WO2023103008A1 - 一种显示装置及显示器 - Google Patents

一种显示装置及显示器 Download PDF

Info

Publication number
WO2023103008A1
WO2023103008A1 PCT/CN2021/138815 CN2021138815W WO2023103008A1 WO 2023103008 A1 WO2023103008 A1 WO 2023103008A1 CN 2021138815 W CN2021138815 W CN 2021138815W WO 2023103008 A1 WO2023103008 A1 WO 2023103008A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
array
color conversion
conversion layer
micro
Prior art date
Application number
PCT/CN2021/138815
Other languages
English (en)
French (fr)
Inventor
刘同凯
徐宸科
Original Assignee
厦门市芯颖显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市芯颖显示科技有限公司 filed Critical 厦门市芯颖显示科技有限公司
Priority to DE112021007622.1T priority Critical patent/DE112021007622T5/de
Publication of WO2023103008A1 publication Critical patent/WO2023103008A1/zh
Priority to US18/410,550 priority patent/US20240145651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention relates to the technical field of semiconductor display, in particular to a display device and a display.
  • Micro-LED is to thin, miniaturize and array the LED structure, reduce the size to 1-10 ⁇ m, transfer it to the driving substrate in a large amount, and then use physical deposition to complete the protective layer and electrodes, and then complete the Micro-LED packaging.
  • LED display the Micro-LED chips are transferred to the driving substrate in large quantities, the Micro-LED chips are electrically connected to the driving circuit of the driving substrate, and the Micro-LED chips are controlled through the driving circuit on the driving substrate.
  • the current flows from the driving circuit to the Micro-LED chip the electrons and holes combine to emit light in the Micro-LED chip, and the light is emitted from various angles of the chip, and the light-emitting angle range is large.
  • Existing Micro-LED displays have a lighting angle range of ⁇ 80 degrees.
  • the light displayed by Micro-LED displays needs to present a clear picture at a specific range of light-emitting angles, but the existing Micro-LED displays have a large range of light-emitting angles, which cannot meet the requirements. Requirements for presenting a clear picture in a specific range of lighting angles.
  • the object of the present invention is to provide a display device and a display to meet the requirement of presenting a clear display image in a specific light-emitting angle range.
  • the present invention provides a display device, comprising:
  • the driving substrate is provided with a driving circuit
  • the light emitting device array is arranged on the surface of the driving substrate, the light emitting device array includes a plurality of light emitting devices, the light emitting devices are electrically connected to the driving circuit, and the light emitted by the plurality of light emitting devices is light of the same color;
  • the micro-optical structure is arranged above the array of light-emitting devices, and is used to refract the light emitted by the light-emitting devices to a uniform refraction angle;
  • the color conversion layer array is arranged above the micro-optical structure, and the light-emitting devices correspond to the color conversion layers in the color conversion layer array one by one.
  • the color conversion layer array is used to convert the light emitted by the light-emitting devices into light of the required color.
  • the micro-optical structure includes a right-angle prism array, and the right-angle prism array includes a plurality of right-angle prisms, and the right-angle prisms are in one-to-one correspondence with the light-emitting devices.
  • the color conversion layer array is arranged above the rectangular prism array, and the color conversion layers in the color conversion layer array correspond to the rectangular prisms in the rectangular prism array.
  • the micro-optical structure further includes a transparent substrate, and the transparent substrate is arranged between the rectangular prism array and the light emitting device array.
  • the cross section of the right-angle prism is a right-angle triangle, and one of the right-angle sides of the right-angle triangle is attached to the transparent substrate.
  • the micro-optical structure further includes a micro-lens array, the micro-lens array is disposed on a side of the transparent substrate close to the light-emitting device array, the micro-lens array includes a plurality of micro-lenses, and the micro-lenses correspond to rectangular prisms one by one.
  • the microlens array is a convex lens array or a concave lens array.
  • the color conversion layer array includes a first color conversion layer, a second color conversion layer and a third color conversion layer, the first color conversion layer is used to convert the light emitted by the light-emitting device into red light, and the second color conversion layer The layer is used for converting the light emitted by the light emitting device into green light, and the third color conversion layer is used for converting the light emitted by the light emitting device into blue light.
  • a filter layer is arranged above the array of color conversion layers, and the filter layer is used to pass through the light refracted by the micro-optical structure to the refraction angle and to isolate the light other than the light that is refracted at the refraction angle .
  • an anti-interference layer is also included, and the anti-interference layer is disposed on the driving substrate and disposed in the gap between adjacent light emitting devices.
  • a reflective layer is further included, and the reflective layer is disposed on the driving substrate and disposed in a gap between adjacent light emitting devices.
  • the present invention also provides a display, including any display device in the above solution.
  • the display device and display of the present invention at least have the following beneficial effects:
  • the display device of the present invention refracts the light emitted by the light-emitting device to a specific refraction angle through the micro-optical structure, so as to realize imaging at a specific angle, and uses the light of the same color as the light source, and passes the light of the same color through the micro-optical
  • the structure is refracted and converted into the required color light, which avoids the problem of chromatic aberration caused by the different deflection angles of light of different wavelengths after passing through the micro-optical structure.
  • the display of the present invention includes the above-mentioned display device, and can also achieve the above-mentioned technical effect.
  • FIG. 1 is a schematic structural diagram of a display device described in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a display device described in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a display device described in an embodiment of the present invention.
  • FIG. 4 is a flow chart of the display method of the present invention.
  • the present invention provides a display device and a display, which can realize imaging at a specific angle of the display screen and avoid the problem of chromatic aberration at the same time.
  • This embodiment provides a display device, which includes a driving substrate, an array of light-emitting devices, a micro-optical structure, and an array of color conversion layers, wherein the driving substrate includes a driving circuit, and the light-emitting devices in the array of light-emitting devices form an electrical connection with the driving circuit. connected, the light emitted by the light emitting devices in the light emitting devices is light of the same color.
  • the micro-optical structure is arranged above the light-emitting array for refracting the light emitted by the light-emitting device array to a uniform refraction angle.
  • the color conversion layer array is arranged above the micro-optical structure.
  • the light-emitting devices in the light-emitting device array and the color conversion layer array There is a one-to-one correspondence between the color conversion layers, and the color conversion layer array is used to convert the light emitted by the light-emitting device into the light of the required color.
  • the driving substrate 100 includes a driving circuit, on the one hand, as a carrier of the entire display screen, for supporting the light-emitting device array 200 and the micro-optical structure 400 above it; on the other hand, for connecting and driving the light-emitting device Array 200.
