CN113238293B - 检查系统及方法 - Google Patents

检查系统及方法 Download PDF

Info

Publication number
CN113238293B
CN113238293B CN202110777668.7A CN202110777668A CN113238293B CN 113238293 B CN113238293 B CN 113238293B CN 202110777668 A CN202110777668 A CN 202110777668A CN 113238293 B CN113238293 B CN 113238293B
Authority
CN
China
Prior art keywords
radiation
periodic
combination
microwave
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110777668.7A
Other languages
English (en)
Other versions
CN113238293A (zh
Inventor
王伟珍
刘必成
宗春光
孙尚民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuctech Co Ltd
Original Assignee
Nuctech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuctech Co Ltd filed Critical Nuctech Co Ltd
Priority to CN202110777668.7A priority Critical patent/CN113238293B/zh
Publication of CN113238293A publication Critical patent/CN113238293A/zh
Application granted granted Critical
Publication of CN113238293B publication Critical patent/CN113238293B/zh
Priority to PCT/CN2022/103281 priority patent/WO2023280062A1/zh
Priority to EP22836813.0A priority patent/EP4369054A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本公开涉及一种检查系统及方法。检查系统包括:辐射源(10);探测器(30),被配置为探测所述辐射源(10)发出的辐射作用于被检的对象时的信号;和处理器(20),与所述辐射源(10)通讯连接,被配置为根据所述对象的类型确定与所述对象的类型对应的至少一种周期辐射组合,并在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合,以及在所述对象被扫描期间,使所述辐射源(10)以被选择的周期辐射组合向对应的所述至少两个不同的部分发出辐射,其中,所述周期辐射组合为所述辐射源(10)在每个扫描周期内输出的至少一个辐射脉冲的时序排列。本公开实施例能够改善检查系统对被检对象的适应性。

