后形成与打印所需截面图像形状相匹配的透光区,所述透光区用以供所述光线穿过;
透过所述液晶显示屏的所述光线投射到所述透镜组,所述透镜组用于在接收所述液晶显示屏投射出的所述光线后,将所述透光区形成的截面图像等比例的投射出所述透镜组。
在一实施例中,所述透镜组为凸透镜、凹透镜以及凹凸透镜三者中任意二者的组合。
在一实施例中,所述透镜组包括靠近所述液晶显示屏一侧的入射透镜组和朝向打印一侧的出射透镜组,其中,所述入射透镜组和所述出射透镜组中的透镜以二者之间的中心线对称设置。
在一实施例中,所述透镜组包括从上到下依次间隔设置的第一透镜、第二透镜、第三透镜、第四透镜,所述第一透镜和所述第二透镜组成入射透镜组,所述第三透镜和所述第四透镜构成出射透镜组,所述第二透镜与所述第三透镜沿与中心轴相垂直的水平线呈对称设置,所述第一透镜与所述第四透镜也沿所述水平线呈对称设置,所述第一透镜与所述第四透镜为相同的凸透镜,所述第二透镜与所述第三透镜为相同的凹凸透镜。
在一实施例中,所述透镜组包括从上到下依次间隔设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜,所述第一透镜、第二透镜、第三透镜组成入射透镜组,所述第四透镜、所述第五透镜、所述第六透镜组成出射透镜组,所述第三透镜与所述第四透镜沿与中心轴相垂直的水平线呈对称设置,第二透镜与第五透镜沿与中心轴相垂直的水平线呈对称设置,第一透镜与第六透镜也沿水平线呈对称设置,第一透镜与第六透镜为相同的双面凸透镜,第二透镜与第五透镜为相同的单面凸透镜,第三透镜与第四透镜为相同的双面凹透镜。
在一实施例中,所述透镜组的焦距可调。
在一实施例中,所述发光源为阵列排布的UV LED光源或阵列排布的LD光源。
在一实施例中,所述投影装置还包括菲涅尔透镜,经过所述透光区的光线透过所述菲涅尔透镜,所述菲涅尔透镜将所述光线进行聚集并将其投射到所述透镜组,所述透镜组用于在接收经过所述菲涅尔透镜的光线后,将所述透光区形成的截面图像等比例的投射出所述透镜组。
在一实施例中,所述透镜组的横截面小于所述菲涅尔透镜的横截面。
在一实施例中,所述菲涅尔透镜贴紧所述液晶显示屏。
本申请还提出一种光固化打印机,包括:机架、如上所述的投影装置、储料槽、成型平台以及升降机构;
所述投影装置、所述升降机构以及所述储料槽设于所述机架,所述储料槽设于所述投影装置下方,所述储料槽用于放置液态的光固化材料;所述成型平台与所述升降机构固定连接,所述成型平台位于所述储料槽的上方,所述升降机构用于驱动所述成型平台伸入或移出所述储料槽。
在一实施例中,所述升降机构包括:
安装于所述机架上并垂直于所述成型平台的丝杆;
滑动装配于所述丝杆上并与所述成型平台固定连接的滑块;及
安装于所述机架上并与所述丝杆一端装配的电机,所述电机驱动所述丝杆转动并通过所述滑块带动所述成型平台。
本申请还提出一种光固化打印的投影方法,包括以下步骤,提供从上到下依次布设的发光源、准直匀光阵列透镜、液晶显示屏,使光源发射的光线透过准直匀光阵列透镜后分散为均匀的平行光射入液晶显示屏;
提供透镜组,将透镜组置于液晶显示屏下方,使透过液晶显示屏的光线成像图案经过透镜组能将所述光线成像图案一比一的投射到光固化打印机的成型平台,使位于储料槽内的成型平台表面的光敏材料的液面上发生凝固,并粘结到成型平台。
有益效果
本申请技术方案通过采用从上到下依次布设的发光源、准直匀光阵列透镜、液晶显示屏以及设置有多个透镜的透镜组,发光源发射的光线依次透过准直匀光阵列透镜、液晶显示屏、透镜组,最终透镜组在接收液晶显示屏投射出的光线后,将液晶显示屏的透光区形成的截面图像等比例的投射出。如此使得能采用上投影方式,避免了压坏液晶显示屏,也能极大地提高液晶显示屏的投影距离,并且经过透镜组的投影图像与液晶显示屏的截面图像大小相同,图像精度高。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请光固化打印机一实施例的结构示意图;
图2为本申请光固化打印机另一实施例的结构示意图;
图3为本申请一种光固化打印的投影方法的的流程示意图;
图4为本申请光固化打印机又一实施例的结构示意图;
图5本申请光固化打印机再一实施例的结构示意图;
图6本申请光固化打印机一实施例的结构示意图;
图7为本申请光固化打印机另一实施例的结构示意图;
图8为本申请光固化打印机又一实施例的结构示意图;
图9为本申请光固化打印机中光线从液晶屏透过透镜组到成型平台示意简图。
附图标号说明:
标号 名称 标号 名称
10 发光源 45 第三透镜
11 光线 46 第四透镜
20 准直匀光阵列透镜 47 第五透镜
30 液晶显示屏 48 第六透镜
40 透镜组 50 成型平台
41 入射透镜组 60 储料槽
42 出射透镜组 70 光敏树脂
43 第一透镜 80 成型件
44 第二透镜 90 菲涅尔透镜
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,在本申请中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