  • the driving substrate 100 includes but not limited to a TFT (Thin Film Transistor, thin film transistor) driving substrate 100, the TFT driving substrate 100 is a glass driving substrate, including a driving circuit connected to a single light emitting device 201, the driving circuit Control the on and off of the light emitting device 201 .
  • TFT Thin Film Transistor, thin film transistor
  • the light emitting device array 200 is used as a light source of the display device and is disposed on the surface of the driving substrate 100 .
  • the light emitting device array 200 includes a plurality of light emitting devices 201 .
  • this embodiment uses light of the same color as the light source.
  • the light emitting device 201 is a micro-LED chip, and the micro-LED chip includes but is not limited to a micro-blue LED chip, a micro-violet LED chip or a micro-ultraviolet LED chip.
  • the micro-optical structure 400 is disposed above the light-emitting device array 200 for refracting the light emitted by the light-emitting device 201 to a uniform refraction angle.
  • the micro-optical structure 400 includes a right-angle prism array 403, and the right-angle prism array 403 includes a plurality of right-angle prisms 4031, and the right-angle prisms 4031 in the right-angle prism array 403 correspond to the light-emitting devices 201 in the light-emitting device array 200, and the right-angle prisms
  • the rectangular prism 4031 in the array 403 can refract the light emitted by the light emitting device 201 to a specific angle.
  • the micro-optical structure further includes a transparent substrate 402, the transparent substrate 402 is arranged between the rectangular prism array 403 and the light-emitting device array 200, the transparent substrate 402 is used to support the rectangular prism array 403, and can emit light through the light-emitting device 201. of light.
  • a section of the right-angle prism 4031 is a right-angle triangle, and one of the right-angle sides of the right-angle triangle is attached to the transparent substrate 100 .
  • a microlens array 401 is provided on a side of the transparent substrate 402 close to the light emitting device array 200, and the microlens array 401 includes a plurality of microlenses 4011, wherein the microlens array 401 is disposed on the transparent substrate 402 close to the light emitting device array 200 On one side, the microlenses 4011 in the microlens array 401 correspond to the rectangular prisms 4031 in the rectangular prism array 403 one by one.
  • the microlens array 401 can converge the light emitted by the light emitting device 201 and increase the light emitting surface to improve light efficiency to a certain extent.
  • the microlens array 401 may be a convex lens array or a concave lens array.
  • the materials of the transparent substrate 402 , rectangular prism array 403 and microlens array 401 may include inorganic glass, organic glass or other transparent colorless materials.
  • the gap there is a certain gap between the micro-optical structure 400 and the light-emitting device array 200, and the gap can be filled with air, nitrogen or different adhesive materials, wherein the transparent filler 300 and the micro-optical structure 400 different refractive index.
  • an anti-interference layer 700 is arranged between adjacent light-emitting devices 201. 700 is disposed on the driving substrate 100 and between adjacent light emitting devices 201 to absorb the light emitted by adjacent light emitting devices 201 and avoid light crosstalk.
  • the anti-interference layer 700 is a vinyl layer; optionally, the thickness of the anti-interference layer 700 is greater than the thickness of the light-emitting device 201, thereby preventing the light emitted from the top of the light-emitting device 201 from colliding with the adjacent light-emitting device 201 Light crosstalk occurs.
  • the thickness of the anti-interference layer 700 is equal to the vertical distance from the driving substrate 100 to the transparent substrate 402 , and the anti-interference layer 700 is a black glue layer.
  • a reflective layer 800 is provided between adjacent light-emitting devices 201, and when the single-color light emitted by the light-emitting devices 201 scatters around, these colored lights will be reflected by the reflective layer 800, so that The output amount of light in the vertical direction is increased and the interference of light output by adjacent light emitting devices 201 is prevented.
  • the reflective layer 800 is a white glue layer.
  • the reflective layer 800 may also be made of a material with high reflectivity, for example, an Ag reflective layer.
  • the thickness of the white glue layer is greater than that of the light emitting device 201 , so as to prevent light emitted from the top of the light emitting device 201 from interfering with adjacent light emitting devices 201 .
  • the thickness of the reflective layer 800 is equal to the vertical distance from the driving substrate 100 to the transparent substrate 402 .
  • the color conversion layer array 500 is arranged above the micro-optical structure 400, and the light-emitting devices 201 in the light-emitting device array 200 correspond to the color conversion layers in the color conversion layer array 500 one by one, and are used to convert the light emitted by the light source into the desired color of light.
  • the color conversion layer array 500 is disposed above the rectangular prism array 403 , and the color conversion layers in the color conversion layer array 500 correspond to the rectangular prisms 4031 in the rectangular prism array 403 one by one.
  • the color conversion layer can form a film layer with a uniform thickness on the light-emitting surface of the rectangular prism 4031, as shown in Figure 1 or 2; a prism-shaped color conversion layer can also be formed on the light-emitting surface of the rectangular prism 4031, As shown in Figure 3.
  • the color conversion layer 500 may be composed of phosphors or quantum dots, and the phosphor particles or quantum dots in the color conversion layer are excited by the light irradiated by the light emitting device 201 to generate light of a predetermined wavelength.
  • the color conversion layer array 500 includes a first color conversion layer 501, a second color conversion layer 502 and a third color conversion layer 503, the first color conversion layer 501 is irradiated by the light emitting device 201 Excited to generate red light, the second color conversion layer 502 is excited by the light radiated by the light emitting device 201 to generate green light, and the third color conversion layer 503 is excited by the light radiated by the light emitting device 201 to generate blue light.
  • the first color conversion layer 501 , the second color conversion layer 502 and the third color conversion layer 503 correspond to the right angle prisms 4031 arranged in the right angle prism array 403 to perform color conversion on the light refracted by the right angle prisms 4031 .
  • the first color conversion layer 501 may be composed of a red organic fluorescent dye. Red light is emitted; the second color conversion layer 502 can be made of green organic fluorescent dye, and its absorption spectrum is located at 430nm-580nm, which can absorb blue light and convert green light; the third color conversion layer 503 can be directly composed of colorless and transparent materials, Through blue light.
  • the microlens array 401 in the display device is a concave lens
  • an anti-interference layer 700 is arranged between light-emitting devices 201
  • a color conversion layer is arranged on the surface of a rectangular prism 4031.
  • Color conversion layer of uniform thickness In this embodiment, the concave lens can increase the light output surface and improve the light output efficiency to a certain extent.
  • the anti-interference layer 700 is used to absorb light emitted by adjacent light emitting devices 201 to prevent light crosstalk.
  • the microlens array 401 in the display device is a convex lens
  • a reflective layer 800 is arranged between the light emitting devices 201
  • the color conversion layer is arranged on the surface of a rectangular prism 4031 A color conversion layer of uniform thickness.
  • the microlens array 401 has a light concentrating function, and can converge the light emitted by the light emitting device 201 .
  • the reflective layer 800 is used to reflect the light of the light reflective layer emitted by the adjacent light emitting device 201 , thereby increasing the light output of the light emitting device 201 .
