WO2023280060A1 - 检查系统及方法 - Google Patents

检查系统及方法 Download PDF

Info

Publication number
WO2023280060A1
WO2023280060A1 PCT/CN2022/103256 CN2022103256W WO2023280060A1 WO 2023280060 A1 WO2023280060 A1 WO 2023280060A1 CN 2022103256 W CN2022103256 W CN 2022103256W WO 2023280060 A1 WO2023280060 A1 WO 2023280060A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
microwave
energy
inspection system
type
Prior art date
Application number
PCT/CN2022/103256
Other languages
English (en)
French (fr)
Inventor
王伟珍
刘必成
宗春光
孙尚民
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to EP22836811.4A priority Critical patent/EP4369053A1/en
Publication of WO2023280060A1 publication Critical patent/WO2023280060A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Definitions

  • the present disclosure relates to the field of radiation inspection, and in particular to an inspection system and method.
  • the container inspection system and the vehicle inspection system respectively target different types of objects to be inspected, and each is configured with a specific radiation source.
  • container inspection systems use higher-energy radiation sources
  • vehicle inspection systems for passenger cars use lower-energy radiation sources.
  • the inspection system has two different radiation sources. When the vehicle is inspected, different parts of the vehicle are identified and different radiation sources are selected for different parts.
  • the embodiments of the present disclosure provide an inspection system and method, which can improve adaptability and simplify control.
  • an inspection system including: a radiation source; a detector configured to detect a signal when radiation emitted by the radiation source acts on an object to be inspected; and a processor, associated with the radiation a source communication connection configured to select, based on the type of the object, a periodic radiation combination corresponding to the type, and to direct the radiation source to the object in the selected periodic radiation combination while the object is being scanned emitting radiation, wherein the periodic radiation combination is a time sequence arrangement of a plurality of radiation pulses output by the radiation source in each scanning period, and the plurality of radiation pulses have at least two different radiation energies.
  • the at least two different radiant energies include a first radiant energy below 1 MeV and a second radiant energy greater than 1 MeV.
  • the number of radiation pulses with the first radiation energy among the plurality of radiation pulses included in the periodic radiation combinations corresponding to different types is different.
  • the at least two different radiant energies further include a third radiant energy that is greater than the second radiant energy.
  • the number of radiation pulses with the second radiation energy and/or the number of pulse radiation with the third radiation energy among the plurality of radiation pulses included in the periodic radiation combinations corresponding to different types is different.
  • the object is a vehicle
  • the type of the object includes one of a passenger car type and a truck type
  • the number of radiation pulses with the first radiation energy in the periodic radiation combination corresponding to the passenger car type is more than the corresponding The number of radiation pulses having the first radiation energy in the periodic radiation combination of the truck type.
  • the processor is configured to cause the radiation source to scan the entirety of the subject with the selected periodic radiation combination.
  • the radiation source includes: an electron beam generating device configured to generate a plurality of electron beams; a microwave generating device configured to generate microwaves; a microwave circulator having a power input port and at least two power outputs The power input port is connected to the microwave generating device through a waveguide structure; a plurality of accelerating tubes are connected to the electron beam generating device and respectively connected to the at least two power output ports, configured to receive The multiple electron beams generated by the electron beam generating device are respectively accelerated by the microwaves received from the at least two power output ports, so as to respectively generate multiple radiation pulses with different radiation energies and a controller, signal-connected to the processor, the electron beam generating device and the microwave generating device, configured to perform sequential control on the microwave power of the microwave generating device according to instructions of the processor, And timing control is performed on the beam current loads of the electron beams generated by the electron beam generating device respectively corresponding to the plurality of accelerating tubes.
  • the radiation source includes: a first electron gun, configured to generate a first electron beam; a first electron gun power supply, signally connected to the controller, and connected to the first electron gun, configured to adjusting the beam current load of the first electron beam according to the timing control signal provided by the controller; a second electron gun configured to generate a second electron beam; and a second electron gun power supply signally connected to the controller, and connected to the second electron gun, configured to adjust the beam current load of the second electron beam according to the timing control signal provided by the controller, wherein the controller is configured to In the first period of time, the first electron gun power supply adjusts the beam current load of the first electron beam to the first beam current load, and in the second period of each cycle, the second electron gun power supply adjusts the The beam current load of the second electron beam is the second beam current load, and the first period of time does not coincide with the second period of time.
  • the at least two power output ports of the microwave circulator include a first power output port and a second power output port, and the first power output port is allocated from the power fed from the power input port microwave signal, the second power output port is distributed from the microwave signal fed in from the first power output port;
  • the plurality of accelerating tubes include: a first accelerating tube, connected with the first power output port and the The first electron gun is connected, configured to accelerate the first electron beam through the first output microwave signal output by the first power output port; and the second accelerating tube is connected with the second power output port and the The second electron gun is connected and configured to accelerate the second electron beam through the second output microwave signal output from the second power output port.
  • the at least two power output ports of the microwave circulator further include a third power output port, and the third power output port is allocated from the microwave signal fed in from the second power output port;
  • the radiation source further includes: an absorbing load connected to the third power output port and configured to absorb microwave signals output by the third power output port.
  • the microwave circulator includes a four-terminal circulator.
  • the controller is configured to make the microwave signal fed into the power input port of the microwave circulator by the microwave generating device include at least one first input microwave signal during the first period, and
  • the microwave signal that the microwave generating device feeds into the power input port of the microwave circulator during the second period includes at least one second input microwave signal, and the power of the at least one first input microwave signal is greater than the power of the microwave circulator. At least one second input microwave signal.
  • the microwave generating device includes a magnetron.
  • the inspection system further includes: an optical sensing element, connected in communication with the processor, configured to sense the object characteristic of the object and send it to the processor for the processing The device determines the type of the object according to the characteristics of the object; or the human-computer interaction device is communicated with the processor and is configured to receive the input type information and send it to the processor, so that the processor can according to the The type information determines the type of the object.
  • the detector is a dual-energy detector communicated with the processor, the dual-energy detector includes a high-energy detector array and a low-energy detector array, and the low-energy detector array is configured to detecting a signal when a radiation pulse having a first radiation energy emitted by the radiation source acts on the object, the high-energy detector array is configured to detect a radiation pulse having a second radiation energy emitted by the radiation source and having A signal when a radiation pulse of third radiant energy is applied to the object.
  • an inspection method of the aforementioned inspection system including: obtaining the type of the object to be inspected; in response to the type, selecting a periodic radiation combination corresponding to the type, the periodic radiation combination being A time sequence arrangement of a plurality of radiation pulses output by a radiation source in each scan cycle, the plurality of radiation pulses having at least two different radiation energies; during the scanning of the object, the radiation source is selected to The periodic combination of radiation emits radiation onto the object; causing a detector to detect the signal after the radiation has acted on the object.
  • the step of obtaining the type of the object to be detected includes: responding to the object characteristics sensed by the optical sensing element, determining the type of the object according to the object characteristics; or responding to the human-computer interaction device
  • the type information is input, and the type of the object is determined according to the type information.
  • the object is scanned according to the periodic radiation combination corresponding to the type, so that the radiation source can reasonably select the appropriate scanning energy based on the type of object, so that different objects
  • the scanning inspection has good adaptability, and this method does not need to identify different parts of the object and select the radiation energy according to different parts, so the control is more simplified.
  • Fig. 1 is a schematic structural diagram of some embodiments of an inspection system according to the present disclosure
  • Fig. 2 is a schematic structural diagram of another embodiment of the inspection system according to the present disclosure.
  • Fig. 3 is a schematic structural diagram of some other embodiments of the inspection system according to the present disclosure.
  • 4-7 are schematic diagrams of periodic radiation combinations adopted for different types of vehicles according to some embodiments of the inspection system of the present disclosure.
  • FIGS. 8-10 are schematic diagrams of three kinds of beam output timings of the radiation source in some embodiments of the inspection system according to the present disclosure.
  • Fig. 11 is a schematic structural diagram of a radiation source in some embodiments of an inspection system according to the present disclosure.
  • Fig. 12 is a schematic structural diagram of a radiation source in another embodiment of an inspection system according to the present disclosure.
  • Fig. 13 is a schematic structural view of a four-terminal circulator in some embodiments of an inspection system according to the present disclosure
  • Figure 14 is a schematic flow diagram of some embodiments of inspection methods according to the present disclosure.
  • a specific device when it is described that a specific device is located between a first device and a second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to other devices, the specific device may be directly connected to the other device without an intervening device, or may not be directly connected to the other device but has an intervening device.
  • Fig. 1 is a schematic structural diagram of some embodiments of an inspection system according to the present disclosure.
  • an inspection system includes: a radiation source 10 , a detector 30 and a processor 20 .
  • the inspection system here is applicable to the inspection of objects under various application scenarios (such as vehicle inspection, ore grade inspection, food inspection, solid waste inspection, industrial inspection, etc.). For example, inspection of vehicles in a vehicle inspection scenario.
  • the vehicle here includes various motor vehicles (such as cars, buses, vans, container trucks, etc.) or trains (such as passenger trains or freight trains, etc.).