目前市面上面成型的光固化3D打印技术是利用液态光敏树脂在UV光的照射下发生凝固的特点,采用高分辨率的DLP和LCD液晶屏显示技术,采用紫外光源作为显示光源;然后根据切片软件将三维数据沿Z轴方向根据设置的层厚进行水平分层切割,获取每一层的横截面图像数据,并发送给DLP和LCD液晶屏显示设备进行图像显示,DLP和LCD液晶屏显示设备发出横截面图像形状的UV光照射到光敏树脂的液面并按截面图像形状凝固成型,从而实现的逐层固化成型的3D打印的过程。
发明人发现:目前面成型的光固化设备主要是采用DLP的上投影或下投影技术,这种技术制作的设备打印精度较高,稳定性好,但存在价格昂贵、打印幅面小的问题;而且由于DLP中的DMD芯片较小,显示的图像需要进过多个镜片后放大数倍后透射出来,产生一定的畸变,幅面的一致性变差,每台设备都需要进行严格而复杂的标定处理来消除偏差而达到高精度打印,而且对整机的环境要求较高等问题;
还有一种面成型的光固化技术是采用LCD液晶屏显示技术,该技术具有打印幅面大、幅面一致性好,成本低的特点、打印精度和细节分辨率甚至比DLP更好的特点,但由于LCD液晶屏采用的是显示技术,不能进行远距离投光,只能紧紧贴到料盘底部,进行底部投光显示成型,但这样的打印速度很慢,不仅需要缓慢剥离,且LCD液晶屏容易被压坏,严重缩短LCD液晶屏的使用寿命。为了解决上述问题就必须提高LCD液晶屏显示图像的投影距离。
本申请提出一种投影装置。
在本申请实施例中,如图1、图2所示,该投影装置包括从上到下依次布设的发光源10、准直匀光阵列透镜20、液晶显示屏30以及设置有多个透镜的透镜组40;发光源10用于发射能够固化的光敏材料的光线11;发光源10发射的光线11透过准直匀光阵列透镜20,准直匀光阵列透镜20用于将发光源10所发射光线11变为匀直的光线11;液晶显示屏30用于在接收控制信号后形成与打印所需截面图像形状相匹配的透光区,透光区用以供光线11穿过;透过液晶显示屏30的光线11投射到透镜组40,透镜组40用于在接收液晶显示屏30投射出的光线11后,将透光区形成的截面图像等比例的投射出透镜组40。
在本实施例中,发光源10可采用UV阵列光源以提高光线11的能量和照射范围。UV阵列光源能发射固化液态的光固化材料UV光线11,即紫外线(Ultraviolet,UV)是电磁波谱中频率为750PHz~30EHz,对应真空中波长为400nm~10nm辐射的总称,UV光线11的波长为355-460nm。该UV阵列光源可为多个单个UV LED光源阵列排布而成,如3*3、4*4、3*4排布等等,如此发光源10提供的光源能量高,性能稳定,并且UV LED具有寿命长、无热辐射、寿命不受开闭次数影响、照射均匀的优点。
在一实施例中,发光源10还可采用单个UV光源,如单个UV光源可结合导光板或反光镜设置,以提高光线11的能量和照射范围。
在一实施例中,发光源10还可采用阵列的LD光源,以提高光线11的能量和照射范围。以单个LED和LD为例,单一的LED输出光功率一般为5~15mW,现在虽然有40~50mW的LED产品,但是依然无法和半导体激光管(LD)相比,现在单芯的半导体激光管的发光功率可达10W,一个激光管的亮度等于几百个LED的亮度总和。故相对很小的激光产品可以达到很大的照射距离,大大的改善照射效果,提高清晰度。
光源的发射的光线11存着散射问题,即指光线11一部分偏离原来传播方向的现象,为了使得发射光源能均匀的投射,避免使UV阵列光源射出的光线11会存在交叉,导致最后投射在液晶显示屏30上的光功率均匀度不高,从而影响打印整体精度。在本实施例中通过在发光源10下方设置准直匀光阵列透镜20,且准直匀光阵列透镜20的平整面与发光源10相对设置,使发光源10发射的光线11在透过准直匀光阵列透镜20的平整面到凹凸面后光路传播方向垂直于准直匀光阵列透镜20,即将原本因为散射或发射角度不同而产生交叉光线11的投射方向统一转换成垂直向下,准直匀光阵列透镜20可包括多个子透镜构成,每一子透镜对应UV LED光源阵列一LED设置,每一子透镜可以设在一镜框内,多个子透镜的镜框构成准直匀光阵列透镜20,且每一镜框能包裹单个的LED,使得单个LED发射的光源能经由每一子透镜以均匀准直方式的投射出,从而保证光线11后续能以均匀方式进入液晶显示屏30,更好的将液晶显示屏30的透光区的截面图像进行投影,从而提高打印精度。
在本实施例中,液晶显示屏30,可采用LCD(liquid-crystal display),在其他实施例中,液晶显示屏30也能为其他能进行选择性透光作用的显示屏。LCD在光固化打印机中起着重要作用,是3D打印的核心配件之一,LCD是一种利用了液晶的光调制特性结合偏振器原理,用于平板,手机或其他电子调制的光学设备,液晶本身不会直接发光,而是使用背光或反射镜来产生彩色或单色图像,对于不同尺寸的LCD,信号接口也有所不同,包括MIPI,RGB,EDP和LVDS。在当前的光固化3D打印机市场中,大多数屏幕使用MIPI接口协议(小尺寸)和eDP接口协议(大尺寸)。与普通LCD不同,用于光固化3D打印机的LCD因为使用UV LED作为光源往往不需要背光。LCD光固化3D打印技术采用数字面曝光方式成型。使光源透过准直匀光阵列透镜20,使光源分布均匀,利用液晶屏LCD成像原理,在微型计算机及显示屏驱动电路的驱动下,由计算机程序提供图像信号,在液晶屏幕上出现选择性的透明区域,照射单层厚图像完成光固化反应,逐层固化最终得到打印实体。