  • the microlens array 401 in the display device is a concave lens
  • an anti-interference layer is arranged between the light emitting devices 201
  • a color conversion layer is arranged on the surface of a rectangular prism 4031.
  • a prism-shaped color conversion layer is arranged on the surface of a rectangular prism 4031.
  • the concave lens described in this embodiment can increase the light output surface and improve the light output efficiency to a certain extent.
  • the anti-interference layer 700 is used to absorb light emitted by adjacent light emitting devices 201 to prevent light crosstalk.
  • the shapes of the microlens array, the layer materials disposed between the light emitting devices and the color conversion layer are not limited to the above combinations.
  • the microlens array 401 can be a concave lens or a convex lens, a reflective layer 800, an anti-interference layer 700 can be arranged between the light emitting devices 201 or a reflective layer 800 can be coated on the surface of the anti-interference layer 700, and the color conversion layer can be The prism-shaped color conversion layer arranged on the surface of the right-angle prism 4031 or a color conversion layer with a uniform thickness arranged on the surface of the right-angle prism 4031, the layer materials arranged between the microlens array 401 and the light emitting device 201 and The shape of the color conversion layer can be any combination of the above forms, which will not be repeated here.
  • a filter layer 600 is further provided above the micro-optical structure 400, and the filter layer 600 is used to transmit light refracted by the micro-optic structure 400 to a specific refraction angle. , and isolate light other than the light emitted at the refraction angle, so as to avoid images with chromatic aberration.
  • the filter layer 600 is a photonic crystal, which is a microstructure formed by periodic arrangement of media with different refractive indices, and can transmit light at a specific refraction angle.
  • a micro-optical structure is used to reflect light to a specific angle, and an array of light-emitting devices capable of emitting light of the same color is used as a light source, so that the light of the same color passes through the micro-optical structure to form the same deflection angle, thereby producing no chromatic aberration of the image.
  • This embodiment provides a display method. Referring to FIG. 4, the steps include:
  • S101 arrange the array of light emitting devices, so that the light emitted by the light emitting devices in the array of light emitting devices is light of the same wavelength;
  • a driving substrate 100 is provided, the driving substrate 100 includes but not limited to a TFT (Thin Film Transistor, thin film transistor) driving substrate, and the TFT driving substrate is a glass driving substrate.
  • TFT Thin Film Transistor, thin film transistor
  • the light-emitting devices 201 are provided, and the several light emitting devices 201 are light sources capable of emitting the same color.
  • the light-emitting devices 201 are arranged in an array on the surface of the driving substrate 100 to form a light-emitting device array 200.
  • the light-emitting devices 201 are electrically connected to the driving circuit in the driving substrate 100, and the driving circuit controls the light-emitting devices 201 to turn on and off.
  • an anti-interference layer 700 or a reflective layer 800 is formed in the gap between the light-emitting device arrays 200, and the thickness of the anti-interference layer 700 or the reflective layer 800 needs to be higher than that of the light-emitting devices. 201 to prevent optical crosstalk between adjacent light emitting devices 201.
  • a micro-optical structure 400 is provided.
  • the micro-optical structure 400 is arranged on one side of the light-emitting surface of the light-emitting device array 200, and the light emitted by the light-emitting device array 200 is refracted to a uniform refraction angle by the right-angle prism array 403, wherein the right-angle prism 4031 in the right-angle prism array 403 and the light-emitting device
  • the light emitting devices 201 of the array 200 are in one-to-one correspondence.
  • the above-mentioned micro-optical structure 400 can be manufactured by the following method: a transparent substrate 402 is provided, and a rectangular prism array 403 is prepared on one surface of the transparent substrate 402 by printing or inkjet printing technology.
  • the microlens array 401 between the light emitting device array 200 and the right angle prism array 403 converges the light emitted by the light emitting device array 200, the microlens 4011 in the microlens array 401 and the right angle prism 4031 in the right angle prism array 403 one by one correspond.
  • the microlens array 401 can be formed on the other surface of the transparent substrate 402 by printing or inkjet printing technology.
  • the microlens 4011 is a condensing lens, for example, a convex lens.
  • S103 Perform color conversion on the light with a uniform refraction angle according to a predetermined emission color requirement.
  • the light that the rectangular prism array 403 is emitted is converted into the light of desired color through the color conversion layer array 500; 4031 one-to-one correspondence.
  • the color conversion layer array 500 includes a first color conversion layer 501, a second color conversion layer 502 and a third color conversion layer 503.
  • the first color conversion layer 501 can be excited by the light irradiated by the light emitting device 201 to generate red light, and the second color conversion layer 501 can generate red light.
  • the conversion layer 502 can be excited by the light radiated by the light emitting device 201 to generate green light, and the third color conversion layer 503 can be excited by the light radiated by the light emitting device 201 to generate blue light.
  • a color conversion layer to convert the color can be formed on the light-emitting surface of the rectangular prism 4031 as required.
  • the filter layer 600 after performing color conversion on the light with a uniform refraction angle according to the predetermined emission color requirements, it further includes: filtering the color-converted light to make the light refracted by the micro-optical structure 400 to a specific refraction angle Light is transmitted, so that light other than the light exiting at the angle of refraction cannot be transmitted.
  • the color-converted light is filtered by the filter layer 600 , the filter layer 600 is used to transmit light at refracted angles, isolate light at other angles, and avoid images with chromatic aberration.
  • the filter layer 600 is a photonic crystal, which is a microstructure formed by periodic arrangement of media with different refractive indices, and can transmit light of a specific wavelength.
  • the display method in this embodiment includes the display device in Embodiment 1, and can also achieve the technical effect in Embodiment 1.
  • This embodiment also provides a display, which includes the display device in Embodiment 1 above.
  • the display can realize imaging at a special angle, and uses an array of light-emitting devices that can emit light of the same color as a light source, so that the light of the same color can form the same deflection angle after passing through the micro-optical structure, thereby enabling Produces images without chromatic aberration.
  • the display device of the present invention refracts the light emitted by the light-emitting device to a specific angle through a micro-optical structure, so as to realize imaging at a specific angle, and uses light of the same color as a light source, and passes the light of the same color
  • the micro-optical structure is refracted and converted into the required color light, which avoids the problem of chromatic aberration caused by the different deflection angles of light of different wavelengths after passing through the micro-optical structure.
  • the displays of the present invention all include the above-mentioned display device, and can also achieve the above-mentioned technical effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示装置及显示器,其中,显示装置包括:驱动基板(100),内设有驱动电路;发光器件阵列(200),设置于驱动基板(100)的表面,发光器件阵列(200)包括多个发光器件(201),发光器件(201)与驱动电路形成电性连接,多个发光器件(201)发出的光为同一颜色的光;微型光学结构(400),设置于发光器件阵列(200)的上方,用于将发光器件阵列(200)发出的光折射至统一的折射角度;色彩转换层阵列(500),设置于微型光学结构(400)的上方,发光器件(201)与色彩转换层阵列(500)中的色彩转换层(501,502,503)一一对应,色彩转换层阵列(500)用于将发光器件(201)发出的光转换为所需颜色的光。由上,不仅能够实现在显示屏的特定角度上成像,同时还能避免出现色差问题。