Description

检查系统及方法
技术领域
本公开涉及辐射检查领域,尤其涉及一种检查系统及方法。
背景技术
在一些相关技术中,集装箱检查系统和车辆检查系统分别针对的被检物的类型不同,各自配置了特定的射线源。例如,集装箱检查系统采用较高射线能量的射线源,而针对乘用车的车辆检查系统则采用较低射线能量的射线源。在另一些相关技术中,检查系统具有两个不同的射线源,当车辆被检查时,识别车辆的不同部分,并对不同部分选择不同的射线源。
发明内容
发明人经研究发现,相关技术中配置特定射线源的检查系统对被检对象的适应性较差,而具有两个不同射线源的检查系统的总重量较大、成本较高。
有鉴于此,本公开实施例提供一种检查系统及方法,能够改善适应性。
在本公开的一个方面,提供一种检查系统,包括:辐射源;探测器,被配置为探测所述辐射源发出的辐射作用于被检的对象时的信号;和处理器,与所述辐射源通讯连接,被配置为根据所述对象的类型确定与所述对象的类型对应的至少一种周期辐射组合,并在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合,以及在所述对象被扫描期间,使所述辐射源以被选择的周期辐射组合向对应的所述至少两个不同的部分发出辐射,其中,所述周期辐射组合为所述辐射源在每个扫描周期内输出的至少一个辐射脉冲的时序排列。
在一些实施例中,所述至少两个不同的部分在空间上不重叠、具有不同的辐射剂量可接受量或具有不同的质量厚度。
在一些实施例中,所述处理器被配置为确定所述对象的检查模式,并在选择与所述对象的至少两个不同的部分分别对应的周期辐射组合时还根据所述对象的检查模式进行选择。
在一些实施例中,所述对象为车辆,所述处理器被配置为在所述对象的检查模式为车内无人的模式时,使所述对象的至少两个不同的车体部分分别对应的周期辐射组合均为所述对象的类型对应的至少一种周期辐射组合中总能量最高的周期辐射组合。
在一些实施例中,所述对象为车辆,所述处理器被配置为在所述对象的检查模式为车内有人的模式时,使所述对象的至少两个不同的车体部分中有人的部分对应的周期辐射组合为所述对象的类型对应的至少一种周期辐射组合中总能量较低的周期辐射组合,使所述对象的至少两个不同的车体部分中无人的车体部分对应的周期辐射组合为所述对象的类型对应的至少一种周期辐射组合中总能量较高的周期辐射组合。
在一些实施例中,所述至少一个辐射脉冲包括具有至少一种第一辐射能量的辐射脉冲和具有至少一种第二辐射能量的辐射脉冲中的至少一种,每种第一辐射能量低于1MeV,每种第二辐射能量大于1MeV。
在一些实施例中,所述至少一种第二辐射能量包括两种不同的辐射能量。
在一些实施例中,所述辐射源包括:电子束产生装置,被配置为产生多个电子束;微波产生装置,被配置为产生微波;微波环行器,具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置连接;多个加速管,与所述电子束产生装置连接,并分别与所述至少两个功率输出口连接,被配置为分别接收所述电子束产生装置产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多个具有不同辐射能量的辐射脉冲;和控制器,与所述处理器、所述电子束产生装置和所述微波产生装置信号连接,被配置为根据所述处理器的指令,对所述微波产生装置的微波功率进行时序控制,以及对所述电子束产生装置产生的分别对应于所述多个加速管的电子束的束流负载进行时序控制。
在一些实施例中,所述辐射源包括:第一电子枪,被配置为产生第一电子束;第一电子枪电源,与所述控制器信号连接,并与所述第一电子枪连接,被配置为根据所述控制器提供的时序控制信号调整所述第一电子束的束流负载;第二电子枪,被配置为产生第二电子束;和第二电子枪电源,与所述控制器信号连接,并与所述第二电子枪连接,被配置为根据所述控制器提供的时序控制信号调整所述第二电子束的束流负载,其中,所述控制器被配置为在至少一个周期的每个周期中的第一时段使所述第一电子枪电源调整所述第一电子束的束流负载为第一束流负载,并在每个周期中的第二时段使所述第二电子枪电源调整所述第二电子束的束流负载为第二束流负载,所述第一时段与所述第二时段不重合。
在一些实施例中,所述微波环行器的至少两个功率输出口包括第一功率输出口和第二功率输出口,所述第一功率输出口被分配来自从所述功率输入口馈入的微波信号,所述第二功率输出口被分配来自从所述第一功率输出口馈入的微波信号;所述多个加速管包括:第一加速管,与所述第一功率输出口和所述第一电子枪连接,被配置为通过所述第一功率输出口输出的第一输出微波信号对所述第一电子束进行加速;和第二加速管,与所述第二功率输出口和所述第二电子枪连接,被配置为通过所述第二功率输出口输出的第二输出微波信号对所述第二电子束进行加速。
在一些实施例中,所述微波环行器的至少两个功率输出口还包括第三功率输出口,所述第三功率输出口被分配来自从所述第二功率输出口馈入的微波信号;所述辐射源还包括:吸收负载,与所述第三功率输出口连接,被配置为吸收所述第三功率输出口输出的微波信号。
在一些实施例中,所述微波环行器包括四端环流器。
在一些实施例中,所述控制器被配置为在所述第一时段使所述微波产生装置馈入到所述微波环行器的功率输入口的微波信号包括至少一个第一输入微波信号,并在所述第二时段使所述微波产生装置馈入到所述微波环行器的功率输入口的微波信号包括至少一个第二输入微波信号,所述至少一个第一输入微波信号的功率大于所述至少一个第二输入微波信号。
在一些实施例中,所述微波产生装置包括磁控管。
在一些实施例中,所述检查系统还包括:光学感测元件,与所述处理器通讯连接,被配置为感测所述对象的对象特征,并发送给所述处理器,以便所述处理器根据所述对象特征确定所述对象的类型;或人机交互装置,与所述处理器通讯连接,被配置为接收输入的类型信息,并发送给所述处理器,以便所述处理器根据所述类型信息确定所述对象的类型。
在一些实施例中,所述探测器为与所述处理器通讯连接的双能探测器,所述双能探测器包括高能探测器阵列和低能探测器阵列,所述低能探测器阵列被配置为探测所述辐射源发出的具有第一辐射能量的辐射脉冲作用于所述对象时的信号,所述高能探测器阵列被配置为探测所述辐射源发出的具有第二辐射能量的辐射脉冲作用于所述对象时的信号。