  • the vehicle and the radiation source can move relative to each other.
  • the radiation source remains stationary, and the vehicle under inspection moves by its own power or driven by other mechanisms.
  • the inspected vehicle remains stationary, and the radiation source moves by its own power or is driven by other mechanisms.
  • the radiation source 10 is capable of generating a variety of radiation pulses with different radiation energies. Accordingly, various periodic radiation combinations can be realized.
  • the radiation source 10 may include multiple radiation sources, that is, a multi-source form, and each radiation source may respectively output radiation pulses with different energies.
  • the radiation source 10 may include a single radiation source, that is, a single source form, and the single radiation source can output radiation pulses of different energies.
  • the radiation pulses can be X-ray pulses, gamma-ray pulses, etc.
  • the detector 30 is configured to detect a signal when the radiation emitted by the radiation source 10 acts on the object to be inspected.
  • detector 30 may be positioned on an opposite side of radiation source 10 . For example, when the radiation source 10 emits X-ray pulses, the X-rays pass through the object to be inspected and are attenuated to be detected by the detector 30 on the other side, thereby forming a detection signal. From this detection signal, images can be drawn that reflect the interior contents of the object.
  • the processor 20 is connected in communication with the radiation source 10, and is configured to, according to the type of the object, select a periodic radiation combination corresponding to the type, and make the radiation source 10 to be scanned while the object is being scanned.
  • the selected periodic radiation combination emits radiation to the object.
  • the periodic radiation combination here refers to the time sequence arrangement of multiple radiation pulses output by the radiation source 10 in each scanning period, and the multiple radiation pulses have at least two different radiation energies.
  • the processor Before detecting the object, the processor can receive the type of the object manually input by the operator, and can also cooperate with other components to obtain the relevant information of the object, so as to determine the type of the object.
  • Different object types have different characteristics, and have different requirements for different factors such as radiation dose and imaging effect.
  • Fig. 2 is a schematic structural diagram of other embodiments of the inspection system according to the present disclosure.
  • the inspection system further includes an optical sensing element 51 communicatively connected with the processor 20 .
  • the optical sensing element 51 is configured to sense the object feature of the object and send it to the processor 20 so that the processor 20 can determine the type of the object according to the object feature.
  • the optical sensing element 51 may include a camera, a photoelectric switch, a laser sensor, an infrared detector, a light curtain sensor, and the like.
  • the object features may include vehicle outline features, unique signs of the vehicle, signals from devices installed or carried on the vehicle for identifying types, and the like.
  • Fig. 3 is a schematic structural diagram of some other embodiments of the inspection system according to the present disclosure.
  • the inspection system further includes a human-computer interaction device 52 communicatively connected with the processor 20 .
  • the human-computer interaction device 52 is configured to receive the input type information and send it to the processor 20, so that the processor 20 can determine the type of the object according to the type information.
  • the human-computer interaction device 52 may include a mouse, a keyboard, a touch screen, a remote controller, and the like.
  • the inspection system may include both the optical sensing element 51 and the human-computer interaction device 52, and the system may optionally receive information provided by the optical sensing element 51 and/or the human-computer interaction device 52 to Determine the type of object.
  • At least two different radiation energies achievable include a first radiation energy and a second radiation energy.
  • the first radiation energy is lower than 1 MeV, such as 225keV, 300keV, 450keV and so on.
  • the second radiation energy is greater than 1 MeV, such as 3 MeV, 4 MeV, 6 MeV and so on.
  • the at least two different radiant energies further include a third radiant energy that is greater than the second radiant energy.
  • the second radiation energy and the third radiation energy may be 3MeV and 6MeV, 4MeV and 6MeV, 4MeV and 7MeV, or 6MeV and 9MeV, etc.
  • the ray pulses with different radiant energies can be used as spare rays to improve the penetrating power under the condition of different mass thickness.
  • different periodic radiation combinations can be provided according to their characteristics. For example, the number of radiation pulses with the first radiation energy among the plurality of radiation pulses included in the periodic radiation combinations corresponding to different types may be different. For some specific types of objects, increasing the number of radiation pulses of the first radiation energy in each cycle can improve radiation safety and reduce unnecessary energy consumption. Moreover, by increasing the radiation pulse of the first radiation energy, the distance between the scanned sections in one cycle can be reduced, so as to obtain more abundant information of the object to be inspected, without causing great pressure on radiation protection.
  • the radiation pulse of the first radiation energy it is difficult for the radiation pulse of the first radiation energy to pass through the material of the object, so that an ideal scanning picture cannot be obtained, and the number of radiation pulses of the second radiation energy can be correspondingly increased in each cycle And/or the number of radiation pulses with a third radiation energy, the scanning effect is improved by radiation pulses of higher radiation energy.
  • the number of radiation pulses with the second radiation energy and/or the number of pulse radiation with the third radiation energy among the plurality of radiation pulses included in the periodic radiation combinations corresponding to different types may be different.
  • richer classification information can also be obtained by alternately scanning the third radiation pulse and the second radiation pulse, for example, by alternately scanning 3 MeV and 6 MeV radiation pulses to obtain organic, inorganic
  • the classification of substances and mixtures, or the classification of organic substances, inorganic substances, mixtures and heavy metals can be obtained by alternating scanning of 6 MeV and 9 MeV radiation pulses.
  • different numbers of radiation pulses with the second radiation energy and pulsed radiation with the third radiation energy can be set in the periodic radiation combination to meet scanning requirements of different types of objects.
  • the object is a vehicle
  • the type of the object may include one of a passenger car type and a truck type.
  • the number of radiation pulses with the first radiation energy in the periodic radiation combination corresponding to the passenger car type is greater than the number of radiation pulses with the first radiation energy in the periodic radiation combination corresponding to the truck type.
  • the types of objects can be further subdivided.
  • the types of objects include passenger cars, buses, vans, container trucks, passenger trains, freight trains, etc., and can also include The types of vehicles that can be distinguished from objects, such as passenger cars, agricultural trucks, fuel delivery vehicles, etc. Different vehicle types may correspond to different periodic radiation combinations.
  • the processor 20 may be configured to enable the radiation source 10 to scan the entirety of the object with the selected periodic radiation combination. In other words, the processor 20 does not need to switch the periodic radiation combination during the scanning process of the whole object, which effectively reduces the control difficulty.
  • FIGS. 4-7 are schematic diagrams of periodic radiation combinations adopted for different types of vehicles according to some embodiments of the inspection system of the present disclosure.
  • E represents the radiation energy of the radiation pulse
  • t represents the time when each section of the vehicle is scanned.
  • the arrows indicate the time sequence arrangement of multiple radiation pulses output by the radiation source within one scan period (1T), that is, the periodic radiation combination.
  • the scanning speed that is, the relative movement speed between the inspection system and the inspected vehicle
  • the output frequency of the ray source is 80Hz
  • the distance between each scanned section of the inspected object is calculated to be 5mm.
  • the periodic radiation combination has two different radiation energies, namely a radiation pulse i1 of 300keV and a radiation pulse i2 of 3MeV.
  • the periodic radiation combination also has two different radiation energies, namely a radiation pulse i1 of 300keV and a radiation pulse i2 of 6MeV.
  • the radiation pulse i2 corresponding to the vehicle in Fig. 5 has higher radiation energy, stronger penetrating ability, and better scanning image quality.
  • the periodic radiation combination has three different radiation energies, namely 300keV radiation pulse i1, 3MeV radiation pulse i2 and 6MeV radiation pulse i3.
  • the periodic radiation combination also has three different radiation energies, namely 300keV radiation pulse i1, 3MeV radiation pulse i2 and 6MeV radiation pulse i3 .
  • the number of radiation pulses i1 in the periodic radiation combination in Fig. 7 is larger. In this way, on the one hand, more abundant material classification information can be obtained through the alternate scanning of radiation pulse i2 and radiation pulse i3; pressure.
  • FIGS. 8-10 are schematic diagrams of three kinds of beam output timings of the radiation source in some embodiments of the inspection system according to the present disclosure.
  • different periodic radiation combinations can be formed by radiation pulses of different radiation energies within a fixed scanning period (T 0 ).
  • T 0 a fixed scanning period
  • X-rays with higher radiant energy are better at identifying thick material regions and high-Z material regions, and X-rays with lower radiant energy are better at identifying thin material regions and low-Z material regions.
  • the overall image scanning effect can be optimized to achieve the best image quality.
  • a scan period (T) there may be multiple radiation pulses with different radiation energies, and the beam output timing of each radiation pulse can be described by a rectangular pulse function:
  • t s represents the initial beam emission time in one scan period
  • ⁇ t s is the single beam emission time interval, satisfying: 0 ⁇ t s ⁇ T- ⁇ t s , ⁇ t s >0
  • E represents the energy of the radiation pulse (It can represent single energy or some kind of energy distribution). This function represents that within a single cycle, the beam emission time of the radiation pulse is: t s ⁇ t s + ⁇ t s .
  • ⁇ (x) represents the unit step function, which is defined as:
  • 1 means beam out
  • 0 means no beam out
  • At least two radiation pulses with different radiation energies are included in one scanning period, and of course, this also includes the case of multiple radiation pulses with the same radiation energy.
  • the overall beam emission state can be described by the superposition of beam emission timing of multiple radiation pulses:
  • N represents the number of radiation pulses in one scanning period (N ⁇ 2).
  • the beam emission time is: t si ⁇ t si + ⁇ t si , and usually there is only one beam emission state at the same time under the radiation pulse.
  • Fig. 11 is a schematic structural diagram of a radiation source in some embodiments of an inspection system according to the present disclosure.
  • the radiation source 10 includes: an electron beam generating device 12 , a microwave generating device 14 , a microwave circulator 15 , a plurality of accelerating tubes 13 and a controller 11 .
  • the electron beam generating device 12 is configured to generate a plurality of electron beams.
  • the electron beam generating device 12 can generate multiple electron beams with the same or different beam current loads by the multiple electron guns through different high voltage amplitudes generated by the pulse modulator.
  • the microwave generating device 14 is configured to generate microwaves. In some embodiments, the microwave generating device 14 can generate varying operating currents through voltages of different magnitudes output by the pulse modulator, thereby generating microwave signals of different powers. In some other embodiments, the microwave generating device 14 can also generate microwave signals of different powers by changing the strength of the magnetic field.