Description

一种显示装置及显示器 技术领域
本发明涉及半导体显示技术领域,具体涉及一种显示装置及显示器。
背景技术
Micro-LED是将LED结构进行薄膜化、微小化、阵列化,尺寸缩小到1~10μm,通过巨量转移到驱动基板上后,再利用物理沉积完成保护层和电极,之后进行封装完成Micro-LED的显示。其中,Micro-LED芯片经过巨量转移至驱动基板上,Micro-LED芯片与驱动基板的驱动电路做电性连接,经由驱动基板上的驱动电路操控Micro-LED芯片。当电流由驱动电路流往Micro-LED芯片时,电子与空洞在Micro-LED芯片内结合发光,光线由芯片的各个角度发出,其发光角度范围较大。现有的Micro-LED显示屏的发光角度范围介于±80度之间。
在Micro-LED显示屏的一些应用场景中,Micro-LED显示屏显示的光需要在特定范围的发光角度呈现清晰的画面,而现有的Micro-LED显示屏的发光角度范围较大,不能满足在特定发光角度范围呈现清晰画面的要求。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种显示装置及显示器,以满足在特定发光角度范围呈现清晰的显示画面的要求。
为了实现上述目的及其他相关目的,本发明提供一种显示装置,包括:
驱动基板,设有驱动电路;
发光器件阵列,设置于驱动基板的表面,发光器件阵列包括多个发光器件,发光器件与驱动电路形成电性连接,多个发光器件发出的光为同一颜色的光;
微型光学结构,设置于发光器件阵列的上方,用于将发光器件发出的光折射至统一的折射角度;
色彩转换层阵列,设置于微型光学结构的上方,发光器件与色彩转换层阵列中的色彩转换层一一对应,色彩转换层阵列用于将发光器件发出的光转换为所需颜色的光。
可选地,微型光学结构包括直角棱镜阵列,直角棱镜阵列包括多个直角棱镜,直角棱镜与发光器件一一对应。
可选地,色彩转换层阵列设置于直角棱镜阵列的上方,且色彩转换层阵列中的色彩转换 层与直角棱镜阵列中的直角棱镜一一对应。
可选地,微型光学结构还包括透明基板,透明基板设置于直角棱镜阵列和发光器件阵列之间。
可选地,直角棱镜的截面呈直角三角形,直角三角形的其中一个直角边与透明基板相贴合。
可选地,微型光学结构还包括微透镜阵列,微透镜阵列设置于透明基板靠近发光器件阵列的一侧,微透镜阵列包括多个微透镜,微透镜与直角棱镜一一对应。
可选地,微透镜阵列为凸透镜阵列或凹透镜阵列。
可选地,色彩转换层阵列中包括第一色彩转换层、第二色彩转换层及第三色彩转换层,第一色彩转换层用于将发光器件发出的光转换为红光,第二色彩转换层用于将发光器件发出的光转换为绿光,第三色彩转换层用于将发光器件发出的光转换为蓝光。
可选地,色彩转换层阵列的上方设置有滤光层,滤光层用于透过经微型光学结构折射至所述折射角度而出射的光,隔离除所述折射角度出射的光以外的光。
可选地,还包括防干涉层,防干涉层设置于驱动基板上,且设置于相邻发光器件之间的间隙中。
可选地,还包括反射层,反射层设置于驱动基板上,且设置于相邻发光器件之间的间隙中。
本发明还提供一种显示器,包括上述方案中任一显示装置。
如上所述,本发明所述的显示装置及显示器至少具备如下有益效果:
本发明所述的显示装置通过微型光学结构将发光器件发出的光折射至特定折射角度,以实现在某一特定角度的成像,并采用同一颜色的光作为光源,将同一颜色的光经微型光学结构折射后转换为所需颜色光,避免了由于不同波长的光经微型光学结构后产生的偏转角度不同而导致的色差问题。
本发明所述的显示器包括上述显示装置,同样能够达到上述技术效果。
附图说明
图1为本发明一实施例中所述的显示装置的结构示意图;
图2为本发明一实施例中所述的显示装置的结构示意图;
图3为本发明一实施例中所述的显示装置的结构示意图;
图4为本发明所述的显示方法流程图。
附图标记列表:
100            驱动基板
200            发光器件阵列
201            发光器件
300            透明填充物
400            微型光学结构
401            微透镜阵列
4011           微透镜
402            透明基板
403            直角棱镜阵列
4031           直角棱镜
500            色彩转换层阵列
501            第一色彩转换层
502            第二色彩转换层
503            第三色彩转换层
600            滤光层
700            防干涉层
800            反射层
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
须知,本发明实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可随意的改变,且其组件布局形态也可能更为复杂。说明书附 图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容得能涵盖的范围内。
为了解决背景技术中存在的技术问题,本发明提供一种显示装置及显示器,能够实现在显示屏的特定角度上成像,同时还能避免出现色差问题。
实施例1
本实施例提供一种显示装置,该显示装置包括驱动基板、发光器件阵列、微型光学结构及色彩转换层阵列,其中,驱动基板包括驱动电路,发光器件阵列中的发光器件与驱动电路形成电性连接,发光器件中的发光器件发出的光为同一颜色的光。微型光学结构设置于发光阵列的上方,用于将发光器件阵列发出的光折射至统一折射角度,色彩转换层阵列设置于微型光学结构的上方,发光器件阵列中的发光器件与色彩转换层阵列中的色彩转换层一一对应,色彩转换层阵列用于将发光器件发出的光转换为所需颜色的光。