在本公开的一个方面,提供一种前述的检查系统的检查方法,包括:获得待检的对象的类型;根据所述对象的类型确定与所述对象的类型对应的至少一种周期辐射组合,所述周期辐射组合为所述辐射源在每个扫描周期内输出的至少一个辐射脉冲的时序排列;在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合;在所述对象被扫描期间,使所述辐射源以被选择的周期辐射组合向对应的所述至少两个不同的部分发出辐射;使探测器探测辐射作用所述对象之后的信号。
在一些实施例中,所述检查方法还包括:获得所述对象的检查模式;其中,选择与所述对象的至少两个不同的部分分别对应的周期辐射组合的操作包括:根据所述对象的类型和所述对象的检查模式,在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合。
在一些实施例中,所述获得待检的对象的类型的步骤包括:响应于光学感测元件感测的对象特征,根据所述对象特征确定所述对象的类型;或响应于人机交互装置被输入的类型信息,根据所述类型信息确定所述对象的类型。
因此,根据本公开实施例,在获得对象的类型后,根据该类型确定与该类型对应的周期辐射组合,并从中选择不同部分分别对应的周期辐射组合,以便在对象被扫描器件使辐射源按照被选择的周期辐射组合对不同部分发出辐射,这样就实现了对不同类型的对象的不同部分以特定的扫描方式进行扫描,有效地提高了检查系统对被检对象的适应性。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开检查系统的一些实施例的结构示意图;
图2是根据本公开检查系统的另一些实施例的结构示意图;
图3是根据本公开检查系统的又一些实施例的结构示意图;
图4-图9分别是根据本公开检查系统的一些实施例的辐射源在车内无人的模式下针对于不同类型的车辆所采用的周期辐射组合的示意图;
图10-图14分别是根据本公开检查系统的一些实施例的辐射源在车内有人的模式下针对于不同类型的车辆所采用的周期辐射组合的示意图;
图15是根据本公开检查系统的一些实施例中辐射源的结构示意图;
图16是根据本公开检查系统的另一些实施例中辐射源的结构示意图;
图17是根据本公开检查系统的一些实施例中四端环流器的结构示意图;
图18是根据本公开检查方法的一些实施例的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
图1是根据本公开检查系统的一些实施例的结构示意图。参考图1,在一些实施例中,检查系统包括:辐射源10、探测器30和处理器20。这里的检查系统适用于多种应用场景(例如车辆检查、矿石品位检查、食品检查、固体废料检查、工业检查等)下的对象的检查。例如在车辆检查场景下的对对象的检查。这里的车辆包括各类的机动车(例如小轿车、公共汽车、客运汽车、厢式货车、集装箱卡车等)或列车(例如客运列车或货运列车等)。
以车辆为例,在检查过程中,车辆与辐射源可相对运动。在一些实施例中,辐射源保持静止,被检的车辆通过自身动力实现移动或被其他机构驱动而移动。在另一些实施例中,被检的车辆保持静止,辐射源通过自身动力实现移动或被其他机构驱动而移动。
对于车辆来说,根据不同的检查模式,车内人员(驾驶员或乘客)可留在车内或离开车辆。例如在一种检查模式中,司机将车辆停在传送装置上,人员均离开车辆,被检车辆由传送装置拖动而通过扫描区域,这种模式也称为拖动模式。在这种模式下,检查系统还包括用于传送被检车辆通过扫描区域的传送装置。拖动模式是车内无人的模式中的一种,另一种车内无人的模式是司机将车辆停在检查系统预定的扫描位置,然后人员均离开车辆,由辐射源移动来实现车辆的扫描过程。
在另一种检查模式中,司机直接驾驶车辆通过扫描区域,这种模式也称为快检模式。这种模式是车内有人的模式的一种。车内人员不限于驾驶员,还可以包括乘客。车内有人的模式还可以包括车辆停在检查系统预定的扫描位置,且人员均不离开车辆,由辐射源移动来实现车辆的扫描过程。
辐射源10能够产生多种具有不同辐射能量的辐射脉冲。相应地,可实现多种周期辐射组合。在一些实施例中,辐射源10可包括多个辐射源,即多源形式,各个辐射源可分别输出不同能量的辐射脉冲。在另一些实施例中,辐射源10可包括单辐射源,即使用同一微波源(例如同一磁控管)的射线源。该单辐射源能够输出不同能量的辐射脉冲。辐射脉冲可以为X射线脉冲,也可为伽马射线脉冲等。
探测器30被配置为探测所述辐射源10发出的辐射作用于被检的对象时的信号。在一些实施例中,探测器30可被设置在辐射源10的对侧。例如在辐射源10发出X射线脉冲时,X射线穿过被检的对象衰减后被位于另一侧的探测器30探测到,从而形成探测信号。根据该探测信号可以绘制反映对象内部内容的图像。
处理器20与所述辐射源10通讯连接,被配置为根据所述对象的类型确定与所述对象的类型对应的至少一种周期辐射组合,并在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合,以及在所述对象被扫描期间,使所述辐射源10以被选择的周期辐射组合向对应的所述至少两个不同的部分发出辐射。这里的周期辐射组合指的是所述辐射源10在每个扫描周期内输出的至少一个辐射脉冲的时序排列。
在一些实施例中,辐射源10在每个扫描周期输出一个辐射脉冲。在另一些实施例中,辐射源10在每个扫描周期输出多个辐射脉冲,所述多个辐射脉冲具有至少两种不同的辐射能量。
处理器在检测对象之前,可接收操作者手动输入的对象的类型,也可以与其他元器件进行配合来获得对象的有关信息,从而确定出对象的类型。不同的对象类型具有不同的特点,对例如质量厚度、货物种类、可接受的辐射剂量、希望达到的成像效果等多方面因素具有不同的要求。以车辆为例,对象类型可包括小客车、公共汽车、厢式货车、集装箱卡车、客运列车、货运列车等,还可以包括以运载物进行区分的对象类型,例如客车、农用货车、燃料运载车等。
根据对象类型的特点,不同的对象类型可对应于一种或多种不同的周期辐射组合。例如对于不同的对象类型,其对应的周期辐射组合的扫描周期不同或者所包括的辐射脉冲的数量或能量不同等。例如对于一些特定类型的对象,可在每个周期内设置较多的具有较低辐射能量的辐射脉冲和较少的具有较高辐射能量的辐射脉冲,或不设置具有较高辐射能量的辐射脉冲,以提高辐射安全性,降低不必要的能量消耗,并减少一个周期中各个被扫描的截面的间距,以便获得更丰富的被检对象的信息,且不会给辐射防护造成较大压力。在另一些实施例中,所述对象的不同类型对应的至少一种周期辐射组合也可以部分或全部相同。