  • the microwave generating device 14 includes a magnetron 141 .
  • the microwave circulator 15 has a power input port and at least two power output ports, and the power input port is connected to the microwave generating device 14 through a waveguide structure.
  • the microwave circulator 15 has isolation characteristics and power distribution characteristics, and can transmit microwave energy in a single direction. By connecting a single microwave generating device 14 with the power input port of the microwave circulator 15, the microwave energy fed from the power input port can be distributed to a specific power output port, and the reflected microwave received by the power output port Energy can be distributed to another power outlet. Utilizing the characteristics of the microwave circulator 15 and the timing control of the microwave generating device 14, the microwave energy output of more than two ports can be realized through the microwave generating device 14 as a single microwave power source.
  • Multiple accelerating tubes 13 are connected to the electron beam generating device 12 and connected to the at least two power output ports respectively.
  • a plurality of accelerating tubes 13 can respectively receive a plurality of electron beams generated by the electron beam generating device 12, and respectively accelerate the plurality of electron beams through microwaves received from the at least two power output ports, so as to generate Multiple rays with different energies.
  • the accelerated electron beam can generate radiation, such as X-rays, by bombarding a target.
  • the controller 11 is connected with the electron beam generating device 12 and the microwave generating device 14 in signal connection, and is configured to perform sequential control on the microwave power of the microwave generating device 14, and to control the microwave power generated by the electron beam generating device 12 respectively. Timing control is performed corresponding to the beam current loads of the electron beams of the plurality of accelerating tubes 13 . Through the timing control of the microwave generating device 14 and the electron beam generating device 12 by the controller 11, a plurality of accelerating tubes 13 can generate rays of different energies through one microwave power source, thereby meeting the detection requirements of multi-energy spectrum coverage of the article, While ensuring the penetrability, improve the system silk resolution index.
  • the electron beam generating device 2 includes: a first electron gun 122 , a first electron gun power supply 121 , a second electron gun 124 and a second electron gun power supply 123 .
  • the first electron gun 122 is configured to generate a first electron beam.
  • the second electron gun 124 is configured to generate a second electron beam.
  • Each electron gun power supply and microwave generating device can be powered by the same AC power supply (such as 380V).
  • the first electron gun power supply 121 is signal-connected to the controller 11 and connected to the first electron gun 122 , configured to adjust the beam current load of the first electron beam according to the timing control signal provided by the controller 11 .
  • the second electron gun power supply 123 is signal-connected to the controller 11 and connected to the second electron gun 124 , configured to adjust the beam current load of the second electron beam according to the timing control signal provided by the controller 11 .
  • the controller 11 can adjust the voltage applied to the electron gun by sending a timing control signal (such as a pulse width modulation signal) to the electron gun power supply, so as to further adjust the beam current load of the electron beam.
  • the at least two power output ports of the microwave circulator 15 include a first power output port b and a second power output port c, and the first power output port b is allocated from The microwave signal fed in from the power input port a, the second power output port c is distributed from the microwave signal fed in from the first power output port b.
  • the microwave signal fed in from the first power output port b may be a reflected microwave signal that is output from the first power output port b and then reflected back.
  • the plurality of accelerating tubes 13 includes: a first accelerating tube 131 and a second accelerating tube 132 .
  • the first accelerating tube 131 is connected to the first power output port b and the first electron gun 122, and is configured to conduct the first electron beam through the first output microwave signal output from the first power output port b. accelerate.
  • the second accelerating tube 132 is connected to the second power output port c and the second electron gun 124, and is configured to perform the second electron beam through the second output microwave signal output from the second power output port c. accelerate.
  • the accelerated first electron beam and the second electron beam can bombard the target to obtain X-rays with different energies.
  • the electron beam generating device may include more than three electron guns and their corresponding electron gun power supplies, and the ray generating equipment includes more than three accelerating tubes. Correspondingly, each accelerating tube is connected to three The above power output ports are connected, and the output of more kinds of ray energy is realized through the timing control of the controller, which meets the requirements of multi-energy spectrum detection and multi-angle scanning of objects.
  • At least two power output ports of the microwave circulator 15 further include a third power output port d, and the third power output port d is allocated from the second power output port c
  • the microwave signal fed in from the second power output port c may be a reflected microwave signal that is output from the second power output port c and then reflected back.
  • the ray generating device may further include an absorption load 6 connected to the third power output port d. The absorption load can absorb the microwave signal output by the third power output port d, so as to realize the isolation function and prevent the microwave signal from returning to the power input port of the microwave circulator.
  • the microwave circulator 15 includes a four-port circulator (Four-port Circulator) 151.
  • the four-terminal circulator 151 has four ports, which are respectively a power input port a, a first power output port b, a second power output port c, and a third power output port d along the power transmission sequence, that is, the four-terminal circulator
  • the power transmission law of 151 is a->b->c->d.
  • the microwave circulator 15 may also include a combined structure in which multiple three-terminal circulators or four-terminal circulators are connected in series.
  • Fig. 13 shows the structure of a ferrite four-terminal circulator.
  • the four-terminal circulator is a coupling device including a double T joint, a non-reciprocal phase shifter based on ferrite field shift effect and a three-decibel (3dB) coupler.
  • the electromagnetic wave with the amplitude E0 is input through the power input port a. Due to the characteristics of the double T (H branch), at the AB plane, there will be electromagnetic wave outputs with the same amplitude E 0 /(2 ⁇ (1/2)) and the same phase in the waveguides I and II.
  • the non-reciprocal phase shifter can make the phase of the electromagnetic wave in the waveguide I lead 90° relative to the phase in the waveguide II when the electromagnetic wave is transmitted from the AB surface to the CD surface in the forward direction (conversely, if the electromagnetic wave is transmitted from the CD surface to the AB surface in the reverse direction,
  • the phase in waveguide II is 90° ahead of waveguide I)
  • the 3dB coupler between the first power output port b and the third power output port d from the CD plane can make the microwave power in waveguide I and waveguide II equally divided
  • the phase shift is increased by 90° during coupling transmission, so that the waveguide I and waveguide II are respectively output to the first power output port b and the third power output port d
  • the microwave power is all output from the first power output port b, but not output from the third power output port d.
  • the microwave power input from the first power output port b is distributed to the output of the second power output port c
  • the microwave power input from the second power output port c is distributed to the output of the third power output port d.
  • the reflected microwave input from the first power output port b is distributed to the output of the second power output port c, and the reflected wave from the second power output port c will be transmitted to the third power output port d and absorbed by the load absorbed.
  • the timing control of the controller 11 enables the first accelerating tube connected to the first power output port b to obtain greater power and energy to output at least one higher-energy X-ray, for example, the output energy X-rays of 6 MeV and 3 MeV; and the timing control of the controller 11 enables the second accelerating tube connected to the second power output port c to obtain smaller power and energy to output at least one lower-energy X-ray,
  • the output energy is X-rays of 0.3-0.6 MeV.
  • the detector 30 may be a dual-energy detector.
  • the dual-energy detector includes a high-energy detector array and a low-energy detector array.
  • the low-energy detector array is configured to detect a signal when a radiation pulse with a first radiation energy emitted by the radiation source acts on the object.
  • the high-energy detector array is configured to detect signals when the radiation pulses with the second radiation energy and the radiation pulses with the third radiation energy emitted by the radiation source 10 act on the object.
  • the high-energy detector array and the low-energy detector array are turned on alternately within a scanning period.
  • the low-energy detector array When the radiation source emits a radiation pulse of the first radiation energy, the low-energy detector array is turned on, and the high-energy detector array is turned off, and when the radiation source emits the second radiation energy or a radiation pulse of the third radiation energy, the high-energy detector array is turned on, and the low-energy detector array is turned off.
  • This can effectively prevent or reduce the interference of the detector 30 on receiving the detection signal when the radiation pulses of different radiation energies act on the object to be inspected, and improve the quality of the obtained scanning image.
  • FIG. 14 is a schematic flow diagram of some embodiments of inspection methods according to the present disclosure.
  • the inspection method of the aforementioned inspection system includes: step S1 to step S4.
  • step S1 the type of the object to be checked is obtained.
  • step S2 in response to the type, a periodic radiation combination corresponding to the type is selected, the periodic radiation combination is a time sequence arrangement of a plurality of radiation pulses output by the radiation source 10 in each scanning period, the multiple The radiation pulses have at least two different radiation energies.
  • step S3 during the scanning of the object, the radiation source 10 is made to emit radiation to the object with the selected periodic radiation combination.
  • the detector 30 is caused to detect the signal after the radiation has acted on the object.
  • the object after knowing the type of the object to be inspected, the object can be scanned according to the periodic radiation combination corresponding to the type, so that the radiation source can reasonably select the appropriate scanning energy based on the type of object, so that the scanning inspection of different objects has the advantages Good adaptability, and this method does not need to identify different parts of the object and select radiation energy according to different parts, so the control is more simplified.
  • the step of obtaining the type of the object to be detected may include: responding to the object feature sensed by the optical sensing element 51 , and determining the type of the object according to the object feature.
  • the step of obtaining the type of the object to be checked may include: responding to the type information input by the human-computer interaction device 52, and determining the type of the object according to the type information.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种检查系统,包括:辐射源(10);探测器(30),被配置为探测辐射源(10)发出的辐射作用于被检的对象时的信号;和处理器(20),与辐射源(10)通讯连接,被配置为根据对象的类型,选择与类型对应的周期辐射组合,并在对象被扫描期间,使辐射源(10)以被选择的周期辐射组合向对象发出辐射,其中,周期辐射组合为辐射源(10)在每个扫描周期内输出的多个辐射脉冲的时序排列,多个辐射脉冲具有至少两种不同的辐射能量。该系统能够改善适应性,并简化控制。还包括一种检查方法。