具体地,参照图1,驱动基板100包括驱动电路,一方面作为整个显示屏的载体,用于支撑发光器件阵列200以及其上部的微型光学结构400;另一方面,用于连接并驱动发光器件阵列200。在本实施例中,驱动基板100包括但不限于TFT(Thin Film Transistor,薄膜晶体管)驱动基板100,该TFT驱动基板100为玻璃驱动基板,包括与单个发光器件201连接的驱动电路,由驱动电路控制发光器件201的亮灭。
发光器件阵列200作为显示装置的光源,设置于驱动基板100的表面,发光器件阵列200包括多个发光器件201。在本实施例中,为了避免不同波长的光经微型光学结构400时产生不同偏转角度导致的色差问题,本实施例采用同一颜色的光作为光源。可选地,发光器件201为微型LED芯片,微型LED芯片包括但不限于微型蓝光LED芯片、微型紫光LED芯片或微型紫外光LED芯片。
微型光学结构400设置于发光器件阵列200的上方,用于将发光器件201发出的光折射至统一的折射角度上。具体地,微型光学结构400包括直角棱镜阵列403,直角棱镜阵列403包括多个直角棱镜4031,直角棱镜阵列403中的直角棱镜4031与发光器件阵列200中的发光器件201一一对应,该直角棱镜阵列403中的直角棱镜4031能够对发光器件201发出的光折射至特定角度。可选地,微型光学结构还包括透明基板402,透明基板402设置于直角棱 镜阵列403和发光器件阵列200之间,该透明基板402用于支撑直角棱镜阵列403,并可以透过发光器件201发出的光。可选地,直角棱镜4031的一截面呈直角三角形,直角三角形的其中一个直角边与透明基板100相贴合。可选地,在透明基板402靠近发光器件阵列200的一侧设置有微透镜阵列401,微透镜阵列401包括多个微透镜4011,其中,微透镜阵列401设置于透明基板402靠近发光器件阵列200的一侧,微透镜阵列401中的微透镜4011与直角棱镜阵列403中的直角棱镜4031一一对应。该微透镜阵列401能够对发光器件201发出的光进行会聚,并增大出光表面,在一定程度上提高光效。可选地,微透镜阵列401可以为凸透镜阵列或者凹透镜阵列。可选地,透明基板402、直角棱镜阵列403及微透镜阵列401的材料可以包括无机玻璃、有机玻璃或其他透明的无色材料。
在本实施例中,微型光学结构400与发光器件阵列200之间还设置有一定的间隔,该间隔可以采用空气、氮气或不同的胶材进行填充,其中,透明填充物300与微型光学结构400的折射率不同。
为了减少发光器件201发出的单一色光往周围散射,造成光学干涉,在本发明的一个实施例中,参照图1或3,在相邻发光器件201之间设置有防干涉层700,防干涉层700设置于驱动基板100上,且位于相邻发光器件201之间,以将相邻的发光器件201发出的光进行吸收,避免光线串扰。在本实施例中,防干涉层700为黑胶层;可选地,防干涉层700的厚度大于发光器件201的厚度,进而避免发光器件201从顶端发射出去的光线与相邻的发光器件201产生光线串扰。在本实施例中,防干涉层700的厚度等于驱动基板100至透明基板402的垂直距离,该防干涉层700为黑胶层。在本发明的另一实施例中,参照图2,在相邻发光器件201之间设置反射层800,在发光器件201发出的单一色光往周围散射时,这些色光会被反射层800反射,以提高垂直方向光的出射量和防止相邻发光器件201出光的干扰。在本实施例中,反射层800为白胶层,在其他实施例中,反射层800也可以由高反射率的材料制成,例如,Ag反射层。可选地,白胶层的厚度大于发光器件201的厚度,进而避免发光器件201从顶端发射出去的光线与相邻发光器件201产生光线串扰。在本实施例中,反射层800的厚度等于驱动基板100至透明基板402的垂直距离。
色彩转换层阵列500设置于微型光学结构400的上方,发光器件阵列200中的发光器件201与色彩转换层阵列500中的色彩转换层一一对应,用于将光源发出的光转换为所需颜色的光。可选地,色彩转换层阵列500设置于直角棱镜阵列403的上方,且色彩转换层阵列500中的色彩转换层与直角棱镜阵列403中的直角棱镜4031一一对应。可选地,色彩转换层可以在直角棱镜4031的出光面形成一层厚度均匀的薄膜层,如图1或2所示;也可以在直角棱镜 4031的出光面形成呈棱镜状的色彩转换层,如图3所示。色彩转换层500可以由荧光粉或者量子点构成,位于色彩转换层内的荧光粉颗粒或者量子点受发光器件201所辐射光线的激发产生预定波长的光线。参照图1、2或3,色彩转换层阵列500中包括第一色彩转换层501、第二色彩转换层502及第三色彩转换层503,第一色彩转换层501被发光器件201所辐射光线的激发产生红光,第二色彩转换层502被发光器件201所辐射光线激发产生绿光,第三色彩转换层503被发光器件201辐射光线激发产生蓝光。第一色彩转换层501、第二色彩转换层502和第三色彩转换层503一一对应于设置于直角棱镜阵列403中的直角棱镜4031,以对经直角棱镜4031折射后的光进行颜色转换。当发光器件210为发出的光为蓝光时,第一色彩转换层501可以由红色有机荧光染料构成,红色有机荧光染料的吸收光谱位于430nm~580nm和580~660nm,可以吸收蓝光和绿光,转换出红光;第二色彩转换层502可以由绿色有机荧光染料构成,其吸收光谱位于430nm~580nm,可吸收蓝光,转换出绿光;第三色彩转换层503可以直接为无色透明材料构成,透过蓝光。
在本发明一具体实施例中,如图1所示,该显示装置中的微透镜阵列401为凹透镜,发光器件201之间设置防干涉层700,色彩转换层为在直角棱镜4031的表面设置的厚度均匀的色彩转换层。在本实施例中,所述凹透镜能够增加出光面,在一定程度上提高出光效率。防干涉层700用于将相邻发光器件201发出的光吸收,防止光串扰。