对于另一些类型的对象来说,为了使辐射有效地穿透对象,则可在每个周期内设置较多的具有较高辐射能量的辐射脉冲和较少的具有较低辐射能量的辐射脉冲,或不设置具有较低辐射能量的辐射脉冲,以来提高扫描效果和成像效果。或者,为了进一步提高扫描效果,可设置具有两种以上不同的较高辐射能量的辐射脉冲,以增加对物质的识别能力。
对于对象的不同部分来说,可进一步从对象类型对应的一种或多种周期辐射组合中选择不同部分分别对应的周期辐射组合。在一些实施例中,至少两个不同的部分在空间上不重叠(例如车辆的车头与其后侧的拖载货箱)、具有不同的辐射剂量可接受量(例如车辆中有人的驾驶室与盛装货物的货箱)或具有不同的质量厚度(例如车辆中盛装不同质量厚度的货箱区域)。
某种对象类型可对应有两种不同的周期辐射组合,以含有人的对象为例,可使其中包含具有较低能量的辐射脉冲的周期辐射组合扫描人员所在的部分,以降低人员承受的辐射剂量,并使其中包含具有较高能量的辐射脉冲的周期辐射组合扫描无人员的部分,以提高成像效果。通过针对于对象类型和部分来控制辐射源发出辐射,进一步提高了控制粒度,有效地提高了检查系统对被检对象的适应性。
图2是根据本公开检查系统的另一些实施例的结构示意图。参考图2,在一些实施例中,检查系统还包括与所述处理器20通讯连接的光学感测元件51。该光学感测元件51被配置为感测所述对象的对象特征,并发送给所述处理器20,以便所述处理器20根据所述对象特征确定所述对象的类型。光学感测元件51可以包括基于可见光的摄像头、光电开关、激光传感器、红外探测器、光幕传感器等。例如被检对象为车辆时,对象特征可以包括车辆外形轮廓特征、车辆的特有标志、车辆上安装或携带的用于标识类型的装置发出的信号等。在一些实施例中,光学感测元件51还可以用于检测车辆的车体部位,以便处理器20确定对象与扫描区域的相对位置。
图3是根据本公开检查系统的又一些实施例的结构示意图。参考图3,在一些实施例中,检查系统还包括与所述处理器20通讯连接的人机交互装置52。人机交互装置52被配置为接收输入的类型信息,并发送给所述处理器20,以便所述处理器20根据所述类型信息确定所述对象的类型。人机交互装置52可包括鼠标、键盘、触摸屏、遥控器等。
在另一些实施例中,检查系统可以既包括光学感测元件51,也包括人机交互装置52,系统可选择地接收来自光学感测元件51和/或人机交互装置52提供的信息,以确定对象的类型。并且,在确定对象的类型后,可通过光学感测元件51检测对象的车体部位,以便处理器20确定对象与扫描区域的相对位置。
对于辐射源来说,其可实现的至少一个辐射脉冲包括具有至少一种第一辐射能量的辐射脉冲和具有至少一种第二辐射能量的辐射脉冲中的至少一种。换句话说,在某个周期辐射组合中,可以包括具有一种或多种第一辐射能量的辐射脉冲,具有一种或多种的第二辐射能量的辐射脉冲,或者既具有一种或多种第一辐射能量的辐射脉冲,也具有一种或多种的第二辐射能量的辐射脉冲。
在一些实施例中,第一辐射能量可低于1MeV,例如225keV、300keV、450keV等。第二辐射能量大于1MeV,例如3MeV、4MeV、6MeV等。在一些实施例中,至少一种第二辐射能量包括两种不同的辐射能量。例如,两种第二辐射能量可以为3MeV和6MeV、4MeV和6MeV、4MeV和7MeV、或6MeV和9MeV等。其中不同辐射能量的射线脉冲可作为不同质量厚度条件下提高穿透力的备用射线。
对于被检物体中质量厚度较大的部分,还可通过两种第二辐射脉冲的交替扫描来获得更加丰富的分类信息,例如通过3MeV和6MeV的辐射脉冲交替扫描来获得有机物、无机物和混合物的分类,或者通过6MeV和9MeV的辐射脉冲交替扫描来获得有机物、无机物、混合物和重金属的分类等。相应地,可在周期辐射组合中设定不同数量的具有第一种第二辐射能量的辐射脉冲和具有第二种第二辐射能量的脉冲辐射,以满足不同类型对象的扫描需求。
在上述实施例中,处理器20被配置为确定所述对象的检查模式,并在选择与所述对象的至少两个不同的部分分别对应的周期辐射组合时还根据所述对象的检查模式进行选择。换句话说,在获得对象的检查模式后,可根据对象的类型和对象的检查模式,在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合。
图4-图9分别是根据本公开检查系统的一些实施例的辐射源在车内无人的模式下针对于不同类型的车辆所采用的周期辐射组合的示意图。参考图4-图9,在一些实施例中,对象为车辆,所述处理器20被配置为在所述对象的检查模式为车内无人的模式时,使所述对象的至少两个不同的车体部分分别对应的周期辐射组合均为所述对象的类型对应的至少一种周期辐射组合中总能量最高的周期辐射组合。
在图4中,小客车41这种类型的车辆的各个车体部分的质量厚度较小,且装载货物较少,因此可使其匹配每个检查周期内包含至少一个具有第一辐射能量的辐射脉冲i1的周期辐射组合。在确定检查模式为车内无人的模式时,可使得辐射源按照该周期辐射组合对整车进行扫描,即采用该周期辐射组合对小客车41的各个车体部分均进行扫描。
在图5中,厢式货车42这种类型的车辆的各个车体部分的质量厚度一般,且通常会装载一定量的货物,因此可使其匹配每个检查周期内包含至少一个具有第二辐射能量的辐射脉冲i2的周期辐射组合。在确定检查模式为车内无人的模式时,可使得辐射源按照该周期辐射组合对整车进行扫描,即采用该周期辐射组合对厢式货车41的各个车体部分均进行扫描。这种周期辐射组合还可应用于中型或大型客车。
除了采用图5所示的周期辐射组合,还可以采用图6所示的周期组合。在图6中,每个检查周期内包含至少一个具有第一辐射能量的辐射脉冲i1和至少一个具有第二辐射能量的辐射脉冲i2。
参考图7-图9,对于集装箱卡车43来说,其车辆的各个车体部分的质量厚度较大,且装载的货物量较多,因此可使其匹配每个检查周期内包含至少一个具有第二辐射能量的辐射脉冲的周期辐射组合,根据需要还可以在周期辐射组合中加入具有第一辐射能量的辐射脉冲,或者每个检查周期包含具有两种以上不同第二辐射能量的辐射脉冲。