Description

检查系统及方法
相关申请的交叉引用
本申请是以CN申请号为202110777657.9,申请日为2021年7月9日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及辐射检查领域,尤其涉及一种检查系统及方法。
背景技术
在一些相关技术中,集装箱检查系统和车辆检查系统分别针对的被检物的类型不同,各自配置了特定的射线源。例如,集装箱检查系统采用较高射线能量的射线源,而针对乘用车的车辆检查系统则采用较低射线能量的射线源。在另一些相关技术中,检查系统具有两个不同的射线源,当车辆被检查时,识别车辆的不同部分,并对不同部分选择不同的射线源。
发明内容
发明人经研究发现,相关技术中配置特定射线源的检查系统对被检对象的适应性较差,而具有两个不同射线源的检查系统由于需要对对象的不同部分进行识别,以便选择射线源,因此在控制上比较复杂。
有鉴于此,本公开实施例提供一种检查系统及方法,能够改善适应性,并简化控制。
在本公开的一个方面,提供一种检查系统,包括:辐射源;探测器,被配置为探测所述辐射源发出的辐射作用于被检的对象时的信号;和处理器,与所述辐射源通讯连接,被配置为根据所述对象的类型,选择与所述类型对应的周期辐射组合,并在所述对象被扫描期间,使所述辐射源以被选择的周期辐射组合向所述对象发出辐射,其中,所述周期辐射组合为所述辐射源在每个扫描周期内输出的多个辐射脉冲的时序排列,所述多个辐射脉冲具有至少两种不同的辐射能量。
在一些实施例中,所述至少两种不同的辐射能量包括第一辐射能量和第二辐射能量,所述第一辐射能量低于1MeV,所述第二辐射能量大于1MeV。
在一些实施例中,不同的类型对应的周期辐射组合包括的多个辐射脉冲中具有第一辐射能量的辐射脉冲的数量不同。
在一些实施例中,所述至少两种不同的辐射能量还包括第三辐射能量,所述第三辐射能量大于所述第二辐射能量。
在一些实施例中,不同的类型对应的周期辐射组合包括的多个辐射脉冲中具有第二辐射能量的辐射脉冲的数量和/或具有第三辐射能量的脉冲辐射的数量不同。
在一些实施例中,所述对象为车辆,所述对象的类型包括客车类型和货车类型中的一种,对应于客车类型的周期辐射组合中具有第一辐射能量的辐射脉冲的数量多于对应于货车类型的周期辐射组合中具有第一辐射能量的辐射脉冲的数量。
在一些实施例中,所述处理器被配置为使所述辐射源以被选择的周期辐射组合对所述对象的整体进行扫描。
在一些实施例中,所述辐射源包括:电子束产生装置,被配置为产生多个电子束;微波产生装置,被配置为产生微波;微波环行器,具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置连接;多个加速管,与所述电子束产生装置连接,并分别与所述至少两个功率输出口连接,被配置为分别接收所述电子束产生装置产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多个具有不同辐射能量的辐射脉冲;和控制器,与所述处理器、所述电子束产生装置和所述微波产生装置信号连接,被配置为根据所述处理器的指令,对所述微波产生装置的微波功率进行时序控制,以及对所述电子束产生装置产生的分别对应于所述多个加速管的电子束的束流负载进行时序控制。
在一些实施例中,所述辐射源包括:第一电子枪,被配置为产生第一电子束;第一电子枪电源,与所述控制器信号连接,并与所述第一电子枪连接,被配置为根据所述控制器提供的时序控制信号调整所述第一电子束的束流负载;第二电子枪,被配置为产生第二电子束;和第二电子枪电源,与所述控制器信号连接,并与所述第二电子枪连接,被配置为根据所述控制器提供的时序控制信号调整所述第二电子束的束流负载,其中,所述控制器被配置为在至少一个周期的每个周期中的第一时段使所述第一电子枪电源调整所述第一电子束的束流负载为第一束流负载,并在每个周期中的第二时段使所述第二电子枪电源调整所述第二电子束的束流负载为第二束流负载,所述第一时段与所述第二时段不重合。
在一些实施例中,所述微波环行器的至少两个功率输出口包括第一功率输出口和第二功率输出口,所述第一功率输出口被分配来自从所述功率输入口馈入的微波信号,所述第二功率输出口被分配来自从所述第一功率输出口馈入的微波信号;所述多个加速管包括:第一加速管,与所述第一功率输出口和所述第一电子枪连接,被配置为通过所述第一功率输出口输出的第一输出微波信号对所述第一电子束进行加速;和第二加速管,与所述第二功率输出口和所述第二电子枪连接,被配置为通过所述第二功率输出口输出的第二输出微波信号对所述第二电子束进行加速。
在一些实施例中,所述微波环行器的至少两个功率输出口还包括第三功率输出口,所述第三功率输出口被分配来自从所述第二功率输出口馈入的微波信号;所述辐射源还包括:吸收负载,与所述第三功率输出口连接,被配置为吸收所述第三功率输出口输出的微波信号。
在一些实施例中,所述微波环行器包括四端环流器。
在一些实施例中,所述控制器被配置为在所述第一时段使所述微波产生装置馈入到所述微波环行器的功率输入口的微波信号包括至少一个第一输入微波信号,并在所述第二时段使所述微波产生装置馈入到所述微波环行器的功率输入口的微波信号包括至少一个第二输入微波信号,所述至少一个第一输入微波信号的功率大于所述至少一个第二输入微波信号。
在一些实施例中,所述微波产生装置包括磁控管。
在一些实施例中,所述检查系统还包括:光学感测元件,与所述处理器通讯连接,被配置为感测所述对象的对象特征,并发送给所述处理器,以便所述处理器根据所述对象特征确定所述对象的类型;或人机交互装置,与所述处理器通讯连接,被配置为接收输入的类型信息,并发送给所述处理器,以便所述处理器根据所述类型信息确定所述对象的类型。
在一些实施例中,所述探测器为与所述处理器通讯连接的双能探测器,所述双能探测器包括高能探测器阵列和低能探测器阵列,所述低能探测器阵列被配置为探测所述辐射源发出的具有第一辐射能量的辐射脉冲作用于所述对象时的信号,所述高能探测器阵列被配置为探测所述辐射源发出的具有第二辐射能量的辐射脉冲和具有第三辐射能量的辐射脉冲作用于所述对象时的信号。
在本公开的一个方面,提供一种前述检查系统的检查方法,包括:获得待检的对象的类型;响应于所述类型,选择与所述类型对应的周期辐射组合,所述周期辐射组 合为辐射源在每个扫描周期内输出的多个辐射脉冲的时序排列,所述多个辐射脉冲具有至少两种不同的辐射能量;在所述对象被扫描期间,使所述辐射源以被选择的周期辐射组合向所述对象发出辐射;使探测器探测辐射作用所述对象之后的信号。
在一些实施例中,所述获得待检的对象的类型的步骤包括:响应于光学感测元件感测的对象特征,根据所述对象特征确定所述对象的类型;或响应于人机交互装置被输入的类型信息,根据所述类型信息确定所述对象的类型。
因此,根据本公开实施例,在获知被检对象的类型后,根据该类型对应的周期辐射组合对该对象进行扫描,可使得辐射源能够基于对象类型合理选择适合的扫描能量,从而对不同对象的扫描检查具有良好的适应性,而且这种方式无需识别对象的不同部分,并根据不同部分选择辐射能量,因此在控制上更加简化。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开检查系统的一些实施例的结构示意图;
图2是根据本公开检查系统的另一些实施例的结构示意图;
图3是根据本公开检查系统的又一些实施例的结构示意图;
图4-图7分别是根据本公开检查系统的一些实施例针对于不同车辆的类型所采用的周期辐射组合的示意图;
图8-10分别是根据本公开检查系统的一些实施例中辐射源的三种出束时序示意图;
图11是根据本公开检查系统的一些实施例中辐射源的结构示意图;
图12是根据本公开检查系统的另一些实施例中辐射源的结构示意图;
图13是根据本公开检查系统的一些实施例中四端环流器的结构示意图;
图14是根据本公开检查方法的一些实施例的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
图1是根据本公开检查系统的一些实施例的结构示意图。参考图1,在一些实施例中,检查系统包括:辐射源10、探测器30和处理器20。这里的检查系统适用于多种应用场景(例如车辆检查、矿石品位检查、食品检查、固体废料检查、工业检查等)下的对象的检查。例如在车辆检查场景下的对车辆的检查。这里的车辆包括各类的机动车(例如小轿车、公共汽车、厢式货车、集装箱卡车等)或列车(例如客运列车或货运列车等)。
以车辆为例,在检查过程中,车辆与辐射源可相对运动。在一些实施例中,辐射源保持静止,被检的车辆通过自身动力实现移动或被其他机构驱动而移动。在另一些实施例中,被检的车辆保持静止,辐射源通过自身动力实现移动或被其他机构驱动而 移动。
辐射源10能够产生多种具有不同辐射能量的辐射脉冲。相应地,可实现多种周期辐射组合。在一些实施例中,辐射源10可包括多个辐射源,即多源形式,各个辐射源可分别输出不同能量的辐射脉冲。在另一些实施例中,辐射源10可包括单辐射源,即单源形式,该单辐射源能够输出不同能量的辐射脉冲。辐射脉冲可以为X射线脉冲,也可为伽马射线脉冲等。