在本发明另一具体实施例中,如图2所示,该显示装置中的微透镜阵列401为凸透镜,发光器件201之间设置有反射层800,色彩转换层为在直角棱镜4031的表面设置的厚度均匀的色彩转换层。在本实施例中,所述微透镜阵列401具备聚光作用,能够将发光器件201发出的光进行会聚。反射层800用于将相邻发光器件201发出的光反射层的光进行反射,进而提高发光器件201的出光量。
在本发明再一具体实施例中,如图3所示,该显示装置中的微透镜阵列401为凹透镜,发光器件201之间设置防干涉层,色彩转换层为在直角棱镜4031的表面设置一呈棱镜状的色彩转换层。
同样地,本实施例所述的凹透镜能够增加出光面,在一定程度上提高出光效率。防干涉层700用于将相邻发光器件201发出的光吸收,防止光串扰。
需要说明的是,微透镜阵列、发光器件之间设置的层材料以及色彩转换层的形状并不局限于上述组合。在本发明中,微透镜阵列401可以是凹透镜或凸透镜,发光器件201之间可以设置反射层800、防干涉层700或者是在防干涉层700的表面涂覆反射层800,色彩转换层可以为在直角棱镜4031的表面设置的呈棱镜状的色彩转换层或者为在直角棱镜4031的表面 设置的一层厚度均匀的色彩转换层,上述微透镜阵列401、发光器件201之间设置的层材料以及色彩转换层的形状可以为上述任意的组合形式,在此不再一一赘述。
在可选实施例中,参照图1、2或3,微型光学结构400的上方还设置有滤光层600,该滤光层600用于透过经微型光学结构400折射至特定折射角度的光,并隔离除所述折射角度出射的光之外的光,避免出现具有色差的影像。可选地,滤光层600为光子晶体,该光子晶体是由不同折射率的介质周期排列而成的微结构,能够透过特定折射角度的光。
本实施例采用微型光学结构将光反射至特定角度,采用能够发出同一颜色的光的发光器件阵列作为光源,使得同一颜色的光经微型光学结构后,形成相同的偏转角度,进而能够产生没有色差的影像。
实施例2
本实施例提供一种显示方法,参照图4,其步骤包括:
S101:布置发光器件阵列,使发光器件阵列中发光器件发出的光为同一波长的光;
参照图1、2或3,提供一驱动基板100,驱动基板100包括但不限于TFT(Thin Film Transistor,薄膜晶体管)驱动基板,该TFT驱动基板为玻璃驱动基板。
提供若干个发光器件201,若干个发光器件201为能够发出同一颜色的光源。将发光器件201以阵列排布的形式设置于驱动基板100的表面,形成发光器件阵列200,发光器件201与驱动基板100内的驱动电路形成电性连接,驱动电路控制发光器件201的亮灭。
在可选实施例中,在布置发光器件阵列200之后,在发光器件阵列200之间的间隙内形成防干涉层700或者反射层800,防干涉层700或者反射层800的厚度需高于发光器件201的厚度,以防止相邻发光器件201之间的光串扰。
S102:利用微型光学结构,使发光器件发出的光形成统一的折射角度;
参照图1、2或3,提供一微型光学结构400。将微型光学结构400设置于发光器件阵列200出光面的一侧,发光器件阵列200发出的光经直角棱镜阵列403折射至统一的折射角度,其中,直角棱镜阵列403中的直角棱镜4031与发光器件阵列200的发光器件201一一对应。可选地,上述微型光学结构400可以采用以下方法制得:提供一透明基板402,采用印刷或者喷墨打印技术在透明基板402的一个表面上制备直角棱镜阵列403。
在可选实施例中,在将发光器件阵列200发出的光经直角棱镜阵列403折射至统一折射角度之前,还包括:发光器件阵列200发出的光经过进行会聚,在本实施例中,采用设置于发光器件阵列200与直角棱镜阵列403之间的微透镜阵列401,对发光器件阵列200发出的光进行会聚,微透镜阵列401中的微透镜4011与直角棱镜阵列403中的直角棱镜4031一一 对应。可选地,该微透镜阵列401可以采用印刷或者喷墨打印技术形成于透明基板402的另一个表面。可选地,微透镜4011为聚光透镜,例如,凸透镜。
S103:对具有统一折射角度的光按照预定的发光颜色要求进行色彩转换。
参照图1、2或3,将直角棱镜阵列403出射的光经色彩转换层阵列500转换成所需颜色的光;其中,色彩转换阵列500中的色彩转换层与直角棱镜阵列403中的直角棱镜4031一一对应。
色彩转换层阵列500中包括第一色彩转换层501、第二色彩转换层502及第三色彩转换层503,第一色彩转换层501能够被发光器件201所辐射光线激发产生红光,第二色彩转换层502能够被发光器件201所辐射光线激发产生绿光,第三色彩转换层503能够被发光器件201辐射光线激发产生蓝光。在本实施例中,可根据需要在直角棱镜4031的出光面形成所要转换颜色的色彩转换层。
在可选实施例中,对具有统一折射角度的光按照预定的发光颜色要求进行色彩转换之后,还包括:将色彩转换后的光进行滤光,使经微型光学结构400折射至特定折射角度的光透过,使除折射角度出射的光之外的光不能透过。可选地,将色彩转换后的光采用滤光层600进行滤光,该滤光层600用于透过折射角度的光,隔离其他角度的光,避免出现具有色差的影像。可选地,滤光层600为光子晶体,该光子晶体是由不同折射率的介质周期排列而成的微结构,能够透过特定波长的光。
本实施例的显示方法包括实施例1中的显示装置,同样能够达到实施例1中的技术效果。
实施例3
本实施例还提供一种显示器,其包括上述实施例1中的显示装置。同样地,该显示器能够实现在某一特殊角度上的成像,并且采用能够发出同一颜色的光的发光器件阵列作为光源,使得同一颜色的光经微型光学结构后,形成相同的偏转角度,进而能够产生没有色差的影像。
综上,本发明所述的显示装置通过微型光学结构将发光器件发出的光折射至特定角度,以实现在某一特定角度的成像,并采用同一颜色的光作为光源,将同一颜色的光经微型光学结构折射后转换为所需颜色光,避免了由于不同波长的光经微型光学结构后产生的偏转角度不同而导致的色差问题。
本发明所述显示器均包括上述显示装置,同样能够达到上述技术效果。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (12)