集装箱卡车43的类型所对应的周期辐射组合可以采用图7-图9中的任一种。在图7中,每个检查周期内包含至少一个具有第二辐射能量的辐射脉冲i3。在图8中,每个检查周期内包含至少一个具有第一辐射能量的辐射脉冲i1和至少一个具有第二辐射能量的辐射脉冲i3。在图9中,每个检查周期内包含至少一个具有第一辐射能量的辐射脉冲i1和两种具有不同第二辐射能量的辐射脉冲i2和辐射脉冲i3,辐射脉冲i3的第二辐射能量大于辐射脉冲i2的第二辐射能量。通过在检查周期中包括辐射脉冲i1,可使得每个扫描截面的间距缩小,以获得更丰富的被检物信息。这些周期辐射组合还可应用于其他大型卡车。
图10-图14分别是根据本公开检查系统的一些实施例的辐射源在车内有人的模式下针对于不同类型的车辆所采用的周期辐射组合的示意图。参考图10-图14,在一些实施例中,对象为车辆,处理器20被配置为在所述对象的检查模式为车内有人的模式时,使所述对象的至少两个不同的车体部分中有人的车体部分对应的周期辐射组合为所述对象的类型对应的至少一种周期辐射组合中总能量较低的周期辐射组合,使所述对象的至少两个不同的车体部分中无人的车体部分对应的周期辐射组合为所述对象的类型对应的至少一种周期辐射组合中总能量较高的周期辐射组合。
在车内有人的模式下,考虑到对人可接受辐射剂量的安全要求以及不同国家地区的政策规定,在扫描车辆时可以对有人的车体部分以更低的辐射能量进行扫描或者不扫描。
在图10中,对于厢式货车42的驾驶室可采用每个检查周期内包含至少一个具有第一辐射能量的辐射脉冲i1的周期辐射组合,而厢式货车42的货厢部分则采用每个检查周期内包含至少一个具有第二辐射能量的辐射脉冲i2的周期辐射组合。在这种情形下,位于驾驶室的驾驶员在检查过程中累积的辐射剂量处于人体可接受的水平,不会对人体健康造成危害,而且还能够在快速检查过程中实现驾驶室的成像,使车辆被更全面的检测。
在图11中,对于厢式货车42的驾驶室可采用不扫描的方式,即在驾驶室通过扫描范围时辐射源不出束。对于厢式货车42的货厢部分则采用每个检查周期内包含至少一个具有第二辐射能量的辐射脉冲i2的周期辐射组合。
在图12和图13中,分别对集装箱卡车43的驾驶室采用不扫描和每个检查周期内包含至少一个具有第一辐射能量的辐射脉冲i1的周期辐射组合。对于集装箱卡车所拖载的集装箱来说,则其匹配每个检查周期内包含至少一个具有第二辐射能量的辐射脉冲i3的周期辐射组合。辐射脉冲i3的第二辐射能量大于厢式货车42的货厢部分对应的辐射脉冲i2的第二辐射能量。
为了在扫描集装箱卡车43的集装箱时获得更加丰富的分类信息,在图14中,每个检查周期内包含至少一个具有第一辐射能量的辐射脉冲i1和两种具有不同第二辐射能量的辐射脉冲i2和辐射脉冲i3,辐射脉冲i3的第二辐射能量大于辐射脉冲i2的第二辐射能量。通过在检查周期中包括辐射脉冲i1,可使得每个扫描截面的间距缩小,以获得更丰富的被检物信息。
图15是根据本公开检查系统的一些实施例中辐射源的结构示意图。参考图15,在一些实施例中,所述辐射源10包括:电子束产生装置12、微波产生装置14、微波环行器15、多个加速管13和控制器11。电子束产生装置12被配置为产生多个电子束。在一些实施例中,电子束产生装置12可通过脉冲调制器产生的不同高压幅值来使多个电子枪分别产生多个相同或不同束流负载的电子束。
微波产生装置14被配置为产生微波。在一些实施例中,微波产生装置14可通过脉冲调制器输出的不同幅值的电压来产生变化的工作电流,从而产生不同功率的微波信号。在另一些实施例中,微波产生装置14还可以通过磁场强度的变化来产生不同功率的微波信号。所述微波产生装置14包括磁控管141。
微波环行器15具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置14连接。微波环行器15具有隔离特性和功率分配特性,能够沿单一方向传输微波能量。通过将单一的微波产生装置14与微波环行器15的功率输入口连接,可将从功率输入口馈入的微波能量分配到某个特定的功率输出口,而该功率输出口所接收的反射微波能量能够被分配到另一个功率输出口。利用微波环行器15的这种特性配合微波产生装置14的时序控制,就可以通过作为单一微波功率源的微波产生装置14来实现两个以上的端口的微波能量输出。
多个加速管13与所述电子束产生装置12连接,并分别与所述至少两个功率输出口连接。多个加速管13能够分别接收所述电子束产生装置12产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多条具有不同能量的射线。被加速的电子束可通过轰击靶来产生射线,例如X射线。
控制器11与所述电子束产生装置12和所述微波产生装置14信号连接,被配置为对所述微波产生装置14的微波功率进行时序控制,以及对所述电子束产生装置12产生的分别对应于所述多个加速管13的电子束的束流负载进行时序控制。通过控制器11对微波产生装置14和电子束产生装置12的时序控制,能够通过一个微波功率源使多个加速管13分别产生不同能量的射线,从而满足物品的多能谱覆盖的检测需求,在保证穿透性的同时,提高系统丝分辨指标。
图16是根据本公开检查系统的另一些实施例中辐射源的结构示意图。图17是根据本公开检查系统的一些实施例中四端环流器的结构示意图。参考图16,在一些实施例中,所述电子束产生装置2包括:第一电子枪122、第一电子枪电源121、第二电子枪124和第二电子枪电源123。第一电子枪122被配置为产生第一电子束。第二电子枪124被配置为产生第二电子束。各个电子枪电源和微波产生装置可采用同一个交流电源(例如380V)进行供电。
第一电子枪电源121与所述控制器11信号连接,并与所述第一电子枪122连接,被配置为根据所述控制器11提供的时序控制信号调整所述第一电子束的束流负载。第二电子枪电源123与所述控制器11信号连接,并与所述第二电子枪124连接,被配置为根据所述控制器11提供的时序控制信号调整所述第二电子束的束流负载。控制器11可通过向电子枪电源发送时序控制信号(例如脉宽调制信号)来调整施加给电子枪的电压,以便进一步地调整电子束的束流负载。
参考图16和图17,在一些实施例中,微波环行器15的至少两个功率输出口包括第一功率输出口b和第二功率输出口c,所述第一功率输出口b被分配来自从所述功率输入口a馈入的微波信号,所述第二功率输出口c被分配来自从所述第一功率输出口b馈入的微波信号。从第一功率输出口b馈入的微波信号可以是从第一功率输出口b向外输出之后被反射回的反射微波信号。