但由于LCD液晶屏采用的是显示技术,不能进行远距离投光从而限定了LCD液晶屏只能与光敏材料足够近的距离才能保证打印精度以及确保能固化光敏材料;这样的方式也限定了LCD液晶屏只能紧紧贴到料盘底部,进行底部投光显示成型,即需要采用上拉式的3D打印,即成型平台50每形成一层成型图形便需要成型平台50拉拔调整进行下一层打印,在这个过程中,因为离型力的出现,情况会复杂的多,离型力指成型平台50以及成型件80从储料槽60中分离时所需要的力。如此最需要考量的元素变成了如何减少拉拔力/离型力。影响拉拔力/离型力的因素有很多:树脂黏度、离型速度、新成型层面面积、新成型层面与离型膜高度距离。并且在这个中,还存在有未清理/脱落的固化碎粒,在成型平台50下降中挤压LCD液晶屏,或LCD液晶屏上的离型膜破损导致光敏材料到LCD液晶屏上固化,因此LCD液晶屏容易损坏且打印速度很慢。
根据上述介绍,在液晶显示屏30的下方通过加入透镜组40来调节投影距离或焦距,即可理解为使得液晶显示屏30的投影实现更远距离的显示,因此,在这样的方式下,现有的因为液晶显示屏30的限制只能采用下投影、上拉式打印成型的模式便能得以改变。转而能应用上投影、下沉式打印成型的方式,对整个行业带来技术上的改变,关于上投影、下投影的普遍地认知:桌面型(小型)都是光源在下,通过窗口和离型膜,成型往上拉出来;工业大型的都是光源在上,成型下沉到液面以下,液面不需要离型膜。在下沉式3D打印中,没有拉拔力/离型力,因此一般来说,模型可以摆放成任意角度。传统因为模型成型需要一定高度,限于LCD液晶屏需要贴近设置,因此是没有办法在保证打印精度和打印成型效果情况下改变投影方式的,而透镜组40的设置使得桌面型(小型)的LCD 3D打印机也能采用上投影、下沉式方式,以提高打印成型效果。
具体地,经过液晶显示屏30的透光区的光线11会进入透镜组40内,经由透镜组40对光线11的再聚合提高光线11能量、再均直投影出透镜组40,并且在这一中液晶显示屏30的透光区的区域能等比例大小被透镜组40所投影出,透镜组40能极大地避免因为单个透镜畸变带来的投影误差。如此,在避免了液晶显示屏30被压坏的同时,也能保证投影的图像精度,保留了LCD高精度,高分辨率的优势。为了便于理解,以三角图形为例简略介绍,透镜组40设置的LCD 3D打印模式对比传统LCD 3D打印模式带来的改变,假如传统LCD显示屏的最清楚的投影距离大约在5cm左右(LCD显示屏需要贴近料槽底部),即如拿取一张白纸,在距离LCD显示屏5cm左右位置时,白纸上的三角形图形显示效果最清晰、光亮程度也最深,逐步整加白纸与LCD显示屏的距离(大于5cm)时,白纸上的三角形图形显示效果会随着距离整加而由最清晰、光亮程度也最深变为不清楚、光亮程度浅最后到接收不到图形。透镜组40的作用能将投影的显示距离变长,即原来只能在5cm,即50mm,才能将三角形图形的显示效果最清晰、光亮程度也最深,变为在更远距离也能等同大小地显示效果最清晰、光亮程度也最深,如200mm,甚至在工业级中,在2000mm也能显示效果最清晰、光亮程度也最深。可以理解地,采用透镜组40之后的投影距离,需要对透镜组40进行大小变化进行得到,即透镜组40中的透镜,如凸透镜、凹透镜、凹凸透镜的组合需要一定的空间,即透镜组40整体具有一定高度,不同高度的透镜组实现不同范围的投影显示,并且透镜组设置,可以减弱因为单个透镜畸变带来的投影误差。
本申请技术方案通过采用从上到下依次布设的发光源10、准直匀光阵列透镜20、液晶显示屏30以及设置有多个透镜的透镜组40,发光源10发射的光线11依次透过准直匀光阵列透镜20、液晶显示屏30、透镜组40,最终透镜组40在接收液晶显示屏30投射出的光线11后,将液晶显示屏30的透光区形成的截面图像等比例的投射出。如此使得能采用上投影方式,避免了压坏液晶显示屏30,也能极大地提高液晶显示屏30的投影距离,并且经过透镜组40的投影图像与液晶显示屏30的截面图像大小相同,图像精度高。
进一步地,为了使得透镜组40的投影图像与液晶显示屏30的透光区的截面图像大小相同,所述透镜组40为凸透镜、凹透镜以及凹凸透镜三者中任意二者或三者的组合。在一实施例中,透镜组40由3-7块凸透镜或凹透镜或凹凸透镜中的任意两种或三种组成,凹凸透镜是中央部分较厚的透镜。凸透镜分为双凸、平凸和凹凸(或正弯月形)等形式。薄凸透镜有会聚作用故又称聚光透镜,较厚的凸透镜则有望远、发散或会聚等作用,这与透镜的厚度有关。可参考地,透镜的原理大致可为:将平行光线11(如阳光)平行于轴(凸透镜两个球面的球心的连线称为此透镜的主光轴)射入凸透镜,光在透镜的两面经过两次折射后,集中在轴上的一点,此点叫做凸透镜的焦点(记号为F),凸透镜在镜的两侧各有一焦点,如为薄透镜时,此两焦点至透镜中心的距离大致相等。凸透镜之焦距是指焦点到透镜中心的距离,通常以f表示。凸透镜球面半径越小,焦距越短。凸透镜可用于放大镜、老花眼及远视的人戴的眼镜、显微镜、望远镜的透镜等。凸透镜能成正立放大虚像、倒立放大实像、倒立等大实像、倒立缩小实像;凹透镜能成正立缩小虚像。