  1. 一种显示装置,其特征在于,包括:
    驱动基板,设有驱动电路;
    发光器件阵列,设置于所述驱动基板的表面,所述发光器件阵列包括多个发光器件,所述发光器件与所述驱动电路形成电性连接,所述多个发光器件发出的光为同一颜色的光;
    微型光学结构,设置于所述发光器件阵列的上方,用于将所述发光器件发出的光折射至统一的折射角度;
    色彩转换层阵列,设置于所述微型光学结构的上方,所述发光器件与所述色彩转换层阵列中的色彩转换层一一对应。
  2. 根据权利要求1所述的显示装置,其特征在于,所述微型光学结构包括直角棱镜阵列,所述直角棱镜阵列包括多个直角棱镜,所述直角棱镜与所述发光器件一一对应。
  3. 根据权利要求2所述的显示装置,其特征在于,所述色彩转换层阵列设置于所述直角棱镜阵列的上方,且所述色彩转换层阵列中的色彩转换层与所述直角棱镜阵列中的直角棱镜一一对应。
  4. 根据权利要求2所述的显示装置,其特征在于,所述微型光学结构还包括透明基板,所述透明基板设置于所述直角棱镜阵列和所述发光器件阵列之间。
  5. 根据权利要求4所述的显示装置,其特征在于,所述直角棱镜的截面呈直角三角形,所述直角三角形的其中一个直角边与所述透明基板相贴合。
  6. 根据权利要求4所述的显示装置,其特征在于,所述微型光学结构还包括微透镜阵列,所述微透镜阵列设置于所述透明基板靠近所述发光器件阵列的一侧,所述微透镜阵列包括多个微透镜,所述微透镜与所述直角棱镜一一对应。
  7. 根据权利要求6所述的显示装置,其特征在于,所述微透镜阵列为凸透镜阵列或凹透镜阵列。
  8. 根据权利要求1或3所述的显示装置,其特征在于,所述色彩转换层阵列中包括第一色彩转换层、第二色彩转换层及第三色彩转换层,所述第一色彩转换层用于将发光器件发出的 光转换为红光,所述第二色彩转换层用于将发光器件发出的光转换为绿光,所述第三色彩转换层用于将发光器件发出的光转换为蓝光。
  9. 根据权利要求1所述的显示装置,其特征在于,所述色彩转换层阵列的上方设置有滤光层,所述滤光层用于透过经所述微型光学结构折射至所述折射角度而出射的光,隔离除所述折射角度出射的光以外的光。
  10. 根据权利要求1所述的显示装置,其特征在于,还包括防干涉层,所述防干涉层设置于所述驱动基板上,且设置于相邻所述发光器件之间的间隙中。
  11. 根据权利要求1所述的显示装置,其特征在于,还包括反射层,所述反射层设置于所述驱动基板上,且设置于相邻所述发光器件之间的间隙中。
  12. 一种显示器,其特征在于,包括如权利要求1~11中任一所述的显示装置。
PCT/CN2021/138815 2021-12-09 2021-12-16 一种显示装置及显示器 WO2023103008A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021007622.1T DE112021007622T5 (de) 2021-12-09 2021-12-16 Anzeigevorrichtung und Anzeigegerät
US18/410,550 US20240145651A1 (en) 2021-12-09 2024-01-11 Display device and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111498431.1A CN116259699A (zh) 2021-12-09 2021-12-09 一种显示装置及显示器
CN202111498431.1 2021-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/410,550 Continuation US20240145651A1 (en) 2021-12-09 2024-01-11 Display device and display

Publications (1)

Publication Number Publication Date
WO2023103008A1 true WO2023103008A1 (zh) 2023-06-15

Family

ID=86679770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138815 WO2023103008A1 (zh) 2021-12-09 2021-12-16 一种显示装置及显示器

Country Status (4)

Country Link
US (1) US20240145651A1 (zh)
CN (1) CN116259699A (zh)
DE (1) DE112021007622T5 (zh)
WO (1) WO2023103008A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318807A (ja) * 2005-05-13 2006-11-24 Hitachi Ltd 照明装置及びその製造方法
CN105742307A (zh) * 2016-04-26 2016-07-06 张希娟 一种彩色微显示器件及制备方法
CN205723540U (zh) * 2016-04-26 2016-11-23 张希娟 一种彩色微显示器件
CN111179769A (zh) * 2020-01-02 2020-05-19 京东方科技集团股份有限公司 显示模组
CN112824959A (zh) * 2019-11-20 2021-05-21 三星电子株式会社 显示设备
CN113437052A (zh) * 2021-05-06 2021-09-24 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318807A (ja) * 2005-05-13 2006-11-24 Hitachi Ltd 照明装置及びその製造方法
CN105742307A (zh) * 2016-04-26 2016-07-06 张希娟 一种彩色微显示器件及制备方法
CN205723540U (zh) * 2016-04-26 2016-11-23 张希娟 一种彩色微显示器件
CN112824959A (zh) * 2019-11-20 2021-05-21 三星电子株式会社 显示设备
CN111179769A (zh) * 2020-01-02 2020-05-19 京东方科技集团股份有限公司 显示模组
CN113437052A (zh) * 2021-05-06 2021-09-24 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法

Also Published As

Publication number Publication date
CN116259699A (zh) 2023-06-13
US20240145651A1 (en) 2024-05-02
DE112021007622T5 (de) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2021051787A1 (zh) 一种显示装置及背光模组
KR101969462B1 (ko) 광발광 디스플레이 장치 및 그 제조방법
US7834953B2 (en) Light unit, liquid crystal display having the same, and method of manufacturing the same
US12015022B2 (en) Display panel and method for manufacturing the same, display device
WO2019080536A1 (zh) 背光模组、显示屏及终端
US20090231847A1 (en) Led illuminating device
CN207148485U (zh) 一种背光装置及显示器
US10483431B2 (en) Light source module and display device
CN106501994B (zh) 一种量子点发光器件、背光模组及显示装置
JP2002049326A (ja) 平面光源およびそれを用いた表示素子
CN1914520A (zh) 光收集照明系统
KR20120113564A (ko) 광학 시트 및 이를 포함하는 표시장치
CN104155803A (zh) 背光模块及液晶显示装置
US10877316B2 (en) Lighting device and display device
CN107450218B (zh) 光致发光显示装置及其制造方法
CN102261604A (zh) 背光单元和具有背光单元的显示装置
CN109378404A (zh) 一种3d显示面板及其制作方法,以及显示装置
CN115016213B (zh) 一种实现Micro-LED彩色化投影的光学引擎
WO2024131423A1 (zh) 背光模组、显示模组以及显示装置
TW202232795A (zh) 發光模組和顯示裝置
WO2016155115A1 (zh) 导光板及具有该导光板的背光模块和液晶显示器
CN110473892B (zh) 显示装置
WO2023103008A1 (zh) 一种显示装置及显示器
CN216818374U (zh) 一种显示装置及显示器
CN213957823U (zh) 一种基于量子点阵列的投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023581080

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021007622

Country of ref document: DE