在图16中,多个加速管13包括:第一加速管131和第二加速管132。第一加速管131与所述第一功率输出口b和所述第一电子枪122连接,被配置为通过所述第一功率输出口b输出的第一输出微波信号对所述第一电子束进行加速。第二加速管132与所述第二功率输出口c和所述第二电子枪124连接,被配置为通过所述第二功率输出口c输出的第二输出微波信号对所述第二电子束进行加速。被加速的第一电子束和第二电子束可通过轰击靶来获得不同能量的X射线。
在另一些实施例中,电子束产生装置可包括三个以上电子枪及其对应的电子枪电源,且射线产生设备包括三个以上加速管,相应地,各个加速管分别与微波环行器上的三个以上功率输出口连接,通过控制器的时序控制来实现更多种射线能量的输出,满足物品的多能谱检测需求和多视角的扫描需求。
参考图16,在一些实施例中,微波环行器15的至少两个功率输出口还包括第三功率输出口d,所述第三功率输出口d被分配来自从所述第二功率输出口c馈入的微波信号。从第二功率输出口c馈入的微波信号可以是从第二功率输出口c向外输出之后被反射回的反射微波信号。射线产生设备还可包括与所述第三功率输出口d连接的吸收负载16。该吸收负载能够吸收所述第三功率输出口d输出的微波信号,以实现隔离作用,避免微波信号返回到微波环行器的功率输入口。
参考图17,在一些实施例中,微波环行器15包括四端环流器(Four-portCirculator)151。该四端环流器151具有四个端口,沿着功率传输顺序分别为功率输入口a、第一功率输出口b、第二功率输出口c和第三功率输出口d,即该四端环流器151的功率传输规律为a->b->c->d。在另一些实施例中,微波环行器15还可以包括多个三端环流器或四端环流器串联的组合结构。
图17示出了一种铁氧体四端环流器的结构。该四端环流器为包括一个双T接头,一个基于铁氧体场移效应的非互易移相器和一个三分贝(3dB)耦合器的耦合器件。在射线产生设备工作时,振幅为E0的电磁波由功率输入口a输入。由于双T(H分支)的特性,在A-B面处,波导I和II中将有振幅相等为E0/(2^(1/2))且相位相同的电磁波输出。非互易相移器能够在电磁波从A-B面正向传至C-D面时,使得波导I中电磁波相对波导II中的相位领先90°(反之,若从C-D面反向传至A-B面上时,波导II中的相位相对波导I领先90°),从C-D面至第一功率输出口b和第三功率输出口d之间的3dB耦合器能够使波导I和波导II中的微波功率分别等分给第一功率输出口b和第三功率输出口d,但在耦合传输时相移增加90°,从而使得从波导I和波导II分别输出到第一功率输出口b和第三功率输出口d的微波功率全部从第一功率输出口b输出,而在第三功率输出口d没有输出。
同理,从第一功率输出口b输入的微波功率被分配到第二功率输出口c输出,从第二功率输出口c输入的微波功率被分配到第三功率输出口d输出。相应地,从第一功率输出口b输入的反射微波被分配到第二功率输出口c输出,而从第二功率输出口c的反射波将传输到第三功率输出口d,并被吸收负载所吸收。
在一些实施例中,通过控制器11的时序控制使得第一功率输出口b所连接的第一加速管获得较大的功率和能量,以输出至少一种较高能量的X射线,例如输出能量为6MeV和3MeV的X射线;以及通过控制器11的时序控制使得第二功率输出口c所连接的第二加速管获得较小的功率和能量,以输出至少一种较低能量的X射线,例如输出能量为0.3~0.6MeV的X射线。这样,通过微波环行器的不同功率输出口所输出微波功率的不同,实现了功率分配的作用,利用微波环行器的功率分配特性能够驱动不同能量的加速管,以满足各种检测需求。
在上述检查系统的实施例中,探测器30可以为双能探测器。该双能探测器包括高能探测器阵列和低能探测器阵列。所述低能探测器阵列被配置为探测所述辐射源发出的具有第一辐射能量的辐射脉冲作用于所述对象时的信号。所述高能探测器阵列被配置为探测所述辐射源10发出的具有第二辐射能量的辐射脉冲作用于所述对象时的信号。高能探测器阵列和低能探测器阵列在一个扫描周期内交替开启,当辐射源发出第一辐射能量的辐射脉冲时,低能探测器阵列开启,高能探测器阵列关闭,而当辐射源发出第二辐射能量的辐射脉冲时,高能探测器阵列开启,低能探测器阵列关闭。这样可有效地防止或降低探测器30对不同辐射能量的辐射脉冲作用于被检对象时的探测信号接收上的干扰,提高获得的扫描图像质量。
基于前述检查系统的各实施例,本公开还提供了检查方法实施例。图18是根据本公开检查方法的一些实施例的流程示意图。参考图18,在一些实施例中,前述检查系统的检查方法包括:步骤S1到步骤S5。在步骤S1中,获得待检的对象的类型。在步骤S2中,根据所述对象的类型确定与所述对象的类型对应的至少一种周期辐射组合,所述周期辐射组合为所述辐射源10在每个扫描周期内输出的至少一个辐射脉冲的时序排列。
在步骤S3中,在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合。在步骤S4中,在所述对象被扫描期间,使所述辐射源10以被选择的周期辐射组合向对应的所述至少两个不同的部分发出辐射。在步骤S5中,使探测器30探测辐射作用所述对象之后的信号。
本实施例能够在获知被检对象的类型后,根据该类型确定与该类型对应的周期辐射组合,并从中选择不同部分分别对应的周期辐射组合,以便在对象被扫描器件使辐射源按照被选择的周期辐射组合对不同部分发出辐射,这样就实现了对不同类型的对象的不同部分以特定的扫描方式进行扫描,有效地提高了检查系统对被检对象的适应性。
在一些实施例中,所述获得待检的对象的类型的步骤可包括:响应于光学感测元件51感测的对象特征,根据所述对象特征确定所述对象的类型。在另一些实施例中,所述获得待检的对象的类型的步骤可包括:响应于人机交互装置52被输入的类型信息,根据所述类型信息确定所述对象的类型。
在一些实施例中,检查方法还包括:获得所述对象的检查模式;其中,选择与所述对象的至少两个不同的部分分别对应的周期辐射组合的操作包括:根据所述对象的类型和所述对象的检查模式,在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合。
本说明书中多个实施例采用递进的方式描述,各实施例的重点有所不同,而各个实施例之间相同或相似的部分相互参见即可。对于方法实施例而言,由于其整体以及涉及的步骤与系统实施例中的内容存在对应关系,因此描述的比较简单,相关之处参见系统实施例的部分说明即可。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (16)