进一步地,为了等比例的投影透光区的截面图像,所述透镜组40包括靠近所述液晶显示屏30一侧的入射透镜组41和朝向打印一侧的出射透镜组42,其中,所述入射透镜组41和所述出射透镜组42中的透镜以二者之间的中心线对称设置。为了便于理解,以凸透镜和凹透镜组合形成的透镜组40为例,该透镜组40包括靠近所述液晶显示屏30一侧的入射透镜组41和朝向打印一侧的出射透镜组42,即入射透镜组41可为凸透镜、凹透镜以及凹凸透镜的组合,出射透镜组42也为凸透镜、凹透镜以及凹凸透镜的组合,且在沿水平线对称。在该思想的指导下,本领域技术人员不难想到,将透镜组40设置为非对称式以将透光区的图像等比例的进行投影。如,当采用非对称设置方式时,入射透镜组41可为两个透镜的组合设置、出射透镜组42为单个透镜的设置。或是入射透镜组41与出射透镜组42都为单个不相同的透镜(可参照图1),两个透镜构成了透镜组40,即可理解,将对称设置的入射透镜组41或出射透镜组42择一设置,构成非对称式的透镜组40。
进一步地,为了透镜组40的成像效果好以及控制加工成本。在本实施例中,如图2所示,所述透镜组40包括从上到下依次间隔设置的第一透镜43、第二透镜44、第三透镜45、第四透镜46,所述第一透镜43和所述第二透镜44组成入射透镜组41,所述第三透镜45和所述第四透镜46构成出射透镜组42,所述第二透镜44与所述第三透镜45沿与中心轴相垂直的水平线呈对称设置,所述第一透镜43与所述第四透镜46也沿所述水平线呈对称设置,所述第一透镜43与所述第四透镜46为相同的凸透镜,所述第二透镜44与所述第三透镜45为相同的凹凸透镜。为了便于理解,第一透镜43、第二透镜44、第三透镜45、第四透镜46以镜头1、镜头2、镜头3、镜头4进行命名,镜头1、镜头2、镜头3、镜头4采用对称设置,镜头1、镜头4采用相同透镜,镜头2、镜头3采用相同透镜,镜头1和镜头4的横截面不同于镜头2和镜头3的横截面以确保光线11进入,镜头1和、镜头4具有第一表面和第二表面,镜头1、镜头4的第一表面相对设置,镜头2、镜头3设置在镜头1与镜头4之间,镜头2、镜头3具有第三表面和第四表面,镜头2、镜头3的第三表面相对设置,即透过透镜组40的光线11,经镜头1的第二表面进入,由镜头4的第二表面透出,液晶屏可视为透光的开关,计算机将所需打印的截面传输到液晶屏,液晶屏的晶体部分按一定方式进行排布形成通路(透光区)以供光线11透过,未形成光路部分(非透光区)对光线11形成阻挡,最终由镜头4透出的光线11构成的截面与透光区射出的光线11的截面呈等比例大小,换个理解方式,可参照图9,将透镜组40视为对称中心,透光区沿透镜组40进行对称显示,以此保证最终成像清晰,从而保证固化光敏材料后的成型件80的精度。
在另一实施例中,如图4所示。为了加强透镜组40的成像效果。所述透镜组40包括从上到下依次间隔设置的第一透镜43、第二透镜44、第三透镜45、第四透镜46、第五透镜47、第六透镜48,所述第一透镜43、第二透镜44、第三透镜45组成入射透镜组41,所述第四透镜46、所述第五透镜47、所述第六透镜48组成出射透镜组42,所述第三透镜45与所述第四透镜46沿与中心轴相垂直的水平线呈对称设置,第二透镜44与第五透镜47沿与中心轴相垂直的水平线呈对称设置,第一透镜43与第六透镜48也沿水平线呈对称设置,第一透镜43与第六透镜48为相同的双面凸透镜,第二透镜44与第五透镜47为相同的单面凸透镜,第三透镜45与第四透镜46为相同的双面凹透镜。透镜组40中镜头(透镜)的材质可为高透光材料,在本实施例中,透镜材料为玻璃,在其他实施例中,透镜材料可以为亚克力等具有高透光的材料。透镜的形状可以是圆形和方形等,对此不做限定。
在又一实施例中,如图5所示,第一透镜43与第六透镜48为相同的单面凸透镜,第二透镜44与第五透镜47为相同的单面凸透镜,第三透镜45与第四透镜46为相同的单面凹透镜。
在本实施例中,根据透镜组40的焦距可调,所述透镜组40与所述液晶显示屏30之间具有第一预设距离,以图2的透镜组为例,所述第一预设距离范围在1mm~600mm。可以理解地,第一预设距离为液晶显示屏30到第一透镜43(镜头1)的距离,该距离的大小跟透镜组40的设置组合有关,以保证不同距离投影出的光线均匀,透镜组40可以接受绝大部分LCD投出的光,并且配合第四透镜46(镜头4)到成型件80的第二预设距离(具体见下文介绍),实现远距离投光,投影出的幅面精度高,投影的成像能达到1:1。预设范围最小值的设置可理解在透镜组40的优化足够情况下,透镜组40的一面能贴近液晶显示屏30设置,在液晶显示屏30投影强度足够情况下,液晶显示屏30到第一透镜43(镜头1)的距离大约600mm,以保证能等比例的反应液晶显示屏30的透光区的截面图像。