探测器30被配置为探测所述辐射源10发出的辐射作用于被检的对象时的信号。在一些实施例中,探测器30可被设置在辐射源10的对侧。例如在辐射源10发出X射线脉冲时,X射线穿过被检的对象衰减后被位于另一侧的探测器30探测到,从而形成探测信号。根据该探测信号可以绘制反映对象内部内容的图像。
处理器20与所述辐射源10通讯连接,被配置为根据所述对象的类型,选择与所述类型对应的周期辐射组合,并在所述对象被扫描期间,使所述辐射源10以被选择的周期辐射组合向所述对象发出辐射。这里的周期辐射组合指的是所述辐射源10在每个扫描周期内输出的多个辐射脉冲的时序排列,所述多个辐射脉冲具有至少两种不同的辐射能量。
处理器在检测对象之前,可接收操作者手动输入的对象的类型,也可以与其他元器件进行配合来获得对象的有关信息,从而确定出对象的类型。不同的对象类型具有不同的特点,其对辐射剂量、成像效果等不同因素具有不同的要求。
例如,对于公共汽车等客车来说,其需要确保辐射剂量不会超过人体能够承受的安全要求或者法律规定的要求,满足基本的成像效果即可。而对于集装箱卡车等货车来说,在司机离开车辆的状态或驾驶室已遮挡辐射的状态下,可采用更高的辐射能量进行扫描,以便获得更好的成像效果,并且通过不同辐射能量的辐射脉冲的组合还能够满足不同类型被检物的适应性的辐射检查。
图2是根据本公开检查系统的另一些实施例的结构示意图。参考图2,在一些实施例中,检查系统还包括与所述处理器20通讯连接的光学感测元件51。该光学感测元件51被配置为感测所述对象的对象特征,并发送给所述处理器20,以便所述处理器20根据所述对象特征确定所述对象的类型。光学感测元件51可以包括摄像头、光电开关、激光传感器、红外探测器、光幕传感器等。例如被检对象为车辆时,对象特征可以包括车辆外形轮廓特征、车辆的特有标志、车辆上安装或携带的用于标识类型的装置发出的信号等。
图3是根据本公开检查系统的又一些实施例的结构示意图。参考图3,在一些实施例中,检查系统还包括与所述处理器20通讯连接的人机交互装置52。人机交互装置52被配置为接收输入的类型信息,并发送给所述处理器20,以便所述处理器20根据所述类型信息确定所述对象的类型。人机交互装置52可包括鼠标、键盘、触摸屏、遥控器等。
在另一些实施例中,检查系统可以既包括光学感测元件51,也包括人机交互装置52,系统可选择地接收来自光学感测元件51和/或人机交互装置52提供的信息,以确定对象的类型。
对于辐射源来说,其可实现的至少两种不同的辐射能量包括第一辐射能量和第二辐射能量。所述第一辐射能量低于1MeV,例如225keV、300keV、450keV等。所述第二辐射能量大于1MeV,例如3MeV、4MeV、6MeV等。在一些实施例中,至少两种不同的辐射能量还包括第三辐射能量,所述第三辐射能量大于所述第二辐射能量。例如,第二辐射能量和第三辐射能量可以为3MeV和6MeV、4MeV和6MeV、4MeV和7MeV、或6MeV和9MeV等。其中不同辐射能量的射线脉冲可作为不同质量厚度条件下提高穿透力的备用射线。
针对于不同的对象的类型,可根据其特点提供不同的周期辐射组合。例如可使得不同的类型对应的周期辐射组合包括的多个辐射脉冲中具有第一辐射能量的辐射脉冲的数量不同。对于一些特定类型的对象,增加每个周期内第一辐射能量的辐射脉冲的数量,可提高辐射安全性,降低不必要的能量消耗。而且,通过增加第一辐射能量的辐射脉冲,还能够减少一个周期中各个被扫描的截面的间距,以便获得更丰富的被检对象的信息,且不会给辐射防护造成较大压力。
对于另一些类型的对象来说,第一辐射能量的辐射脉冲难以穿过对象的材料,从而无法获得理想的扫描画面,则可相应地在每个周期中增加第二辐射能量的辐射脉冲的数量和/或具有第三辐射能量的辐射脉冲的数量,通过较高辐射能量的辐射脉冲来提高扫描效果。
例如,可使得不同的类型对应的周期辐射组合包括的多个辐射脉冲中具有第二辐射能量的辐射脉冲的数量和/或具有第三辐射能量的脉冲辐射的数量不同。对于被检物体中质量厚度较大的部分,还可通过第三辐射脉冲和第二辐射脉冲的交替扫描来获得更加丰富的分类信息,例如通过3MeV和6MeV的辐射脉冲交替扫描来获得有机物、无机物和混合物的分类,或者通过6MeV和9MeV的辐射脉冲交替扫描来获得有机物、 无机物、混合物和重金属的分类等。相应地,可在周期辐射组合中设定不同数量的具有第二辐射能量的辐射脉冲和具有第三辐射能量的脉冲辐射,以满足不同类型对象的扫描需求。
在一些实施例中,所述对象为车辆,所述对象的类型可包括客车类型和货车类型中的一种。对应于客车类型的周期辐射组合中具有第一辐射能量的辐射脉冲的数量多于对应于货车类型的周期辐射组合中具有第一辐射能量的辐射脉冲的数量。在一些实施例中,对于车辆来说,对象的类型还可以进一步细分,例如对象的类型包括小客车、公共汽车、厢式货车、集装箱卡车、客运列车、货运列车等,还可以包括以运载物进行区分的车辆类型,例如客车、农用货车、燃料运载车等。不同车辆的类型可对应于不同的周期辐射组合。
在上述实施例中,所述处理器20可被配置为使所述辐射源10以被选择的周期辐射组合对所述对象的整体进行扫描。换句话说,处理器20在整个对象的扫描过程中不需要切换周期辐射组合,这样有效地降低了控制难度。
图4-图7分别是根据本公开检查系统的一些实施例针对于不同车辆的类型所采用的周期辐射组合的示意图。在图4-图7中,E表示辐射脉冲的辐射能量,t表示车辆的各个截面被扫描的时间。箭头所指的是辐射源在一个扫描周期(1T)内输出的多个辐射脉冲的时序排列,即周期辐射组合。假设扫描速度(即检查系统与被检车辆的相对运动速度)为0.4m/s,射线源的出束频率为80Hz,以此计算被检物体的每个被扫描的截面的间距为5mm。
在图4中,对于车辆40(例如车辆类型为小型货车)来说,周期辐射组合具有两种不同的辐射能量,分别为300keV的辐射脉冲i1和3MeV的辐射脉冲i2。在图5中,对于车辆40(例如车辆类型为中型货车)来说,周期辐射组合也具有两种不同的辐射能量,分别为300keV的辐射脉冲i1和6MeV的辐射脉冲i2。与图4相比,图5中车辆对应的辐射脉冲i2的辐射能量更高,具备更强的穿透能力,可获得更好的扫描图像质量。
在图6中,对于车辆40(例如车辆类型为大型货车)来说,周期辐射组合具有三种不同的辐射能量,分别为300keV的辐射脉冲i1、3MeV的辐射脉冲i2和6MeV的辐射脉冲i3。在图7中,对于车辆40(例如车辆类型为集装箱卡车)来说,周期辐射组合也具有三种不同的辐射能量,分别为300keV的辐射脉冲i1、3MeV的辐射脉冲i2和6MeV的辐射脉冲i3。与图6相比,图7中周期辐射组合中的辐射脉冲i1的数量 更多。这样一方面通过辐射脉冲i2和辐射脉冲i3的交替扫描来获得更加丰富的物质分类信息,另一方面还通过更多的辐射脉冲i1来减少一个周期中各个被扫描的截面的间距,降低辐射防护压力。
图8-10分别是根据本公开检查系统的一些实施例中辐射源的三种出束时序示意图。参考图8-10,对于能够实现多种辐射能量的辐射源来说,在一个固定的扫描周期(T 0)内可以通过不同辐射能量的辐射脉冲形成不同的周期辐射组合。在图8-10中,一个扫描周期内分别有两个辐射脉冲、三个辐射脉冲和四个辐射脉冲。
通常来说,较高辐射能量的X射线对厚材料区和高Z材料区的识别效果更好,较低辐射能量的X射线对薄材料区和低Z材料区的识别效果更好。通过调整组合方式可以优化整体的图像扫描效果,实现最佳的图像质量。
通用的组合方式可以用以下形式进行描述:
在一个扫描周期(T)内,可存在多种不同辐射能量的辐射脉冲,每种辐射脉冲的出束时序可以用矩形脉冲函数进行描述:
Figure PCTCN2022103256-appb-000001
其中,t s代表在一个扫描周期内的起始出束时间,Δt s为单次出束时间间隔,满足:0≤t s≤T-Δt s,Δt s>0,E代表辐射脉冲的能量(可以代表单能,也可代表某种能量分布)。该函数代表着在单个周期内,该辐射脉冲的出束时间为:t s~t s+Δt s
ε(x)代表单位阶跃函数,其定义为:
Figure PCTCN2022103256-appb-000002
其中1代表出束,0代表不出束。
对于辐射源而言,在一个扫描周期内包含至少两种具有不同辐射能量的辐射脉冲,当然这也包括了具有相同辐射能量的多个辐射脉冲的情形。总的出束状态可以用多个辐射脉冲的出束时序叠加进行描述:
Figure PCTCN2022103256-appb-000003
其中,N代表一个扫描周期内的辐射脉冲数目(N≥2),对于第i个辐射脉冲,其出束时间为:t si~t si+Δt si,通常在同一时刻只存在一个出束状态下的辐射脉冲。
图11是根据本公开检查系统的一些实施例中辐射源的结构示意图。参考图11, 在一些实施例中,所述辐射源10包括:电子束产生装置12、微波产生装置14、微波环行器15、多个加速管13和控制器11。电子束产生装置12被配置为产生多个电子束。在一些实施例中,电子束产生装置12可通过脉冲调制器产生的不同高压幅值来使多个电子枪分别产生多个相同或不同束流负载的电子束。