1.一种检查系统,包括:
辐射源(10);
探测器(30),被配置为探测所述辐射源(10)发出的辐射作用于被检的对象时的信号,所述对象为车辆;和
处理器(20),与所述辐射源(10)通讯连接,被配置为根据所述对象的类型确定与所述对象的类型对应的至少一种周期辐射组合,并在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合,以及在所述对象被扫描期间,使所述辐射源(10)以被选择的周期辐射组合向对应的所述至少两个不同的部分发出辐射,
其中,所述周期辐射组合为所述辐射源(10)在每个扫描周期内输出的至少一个辐射脉冲的时序排列,所述处理器(20)被配置为确定所述对象的检查模式,并在选择与所述对象的至少两个不同的部分分别对应的周期辐射组合时还根据所述对象的检查模式进行选择;
其中,所述辐射源(10)包括:
电子束产生装置(12),被配置为产生多个电子束;
微波产生装置(14),被配置为产生微波;
微波环行器(15),具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置(14)连接;
多个加速管(13),与所述电子束产生装置(12)连接,并分别与所述至少两个功率输出口连接,被配置为分别接收所述电子束产生装置(12)产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多个具有不同辐射能量的辐射脉冲;和
控制器(11),与所述处理器(20)、所述电子束产生装置(12)和所述微波产生装置(14)信号连接,被配置为根据所述处理器(20)的指令,对所述微波产生装置(14)的微波功率进行时序控制,以及对所述电子束产生装置(12)产生的分别对应于所述多个加速管(13)的电子束的束流负载进行时序控制。
2.根据权利要求1所述的检查系统,其中,所述至少两个不同的部分在空间上不重叠、具有不同的辐射剂量可接受量或具有不同的质量厚度。
3.根据权利要求1所述的检查系统,其中,所述处理器(20)被配置为在所述对象的检查模式为车内无人的模式时,使所述对象的至少两个不同的车体部分分别对应的周期辐射组合均为所述对象的类型对应的至少一种周期辐射组合中总能量最高的周期辐射组合。
4.根据权利要求1所述的检查系统,其中,所述处理器(20)被配置为在所述对象的检查模式为车内有人的模式时,使所述对象的至少两个不同的车体部分中有人的部分对应的周期辐射组合为所述对象的类型对应的至少一种周期辐射组合中总能量较低的周期辐射组合,使所述对象的至少两个不同的车体部分中无人的车体部分对应的周期辐射组合为所述对象的类型对应的至少一种周期辐射组合中总能量较高的周期辐射组合。
5.根据权利要求1所述的检查系统,其中,所述至少一个辐射脉冲包括具有至少一种第一辐射能量的辐射脉冲和具有至少一种第二辐射能量的辐射脉冲中的至少一种,每种第一辐射能量低于1MeV,每种第二辐射能量大于1MeV。
6.根据权利要求5所述的检查系统,其中,所述至少一种第二辐射能量包括两种不同的辐射能量。
7.根据权利要求1所述的检查系统,其中,所述辐射源(10)包括:
第一电子枪(122),被配置为产生第一电子束;
第一电子枪电源(121),与所述控制器(11)信号连接,并与所述第一电子枪(122)连接,被配置为根据所述控制器(11)提供的时序控制信号调整所述第一电子束的束流负载;
第二电子枪(124),被配置为产生第二电子束;和
第二电子枪电源(123),与所述控制器(11)信号连接,并与所述第二电子枪(124)连接,被配置为根据所述控制器(11)提供的时序控制信号调整所述第二电子束的束流负载,
其中,所述控制器(11)被配置为在至少一个周期的每个周期中的第一时段使所述第一电子枪电源(121)调整所述第一电子束的束流负载为第一束流负载,并在每个周期中的第二时段使所述第二电子枪电源(123)调整所述第二电子束的束流负载为第二束流负载,所述第一时段与所述第二时段不重合。
8.根据权利要求7所述的检查系统,其中,所述微波环行器(15)的至少两个功率输出口包括第一功率输出口和第二功率输出口,所述第一功率输出口被分配来自从所述功率输入口馈入的微波信号,所述第二功率输出口被分配来自从所述第一功率输出口馈入的微波信号;
所述多个加速管(13)包括:
第一加速管(131),与所述第一功率输出口和所述第一电子枪(122)连接,被配置为通过所述第一功率输出口输出的第一输出微波信号对所述第一电子束进行加速;和
第二加速管(132),与所述第二功率输出口和所述第二电子枪(124)连接,被配置为通过所述第二功率输出口输出的第二输出微波信号对所述第二电子束进行加速。
9.根据权利要求8所述的检查系统,其中,所述微波环行器(15)的至少两个功率输出口还包括第三功率输出口,所述第三功率输出口被分配来自从所述第二功率输出口馈入的微波信号;所述辐射源(10)还包括:吸收负载(16),与所述第三功率输出口连接,被配置为吸收所述第三功率输出口输出的微波信号。
10.根据权利要求9所述的检查系统,其中,所述微波环行器(15)包括四端环流器(151)。
11.根据权利要求9所述的检查系统,其中,所述控制器(11)被配置为在所述第一时段使所述微波产生装置(14)馈入到所述微波环行器(15)的功率输入口的微波信号包括至少一个第一输入微波信号,并在所述第二时段使所述微波产生装置(14)馈入到所述微波环行器(15)的功率输入口的微波信号包括至少一个第二输入微波信号,所述至少一个第一输入微波信号的功率大于所述至少一个第二输入微波信号。
12.根据权利要求1所述的检查系统,其中,所述微波产生装置(14)包括磁控管(141)。
13.根据权利要求1所述的检查系统,还包括:
光学感测元件(51),与所述处理器(20)通讯连接,被配置为感测所述对象的对象特征,并发送给所述处理器(20),以便所述处理器(20)根据所述对象特征确定所述对象的类型;或
人机交互装置(52),与所述处理器(20)通讯连接,被配置为接收输入的类型信息,并发送给所述处理器(20),以便所述处理器(20)根据所述类型信息确定所述对象的类型。
14.根据权利要求5所述的检查系统,其中,所述探测器(30)为与所述处理器(20)通讯连接的双能探测器,所述双能探测器包括高能探测器阵列和低能探测器阵列,所述低能探测器阵列被配置为探测所述辐射源发出的具有第一辐射能量的辐射脉冲作用于所述对象时的信号,所述高能探测器阵列被配置为探测所述辐射源(10)发出的具有第二辐射能量的辐射脉冲作用于所述对象时的信号。
15.一种根据权利要求1~14任一所述的检查系统的检查方法,包括:
获得待检的对象的类型;
根据所述对象的类型确定与所述对象的类型对应的至少一种周期辐射组合,所述周期辐射组合为所述辐射源(10)在每个扫描周期内输出的至少一个辐射脉冲的时序排列;
在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合;
在所述对象被扫描期间,使所述辐射源(10)以被选择的周期辐射组合向对应的所述至少两个不同的部分发出辐射;
使探测器(30)探测辐射作用所述对象之后的信号;
其中,所述检查方法还包括:
获得所述对象的检查模式;
其中,选择与所述对象的至少两个不同的部分分别对应的周期辐射组合的操作包括:
根据所述对象的类型和所述对象的检查模式,在所述至少一种周期辐射组合中选择与所述对象的至少两个不同的部分分别对应的周期辐射组合。
16.根据权利要求15所述的检查方法,其中,所述获得待检的对象的类型的步骤包括:
响应于光学感测元件(51)感测的对象特征,根据所述对象特征确定所述对象的类型;或
响应于人机交互装置(52)被输入的类型信息,根据所述类型信息确定所述对象的类型。
CN202110777668.7A 2021-07-09 2021-07-09 检查系统及方法 Active CN113238293B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110777668.7A CN113238293B (zh) 2021-07-09 2021-07-09 检查系统及方法
PCT/CN2022/103281 WO2023280062A1 (zh) 2021-07-09 2022-07-01 检查系统及方法
EP22836813.0A EP4369054A1 (en) 2021-07-09 2022-07-01 Inspection system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110777668.7A CN113238293B (zh) 2021-07-09 2021-07-09 检查系统及方法