液晶显示屏30到第一透镜43(镜头1)的距离最小为1mm、最大为600mm,一方面1mm高度能保证透镜足够的接近液晶显示屏30,透镜组40可以接受绝大部分液晶显示屏30投出的光,另一方面小于1mm或大于600mm对于透镜组40的要求过高,成本需要整加。在本实施例中,所述第二预设距离在171mm,可以理解地,透镜组40为了接收和投射的图像的大小和精度需要一定距离设置,因此,液晶显示屏30到第一透镜43(镜头1)的距离设置在171mm能保证透镜组40实现远距离投光,保证投影出的幅面精度高,实现等比例打印,并且也能满足大部分的打印需要,光固化打印机的整体也能较为小巧。当然,根据透镜组的设置不同所述第一预设距离、第二预设距离会根据设计需要进行变化。如应用在工业上最大范围可达2000mm左右或更大,当然如透镜组内透镜的变化也会影响所述第一预设距离、第二预设距离,如间距调节、镜片厚薄的变化等等。
进一步地,为了方便调整投影后图像的清晰度,所述透镜组的焦距可调。
具体地,透镜组40具有固定焦距或手动调节焦距或自动调节焦距的功能,焦距,是光学系统中衡量光的聚集或发散的度量方式,指从透镜中心到光聚集之焦点的距离。可参考上文介绍。一种方式焦距调节方式中,可通过手调节透镜之间的距离,如相机镜头转动方式,进而调整其焦距。在另一种焦距调节方式中,可调节透镜组与液晶显示屏之间的距离,从而实现远近距离的打印,如在1mm~600mm范围内的打印。在又一种焦距调节方式中,可通过丝杆的带动进行调节。
为了投影装置的整体紧凑,所述第一预设距离为171mm。从上到下依次布设的发光源10、准直匀光阵列透镜20、液晶显示屏30以及设置有多个透镜的透镜组40,固定在投影装置内。不难理解,第一预设距离可随焦距的调整进行变化。
如图6至图8所示,投影装置还包括菲涅尔透镜90。经过透光区的光线11透过菲涅尔透镜90,菲涅尔透镜90将光线11进行聚集并将其投射到透镜组40,透镜组40用于在接收经过菲涅尔透镜90的光线11后,将透光区形成的截面图像等比例的投射出透镜组40。
菲涅尔透镜90(Fresnel透镜)一侧是平面,另一侧用一系列同心槽代替了传统透镜的曲面,浇铸成一个薄且轻的塑料板面。每个环带都相当于一个独立的折射面,十字剖面像许多小棱镜,这些环带都能使入射光线11会聚到一个共同的焦点。菲涅尔透镜90(Fresnel透镜),简单的说就是在透镜的一侧有等距的齿纹通过这些齿纹,可以达到对指定光谱范围的光带通(反射或者折射)的作用.传统的打磨光学器材的带通光学滤镜造价昂贵。菲涅尔透镜90可以极大的降低成本。因为这些透镜非常薄,故由于吸收而损失的光能几乎很少。由于这奇特的螺纹设计,菲尼尔透镜可以镜广范围的入射光,聚集到一个焦点。典型的例子就是PIR(被动红外线探测器)。PIR广泛的用在警报器上。如果你拿一个看看,你会发现在每个PIR上都有个塑料的小帽子。这就是菲涅尔镜。小帽子的内部都刻上了齿纹。这种菲涅尔镜可以将入射光的频率峰值限制到10微米左右(人体红外线辐射的峰值)。菲涅尔螺纹透镜在效率和成像质量方面比较折中,高凹槽浓度就有高成像质量,然而低凹槽浓度却有好的效率(在聚光系统中有很好的应用)。因此,在液晶显示屏30在下方设置菲涅尔透镜90,已将液晶显示屏30投射出带有横截面图像形状的光斑经过菲涅尔透镜90聚焦再投射到透镜组40,透镜组40该带有横截面图像形状的光斑等比例地再投射到光敏树脂70平面使其发生凝固,达到一比一地投影液晶显示屏30的截面图像,完成该层横截面的打印。
本申请技术方案通过采用从上到下依次布设的发光源10、准直匀光阵列透镜20、液晶显示屏30、菲涅尔透镜90以及透镜组40,发光源10发射的光线11依次透过准直匀光阵列透镜20、液晶显示屏30、菲涅尔透镜90以及透镜组40,菲涅尔透镜90聚焦液晶显示屏30投射出带有横截面图像形状的光斑再投射到透镜组40,如此保证光线11能完成穿入透镜组40,也能将透镜组40的尺寸进行缩小以节约成本。最终透镜组40将带有横截面图像形状的光斑再等比例的投射出。提高液晶显示屏30显示图像的投影距离。
可以理解地,为了节约成本。所述透镜组40的横截面小于所述菲涅尔透镜90的横截面。菲涅尔透镜90能聚焦液晶显示屏30投射出带有横截面图像形状的光斑,使得液晶显示屏30投射出带有横截面图像形状的光斑能完全投入到透镜组40内,因此透镜组40的横截面尺寸可小于菲涅尔透镜90的横截面尺寸。
进一步地,为了确保图像投影的成像效果,所述菲涅尔透镜90贴紧所述液晶显示屏30。如上文介绍菲涅尔透镜90的一侧是平面,另一侧用一系列同心槽,菲涅尔透镜90的大小可大于或等于液晶显示屏30,同心槽一侧贴紧液晶显示屏30,使得液晶显示屏30的发射出来入射光线11能全部被接受,并使入射光线11会聚再投射到透镜组40。
进一步地,所述透镜组40与所述菲涅尔透镜90之间具有一定距离,该距离可为距离菲涅尔透镜90的焦距范围上下,以确保带有横截面图像形状的光斑能以清晰的方式投射到透镜组40。