微波产生装置14被配置为产生微波。在一些实施例中,微波产生装置14可通过脉冲调制器输出的不同幅值的电压来产生变化的工作电流,从而产生不同功率的微波信号。在另一些实施例中,微波产生装置14还可以通过磁场强度的变化来产生不同功率的微波信号。所述微波产生装置14包括磁控管141。
微波环行器15具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置14连接。微波环行器15具有隔离特性和功率分配特性,能够沿单一方向传输微波能量。通过将单一的微波产生装置14与微波环行器15的功率输入口连接,可将从功率输入口馈入的微波能量分配到某个特定的功率输出口,而该功率输出口所接收的反射微波能量能够被分配到另一个功率输出口。利用微波环行器15的这种特性配合微波产生装置14的时序控制,就可以通过作为单一微波功率源的微波产生装置14来实现两个以上的端口的微波能量输出。
多个加速管13与所述电子束产生装置12连接,并分别与所述至少两个功率输出口连接。多个加速管13能够分别接收所述电子束产生装置12产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多条具有不同能量的射线。被加速的电子束可通过轰击靶来产生射线,例如X射线。
控制器11与所述电子束产生装置12和所述微波产生装置14信号连接,被配置为对所述微波产生装置14的微波功率进行时序控制,以及对所述电子束产生装置12产生的分别对应于所述多个加速管13的电子束的束流负载进行时序控制。通过控制器11对微波产生装置14和电子束产生装置12的时序控制,能够通过一个微波功率源使多个加速管13分别产生不同能量的射线,从而满足物品的多能谱覆盖的检测需求,在保证穿透性的同时,提高系统丝分辨指标。
图12是根据本公开检查系统的另一些实施例中辐射源的结构示意图。图13是根据本公开检查系统的一些实施例中四端环流器的结构示意图。参考图12,在一些实施例中,所述电子束产生装置2包括:第一电子枪122、第一电子枪电源121、第二电子枪124和第二电子枪电源123。第一电子枪122被配置为产生第一电子束。第二电 子枪124被配置为产生第二电子束。各个电子枪电源和微波产生装置可采用同一个交流电源(例如380V)进行供电。
第一电子枪电源121与所述控制器11信号连接,并与所述第一电子枪122连接,被配置为根据所述控制器11提供的时序控制信号调整所述第一电子束的束流负载。第二电子枪电源123与所述控制器11信号连接,并与所述第二电子枪124连接,被配置为根据所述控制器11提供的时序控制信号调整所述第二电子束的束流负载。控制器11可通过向电子枪电源发送时序控制信号(例如脉宽调制信号)来调整施加给电子枪的电压,以便进一步地调整电子束的束流负载。
参考图12和图13,在一些实施例中,微波环行器15的至少两个功率输出口包括第一功率输出口b和第二功率输出口c,所述第一功率输出口b被分配来自从所述功率输入口a馈入的微波信号,所述第二功率输出口c被分配来自从所述第一功率输出口b馈入的微波信号。从第一功率输出口b馈入的微波信号可以是从第一功率输出口b向外输出之后被反射回的反射微波信号。
在图12中,多个加速管13包括:第一加速管131和第二加速管132。第一加速管131与所述第一功率输出口b和所述第一电子枪122连接,被配置为通过所述第一功率输出口b输出的第一输出微波信号对所述第一电子束进行加速。第二加速管132与所述第二功率输出口c和所述第二电子枪124连接,被配置为通过所述第二功率输出口c输出的第二输出微波信号对所述第二电子束进行加速。被加速的第一电子束和第二电子束可通过轰击靶来获得不同能量的X射线。
在另一些实施例中,电子束产生装置可包括三个以上电子枪及其对应的电子枪电源,且射线产生设备包括三个以上加速管,相应地,各个加速管分别与微波环行器上的三个以上功率输出口连接,通过控制器的时序控制来实现更多种射线能量的输出,满足物品的多能谱检测需求和多视角的扫描需求。
参考图12,在一些实施例中,微波环行器15的至少两个功率输出口还包括第三功率输出口d,所述第三功率输出口d被分配来自从所述第二功率输出口c馈入的微波信号。从第二功率输出口c馈入的微波信号可以是从第二功率输出口c向外输出之后被反射回的反射微波信号。射线产生设备还可包括与所述第三功率输出口d连接的吸收负载6。该吸收负载能够吸收所述第三功率输出口d输出的微波信号,以实现隔离作用,避免微波信号返回到微波环行器的功率输入口。
参考图13,在一些实施例中,微波环行器15包括四端环流器(Four-port  Circulator)151。该四端环流器151具有四个端口,沿着功率传输顺序分别为功率输入口a、第一功率输出口b、第二功率输出口c和第三功率输出口d,即该四端环流器151的功率传输规律为a->b->c->d。在另一些实施例中,微波环行器15还可以包括多个三端环流器或四端环流器串联的组合结构。
图13示出了一种铁氧体四端环流器的结构。该四端环流器为包括一个双T接头,一个基于铁氧体场移效应的非互易移相器和一个三分贝(3dB)耦合器的耦合器件。在射线产生设备工作时,振幅为E 0的电磁波由功率输入口a输入。由于双T(H分支)的特性,在A-B面处,波导I和II中将有振幅相等为E 0/(2^(1/2))且相位相同的电磁波输出。非互易相移器能够在电磁波从A-B面正向传至C-D面时,使得波导I中电磁波相对波导II中的相位领先90°(反之,若从C-D面反向传至A-B面上时,波导II中的相位相对波导I领先90°),从C-D面至第一功率输出口b和第三功率输出口d之间的3dB耦合器能够使波导I和波导II中的微波功率分别等分给第一功率输出口b和第三功率输出口d,但在耦合传输时相移增加90°,从而使得从波导I和波导II分别输出到第一功率输出口b和第三功率输出口d的微波功率全部从第一功率输出口b输出,而在第三功率输出口d没有输出。
同理,从第一功率输出口b输入的微波功率被分配到第二功率输出口c输出,从第二功率输出口c输入的微波功率被分配到第三功率输出口d输出。相应地,从第一功率输出口b输入的反射微波被分配到第二功率输出口c输出,而从第二功率输出口c的反射波将传输到第三功率输出口d,并被吸收负载所吸收。
在一些实施例中,通过控制器11的时序控制使得第一功率输出口b所连接的第一加速管获得较大的功率和能量,以输出至少一种较高能量的X射线,例如输出能量为6MeV和3MeV的X射线;以及通过控制器11的时序控制使得第二功率输出口c所连接的第二加速管获得较小的功率和能量,以输出至少一种较低能量的X射线,例如输出能量为0.3~0.6MeV的X射线。这样,通过微波环行器的不同功率输出口所输出微波功率的不同,实现了功率分配的作用,利用微波环行器的功率分配特性能够驱动不同能量的加速管,以满足各种检测需求。
在上述检查系统的实施例中,探测器30可以为双能探测器。该双能探测器包括高能探测器阵列和低能探测器阵列。所述低能探测器阵列被配置为探测所述辐射源发出的具有第一辐射能量的辐射脉冲作用于所述对象时的信号。所述高能探测器阵列被配置为探测所述辐射源10发出的具有第二辐射能量的辐射脉冲和具有第三辐射能量 的辐射脉冲作用于所述对象时的信号。高能探测器阵列和低能探测器阵列在一个扫描周期内交替开启,当辐射源发出第一辐射能量的辐射脉冲时,低能探测器阵列开启,高能探测器阵列关闭,而当辐射源发出第二辐射能量或第三辐射能量的辐射脉冲时,高能探测器阵列开启,低能探测器阵列关闭。这样可有效地防止或降低探测器30对不同辐射能量的辐射脉冲作用于被检对象时的探测信号接收上的干扰,提高获得的扫描图像质量。
基于前述检查系统的各实施例,本公开还提供了检查方法实施例。图14是根据本公开检查方法的一些实施例的流程示意图。参考图14,在一些实施例中,前述检查系统的检查方法包括:步骤S1到步骤S4。在步骤S1中,获得待检的对象的类型。在步骤S2中,响应于所述类型,选择与所述类型对应的周期辐射组合,所述周期辐射组合为辐射源10在每个扫描周期内输出的多个辐射脉冲的时序排列,所述多个辐射脉冲具有至少两种不同的辐射能量。
在步骤S3中,在所述对象被扫描期间,使所述辐射源10以被选择的周期辐射组合向所述对象发出辐射。在步骤S4中,使探测器30探测辐射作用所述对象之后的信号。
本实施例能够在获知被检对象的类型后,根据该类型对应的周期辐射组合对该对象进行扫描,可使得辐射源能够基于对象类型合理选择适合的扫描能量,从而对不同对象的扫描检查具有良好的适应性,而且这种方式无需识别对象的不同部分,并根据不同部分选择辐射能量,因此在控制上更加简化。
在一些实施例中,所述获得待检的对象的类型的步骤可包括:响应于光学感测元件51感测的对象特征,根据所述对象特征确定所述对象的类型。在另一些实施例中,所述获得待检的对象的类型的步骤可包括:响应于人机交互装置52被输入的类型信息,根据所述类型信息确定所述对象的类型。
本说明书中多个实施例采用递进的方式描述,各实施例的重点有所不同,而各个实施例之间相同或相似的部分相互参见即可。对于方法实施例而言,由于其整体以及涉及的步骤与系统实施例中的内容存在对应关系,因此描述的比较简单,相关之处参见系统实施例的部分说明即可。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (18)