Publications (2)

Publication Number Publication Date
CN113238293A CN113238293A (zh) 2021-08-10
CN113238293B true CN113238293B (zh) 2021-11-02

Family

ID=77135273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110777668.7A Active CN113238293B (zh) 2021-07-09 2021-07-09 检查系统及方法

Country Status (3)

Country Link
EP (1) EP4369054A1 (zh)
CN (1) CN113238293B (zh)
WO (1) WO2023280062A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281821B (zh) * 2021-07-09 2023-10-13 同方威视技术股份有限公司 检查系统及方法
CN113238297B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 辐射检查系统及方法
CN113238293B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 检查系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105815A (zh) * 2008-02-28 2011-06-22 拉皮斯坎系统股份有限公司 驾驶通过扫描系统
CN104391339A (zh) * 2014-12-17 2015-03-04 同方威视技术股份有限公司 车型识别方法以及利用该方法的车辆快速检查系统
CN105333826A (zh) * 2015-12-04 2016-02-17 同方威视技术股份有限公司 车辆快速检查方法及系统
WO2016164411A1 (en) * 2015-04-07 2016-10-13 Mettler-Toledo, LLC Method of determining the mass of objects from a plurality of x-ray images taken at different energy level
CN106659448A (zh) * 2014-06-30 2017-05-10 爱克发医疗保健公司 用于配置x射线成像系统的方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9218933B2 (en) * 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
CN203416494U (zh) * 2013-06-21 2014-01-29 同方威视技术股份有限公司 驻波电子直线加速器及集装箱/车辆检查系统
CN104374785B (zh) * 2014-11-14 2017-12-05 北京君和信达科技有限公司 一种连续通过式辐射扫描系统和方法
CN113281821B (zh) * 2021-07-09 2023-10-13 同方威视技术股份有限公司 检查系统及方法
CN113238297B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 辐射检查系统及方法
CN113238298B (zh) * 2021-07-09 2022-03-04 同方威视技术股份有限公司 检查系统及方法
CN113238293B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 检查系统及方法
CN113329552A (zh) * 2021-07-09 2021-08-31 清华大学 射线产生设备及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105815A (zh) * 2008-02-28 2011-06-22 拉皮斯坎系统股份有限公司 驾驶通过扫描系统
CN106659448A (zh) * 2014-06-30 2017-05-10 爱克发医疗保健公司 用于配置x射线成像系统的方法和系统
CN104391339A (zh) * 2014-12-17 2015-03-04 同方威视技术股份有限公司 车型识别方法以及利用该方法的车辆快速检查系统
WO2016164411A1 (en) * 2015-04-07 2016-10-13 Mettler-Toledo, LLC Method of determining the mass of objects from a plurality of x-ray images taken at different energy level
CN105333826A (zh) * 2015-12-04 2016-02-17 同方威视技术股份有限公司 车辆快速检查方法及系统

Also Published As

Publication number Publication date
CN113238293A (zh) 2021-08-10
EP4369054A1 (en) 2024-05-15
WO2023280062A1 (zh) 2023-01-12

Similar Documents

Publication Publication Date Title
CN113238293B (zh) 检查系统及方法
CN113281821B (zh) 检查系统及方法
CN113238298B (zh) 检查系统及方法
US11852775B2 (en) High-speed security inspection system
US6459764B1 (en) Drive-through vehicle inspection system
US7483511B2 (en) Inspection system and method
CN1268940C (zh) 光谱整形的x射线检查系统
BE1017033A3 (nl) Methode en uitrusting voor het onderscheiden van materialen door gebruik te maken van snelle neutronen en continu spectrale x-stralen.
WO2016095774A1 (zh) 拖挂式多视角物品检查系统及其使用方法
EP4369052A1 (en) Radiation inspection system and method
CN108474865B (zh) 车辆舱室检查系统和方法
EP4369869A1 (en) Ray generating device and control method thereof
CN204314236U (zh) 一种连续通过式辐射扫描系统
US20120170713A1 (en) System for inspecting objects by means of electromagnetic rays, particular by means of x-rays
US10809415B2 (en) Imaging device for use in vehicle security check and method therefor
US20150378048A1 (en) Inspection of Baggage from within a Conveyance
CN111487262A (zh) 用于进行辐射成像和放射性物质监测的融合系统和方法
EP3491426B1 (en) Inspection system with source of radiation and method
CN110199209B (zh) 散射成像
Lee et al. Development of Dual Energy Container Inspection System for Harbor Security in KAERI
CN117630064A (zh) 一种检测系统
Smith et al. Mobile large-vehicle inspection system design issues

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Chen Zhiqiang

Inventor after: Li Yuanjing

Inventor after: Zhang Li

Inventor after: Wang Weizhen

Inventor after: Liu Bicheng

Inventor after: Zong Chunguang

Inventor after: Sun Shangmin

Inventor before: Wang Weizhen

Inventor before: Liu Bicheng

Inventor before: Zong Chunguang

Inventor before: Sun Shangmin