本申请还提出一种光固化打印机,该光固化打印机包括机架、储料槽60、成型平台50、升降机构以及投影装置,该投影装置的具体结构参照上述实施例,由于本光固化打印机采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,投影装置、升降机构以及储料槽60设于机架,储料槽60设于投影装置下方,储料槽60用于放置液态的光固化材料;成型平台50与升降机构固定连接,成型平台50位于储料槽60的上方,升降机构用于驱动成型平台50伸入或移出储料槽60。
光固化打印机工作原理是利用液晶屏LCD成像原理,在计算机及显示屏电路的驱动下,由计算机程序提供图像信号,在液晶屏幕上出现选择性的透明区域,紫外光透过透明区域,照射树脂槽内的光敏树脂70耗材进行曝光固化,每一层固化时间结束,平台托板将固化部分提起,让树脂液体补充回流,平台再次下降,模型与离型膜之间的薄层再次被紫外线曝光。由此逐层固化上升打印成精美的立体模型。所以通过这种原理成像的LCD 3D打印机,我们也叫“LCD 3DPrinter。它还会在树脂罐上闪烁完整的层,但是紫外线会通过LCD发出,LCD的屏幕充当遮罩,仅显示当前图层所需的像素。LCD 3D打印机使用一系列UV LCD作为光源。LCD面板发出的光经过透镜组40以平行方式直接照射到构建区域上。
在本实施例中,投影方式与其他LCD 3D打印机不同,即采用上文介绍的上投影、下沉式,可参考地,打印的时候,首先成型平台50会下降到储料槽60最底部或升降机构控制让成型平台50下沉到液面下5/8/10cm等不同高度,不需要让成型平台50直接沉到储料槽60的底部,发光源10的光强可自行调整强弱,在打印不同材料的时候,可以自由设定不同的光强和功率。打印模型过程,同一款模型,可以设定在不同部位,采用不同的打印层厚,没有离型膜、永久性料缸、不需要更换离型膜以及料盘,后期保养成本极低。
进一步地,如图9所示。根据打印成型件80的最小需求。所述投影装置按第二预设距离设于所述成型平台50上方,所述第二预设距离为所述透镜组40的下表面到所述成型平台50的上表面的距离,所述第二预设距离范围在1mm~600mm。在成型件80打印完成后,成型平台50会抬起带着成型件80脱离储料槽60,可以理解地,成型件80需要有一定空间,即预留给成型件80的空间最小为1mm、最大为600mm,另一方面小于1mm或大于600mm对于透镜组40的要求过高,成本需要整加。在本实施例中,所述第二预设距离在171mm,能保证大部分的打印需求,可以理解地,透镜组40需要占据液晶显示屏30到成型平台50打印面之间一定的空间,透镜组40为了接收和投射的图像的大小和精度需要一定距离设置,因此,将透镜组40距离成型平台50的距离设置在171mm能实现远距离投光,保证投影出的幅面精度高,实现等比例打印,并且也能满足大部分的打印需要,光固化打印机的整体也能较为小巧。特别地,在本实施例中,液晶显示屏30到第一透镜43的距离为171mm,第四透镜46到成型件80的距离的设置为171mm,保证了透镜组40可以接受绝大部分液晶显示屏30投出的光,并且经透镜组40投影出的幅面精度高、并且光线均匀,投影成像能达到1:1。
进一步地,所述升降机构(图中未示出)包括安装于所述机架上并垂直于所述成型平台50的丝杆(图中未示出);滑动装配于所述丝杆上并与所述成型平台50固定连接的滑块(图中未示出);及安装于所述机架上并与所述丝杆一端装配的电机(图中未示出),所述电机驱动所述丝杆转动并通过所述滑块带动所述成型平台50。具体地,投影装置用于实现将液态的光固化材料固化成固态的产品,储料槽60设置在投影装置的下方,用于装液态的光固化材料。机架靠近储料槽60设置,机架的一端深入储料槽60内部并连接有供成型件80层放置的成型平台50。升降机构设置在成型平台50与机架之间,用于当投影装置在成型平台50上每完成一次产品层的打印时,驱动成型平台50下降一个层厚。在本实施例中,升降机构11为市场上常规打印机采用的升降机构,具体机构可参照现有的打印机,在本方案的附图中不具体显示。
本申请还提出一种光固化打印的投影方法,如图3所示,包括以下步骤提供从上到下依次布设的发光源、准直匀光阵列透镜、液晶显示屏,使光源发射的光线透过准直匀光阵列透镜后分散为均匀的平行光射入液晶显示屏;
提供透镜组,将透镜组置于液晶显示屏下方,使透过液晶显示屏的光线成像图案经过透镜组能将所述光线成像图案一比一的投射到光固化打印机的成型平台,使位于储料槽内的成型平台表面的光敏材料的液面上发生凝固,并粘结到成型平台。
需要说明的是,对于前述的各实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可能采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于总构思下的其中一种实施例,涉及的动作和模块并不一定是本申请所必须的。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (13)

  1. 一种投影装置,其中,所述投影装置包括:
    从上到下依次布设的发光源、准直匀光阵列透镜、液晶显示屏以及设置有多个透镜的透镜组;所述发光源用于发射能够固化光敏材料的光线;
    所述发光源发射的光线透过所述准直匀光阵列透镜,所述准直匀光阵列透镜用于将所述发光源所发射光线变为匀直的光线;所述液晶显示屏用于在接收控制信号后形成与打印所需截面图像形状相匹配的透光区,所述透光区用以供所述光线穿过;
    透过所述液晶显示屏的所述光线投射到所述透镜组,所述透镜组用于在接收所述液晶显示屏投射出的所述光线后,将所述透光区形成的截面图像等比例的投射出所述透镜组。
  2. 如权利要求1所述的投影装置,其中,所述透镜组中的透镜为凸透镜、凹透镜以及凹凸透镜三者中任意二者或三者的组合。
  3. 如权利要求2所述的投影装置,其中,所述透镜组包括靠近所述液晶显示屏一侧的入射透镜组和朝向打印一侧的出射透镜组,其中,所述入射透镜组和所述出射透镜组中的透镜以二者之间的中心线对称设置。
  4. 如权利要求3所述的投影装置,其中,所述透镜组包括从上到下依次间隔设置的第一透镜、第二透镜、第三透镜、第四透镜,所述第一透镜和所述第二透镜组成入射透镜组,所述第三透镜和所述第四透镜构成出射透镜组,所述第二透镜与所述第三透镜沿与中心轴相垂直的水平线呈对称设置,所述第一透镜与所述第四透镜也沿所述水平线呈对称设置,所述第一透镜与所述第四透镜为相同的凸透镜,所述第二透镜与所述第三透镜为相同的凹凸透镜。
  5. 如权利要求3所述的投影装置,其中,所述透镜组包括从上到下依次间隔设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜,所述第一透镜、第二透镜、第三透镜组成入射透镜组,所述第四透镜、所述第五透镜、所述第六透镜组成出射透镜组,所述第三透镜与所述第四透镜沿与中心轴相垂直的水平线呈对称设置,第二透镜与第五透镜沿与中心轴相垂直的水平线呈对称设置,第一透镜与第六透镜也沿水平线呈对称设置,第一透镜与第六透镜为相同的双面凸透镜,第二透镜与第五透镜为相同的单面凸透镜,第三透镜与第四透镜为相同的双面凹透镜。
  6. 如权利要求1所述的投影装置,其中,所述透镜组的焦距可调。
  7. 如权利要求1所述的投影装置,其中,所述发光源为阵列排布的UV LED光源或阵列排布的LD光源。
  8. 如权利要求1所述的投影装置,其中,所述投影装置还包括菲涅尔透镜,经过所述透光区的光线透过所述菲涅尔透镜,所述菲涅尔透镜将所述光线进行聚集并将其投射到所述透镜组,所述透镜组用于在接收经过所述菲涅尔透镜的光线后,将所述透光区形成的截面图像等比例的投射出所述透镜组。
  9. 如权利要求8所述的投影装置,其中,所述透镜组的横截面小于所述菲涅尔透镜的横截面。
  10. 如权利要求8所述的投影装置,其中,所述菲涅尔透镜贴紧所述液晶显示屏。
  11. 一种光固化打印机,其中,所述光固化打印机包括:
    机架、如权利要求1至10中任一项所述的投影装置、储料槽、成型平台以及升降机构;
    所述投影装置、所述升降机构以及所述储料槽设于所述机架,所述储料槽设于所述投影装置下方,所述储料槽用于放置液态的光固化材料;所述成型平台与所述升降机构固定连接,所述成型平台位于所述储料槽的上方,所述升降机构用于驱动所述成型平台伸入或移出所述储料槽。
  12. 如权利要求11所述的光固化打印机,其中,所述升降机构包括:
    安装于所述机架上并垂直于所述成型平台的丝杆;
    滑动装配于所述丝杆上并与所述成型平台固定连接的滑块;及
    安装于所述机架上并与所述丝杆一端装配的电机,所述电机驱动所述丝杆转动并通过所述滑块带动所述成型平台。
  13. 一种光固化打印的投影方法,其中,所述方法包括以下步骤:
    提供从上到下依次布设的发光源、准直匀光阵列透镜、液晶显示屏,使光源发射的光线透过准直匀光阵列透镜后分散为均匀的平行光射入液晶显示屏;
    提供透镜组,将透镜组置于液晶显示屏下方,使透过液晶显示屏的光线成像图案经过透镜组能将所述光线成像图案一比一的投射到光固化打印机的成型平台,使位于储料槽内的成型平台表面的光敏材料的液面上发生凝固,并粘结到成型平台。
PCT/CN2022/104195 2021-07-08 2022-07-06 投影装置、光固化打印机和投影方法 WO2023280233A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110776536.2 2021-07-08
CN202121555861.8U CN217531909U (zh) 2021-07-08 2021-07-08 投影装置和光固化打印机
CN202121551884.1 2021-07-08
CN202110776536.2A CN114932680A (zh) 2021-07-08 2021-07-08 投影装置、光固化打印机和投影方法
CN202121551884.1U CN217574083U (zh) 2021-07-08 2021-07-08 投影装置和光固化打印机