  1. 一种检查系统,包括:
    辐射源(10);
    探测器(30),被配置为探测所述辐射源(10)发出的辐射作用于被检的对象时的信号;和
    处理器(20),与所述辐射源(10)通讯连接,被配置为根据所述对象的类型,选择与所述类型对应的周期辐射组合,并在所述对象被扫描期间,使所述辐射源(10)以被选择的周期辐射组合向所述对象发出辐射,
    其中,所述周期辐射组合为所述辐射源(10)在每个扫描周期内输出的多个辐射脉冲的时序排列,所述多个辐射脉冲具有至少两种不同的辐射能量。
  2. 根据权利要求1所述的检查系统,其中,所述至少两种不同的辐射能量包括第一辐射能量和第二辐射能量,所述第一辐射能量低于1MeV,所述第二辐射能量大于1MeV。
  3. 根据权利要求2所述的检查系统,其中,不同的类型对应的周期辐射组合包括的多个辐射脉冲中具有第一辐射能量的辐射脉冲的数量不同。
  4. 根据权利要求2或3所述的检查系统,其中,所述至少两种不同的辐射能量还包括第三辐射能量,所述第三辐射能量大于所述第二辐射能量。
  5. 根据权利要求4所述的检查系统,其中,不同的类型对应的周期辐射组合包括的多个辐射脉冲中具有第二辐射能量的辐射脉冲的数量和/或具有第三辐射能量的脉冲辐射的数量不同。
  6. 根据权利要求3所述的检查系统,其中,所述对象为车辆,所述对象的类型包括客车类型和货车类型中的一种,对应于客车类型的周期辐射组合中具有第一辐射能量的辐射脉冲的数量多于对应于货车类型的周期辐射组合中具有第一辐射能量的辐射脉冲的数量。
  7. 根据权利要求1所述的检查系统,其中,所述处理器(20)被配置为使所述辐射源(10)以被选择的周期辐射组合对所述对象的整体进行扫描。
  8. 根据权利要求1所述的检查系统,其中,所述辐射源(10)包括:
    电子束产生装置(12),被配置为产生多个电子束;
    微波产生装置(14),被配置为产生微波;
    微波环行器(15),具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置(14)连接;
    多个加速管(13),与所述电子束产生装置(12)连接,并分别与所述至少两个功率输出口连接,被配置为分别接收所述电子束产生装置(12)产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多个具有不同辐射能量的辐射脉冲;和
    控制器(11),与所述处理器(20)、所述电子束产生装置(12)和所述微波产生装置(14)信号连接,被配置为根据所述处理器(20)的指令,对所述微波产生装置(14)的微波功率进行时序控制,以及对所述电子束产生装置(12)产生的分别对应于所述多个加速管(13)的电子束的束流负载进行时序控制。
  9. 根据权利要求8所述的检查系统,其中,所述辐射源(10)包括:
    第一电子枪(122),被配置为产生第一电子束;
    第一电子枪电源(121),与所述控制器(11)信号连接,并与所述第一电子枪(122)连接,被配置为根据所述控制器(11)提供的时序控制信号调整所述第一电子束的束流负载;
    第二电子枪(124),被配置为产生第二电子束;和
    第二电子枪电源(123),与所述控制器(11)信号连接,并与所述第二电子枪(124)连接,被配置为根据所述控制器(11)提供的时序控制信号调整所述第二电子束的束流负载,
    其中,所述控制器(11)被配置为在至少一个周期的每个周期中的第一时段使所述第一电子枪电源(121)调整所述第一电子束的束流负载为第一束流负载,并在每个周期中的第二时段使所述第二电子枪电源(123)调整所述第二电子束的束流负载为第二束流负载,所述第一时段与所述第二时段不重合。
  10. 根据权利要求9所述的检查系统,其中,所述微波环行器(15)的至少两个功率输出口包括第一功率输出口和第二功率输出口,所述第一功率输出口被分配来自从所述功率输入口馈入的微波信号,所述第二功率输出口被分配来自从所述第一功率输出口馈入的微波信号;
    所述多个加速管(13)包括:
    第一加速管(131),与所述第一功率输出口和所述第一电子枪(122)连接,被配置为通过所述第一功率输出口输出的第一输出微波信号对所述第一电子束进行加 速;和
    第二加速管(132),与所述第二功率输出口和所述第二电子枪(124)连接,被配置为通过所述第二功率输出口输出的第二输出微波信号对所述第二电子束进行加速。
  11. 根据权利要求10所述的检查系统,其中,所述微波环行器(15)的至少两个功率输出口还包括第三功率输出口,所述第三功率输出口被分配来自从所述第二功率输出口馈入的微波信号;所述辐射源(10)还包括:吸收负载(16),与所述第三功率输出口连接,被配置为吸收所述第三功率输出口输出的微波信号。
  12. 根据权利要求11所述的检查系统,其中,所述微波环行器(15)包括四端环流器(151)。
  13. 根据权利要求11所述的检查系统,其中,所述控制器(11)被配置为在所述第一时段使所述微波产生装置(14)馈入到所述微波环行器(15)的功率输入口的微波信号包括至少一个第一输入微波信号,并在所述第二时段使所述微波产生装置(14)馈入到所述微波环行器(15)的功率输入口的微波信号包括至少一个第二输入微波信号,所述至少一个第一输入微波信号的功率大于所述至少一个第二输入微波信号。
  14. 根据权利要求8所述的检查系统,其中,所述微波产生装置(14)包括磁控管(141)。
  15. 根据权利要求1所述的检查系统,还包括:
    光学感测元件(51),与所述处理器(20)通讯连接,被配置为感测所述对象的对象特征,并发送给所述处理器(20),以便所述处理器(20)根据所述对象特征确定所述对象的类型;或
    人机交互装置(52),与所述处理器(20)通讯连接,被配置为接收输入的类型信息,并发送给所述处理器(20),以便所述处理器(20)根据所述类型信息确定所述对象的类型。
  16. 根据权利要求4所述的检查系统,其中,所述探测器(30)为与所述处理器(20)通讯连接的双能探测器,所述双能探测器包括高能探测器阵列和低能探测器阵列,所述低能探测器阵列被配置为探测所述辐射源发出的具有第一辐射能量的辐射脉冲作用于所述对象时的信号,所述高能探测器阵列被配置为探测所述辐射源(10)发出的具有第二辐射能量的辐射脉冲和具有第三辐射能量的辐射脉冲作用于所述对象时的信号。
  17. 一种根据权利要求1~16任一所述的检查系统的检查方法,包括:
    获得待检的对象的类型;
    响应于所述类型,选择与所述类型对应的周期辐射组合,所述周期辐射组合为辐射源(10)在每个扫描周期内输出的多个辐射脉冲的时序排列,所述多个辐射脉冲具有至少两种不同的辐射能量;
    在所述对象被扫描期间,使所述辐射源(10)以被选择的周期辐射组合向所述对象发出辐射;
    使探测器(30)探测辐射作用所述对象之后的信号。
  18. 根据权利要求17所述的检查方法,其中,所述获得待检的对象的类型的步骤包括:
    响应于光学感测元件(51)感测的对象特征,根据所述对象特征确定所述对象的类型;或
    响应于人机交互装置(52)被输入的类型信息,根据所述类型信息确定所述对象的类型。
PCT/CN2022/103256 2021-07-09 2022-07-01 检查系统及方法 WO2023280060A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22836811.4A EP4369053A1 (en) 2021-07-09 2022-07-01 Inspection system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110777657.9A CN113281821B (zh) 2021-07-09 2021-07-09 检查系统及方法
CN202110777657.9 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023280060A1 true WO2023280060A1 (zh) 2023-01-12

Family

ID=77286809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103256 WO2023280060A1 (zh) 2021-07-09 2022-07-01 检查系统及方法

Country Status (3)

Country Link
EP (1) EP4369053A1 (zh)
CN (1) CN113281821B (zh)
WO (1) WO2023280060A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281821B (zh) * 2021-07-09 2023-10-13 同方威视技术股份有限公司 检查系统及方法
CN113238297B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 辐射检查系统及方法
CN113238293B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 检查系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070286337A1 (en) * 2006-05-19 2007-12-13 Xuewu Wang Detector array and device using the same
CN101162205A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 对移动目标进行检查的设备及避让方法
CN101971055A (zh) * 2007-08-31 2011-02-09 拉皮斯坎系统股份有限公司 具有控制辐射源的部件的用于安全和医疗扫描器的扫描系统
WO2014117636A2 (zh) * 2013-11-14 2014-08-07 清华大学 多能量多剂量加速器、具有该加速器的快检系统及对应的快检方法
US20150342014A1 (en) * 2012-12-31 2015-11-26 Tsinghua University Ct devices and methods thereof
CN108445546A (zh) * 2014-05-15 2018-08-24 北京君和信达科技有限公司 一种单源双模速通式移动目标辐射检查系统及方法
CN113238298A (zh) * 2021-07-09 2021-08-10 同方威视技术股份有限公司 检查系统及方法
CN113238293A (zh) * 2021-07-09 2021-08-10 同方威视技术股份有限公司 检查系统及方法
CN113281821A (zh) * 2021-07-09 2021-08-20 同方威视技术股份有限公司 检查系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0803642D0 (en) * 2008-02-28 2008-04-02 Rapiscan Security Products Inc Drive-through scanning systems
CN201242531Y (zh) * 2008-04-17 2009-05-20 清华大学 一种直线轨迹扫描成像系统
CN103339657B (zh) * 2011-02-01 2016-08-31 皇家飞利浦有限公司 用于双能量ct图像重建的方法和系统
CN105203569B (zh) * 2014-06-09 2018-06-12 北京君和信达科技有限公司 双能辐射系统和提高双能辐射系统材料识别能力的方法
CN105277578B (zh) * 2014-06-09 2018-06-12 北京君和信达科技有限公司 一种提高双能辐射系统材料识别能力的方法及系统
CN108398444A (zh) * 2018-05-09 2018-08-14 清华大学 辐射检查系统和辐射检查方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070286337A1 (en) * 2006-05-19 2007-12-13 Xuewu Wang Detector array and device using the same
CN101162205A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 对移动目标进行检查的设备及避让方法
US20090225939A1 (en) * 2006-10-13 2009-09-10 Zhiqiang Chen System for image inspection of movable object and dodging method
CN101971055A (zh) * 2007-08-31 2011-02-09 拉皮斯坎系统股份有限公司 具有控制辐射源的部件的用于安全和医疗扫描器的扫描系统
US20150342014A1 (en) * 2012-12-31 2015-11-26 Tsinghua University Ct devices and methods thereof
WO2014117636A2 (zh) * 2013-11-14 2014-08-07 清华大学 多能量多剂量加速器、具有该加速器的快检系统及对应的快检方法
CN108445546A (zh) * 2014-05-15 2018-08-24 北京君和信达科技有限公司 一种单源双模速通式移动目标辐射检查系统及方法
CN113238298A (zh) * 2021-07-09 2021-08-10 同方威视技术股份有限公司 检查系统及方法
CN113238293A (zh) * 2021-07-09 2021-08-10 同方威视技术股份有限公司 检查系统及方法
CN113281821A (zh) * 2021-07-09 2021-08-20 同方威视技术股份有限公司 检查系统及方法

Also Published As

Publication number Publication date
CN113281821B (zh) 2023-10-13
EP4369053A1 (en) 2024-05-15
CN113281821A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2023280060A1 (zh) 检查系统及方法
WO2023280062A1 (zh) 检查系统及方法
CN113238298B (zh) 检查系统及方法
WO2023280056A1 (zh) 辐射检查系统及方法
WO2023280130A1 (zh) 射线产生设备及其控制方法
CN101971055B (zh) 具有控制辐射源的部件的用于安全和医疗扫描器的扫描系统
CN105589093B (zh) 用于扫描物体的计算机断层摄影系统
RU2340127C1 (ru) Устройство и способ генерирования рентгеновских лучей, имеющих различные энергетические уровни, и система распознавания материала
CN203786061U (zh) 多能量多剂量加速器和具有该加速器的快检系统
US10371648B2 (en) Radiography systems based on distributed ray source
US10129971B2 (en) Standing wave electron linear accelerator and container/vehicle inspection system
Kutsaev et al. Electron accelerators for novel cargo inspection methods
WO2011033841A1 (ja) 放射線検出装置
CN101163372A (zh) 多能倍频粒子加速器及其方法
CN200987235Y (zh) 多能倍频粒子加速器
Van Liew et al. Identification and imaging of special nuclear materials and contraband using active x-ray interrogation
WO2021259070A1 (zh) 用于进行辐射成像和放射性物质监测的融合系统和方法
US20150378048A1 (en) Inspection of Baggage from within a Conveyance
Arodzero et al. Security X-ray screening with modulated-energy pulses
CN2917188Y (zh) 产生具有不同能量的x射线的设备及材料识别系统
US20080219404A1 (en) Method and Apparatus to Facilitate Formation of a Two-Dimensional Image Using X-Ray Fan Beam Scatter
WO2023035770A1 (zh) 行李物品智能安检系统和方法
Lee et al. Development of Dual Energy Container Inspection System for Harbor Security in KAERI
EP3491426B1 (en) Inspection system with source of radiation and method
CN117630064A (zh) 一种检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022836811

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022836811

Country of ref document: EP

Effective date: 20240209