CN202121555861.8 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023280233A1 true WO2023280233A1 (zh) 2023-01-12

Family

ID=84801321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104195 WO2023280233A1 (zh) 2021-07-08 2022-07-06 投影装置、光固化打印机和投影方法

Country Status (1)

Country Link
WO (1) WO2023280233A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112862A (ja) * 1994-10-17 1996-05-07 Japan Synthetic Rubber Co Ltd 光造形装置
US20090140172A1 (en) * 2007-12-03 2009-06-04 Sony Corporation Optical shaping apparatus and optical shaping method
CN107584758A (zh) * 2017-11-01 2018-01-16 郑州迈客美客电子科技有限公司 光固化打印机用投影方法、投影装置及带该装置的打印机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08112862A (ja) * 1994-10-17 1996-05-07 Japan Synthetic Rubber Co Ltd 光造形装置
US20090140172A1 (en) * 2007-12-03 2009-06-04 Sony Corporation Optical shaping apparatus and optical shaping method
CN107584758A (zh) * 2017-11-01 2018-01-16 郑州迈客美客电子科技有限公司 光固化打印机用投影方法、投影装置及带该装置的打印机

Similar Documents

Publication Publication Date Title
US11628616B2 (en) Additive manufacturing device and method
US10328634B2 (en) Light engines for photo-curing of liquid polymers to form three-dimensional objects
KR102442533B1 (ko) 3차원 물체를 성형하기 위해 액상 중합체의 광-경화를 위한 광 엔진을 사용하는 방법 및 장치
CN109143663B (zh) 一种液晶面板及3d打印机
CN108466427A (zh) 一种光固化3d打印光学模块及光固化3d打印系统
CN114932680A (zh) 投影装置、光固化打印机和投影方法
EP4119333A1 (en) Light-curing 3d printer optical machine, printer and method of luminous display
WO2023280233A1 (zh) 投影装置、光固化打印机和投影方法
CN212603426U (zh) 基于lcd液晶显示屏的投影装置及打印机
CN104730619A (zh) 导光板及具有该导光板的背光模块和液晶显示器
CN216782664U (zh) 一种光源装置及光固化打印机
CN217574083U (zh) 投影装置和光固化打印机
CN217531909U (zh) 投影装置和光固化打印机
US20190004408A1 (en) Optical mixer and multi-wavelength homogeneous light source using the same
CN110969958B (zh) 一种led显示屏
WO2022011775A1 (zh) 基于lcd液晶显示屏的投影装置、打印机及光照控制方法
WO2019123850A1 (ja) 光源デバイスおよびそれを用いたディスプレイ装置
CN218477126U (zh) 3d打印装置
CN217531892U (zh) 一种应用于3d打印机的组合光学透镜
WO2023103008A1 (zh) 一种显示装置及显示器
WO2019174227A1 (zh) 像素化波长转换装置、像素化波长转换元件及其制造方法
CN113791506A (zh) 一种光源系统及3d打印机
CN114939985A (zh) 一种应用于3d打印机的组合光学透镜
JP2016136191A (ja) マイクロレンズ基板及び画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE