WO2023280057A1 - 检查系统及方法 - Google Patents

检查系统及方法 Download PDF

Info

Publication number
WO2023280057A1
WO2023280057A1 PCT/CN2022/103232 CN2022103232W WO2023280057A1 WO 2023280057 A1 WO2023280057 A1 WO 2023280057A1 CN 2022103232 W CN2022103232 W CN 2022103232W WO 2023280057 A1 WO2023280057 A1 WO 2023280057A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
ray
energy
pulse
pulses
Prior art date
Application number
PCT/CN2022/103232
Other languages
English (en)
French (fr)
Inventor
刘必成
王伟珍
宗春光
孙尚民
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to EP22836808.0A priority Critical patent/EP4369061A1/en
Publication of WO2023280057A1 publication Critical patent/WO2023280057A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00

Definitions

  • the present disclosure relates to the field of radiation inspection, and in particular to an inspection system and method.
  • the container inspection system or the vehicle inspection system will select different radiation sources according to the type of the object to be inspected. For example, container inspection systems use higher-energy radiation sources, while vehicle inspection systems for passenger cars use lower-energy radiation sources.
  • the inventors have found through research that the ray sources used in the inspection systems in the related art are usually only suitable for specific types of objects to be inspected.
  • the ray sources with lower ray energy have limited penetration and are difficult to penetrate containers and
  • the use of higher-energy radiation sources is likely to cause excessive exposure doses, which is difficult to meet the inspection requirements of the driver's drive-through mode.
  • embodiments of the present disclosure provide an inspection system and method, which can be adapted to radiation inspection of various types of objects to be inspected.
  • an inspection system comprising:
  • a radiation source configured to generate a plurality of radiation having different energies
  • a detector configured to detect a signal when the radiation emitted by the radiation source acts on at least one section of the object to be inspected
  • the processor connected in communication with the radiation source, is configured to adjust the energy of the radiation emitted by the radiation source according to the material parameter information characterizing at least one section of the object under inspection.
  • the ray source is configured to selectively generate a first ray pulse with a first energy, a second ray pulse with a second energy, or a first ray pulse with a third energy according to instructions from the processor.
  • the first energy is less than the second energy
  • the second energy is less than the third energy.
  • the first energy is less than 1 MeV, and both the second energy and the third energy are greater than 1 MeV.
  • the processor is connected in communication with the detector, and is configured to determine information characterizing material parameters of at least one section of the inspected object according to detection results of the detector.
  • the information characterizing the material parameters of at least one section of the inspected object includes the intensity of a series of attenuated signals detected by the detector when rays pass through the inspected object, or according to the series The gray value of the probe image formed by the signal.
  • the processor is configured to:
  • the radiation source to sequentially scan multiple sections of the object under inspection through radiation pulses, and determine information characterizing material parameters of at least one section of the object under inspection according to the detection signal of the detector;
  • the radiation source If it is determined according to the information that the material parameters of the current section of the object being scanned are not enough to match the material parameters of the radiation pulses currently emitted by the radiation source, then the radiation source emits a radiation pulse with a lower The energetic ray pulses continue to scan.
  • the processor is configured to:
  • the material parameters of the current section of the object being scanned are not enough to match the material parameters of the radiation pulses currently emitted by the radiation source, then make the radiation source emit radiation with the lowest energy.
  • the ray pulse continues to scan.
  • the processor is configured to:
  • the material parameters of the current section of the object being scanned exceed the material parameters that match the penetration capability of the radiation pulses currently emitted by the radiation source, then make the radiation source emit radiation with the highest energy. Ray pulses continue to scan.
  • the processor is configured to:
  • the radiation source is used to scan the inspected object through the first radiation pulse.
  • the processor is configured to, when the ray source scans the object under inspection by the second ray pulse or the third ray pulse, two adjacent second rays At least one first radiation pulse is inserted between pulses, between two adjacent third radiation pulses, or between adjacent second radiation pulses and third radiation pulses.
  • the processor is configured to insert at least one third radiation pulse between adjacent two third radiation pulses when the radiation source scans the object under inspection. Two-ray pulse.
  • the radiation source includes:
  • an electron beam generating device configured to generate a plurality of electron beams
  • a microwave generating device configured to generate microwaves
  • a microwave circulator has a power input port and at least two power output ports, and the power input port is connected to the microwave generating device through a waveguide structure;
  • a plurality of accelerating tubes connected to the electron beam generating device, and respectively connected to the at least two power output ports, are configured to respectively receive a plurality of electron beams generated by the electron beam generating device, and pass through the The microwaves received by the at least two power output ports respectively accelerate the plurality of electron beams so as to respectively generate a plurality of rays with different energies;
  • a controller signal-connected to the processor, the electron beam generating device and the microwave generating device, configured to sequentially control the microwave power of the microwave generating device according to instructions from the processor, and to The beam current loads of the electron beams generated by the electron beam generating device respectively corresponding to the plurality of accelerating tubes are controlled in time sequence.
  • the radiation source includes:
  • a first electron gun configured to generate a first electron beam
  • a first electron gun power supply signal-connected to the controller and connected to the first electron gun, configured to adjust the beam current load of the first electron beam according to a timing control signal provided by the controller;
  • a second electron gun configured to generate a second electron beam
  • a second electron gun power supply signal-connected to the controller and connected to the second electron gun, configured to adjust the beam current load of the second electron beam according to the timing control signal provided by the controller
  • the controller is configured to make the first electron gun power supply adjust the beam current load of the first electron beam to the first beam current load during the first period of each cycle of at least one cycle, and A second period in a cycle enables the second electron gun power supply to adjust the beam current load of the second electron beam to a second beam current load, and the first period does not overlap with the second period.
  • the at least two power output ports of the microwave circulator include a first power output port and a second power output port, and the first power output port is allocated from the power fed from the power input port a microwave signal, the second power outlet is distributed from the microwave signal fed in from the first power outlet;
  • the multiple accelerating tubes include:
  • a first accelerating tube connected to the first power output port and the first electron gun, configured to accelerate the first electron beam through a first output microwave signal output by the first power output port;
  • the second accelerating tube connected to the second power output port and the second electron gun, is configured to accelerate the second electron beam through the second output microwave signal output from the second power output port.
  • the at least two power output ports of the microwave circulator further include a third power output port, and the third power output port is allocated from the microwave signal fed in from the second power output port;
  • the ray generating device further includes: an absorbing load connected to the third power output port and configured to absorb microwave signals output by the third power output port.
  • the microwave circulator includes a four-terminal circulator.
  • the controller is configured to make the microwave signal fed into the power input port of the microwave circulator by the microwave generating device include at least one first input microwave signal during the first period, and
  • the microwave signal that the microwave generating device feeds into the power input port of the microwave circulator during the second period includes at least one second input microwave signal, and the power of the at least one first input microwave signal is greater than the power of the microwave circulator. At least one second input microwave signal.
  • the microwave generating device includes a magnetron.
  • an inspection method based on the aforementioned inspection system including:
  • the radiation source When the object to be inspected enters the scanning range of the radiation source, the radiation source is used to sequentially scan multiple sections of the object to be inspected through the radiation, and the detector detects that the radiation emitted by the radiation source acts on the object to be inspected. signal when at least one section of the object is detected;
  • the energy of the radiation emitted by the radiation source is adjusted according to the material parameter information characterizing at least one section of the inspected object.
  • the inspection method also includes:
  • the radiation source is continued to scan with the radiation pulse currently emitted;
  • the radiation source If it is determined according to the information that the material parameters of the current section of the object being scanned are not enough to match the material parameters of the radiation pulses currently emitted by the radiation source, then the radiation source emits a radiation pulse with a lower The energetic ray pulses continue to scan.
  • the inspection method also includes:
  • the material parameters of the current section of the object being scanned are not enough to match the material parameters of the radiation pulses currently emitted by the radiation source, then make the radiation source emit radiation with the lowest energy.
  • the ray pulse continues to scan.
  • the inspection method also includes:
  • the material parameters of the current section of the object being scanned exceed the material parameters that match the penetration capability of the radiation pulses currently emitted by the radiation source, then make the radiation source emit radiation with the highest energy. Ray pulses continue to scan.
  • the ray source is configured to selectively generate a first ray pulse with a first energy, a second ray pulse with a second energy, or a first ray pulse with a third energy according to instructions from the processor.
  • the first energy is less than the second energy
  • the second energy is less than the third energy; wherein, the inspection method further includes:
  • the radiation source is used to scan the inspected object through the first radiation pulse.
  • the ray source is configured to selectively generate a first ray pulse with a first energy, a second ray pulse with a second energy, or a first ray pulse with a third energy according to instructions from the processor.
  • the first energy is less than the second energy
  • the second energy is less than the third energy; wherein, the inspection method further includes:
  • At least one first radiation pulse is inserted between adjacent second radiation pulses and third radiation pulses.
  • the inspection method also includes:
  • At least one second radiation pulse is inserted between two adjacent third radiation pulses.
  • the energy of the radiation emitted by the radiation source is adjusted according to the information of the material parameters characterizing at least one section of the object to be inspected, so as to realize the adaptive radiation inspection of different types of objects to be inspected.
  • Fig. 1 is a schematic structural diagram of some embodiments of an inspection system according to the present disclosure
  • Figures 2-4 are schematic diagrams of the scanning state of the radiation source for inspecting the vehicle carrying goods according to some embodiments of the inspection system of the present disclosure
  • Fig. 5 is a schematic structural diagram of a radiation source in some embodiments of an inspection system according to the present disclosure
  • Fig. 6 is a schematic structural diagram of a radiation source in another embodiment of an inspection system according to the present disclosure.
  • Fig. 7 is a schematic structural view of a four-terminal circulator in some embodiments of an inspection system according to the present disclosure
  • FIG. 8 is a schematic flow diagram of some embodiments of an inspection method according to the present disclosure.
  • Fig. 9 is a schematic flowchart of another embodiment of the inspection method according to the present disclosure.
  • a specific device when it is described that a specific device is located between a first device and a second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to other devices, the specific device may be directly connected to the other device without an intervening device, or may not be directly connected to the other device but has an intervening device.
  • FIG. 1 is a schematic structural diagram of some embodiments of an inspection system according to the present disclosure.
  • FIG. 2-FIG. 4 are schematic diagrams of the scanning states of the radiation source for inspecting the vehicle carrying goods according to some embodiments of the inspection system of the present disclosure.
  • an inspection system includes: a radiation source 10 , a detector 30 and a processor 20 .
  • the radiation source 10 is configured to generate multiple radiations with different energies.
  • the radiation source 10 may include multiple radiation sources, which respectively output radiation pulses with different energies. In other embodiments, the radiation source 10 may include a single radiation source capable of outputting radiation pulses with different energies. There may be more than two types of radiation pulses with different energies realized by the radiation source 10, for example, three types of radiation pulses with energies of 300keV, 3MeV, and 6MeV. The radiation source 10 can generate X-ray pulses or other types of radiation pulses with different energies.
  • the ray source 10 is configured to selectively generate a first ray pulse with a first energy, a second ray pulse with a second energy, or a first ray pulse with a third energy according to instructions from the processor 20.
  • the first energy is less than the second energy
  • the second energy is less than the third energy.
  • the first energy may be less than 1 MeV, such as 225keV, 300keV or 450keV.
  • the first radiation pulse may be the radiation pulse with the lowest energy provided by the radiation source 10 in a working state.
  • Both the second energy and the third energy are greater than 1 MeV, such as 3 MeV and 6 MeV, 4 MeV and 6 MeV, 4 MeV and 7 MeV, or 6 MeV and 9 MeV, respectively.
  • the second ray pulse with the second energy and the third ray pulse with the third energy can be used as spare rays for improving penetrating power under different material parameter conditions.
  • the detector 30 is configured to detect a signal when the radiation emitted by the radiation source 10 acts on at least one section of the object 40 to be inspected.
  • the detector 30 can be arranged on the opposite side of the radiation source 10 .
  • the ray source 10 emits X-ray pulses
  • the X-rays pass through the object to be inspected and are attenuated to be detected by the detector 30 on the other side, thereby forming a series of signals, which can reflect the X-ray pulse of the object to be inspected at the current moment.
  • the inspected object may be a container, a truck carrying goods, a passenger car, a commercial vehicle, or a train.
  • the object to be inspected and the radiation source can move relative to each other.
  • the ray source remains stationary, and the object to be inspected moves by its own power or driven by other mechanisms.
  • the object to be inspected remains stationary, and the ray source moves by its own power or driven by other mechanisms.
  • the processor 20 is connected in communication with the radiation source 10 and is configured to adjust the energy of the radiation emitted by the radiation source 10 according to the material parameter information characterizing at least one section of the object 40 to be inspected.
  • material parameters may include one or more of thickness, density, and atomic number. That is, the attenuation of the intensity of the ray after the ray passes through the inspected object depends on at least one of the density, thickness and atomic number on the path passed. For example, after the ray passes through the object to be inspected, the weakening of the ray intensity depends on the density and thickness of the path.
  • the material parameters there is a certain correspondence between the material parameters and the ray energy emitted by the ray source. For example, when the material parameter exceeds the corresponding relationship value, the ray pulse cannot penetrate the cargo, resulting in uneven scanning; while when the material parameter is less than the corresponding relationship value, most of the ray pulse penetrates the object under inspection, resulting in energy waste and radiation dose. risk.
  • the information characterizing the material parameters of at least one section of the object 40 to be inspected is the calculated material parameters.
  • the information characterizing the material parameters of at least one section of the inspected object 40 may include the intensity of a series of attenuated signals detected by the detector 30 when the ray passes through the inspected object 40 . This information may also include the grayscale values of the detection image formed from the column of signals. When the signal intensity of the series is too low or the gray value is too small, the ray pulse emitted by the ray source 10 will be more attenuated when penetrating the object to be inspected. Low. When the signal intensity of the series is too high or the gray value is too large, the radiation pulse emitted by the radiation source 10 will be less attenuated when penetrating the object to be inspected. On the high side.
  • the processor 20 may acquire the material parameter information characterizing at least one section of the object to be inspected in various ways.
  • the processor 20 is connected in communication with the detector 30 , and is configured to determine information characterizing material parameters of at least one section of the inspected object 40 according to detection results of the detector 30 .
  • the processor 20 may also receive directly input information characterizing material parameters of at least one section of the object 40 to be inspected.
  • the energy of the rays emitted by the ray source is adjusted according to the information representing the material parameters of at least one section of the object to be inspected, so that the energy of the rays matches the material parameters of the scanned section, thereby realizing different types of detected objects.
  • the processor 20 is configured to enable the radiation source 10 to sequentially scan multiple sections of the object 40 through radiation pulses, and determine the characteristic according to the detection signal of the detector 30
  • the material parameter information of at least one section of the object under inspection 40 For example, the object 40 to be inspected moves along a set direction relative to the radiation source 10 , so that the radiation source 10 can continuously scan multiple sections of the object 40 to be inspected sequentially.
  • the processor 20 can determine the information characterizing the material parameters of each section of the object 40 to be inspected through the detection signal of the detector 30 .
  • the radiation source 10 For the processor 20, if it is determined according to the information that the material parameters of the current section of the object 40 being scanned match the penetration capability of the radiation pulse currently emitted by the radiation source 10, then the radiation source 10 Continue scanning with the currently emitted radiation pulse. If it is determined according to the information that the material parameter of the current section of the object 40 being scanned exceeds the material parameter matching the penetration capability of the radiation pulse currently emitted by the radiation source 10, then the radiation source 10 is made to emit a Higher energy pulses of radiation continue to scan. If it is determined according to the information that the material parameters of the current section of the object 40 being scanned are not enough to match the material parameters of the radiation pulses currently emitted by the radiation source 10, then the radiation source 10 is made to emit The radiation pulses with lower energy continue to scan.
  • the processor 20 can adaptively adjust the energy level of the ray pulses emitted by the ray source 10 according to the material parameters of the currently scanned section of the object 40 to make the current section of the object 40 scanned
  • the material parameters of the section match the penetration capability of the radiation pulse currently emitted by the radiation source 10 .
  • the adaptive adjustment of the processor can be adjusted step by step according to the order of energy magnitude for a ray source that can realize more than three kinds of ray pulses with different energies, or it can be adjusted step by step.
  • the processor 20 may also be configured to: if it is determined according to the information that the material parameters of the current section of the object 40 being scanned are insufficient to match the radiation pulse currently emitted by the radiation source 10 If the material parameters match the penetrability, the ray source 10 will send out the ray pulse with the lowest energy to continue scanning. In other words, when selecting a ray pulse with lower energy, directly switch to the ray pulse with the lowest energy among the various ray pulses that can be realized by the ray source. In the direction of increasing the energy, it can still be adjusted step by step.
  • the processor 20 is configured to: if it is determined according to the information that the material parameter of the current section of the object 40 being scanned exceeds the penetration of the radiation pulse currently emitted by the radiation source 10 If the material parameters match the permeability, the ray source 10 will send out ray pulses with the highest energy to continue scanning. In other words, when selecting a ray pulse with higher energy, directly switch to the ray pulse with the highest energy among the various ray pulses that can be realized by the ray source. In the direction of lowering the energy, it can still be adjusted step by step.
  • ray pulse with higher energy refers to a ray pulse with higher energy than the ray pulse emitted by the current ray source
  • the meaning of "ray pulse with the highest energy” refers to the ray pulse that can be achieved by the ray source.
  • the meaning of the above-mentioned “ray pulse with lower energy” refers to a ray pulse with lower energy than the ray pulse emitted by the current ray source, and the meaning of "ray pulse with the lowest energy” refers to the ray pulse that can be achieved by the ray source. The lowest energy ray pulse.
  • the radiation source 10 capable of realizing three kinds of radiation pulses as an example.
  • the radiation source 10 can emit a first radiation pulse with a first energy, a second radiation pulse with a second energy and a third radiation pulse with a third energy.
  • the first energy is less than the second energy
  • the second energy is less than the third energy.
  • the radiation source 10 can be used to scan the object 40 to be inspected by using the first radiation pulse. This reduces unnecessary energy consumption on non-relevant areas of the object 40 to be examined, and also improves radiation safety.
  • the radiation source 10 can first emit a first radiation pulse p1 with a first energy by identifying the position of the vehicle head 41 . If the signal detected by the detector 30 after the first radiation pulse p1 passes through the section of the vehicle head is within the normal range, the radiation source 10 continues to emit the first radiation pulse p2 with the first energy to continue scanning the second section of the vehicle head.
  • the distance between the sections of the object to be inspected is related to the beam output frequency and the scanning speed of the radiation source (that is, the relative movement speed between the radiation source 10 and the object to be inspected).
  • the first ray pulse p2 may pass through objects with high density, high thickness or high atomic number (such as an engine), at this time, the signal detected by the detector attenuates more, so the signal intensity is weaker, then The ray source 10 can emit a second ray pulse p3 with a higher level of energy to continue scanning multiple sections corresponding to the engine.
  • the signal received by the detector has less attenuation and higher intensity, so the ray source can send out the first ray pulses p4 and p5 of lower energy level to the multiple corresponding to the gap 42 respectively.
  • the section is scanned.
  • the signal received by the detector is more attenuated and the intensity is lower, so the ray source can emit a higher level of energy
  • the second ray pulses p6 and p7 scan multiple sections corresponding to the cargo 43 respectively.
  • the signal received by the detector is more attenuated and the intensity is lower, so the ray source can emit a third level of higher energy.
  • the ray pulses p8 and p9 respectively scan multiple sections corresponding to the cargo 44 .
  • the radiation source 10 may stop emitting beams.
  • the processor judges the detection signal of the detector, it can judge according to the maximum gray value and the minimum gray value of the image formed based on the detection signal, such as judging the respective values of the maximum gray value and the minimum gray value Value range, the difference between the maximum gray value and the minimum gray value, etc.
  • the processor 20 is configured to perform When the object 40 is scanned, at least one first ray pulse is inserted between two adjacent second ray pulses, between two adjacent third ray pulses, or between adjacent second ray pulses and third ray pulses .
  • the beam output logic of the various ray pulses used by the ray source in Figure 3 is basically the same as that in Figure 2, but compared to Figure 2, the beam output frequency of the ray source is 80Hz, and a first pulse is inserted between each ray pulse based on Figure 2 One ray pulse, so that the interval of each scanned section of the object under inspection is reduced to 5mm.
  • a first ray pulse i1 is inserted between adjacent second ray pulses of multiple second ray pulses corresponding to multiple sections of the engine and cargo 43 in FIG.
  • a first ray pulse i2 is inserted between adjacent third ray pulses of multiple third ray pulses of each section.
  • the first radiation pulse is also inserted between adjacent second radiation pulses and third radiation pulses.
  • first radiation pulses may also be inserted between adjacent first radiation pulses in FIG. 2 .
  • the distance between each section to be scanned can be reduced, and more abundant information of the object to be inspected can be obtained, and the energy of the inserted first ray pulse is low, which will not cause great pressure on radiation protection.
  • the processor 20 is configured to, when the radiation source 10 scans the object 40 by the third radiation pulse, between two adjacent third radiation pulses At least one second radiation pulse is inserted in between.
  • Fig. 4 inserts a second ray pulse i3 between adjacent third ray pulses when scanning multiple sections of the cargo 44 in Fig. 2 .
  • the first ray pulse i1 is inserted between adjacent second ray pulses of the plurality of second ray pulses respectively corresponding to the multiple sections of the engine and the cargo 43 .
  • the first radiation pulse i2 is inserted between the adjacent second radiation pulse i3 and the third radiation pulse.
  • the above example applies to passenger cars as well as trucks that tow containers.
  • the energy of the first ray pulse and the second ray pulse used can make the radiation dose received by the driver and passengers not exceed the safety level required by the regulations .
  • Fig. 5 is a schematic structural diagram of a radiation source in some embodiments of an inspection system according to the present disclosure.
  • the radiation source 10 includes: an electron beam generating device 12 , a microwave generating device 14 , a microwave circulator 15 , multiple accelerating tubes 13 and a controller 11 .
  • the electron beam generating device 12 is configured to generate a plurality of electron beams.
  • the electron beam generating device 12 can generate multiple electron beams with the same or different beam current loads by the multiple electron guns through different high voltage amplitudes generated by the pulse modulator.
  • the microwave generating device 14 is configured to generate microwaves. In some embodiments, the microwave generating device 14 can generate varying operating currents through voltages of different magnitudes output by the pulse modulator, thereby generating microwave signals of different powers. In some other embodiments, the microwave generating device 14 can also generate microwave signals of different powers by changing the strength of the magnetic field.
  • the microwave generating device 14 includes a magnetron 141 .
  • the microwave circulator 15 has a power input port and at least two power output ports, and the power input port is connected to the microwave generating device 14 through a waveguide structure.
  • the microwave circulator 15 has isolation characteristics and power distribution characteristics, and can transmit microwave energy in a single direction. By connecting a single microwave generating device 14 with the power input port of the microwave circulator 15, the microwave energy fed from the power input port can be distributed to a specific power output port, and the reflected microwave received by the power output port Energy can be distributed to another power outlet. Utilizing the characteristics of the microwave circulator 15 and the timing control of the microwave generating device 14, the microwave energy output of more than two ports can be realized through the microwave generating device 14 as a single microwave power source.
  • Multiple accelerating tubes 13 are connected to the electron beam generating device 12 and connected to the at least two power output ports respectively.
  • a plurality of accelerating tubes 13 can respectively receive a plurality of electron beams generated by the electron beam generating device 12, and respectively accelerate the plurality of electron beams through microwaves received from the at least two power output ports, so as to generate Multiple rays with different energies.
  • the accelerated electron beam can generate radiation, such as X-rays, by bombarding a target.
  • the controller 11 is connected with the electron beam generating device 12 and the microwave generating device 14 in signal connection, and is configured to perform sequential control on the microwave power of the microwave generating device 14, and to control the microwave power generated by the electron beam generating device 12 respectively. Timing control is performed corresponding to the beam current loads of the electron beams of the plurality of accelerating tubes 13 . Through the timing control of the microwave generating device 14 and the electron beam generating device 12 by the controller 11, a plurality of accelerating tubes 13 can generate rays of different energies through one microwave power source, thereby meeting the detection requirements of multi-energy spectrum coverage of the article, While ensuring the penetrability, improve the system silk resolution index.
  • the electron beam generating device 2 includes: a first electron gun 122 , a first electron gun power supply 121 , a second electron gun 124 and a second electron gun power supply 123 .
  • the first electron gun 122 is configured to generate a first electron beam.
  • the second electron gun 124 is configured to generate a second electron beam.
  • Each electron gun power supply and microwave generating device can be powered by the same AC power supply (such as 380V).
  • the first electron gun power supply 121 is signal-connected to the controller 11 and connected to the first electron gun 122 , configured to adjust the beam current load of the first electron beam according to the timing control signal provided by the controller 11 .
  • the second electron gun power supply 123 is signal-connected to the controller 11 and connected to the second electron gun 124 , configured to adjust the beam current load of the second electron beam according to the timing control signal provided by the controller 11 .
  • the controller 11 can adjust the voltage applied to the electron gun by sending a timing control signal (such as a pulse width modulation signal) to the electron gun power supply, so as to further adjust the beam current load of the electron beam.
  • the at least two power output ports of the microwave circulator 15 include a first power output port b and a second power output port c, and the first power output port b is allocated from The microwave signal fed in from the power input port a, the second power output port c is distributed from the microwave signal fed in from the first power output port b.
  • the microwave signal fed in from the first power output port b may be a reflected microwave signal that is output from the first power output port b and then reflected back.
  • the plurality of accelerating tubes 13 includes: a first accelerating tube 131 and a second accelerating tube 132 .
  • the first accelerating tube 131 is connected to the first power output port b and the first electron gun 122, and is configured to conduct the first electron beam through the first output microwave signal output from the first power output port b. accelerate.
  • the second accelerating tube 132 is connected to the second power output port c and the second electron gun 124, and is configured to perform the second electron beam through the second output microwave signal output from the second power output port c. accelerate.
  • the accelerated first electron beam and the second electron beam can bombard the target to obtain X-rays with different energies.
  • the electron beam generating device may include more than three electron guns and their corresponding electron gun power supplies, and the ray generating equipment includes more than three accelerating tubes. Correspondingly, each accelerating tube is connected to three The above power output ports are connected, and the output of more kinds of ray energy is realized through the timing control of the controller, which meets the requirements of multi-energy spectrum detection and multi-angle scanning of objects.
  • At least two power output ports of the microwave circulator 15 further include a third power output port d, and the third power output port d is allocated from the second power output port c
  • the microwave signal fed in from the second power output port c may be a reflected microwave signal that is output from the second power output port c and then reflected back.
  • the ray generating device may further include an absorption load 16 connected to the third power output port d. The absorption load can absorb the microwave signal output by the third power output port d, so as to realize the isolation function and prevent the microwave signal from returning to the power input port of the microwave circulator.
  • the microwave circulator 15 includes a four-port circulator (Four-port Circulator) 151.
  • the four-terminal circulator 151 has four ports, which are respectively a power input port a, a first power output port b, a second power output port c, and a third power output port d along the power transmission sequence, that is, the four-terminal circulator
  • the power transmission law of 151 is a->b->c->d.
  • the microwave circulator 15 may also include a combined structure in which multiple three-terminal circulators or four-terminal circulators are connected in series.
  • Fig. 7 shows the structure of a ferrite four-terminal circulator.
  • the four-terminal circulator is a coupling device including a double T joint, a non-reciprocal phase shifter based on ferrite field shift effect and a three-decibel (3dB) coupler.
  • the electromagnetic wave with the amplitude E0 is input through the power input port a. Due to the characteristics of the double T (H branch), at the AB plane, there will be electromagnetic wave outputs with the same amplitude E 0 /(2 ⁇ (1/2)) and the same phase in the waveguides I and II.
  • the non-reciprocal phase shifter can make the phase of the electromagnetic wave in the waveguide I lead 90° relative to the phase in the waveguide II when the electromagnetic wave is transmitted from the AB surface to the CD surface in the forward direction (conversely, if the electromagnetic wave is transmitted from the CD surface to the AB surface in the reverse direction,
  • the phase in waveguide II is 90° ahead of waveguide I)
  • the 3dB coupler between the first power output port b and the third power output port d from the CD plane can make the microwave power in waveguide I and waveguide II equally divided
  • the phase shift is increased by 90° during coupling transmission, so that the waveguide I and waveguide II are respectively output to the first power output port b and the third power output port d
  • the microwave power is all output from the first power output port b, but not output from the third power output port d.
  • the microwave power input from the first power output port b is distributed to the output of the second power output port c
  • the microwave power input from the second power output port c is distributed to the output of the third power output port d.
  • the reflected microwave input from the first power output port b is distributed to the output of the second power output port c, and the reflected wave from the second power output port c will be transmitted to the third power output port d and absorbed by the load absorbed.
  • the timing control of the controller 11 enables the first accelerating tube connected to the first power output port b to obtain greater power and energy to output at least one higher-energy X-ray, for example, the output energy X-rays of 6 MeV and 3 MeV; and the timing control of the controller 11 enables the second accelerating tube connected to the second power output port c to obtain smaller power and energy to output at least one lower-energy X-ray, For example, X-rays with an output energy of 0.5 to 1 MeV are output.
  • the power distribution is realized through the different microwave powers output by different power output ports of the microwave circulator, and the acceleration tubes with different energies can be driven by using the power distribution characteristics of the microwave circulator to meet various detection requirements.
  • FIG. 8 is a schematic flow diagram of some embodiments of inspection methods according to the present disclosure.
  • the inspection method includes: step S1 and step S2.
  • step S1 when the object 40 to be inspected enters the scanning range of the radiation source 10, the radiation source 10 is made to sequentially scan multiple sections of the object 40 to be inspected by radiation, and the detector 30 is made to detect the A signal when the radiation emitted by the radiation source 10 acts on at least one section of the object 40 to be inspected.
  • step S2 during the process of scanning the inspected object 40 , the energy of the radiation emitted by the radiation source 10 is adjusted according to the information characterizing the material parameters of at least one section of the inspected object 40 .
  • the energy adjustment process in step S2 can be performed separately when scanning each section in step S1.
  • Fig. 9 is a schematic flowchart of another embodiment of the inspection method according to the present disclosure.
  • the inspection method further includes: step S3 to step S7.
  • step S3 information characterizing material parameters of at least one section of the object 40 to be inspected is determined according to detection results of the detector 30 .
  • step S4 it is judged according to the information whether the material parameters of the current section of the object 40 being scanned match the penetration ability of the radiation pulse currently emitted by the radiation source 10, and if they match, step S5 is executed, even if The radiation source 10 continues scanning with the currently emitted radiation pulses.
  • step S6 is executed, that is, the radiation source 10 emits Ray pulses with higher energy continue to scan.
  • step S6 is performed, that is, the radiation source 10 Send out pulses of radiation with lower energy to continue scanning.
  • the ray source 10 can directly send out the ray pulse with the lowest energy to continue scanning.
  • the The ray source 10 directly emits ray pulses with the highest energy to continue scanning.
  • the ray source 10 is configured to selectively generate a first ray pulse with a first energy, a second ray pulse with a second energy, or a ray pulse with a first energy according to an instruction of the processor 20.
  • the inspection method further includes: when the inspected object 40 enters the scanning range of the radiation source 10 , enabling the radiation source 10 to scan the inspected object 40 through the first radiation pulse.
  • the inspection method further includes: when the radiation source 10 scans the inspected object 40 through the second radiation pulse or the third radiation pulse, At least one first radiation pulse is inserted between two adjacent second radiation pulses, between two adjacent third radiation pulses, or between adjacent second radiation pulses and third radiation pulses.
  • the inspection method further includes: when the radiation source 10 scans the object 40 by the third radiation pulse, between two adjacent third radiation pulses At least one second radiation pulse is inserted in between.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本公开涉及一种检查系统及方法。检查系统包括:射线源(10),被配置为产生多种具有不同能量的射线;探测器(30),被配置为检测所述射线源(10)发出的射线作用在被检对象(40)的至少一个截面时的信号;和处理器(20),与所述射线源(10)通讯连接,被配置为根据表征所述被检对象(40)的至少一个截面的物质参数的信息调整所述射线源(10)发出的射线的能量。本公开实施例能够适应多种类型的被检物的辐射检查。

Description

检查系统及方法
相关申请的交叉引用
本申请是以CN申请号为202110777904.5,申请日为2021年7月9日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及辐射检查领域,尤其涉及一种检查系统及方法。
背景技术
在相关技术中,集装箱检查系统或者车辆检查系统会针对被检物的类型选择不同的射线源。例如,集装箱检查系统采用较高射线能量的射线源,而针对乘用车的车辆检查系统则采用较低射线能量的射线源。
发明内容
发明人经研究发现,相关技术中的检查系统所采用的射线源通常只适用于特定类型的被检物,例如采用较低射线能量的射线源发出的射线穿透力有限,难以穿透集装箱及内部货物,而采用较高射线能量的射线源容易造成过度的照射剂量,难以满足驾驶员驾车通过模式的检查需求。
有鉴于此,本公开实施例提供一种检查系统及方法,能够适应多种类型的被检物的辐射检查。
在本公开的一个方面,提供一种检查系统,包括:
射线源,被配置为产生多种具有不同能量的射线;
探测器,被配置为检测所述射线源发出的射线作用在被检对象的至少一个截面时的信号;和
处理器,与所述射线源通讯连接,被配置为根据表征所述被检对象的至少一个截面的物质参数的信息调整所述射线源发出的射线的能量。
在一些实施例中,所述射线源被配置为根据所述处理器的指令选择性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量。
在一些实施例中,所述第一能量小于1MeV,所述第二能量和所述第三能量均大于1MeV。
在一些实施例中,所述处理器与所述探测器通讯连接,被配置为根据所述探测器的探测结果确定表征所述被检对象的至少一个截面的物质参数的信息。
在一些实施例中,表征所述被检对象的至少一个截面的物质参数的信息包括射线穿过所述被检对象且被所述探测器探测到的衰减的一列信号的强度,或根据该列信号形成的探测图像的灰度值。
在一些实施例中,所述处理器被配置为:
使所述射线源通过射线脉冲对所述被检对象的多个截面依次进行扫描,并根据所述探测器的检测信号确定表征所述被检对象的至少一个截面的物质参数的信息;
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数与所述射线源当前发出的射线脉冲的穿透能力匹配,则使所述射线源以当前发出的射线脉冲继续扫描;
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数超出与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有更高能量的射线脉冲继续扫描;
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数不足于与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有更低能量的射线脉冲继续扫描。
在一些实施例中,所述处理器被配置为:
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数不足于与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有最低能量的射线脉冲继续扫描。
在一些实施例中,所述处理器被配置为:
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数超出与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有最高能量的射线脉冲继续扫描。
在一些实施例中,所述处理器被配置为:
在所述被检对象进入所述射线源的扫描范围时,使所述射线源通过所述第一射线脉冲对所述被检对象进行扫描。
在一些实施例中,所述处理器被配置为在所述射线源通过所述第二射线脉冲或所述第三射线脉冲对所述被检对象进行扫描时,在相邻两个第二射线脉冲之间、相邻两个第三射线脉冲之间或相邻的第二射线脉冲和第三射线脉冲之间插入至少一个第一射线脉冲。
在一些实施例中,所述处理器被配置为在所述射线源通过所述第三射线脉冲对所述被检对象进行扫描时,在相邻两个第三射线脉冲之间插入至少一个第二射线脉冲。
在一些实施例中,所述射线源包括:
电子束产生装置,被配置为产生多个电子束;
微波产生装置,被配置为产生微波;
微波环行器,具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置连接;
多个加速管,与所述电子束产生装置连接,并分别与所述至少两个功率输出口连接,被配置为分别接收所述电子束产生装置产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多条具有不同能量的射线;和
控制器,与所述处理器、所述电子束产生装置和所述微波产生装置信号连接,被配置为根据所述处理器的指令,对所述微波产生装置的微波功率进行时序控制,以及对所述电子束产生装置产生的分别对应于所述多个加速管的电子束的束流负载进行时序控制。
在一些实施例中,所述射线源包括:
第一电子枪,被配置为产生第一电子束;
第一电子枪电源,与所述控制器信号连接,并与所述第一电子枪连接,被配置为根据所述控制器提供的时序控制信号调整所述第一电子束的束流负载;
第二电子枪,被配置为产生第二电子束;和
第二电子枪电源,与所述控制器信号连接,并与所述第二电子枪连接,被配置为根据所述控制器提供的时序控制信号调整所述第二电子束的束流负载,
其中,所述控制器被配置为在至少一个周期的每个周期中的第一时段使所述第一电子枪电源调整所述第一电子束的束流负载为第一束流负载,并在每个周期中的第二时段使所述第二电子枪电源调整所述第二电子束的束流负载为第二束流负载,所述第一时段与所述第二时段不重合。
在一些实施例中,所述微波环行器的至少两个功率输出口包括第一功率输出口和第二功率输出口,所述第一功率输出口被分配来自从所述功率输入口馈入的微波信号,所述第二功率输出口被分配来自从所述第一功率输出口馈入的微波信号;
所述多个加速管包括:
第一加速管,与所述第一功率输出口和所述第一电子枪连接,被配置为通过所述第一功率输出口输出的第一输出微波信号对所述第一电子束进行加速;和
第二加速管,与所述第二功率输出口和所述第二电子枪连接,被配置为通过所述第二功率输出口输出的第二输出微波信号对所述第二电子束进行加速。
在一些实施例中,所述微波环行器的至少两个功率输出口还包括第三功率输出口,所述第三功率输出口被分配来自从所述第二功率输出口馈入的微波信号;所述射线产生设备还包括:吸收负载,与所述第三功率输出口连接,被配置为吸收所述第三功率输出口输出的微波信号。
在一些实施例中,所述微波环行器包括四端环流器。
在一些实施例中,所述控制器被配置为在所述第一时段使所述微波产生装置馈入到所述微波环行器的功率输入口的微波信号包括至少一个第一输入微波信号,并在所述第二时段使所述微波产生装置馈入到所述微波环行器的功率输入口的微波信号包括至少一个第二输入微波信号,所述至少一个第一输入微波信号的功率大于所述至少一个第二输入微波信号。
在一些实施例中,所述微波产生装置包括磁控管。
在本公开的一个方面,提供一种基于前述检查系统的检查方法,包括:
在被检对象进入射线源的扫描范围时,使所述射线源通过射线对所述被检对象的多个截面依次进行扫描,并使探测器检测所述射线源发出的射线作用在所述被检对象的至少一个截面时的信号;
在扫描所述被检对象的过程中,根据表征所述被检对象的至少一个截面的物质参数的信息调整所述射线源发出的射线的能量。
在一些实施例中,所述检查方法还包括:
根据所述探测器的探测结果确定表征所述被检对象的至少一个截面的物质参数的信息;
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数与所述射线源当前发出的射线脉冲的穿透能力匹配,则使所述射线源以当前发出的射线脉冲继续 扫描;
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数超出与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有更高能量的射线脉冲继续扫描;
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数不足于与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有更低能量的射线脉冲继续扫描。
在一些实施例中,所述检查方法还包括:
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数不足于与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有最低能量的射线脉冲继续扫描。
在一些实施例中,所述检查方法还包括:
如果根据所述信息确定所述被检对象被扫描的当前截面的物质参数超出与所述射线源当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源发出具有最高能量的射线脉冲继续扫描。
在一些实施例中,所述射线源被配置为根据所述处理器的指令选择性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量;其中,所述检查方法还包括:
在所述被检对象进入所述射线源的扫描范围时,使所述射线源通过所述第一射线脉冲对所述被检对象进行扫描。
在一些实施例中,所述射线源被配置为根据所述处理器的指令选择性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量;其中,所述检查方法还包括:
在所述射线源通过所述第二射线脉冲或所述第三射线脉冲对所述被检对象进行扫描时,在相邻两个第二射线脉冲之间、相邻两个第三射线脉冲之间或相邻的第二射线脉冲和第三射线脉冲之间插入至少一个第一射线脉冲。
在一些实施例中,所述检查方法还包括:
在所述射线源通过所述第三射线脉冲对所述被检对象进行扫描时,在相邻两个第 三射线脉冲之间插入至少一个第二射线脉冲。
因此,根据本公开实施例,根据表征被检对象的至少一个截面的物质参数的信息调整射线源所发出的射线的能量,从而实现不同类型的被检物的适应性辐射检查。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开检查系统的一些实施例的结构示意图;
图2-图4分别是根据本公开检查系统的一些实施例对拖载货物的车辆进行检查的射线源扫描状态的示意图;
图5是根据本公开检查系统的一些实施例中射线源的结构示意图;
图6是根据本公开检查系统的另一些实施例中射线源的结构示意图;
图7是根据本公开检查系统的一些实施例中四端环流器的结构示意图;
图8是根据本公开检查方法的一些实施例的流程示意图;
图9是根据本公开检查方法的另一些实施例的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变 后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
图1是根据本公开检查系统的一些实施例的结构示意图。图2-图4分别是根据本公开检查系统的一些实施例对拖载货物的车辆进行检查的射线源扫描状态的示意图。参考图1-图4,在一些实施例中,检查系统包括:射线源10、探测器30和处理器20。射线源10被配置为产生多种具有不同能量的射线。
在一些实施例中,射线源10可包括多个射线源,分别输出不同能量的射线脉冲。在另一些实施例中,射线源10可包括单射线源,能够输出不同能量的射线脉冲。射线源10所实现的具有不同能量的射线脉冲的种类可以为两个以上,例如具有300keV、3MeV、6MeV能量的三种射线脉冲。射线源10可产生具有不同能量的X射线脉冲或其他种类的射线脉冲。
在一些实施例中,射线源10被配置为根据所述处理器20的指令选择性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量。
第一能量可小于1MeV,例如为225keV、300keV或450keV。第一射线脉冲可为射线源10在工作状态下提供的具有最低能量的射线脉冲。
第二能量和所述第三能量均大于1MeV,例如分别为3MeV和6MeV、4MeV和6MeV、4MeV和7MeV、或6MeV和9MeV等。具有第二能量的第二射线脉冲和具有第三能量的第三射线脉冲可作为不同物质参数条件下提高穿透力的备用射线。
探测器30被配置为检测所述射线源10发出的射线作用在被检对象40的至少一个截面时的信号。在一些实施例中,探测器30可被设置在射线源10的对侧。例如在 射线源10发出X射线脉冲时,X射线穿过被检对象衰减后被位于另一侧的探测器30探测到,从而形成一列信号,该列信号可反映了被检对象在当前时刻X射线所穿过的截面的物质参数信息,以便体现被检对象的内部结构。
在本实施例中,被检对象可以为集装箱、拖载货物的货车、乘用车、商用车或者列车等。在检查过程中,被检对象与射线源可相对运动。在一些实施例中,射线源保持静止,被检对象通过自身动力实现移动或被其他机构驱动而移动。在另一些实施例中,被检对象保持静止,射线源通过自身动力实现移动或被其他机构驱动而移动。
处理器20与所述射线源10通讯连接,被配置为根据表征所述被检对象40的至少一个截面的物质参数的信息调整所述射线源10发出的射线的能量。
射线穿过被检对象时,与被检对象发生相互作用,被检对象吸收的份额与穿行路径上的物质参数相关。在一些实施例中,物质参数可包括厚度、密度及原子序数中的一种或多种信息。即射线穿过被检物体后射线强度的减弱情况取决于所经路径上的密度、厚度和原子序数中的至少一种。例如射线穿过被检物体后射线强度的减弱情况取决于所经路径上的密度和厚度。
在辐射扫描系统中,物质参数与射线源发出的射线能量存在一定的对应关系。例如物质参数在超过对应关系值时,射线脉冲无法穿透货物,导致扫描不均匀,而物质参数在不足于对应关系值时,则大部分射线脉冲穿透被检物体,导致能量浪费和射线剂量风险。
在一些实施例中,表征所述被检对象40的至少一个截面的物质参数的信息即为计算出的物质参数。在另一些实施例中,表征所述被检对象40的至少一个截面的物质参数的信息可包括射线穿过所述被检对象40且被所述探测器30探测到的衰减的一列信号的强度。该信息也可以包括根据该列信号形成的探测图像的灰度值。当该列信号强度过低或灰度值过小时,射线源10发出的射线脉冲在穿透被检对象时较多地衰减,此时该射线脉冲的能量相对于该截面的物质参数来说偏低。当该列信号强度过高或灰度值过大时,射线源10发出的射线脉冲在穿透被检对象时较少地衰减,此时该射线脉冲的能量相对于该截面的物质参数来说偏高。
处理器20可通过多种方式来获得表征被检对象的至少一个截面的物质参数的信息。在一些实施例中,处理器20与所述探测器30通讯连接,被配置为根据所述探测器30的探测结果确定表征所述被检对象40的至少一个截面的物质参数的信息。在另一些实施例中,处理器20也可以接收直接输入的表征所述被检对象40的至少一个截 面的物质参数的信息。
在上述实施例中,根据表征被检对象的至少一个截面的物质参数的信息调整射线源所发出的射线的能量,使得射线能量与被扫描的截面的物质参数相匹配,从而实现不同类型的被检物的适应性辐射检查。
在一些实施例中,所述处理器20被配置为使所述射线源10通过射线脉冲对所述被检对象40的多个截面依次进行扫描,并根据所述探测器30的检测信号确定表征所述被检对象40的至少一个截面的物质参数的信息。例如,被检对象40相对于射线源10沿设定方向运动,这样射线源10可连续地对被检对象40的多个截面按顺序地扫描。相应地,处理器20可通过探测器30的检测信号确定出表征被检对象40的各个截面的物质参数的信息。
对于处理器20来说,如果根据所述信息确定所述被检对象40被扫描的当前截面的物质参数与所述射线源10当前发出的射线脉冲的穿透能力匹配,则使所述射线源10以当前发出的射线脉冲继续扫描。如果根据所述信息确定所述被检对象40被扫描的当前截面的物质参数超出与所述射线源10当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源10发出具有更高能量的射线脉冲继续扫描。如果根据所述信息确定所述被检对象40被扫描的当前截面的物质参数不足于与所述射线源10当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源10发出具有更低能量的射线脉冲继续扫描。
换句话说,处理器20可根据被检对象40当前被扫描的截面的物质参数自适应地调整射线源10所发出的射线脉冲的能量的高低,使被检对象40被扫描的当前截面之后的截面的物质参数与所述射线源10当前发出的射线脉冲的穿透能力匹配。
这里处理器的自适应调整对于可实现三种以上不同能量的射线脉冲的射线源来说,可以按照能量大小的排序逐级调整,也可以跳级调整。
在另一些实施例中,处理器20也可以被配置为:如果根据所述信息确定所述被检对象40被扫描的当前截面的物质参数不足于与所述射线源10当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源10发出具有最低能量的射线脉冲继续扫描。换句话说,在选择具有更低能量的射线脉冲时,直接切换到射线源可实现的多种射线脉冲中能量最低的射线脉冲。而在调高能量的方向则仍可以逐级调节。
在另一些实施例中,所述处理器20被配置为:如果根据所述信息确定所述被检对象40被扫描的当前截面的物质参数超出与所述射线源10当前发出的射线脉冲的穿 透能力匹配的物质参数,则使所述射线源10发出具有最高能量的射线脉冲继续扫描。换句话说,在选择具有更高能量的射线脉冲时,直接切换到射线源可实现的多种射线脉冲中能量最高的射线脉冲。而在调低能量的方向则仍可以逐级调节。
上述“具有更高能量的射线脉冲”的含义是指比当前射线源所发出的射线脉冲的能量更高的射线脉冲,“具有最高能量的射线脉冲”的含义是指射线源所能实现的具有最高能量的射线脉冲。上述“具有更低能量的射线脉冲”的含义是指比当前射线源所发出的射线脉冲的能量更低的射线脉冲,“具有最低能量的射线脉冲”的含义是指射线源所能实现的具有最低能量的射线脉冲。
参考前文,以可实现三种射线脉冲的射线源10为例。该射线源10可发出具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲和具有第三能量的第三射线脉冲。第一能量小于第二能量,第二能量小于第三能量。当被检对象40进入所述射线源10的扫描范围时,可使所述射线源10通过所述第一射线脉冲对所述被检对象40进行扫描。这样可降低对被检对象40的非相关区域的不必要的能量消耗,而且也提高辐射安全性。
参考图2,当一辆集装箱卡车40驶入检查区域后,通过识别车头41的位置,射线源10可先发射具有第一能量的第一射线脉冲p1。如果探测器30探测到的第一射线脉冲p1穿过车头截面后的信号在正常范围内,则射线源10继续发出具有第一能量的第一射线脉冲p2继续扫描车头的第二个截面。这里被检对象的截面的间距与射线源的出束频率以及扫描速度(即射线源10与被检对象的相对运动速度)有关。
在第二个截面时,第一射线脉冲p2可能会经过高密度、高厚度或高原子序数的物体(例如发动机),此时探测器探测到的信号衰减较多,因此信号强度较弱,则射线源10可发出更高一级能量的第二射线脉冲p3继续扫描对应于发动机的多个截面。
当扫描到车头和车身的空隙42时,探测器接收到信号衰减较少,强度较高,因此射线源可发出更低一级能量的第一射线脉冲p4和p5分别对空隙42对应的多个截面进行扫描。
当扫描到车身靠近车头的部分,且该部分容纳了密度、厚度或原子序数较小的货物43时,探测器接收到信号衰减较多,强度较低,因此射线源可发出更高一级能量的第二射线脉冲p6和p7分别对货物43对应的多个截面进行扫描。
当扫描到车身中部时,该部分容纳了密度、厚度或原子序数较高的货物44时,探测器接收到信号衰减较多,强度较低,因此射线源可发出更高一级能量的第三射线 脉冲p8和p9分别对货物44对应的多个截面进行扫描。
当扫描到车身后部较空的部分45时,该部分未容纳货物,探测器接收到信号衰减较少,强度较低,因此射线源可发出最低级能量的第一射线脉冲p10和p11分别对部分45对应的多个截面进行扫描。当识别出车尾离开检查区域后,射线源10可停止出束。
在上述处理器对探测器的探测信号进行判断时,可根据基于该探测信号形成的图像的最大灰度值和最小灰度值进行判断,例如判断最大灰度值和最小灰度值各自的取值范围,最大灰度值和最小灰度值的差值等。
在图2中,假设扫描速度为0.4m/s,射线源的出束频率为40Hz,以此计算被检物体的每个被扫描的截面的间距为10mm。为了获得更丰富的被检物质信息,参考图3,在一些实施例中,处理器20被配置为在所述射线源10通过所述第二射线脉冲或所述第三射线脉冲对所述被检对象40进行扫描时,在相邻两个第二射线脉冲之间、相邻两个第三射线脉冲之间或相邻的第二射线脉冲和第三射线脉冲之间插入至少一个第一射线脉冲。
图3中的射线源采用的各种射线脉冲的出束逻辑与图2基本一致,但相比于图2,射线源的出束频率为80Hz,基于图2在各个射线脉冲之间插入一个第一射线脉冲,使得被检物体的每个被扫描的截面的间距减小为5mm。例如图3中,对应于图2的发动机和货物43的多个截面的多个第二射线脉冲的相邻第二射线脉冲之间均插入了第一射线脉冲i1,在对应于货物44的多个截面的多个第三射线脉冲的相邻第三射线脉冲之间均插入第一射线脉冲i2。对于相邻的第二射线脉冲和第三射线脉冲之间,也插入第一射线脉冲。另外,图2中的相邻第一射线脉冲之间也可以插入第一射线脉冲。
通过插入第一射线脉冲,能够减小各个被扫描的截面的间距,并获得更丰富的被检物信息,而且插入的第一射线脉冲的能量较低,不会给辐射防护造成较大压力。
对于被检物体中物质参数(例如密度、厚度或原子序数等)较大的部分,还可通过第三射线脉冲和第二射线脉冲的交替扫描来获得更加丰富的分类信息,例如有机物、无机物和混合物的分类,或者有机物、无机物、混合物和重金属的分类等。参考图4,在一些实施例中,处理器20被配置为在所述射线源10通过所述第三射线脉冲对所述被检对象40进行扫描时,在相邻两个第三射线脉冲之间插入至少一个第二射线脉冲。
相比于图3,图4在扫描图2中货物44的多个截面时,在相邻的第三射线脉冲之 间插入了第二射线脉冲i3。第一射线脉冲i1被插入到发动机和货物43的多个截面分别对应的多个第二射线脉冲的相邻第二射线脉冲之间。第一射线脉冲i2被插入到相邻的第二射线脉冲i3和第三射线脉冲之间。
上述实例除了适用于拖载集装箱的卡车,也适用于乘用车。当射线源10扫描到卡车和乘用车的驾驶室时,所采用的第一射线脉冲和第二射线脉冲的能量可使得驾驶员和乘客所接收到的辐射剂量不会超出规范要求的安全水平。
图5是根据本公开检查系统的一些实施例中射线源的结构示意图。参考图5,在一些实施例中,所述射线源10包括:电子束产生装置12、微波产生装置14、微波环行器15、多个加速管13和控制器11。电子束产生装置12被配置为产生多个电子束。在一些实施例中,电子束产生装置12可通过脉冲调制器产生的不同高压幅值来使多个电子枪分别产生多个相同或不同束流负载的电子束。
微波产生装置14被配置为产生微波。在一些实施例中,微波产生装置14可通过脉冲调制器输出的不同幅值的电压来产生变化的工作电流,从而产生不同功率的微波信号。在另一些实施例中,微波产生装置14还可以通过磁场强度的变化来产生不同功率的微波信号。所述微波产生装置14包括磁控管141。
微波环行器15具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置14连接。微波环行器15具有隔离特性和功率分配特性,能够沿单一方向传输微波能量。通过将单一的微波产生装置14与微波环行器15的功率输入口连接,可将从功率输入口馈入的微波能量分配到某个特定的功率输出口,而该功率输出口所接收的反射微波能量能够被分配到另一个功率输出口。利用微波环行器15的这种特性配合微波产生装置14的时序控制,就可以通过作为单一微波功率源的微波产生装置14来实现两个以上的端口的微波能量输出。
多个加速管13与所述电子束产生装置12连接,并分别与所述至少两个功率输出口连接。多个加速管13能够分别接收所述电子束产生装置12产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多条具有不同能量的射线。被加速的电子束可通过轰击靶来产生射线,例如X射线。
控制器11与所述电子束产生装置12和所述微波产生装置14信号连接,被配置为对所述微波产生装置14的微波功率进行时序控制,以及对所述电子束产生装置12产生的分别对应于所述多个加速管13的电子束的束流负载进行时序控制。通过控制 器11对微波产生装置14和电子束产生装置12的时序控制,能够通过一个微波功率源使多个加速管13分别产生不同能量的射线,从而满足物品的多能谱覆盖的检测需求,在保证穿透性的同时,提高系统丝分辨指标。
图6是根据本公开检查系统的另一些实施例中射线源的结构示意图。图7是根据本公开检查系统的一些实施例中四端环流器的结构示意图。参考图6,在一些实施例中,所述电子束产生装置2包括:第一电子枪122、第一电子枪电源121、第二电子枪124和第二电子枪电源123。第一电子枪122被配置为产生第一电子束。第二电子枪124被配置为产生第二电子束。各个电子枪电源和微波产生装置可采用同一个交流电源(例如380V)进行供电。
第一电子枪电源121与所述控制器11信号连接,并与所述第一电子枪122连接,被配置为根据所述控制器11提供的时序控制信号调整所述第一电子束的束流负载。第二电子枪电源123与所述控制器11信号连接,并与所述第二电子枪124连接,被配置为根据所述控制器11提供的时序控制信号调整所述第二电子束的束流负载。控制器11可通过向电子枪电源发送时序控制信号(例如脉宽调制信号)来调整施加给电子枪的电压,以便进一步地调整电子束的束流负载。
参考图6和图7,在一些实施例中,微波环行器15的至少两个功率输出口包括第一功率输出口b和第二功率输出口c,所述第一功率输出口b被分配来自从所述功率输入口a馈入的微波信号,所述第二功率输出口c被分配来自从所述第一功率输出口b馈入的微波信号。从第一功率输出口b馈入的微波信号可以是从第一功率输出口b向外输出之后被反射回的反射微波信号。
在图6中,多个加速管13包括:第一加速管131和第二加速管132。第一加速管131与所述第一功率输出口b和所述第一电子枪122连接,被配置为通过所述第一功率输出口b输出的第一输出微波信号对所述第一电子束进行加速。第二加速管132与所述第二功率输出口c和所述第二电子枪124连接,被配置为通过所述第二功率输出口c输出的第二输出微波信号对所述第二电子束进行加速。被加速的第一电子束和第二电子束可通过轰击靶来获得不同能量的X射线。
在另一些实施例中,电子束产生装置可包括三个以上电子枪及其对应的电子枪电源,且射线产生设备包括三个以上加速管,相应地,各个加速管分别与微波环行器上的三个以上功率输出口连接,通过控制器的时序控制来实现更多种射线能量的输出,满足物品的多能谱检测需求和多视角的扫描需求。
参考图6,在一些实施例中,微波环行器15的至少两个功率输出口还包括第三功率输出口d,所述第三功率输出口d被分配来自从所述第二功率输出口c馈入的微波信号。从第二功率输出口c馈入的微波信号可以是从第二功率输出口c向外输出之后被反射回的反射微波信号。射线产生设备还可包括与所述第三功率输出口d连接的吸收负载16。该吸收负载能够吸收所述第三功率输出口d输出的微波信号,以实现隔离作用,避免微波信号返回到微波环行器的功率输入口。
参考图7,在一些实施例中,微波环行器15包括四端环流器(Four-port Circulator)151。该四端环流器151具有四个端口,沿着功率传输顺序分别为功率输入口a、第一功率输出口b、第二功率输出口c和第三功率输出口d,即该四端环流器151的功率传输规律为a->b->c->d。在另一些实施例中,微波环行器15还可以包括多个三端环流器或四端环流器串联的组合结构。
图7示出了一种铁氧体四端环流器的结构。该四端环流器为包括一个双T接头,一个基于铁氧体场移效应的非互易移相器和一个三分贝(3dB)耦合器的耦合器件。在射线产生设备工作时,振幅为E 0的电磁波由功率输入口a输入。由于双T(H分支)的特性,在A-B面处,波导I和II中将有振幅相等为E 0/(2^(1/2))且相位相同的电磁波输出。非互易相移器能够在电磁波从A-B面正向传至C-D面时,使得波导I中电磁波相对波导II中的相位领先90°(反之,若从C-D面反向传至A-B面上时,波导II中的相位相对波导I领先90°),从C-D面至第一功率输出口b和第三功率输出口d之间的3dB耦合器能够使波导I和波导II中的微波功率分别等分给第一功率输出口b和第三功率输出口d,但在耦合传输时相移增加90°,从而使得从波导I和波导II分别输出到第一功率输出口b和第三功率输出口d的微波功率全部从第一功率输出口b输出,而在第三功率输出口d没有输出。
同理,从第一功率输出口b输入的微波功率被分配到第二功率输出口c输出,从第二功率输出口c输入的微波功率被分配到第三功率输出口d输出。相应地,从第一功率输出口b输入的反射微波被分配到第二功率输出口c输出,而从第二功率输出口c的反射波将传输到第三功率输出口d,并被吸收负载所吸收。
在一些实施例中,通过控制器11的时序控制使得第一功率输出口b所连接的第一加速管获得较大的功率和能量,以输出至少一种较高能量的X射线,例如输出能量为6MeV和3MeV的X射线;以及通过控制器11的时序控制使得第二功率输出口c所连接的第二加速管获得较小的功率和能量,以输出至少一种较低能量的X射线,例 如输出能量为0.5~1MeV的X射线。这样,通过微波环行器的不同功率输出口所输出微波功率的不同,实现了功率分配的作用,利用微波环行器的功率分配特性能够驱动不同能量的加速管,以满足各种检测需求。
基于前述检查系统的各实施例,本公开还提供了检查方法实施例。图8是根据本公开检查方法的一些实施例的流程示意图。参考图8,在一些实施例中,检查方法包括:步骤S1和步骤S2。在步骤S1中,在被检对象40进入射线源10的扫描范围时,使所述射线源10通过射线对所述被检对象40的多个截面依次进行扫描,并使探测器30检测所述射线源10发出的射线作用在所述被检对象40的至少一个截面时的信号。
在步骤S2中,在扫描所述被检对象40的过程中,根据表征所述被检对象40的至少一个截面的物质参数的信息调整所述射线源10发出的射线的能量。步骤S2中的能量调整过程可在步骤S1中扫描各个截面时分别执行。
图9是根据本公开检查方法的另一些实施例的流程示意图。参考图9,在一些实施例中,检查方法还包括:步骤S3到步骤S7。在步骤S3中,根据所述探测器30的探测结果确定表征所述被检对象40的至少一个截面的物质参数的信息。
在步骤S4中,根据所述信息判断所述被检对象40被扫描的当前截面的物质参数与所述射线源10当前发出的射线脉冲的穿透能力是否匹配,如果匹配则执行步骤S5,即使所述射线源10以当前发出的射线脉冲继续扫描。
如果确定所述被检对象40被扫描的当前截面的物质参数超出与所述射线源10当前发出的射线脉冲的穿透能力匹配的物质参数,则执行步骤S6,即使得所述射线源10发出具有更高能量的射线脉冲继续扫描。
如果确定所述被检对象40被扫描的当前截面的物质参数不足于与所述射线源10当前发出的射线脉冲的穿透能力匹配的物质参数,则执行步骤S6,即使得所述射线源10发出具有更低能量的射线脉冲继续扫描。
参考图9,在一些实施例中,如果根据所述信息确定所述被检对象40被扫描的当前截面的物质参数不足于与所述射线源10当前发出的射线脉冲的穿透能力匹配的物质参数,则可使所述射线源10直接发出具有最低能量的射线脉冲继续扫描。
在一些实施例中,如果根据所述信息确定所述被检对象40被扫描的当前截面的物质参数超出与所述射线源10当前发出的射线脉冲的穿透能力匹配的物质参数,则可使所述射线源10直接发出具有最高能量的射线脉冲继续扫描。
参考图2,在一些实施例中,射线源10被配置为根据所述处理器20的指令选择 性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量。检查方法还包括:在所述被检对象40进入所述射线源10的扫描范围时,使所述射线源10通过所述第一射线脉冲对所述被检对象40进行扫描。
参考图3,在一些实施例中,所述检查方法还包括:在所述射线源10通过所述第二射线脉冲或所述第三射线脉冲对所述被检对象40进行扫描时,在相邻两个第二射线脉冲之间、相邻两个第三射线脉冲之间或相邻的第二射线脉冲和第三射线脉冲之间插入至少一个第一射线脉冲。
参考图4,在一些实施例中,所述检查方法还包括:在所述射线源10通过所述第三射线脉冲对所述被检对象40进行扫描时,在相邻两个第三射线脉冲之间插入至少一个第二射线脉冲。
本说明书中多个实施例采用递进的方式描述,各实施例的重点有所不同,而各个实施例之间相同或相似的部分相互参见即可。对于方法实施例而言,由于其整体以及涉及的步骤与设备实施例中的内容存在对应关系,因此描述的比较简单,相关之处参见设备实施例的部分说明即可。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (25)

  1. 一种检查系统,包括:
    射线源(10),被配置为产生多种具有不同能量的射线;
    探测器(30),被配置为检测所述射线源(10)发出的射线作用在被检对象(40)的至少一个截面时的信号;和
    处理器(20),与所述射线源(10)通讯连接,被配置为根据表征所述被检对象(40)的至少一个截面的物质参数的信息调整所述射线源(10)发出的射线的能量。
  2. 根据权利要求1所述的检查系统,其中,所述射线源(10)被配置为根据所述处理器(20)的指令选择性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量。
  3. 根据权利要求2所述的检查系统,其中,所述第一能量小于1MeV,所述第二能量和所述第三能量均大于1MeV。
  4. 根据权利要求1-3任一所述的检查系统,其中,所述处理器(20)与所述探测器(30)通讯连接,被配置为根据所述探测器(30)的探测结果确定表征所述被检对象(40)的至少一个截面的物质参数的信息。
  5. 根据权利要求4所述的检查系统,其中,表征所述被检对象(40)的至少一个截面的物质参数的信息包括射线穿过所述被检对象(40)且被所述探测器(30)探测到的衰减的一列信号的强度,或根据该列信号形成的探测图像的灰度值。
  6. 根据权利要求4所述的检查系统,其中,所述处理器(20)被配置为:
    使所述射线源(10)通过射线脉冲对所述被检对象(40)的多个截面依次进行扫描,并根据所述探测器(30)的检测信号确定表征所述被检对象(40)的至少一个截面的物质参数的信息;
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数与所述射线源(10)当前发出的射线脉冲的穿透能力匹配,则使所述射线源(10)以当前发出的射线脉冲继续扫描;
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数超出与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有更高能量的射线脉冲继续扫描;
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数不足于与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有更低能量的射线脉冲继续扫描。
  7. 根据权利要求6所述的检查系统,其中,所述处理器(20)被配置为:
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数不足于与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有最低能量的射线脉冲继续扫描。
  8. 根据权利要求6所述的检查系统,其中,所述处理器(20)被配置为:
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数超出与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有最高能量的射线脉冲继续扫描。
  9. 根据权利要求2所述的检查系统,其中,所述处理器(20)被配置为:
    在所述被检对象(40)进入所述射线源(10)的扫描范围时,使所述射线源(10)通过所述第一射线脉冲对所述被检对象(40)进行扫描。
  10. 根据权利要求2所述的检查系统,其中,所述处理器(20)被配置为在所述射线源(10)通过所述第二射线脉冲或所述第三射线脉冲对所述被检对象(40)进行扫描时,在相邻两个第二射线脉冲之间、相邻两个第三射线脉冲之间或相邻的第二射线脉冲和第三射线脉冲之间插入至少一个第一射线脉冲。
  11. 根据权利要求10所述的检查系统,其中,所述处理器(20)被配置为在所述射线源(10)通过所述第三射线脉冲对所述被检对象(40)进行扫描时,在相邻两个第三射线脉冲之间插入至少一个第二射线脉冲。
  12. 根据权利要求1所述的检查系统,其特征在于,所述射线源(10)包括:
    电子束产生装置(12),被配置为产生多个电子束;
    微波产生装置(14),被配置为产生微波;
    微波环行器(15),具有功率输入口和至少两个功率输出口,所述功率输入口通过波导结构与所述微波产生装置(14)连接;
    多个加速管(13),与所述电子束产生装置(12)连接,并分别与所述至少两个功率输出口连接,被配置为分别接收所述电子束产生装置(12)产生的多个电子束,并通过从所述至少两个功率输出口接收的微波分别对所述多个电子束进行加速,以便分别产生多条具有不同能量的射线;和
    控制器(11),与所述处理器(20)、所述电子束产生装置(12)和所述微波产生装置(14)信号连接,被配置为根据所述处理器(20)的指令,对所述微波产生装置(14)的微波功率进行时序控制,以及对所述电子束产生装置(12)产生的分别对应于所述多个加速管(13)的电子束的束流负载进行时序控制。
  13. 根据权利要求12所述的检查系统,其中,所述射线源(10)包括:
    第一电子枪(122),被配置为产生第一电子束;
    第一电子枪电源(121),与所述控制器(11)信号连接,并与所述第一电子枪(122)连接,被配置为根据所述控制器(11)提供的时序控制信号调整所述第一电子束的束流负载;
    第二电子枪(124),被配置为产生第二电子束;和
    第二电子枪电源(123),与所述控制器(11)信号连接,并与所述第二电子枪(124)连接,被配置为根据所述控制器(11)提供的时序控制信号调整所述第二电子束的束流负载,
    其中,所述控制器(11)被配置为在至少一个周期的每个周期中的第一时段使所述第一电子枪电源(121)调整所述第一电子束的束流负载为第一束流负载,并在每个周期中的第二时段使所述第二电子枪电源(123)调整所述第二电子束的束流负载为第二束流负载,所述第一时段与所述第二时段不重合。
  14. 根据权利要求13所述的检查系统,其中,所述微波环行器(15)的至少两个功率输出口包括第一功率输出口和第二功率输出口,所述第一功率输出口被分配来自从所述功率输入口馈入的微波信号,所述第二功率输出口被分配来自从所述第一功率输出口馈入的微波信号;
    所述多个加速管(13)包括:
    第一加速管(131),与所述第一功率输出口和所述第一电子枪(122)连接,被配置为通过所述第一功率输出口输出的第一输出微波信号对所述第一电子束进行加速;和
    第二加速管(132),与所述第二功率输出口和所述第二电子枪(124)连接,被配置为通过所述第二功率输出口输出的第二输出微波信号对所述第二电子束进行加速。
  15. 根据权利要求14所述的检查系统,其中,所述微波环行器(15)的至少两个功率输出口还包括第三功率输出口,所述第三功率输出口被分配来自从所述第二功率 输出口馈入的微波信号;所述射线源(10)还包括:吸收负载(16),与所述第三功率输出口连接,被配置为吸收所述第三功率输出口输出的微波信号。
  16. 根据权利要求15所述的检查系统,其中,所述微波环行器(15)包括四端环流器(151)。
  17. 根据权利要求15所述的检查系统,其中,所述控制器(11)被配置为在所述第一时段使所述微波产生装置(14)馈入到所述微波环行器(15)的功率输入口的微波信号包括至少一个第一输入微波信号,并在所述第二时段使所述微波产生装置(14)馈入到所述微波环行器(15)的功率输入口的微波信号包括至少一个第二输入微波信号,所述至少一个第一输入微波信号的功率大于所述至少一个第二输入微波信号。
  18. 根据权利要求12所述的检查系统,其中,所述微波产生装置(14)包括磁控管(141)。
  19. 一种基于权利要求1~18任一所述的检查系统的检查方法,包括:
    在被检对象(40)进入射线源(10)的扫描范围时,使所述射线源(10)通过射线对所述被检对象(40)的多个截面依次进行扫描,并使探测器(30)检测所述射线源(10)发出的射线作用在所述被检对象(40)的至少一个截面时的信号;
    在扫描所述被检对象(40)的过程中,根据表征所述被检对象(40)的至少一个截面的物质参数的信息调整所述射线源(10)发出的射线的能量。
  20. 根据权利要求19所述的检查方法,还包括:
    根据所述探测器(30)的探测结果确定表征所述被检对象(40)的至少一个截面的物质参数的信息;
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数与所述射线源(10)当前发出的射线脉冲的穿透能力匹配,则使所述射线源(10)以当前发出的射线脉冲继续扫描;
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数超出与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有更高能量的射线脉冲继续扫描;
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数不足于与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有更低能量的射线脉冲继续扫描。
  21. 根据权利要求20所述的检查方法,还包括:
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数不足于与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有最低能量的射线脉冲继续扫描。
  22. 根据权利要求20所述的检查方法,还包括:
    如果根据所述信息确定所述被检对象(40)被扫描的当前截面的物质参数超出与所述射线源(10)当前发出的射线脉冲的穿透能力匹配的物质参数,则使所述射线源(10)发出具有最高能量的射线脉冲继续扫描。
  23. 根据权利要求20所述的检查方法,其中,所述射线源(10)被配置为根据所述处理器(20)的指令选择性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量;其中,所述检查方法还包括:
    在所述被检对象(40)进入所述射线源(10)的扫描范围时,使所述射线源(10)通过所述第一射线脉冲对所述被检对象(40)进行扫描。
  24. 根据权利要求20所述的检查方法,其中,所述射线源(10)被配置为根据所述处理器(20)的指令选择性地产生具有第一能量的第一射线脉冲、具有第二能量的第二射线脉冲或具有第三能量的第三射线脉冲,所述第一能量小于所述第二能量,所述第二能量小于所述第三能量;其中,所述检查方法还包括:
    在所述射线源(10)通过所述第二射线脉冲或所述第三射线脉冲对所述被检对象(40)进行扫描时,在相邻两个第二射线脉冲之间、相邻两个第三射线脉冲之间或相邻的第二射线脉冲和第三射线脉冲之间插入至少一个第一射线脉冲。
  25. 根据权利要求24所述的检查方法,还包括:
    在所述射线源(10)通过所述第三射线脉冲对所述被检对象(40)进行扫描时,在相邻两个第三射线脉冲之间插入至少一个第二射线脉冲。
PCT/CN2022/103232 2021-07-09 2022-07-01 检查系统及方法 WO2023280057A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22836808.0A EP4369061A1 (en) 2021-07-09 2022-07-01 Inspection system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110777904.5A CN113238298B (zh) 2021-07-09 2021-07-09 检查系统及方法
CN202110777904.5 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023280057A1 true WO2023280057A1 (zh) 2023-01-12

Family

ID=77135197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103232 WO2023280057A1 (zh) 2021-07-09 2022-07-01 检查系统及方法

Country Status (3)

Country Link
EP (1) EP4369061A1 (zh)
CN (1) CN113238298B (zh)
WO (1) WO2023280057A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238298B (zh) * 2021-07-09 2022-03-04 同方威视技术股份有限公司 检查系统及方法
CN113238293B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 检查系统及方法
CN113238297B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 辐射检查系统及方法
CN113281821B (zh) * 2021-07-09 2023-10-13 同方威视技术股份有限公司 检查系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333326A1 (en) * 2003-09-15 2014-11-13 Rapiscan Systems, Inc. Methods and Systems for the Rapid Detection of Concealed Objects
CN104374783A (zh) * 2013-12-26 2015-02-25 清华大学 Ct系统及其方法
CN208044090U (zh) * 2018-03-14 2018-11-02 郑州信大先进技术研究院 一种环境探测设备
CN113238298A (zh) * 2021-07-09 2021-08-10 同方威视技术股份有限公司 检查系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490196A (en) * 1994-03-18 1996-02-06 Metorex International Oy Multi energy system for x-ray imaging applications
EP1690115B1 (en) * 2003-11-24 2015-01-14 Passport Systems, Inc. Adaptive scanning of materials using nuclear resonance fluorescence imaging
WO2006037169A2 (en) * 2004-10-05 2006-04-13 Commonwealth Scientific And Industrial Research Organisation Radiographic equipment
CN1995993B (zh) * 2005-12-31 2010-07-14 清华大学 一种利用多种能量辐射扫描物质的方法及其装置
FR2948193B1 (fr) * 2009-07-20 2011-09-16 Commissariat Energie Atomique Procede et dispositif d'identification d'un materiau d'un objet
JP4911373B2 (ja) * 2009-11-26 2012-04-04 横河電機株式会社 X線測定装置
CA2894235A1 (en) * 2013-01-04 2014-07-10 American Science And Engineering, Inc. Dynamic dose reduction in x-ray inspection
CN107543835B (zh) * 2016-06-27 2021-05-14 上海一影信息科技有限公司 多能成像方法、装置及其系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333326A1 (en) * 2003-09-15 2014-11-13 Rapiscan Systems, Inc. Methods and Systems for the Rapid Detection of Concealed Objects
CN104374783A (zh) * 2013-12-26 2015-02-25 清华大学 Ct系统及其方法
CN208044090U (zh) * 2018-03-14 2018-11-02 郑州信大先进技术研究院 一种环境探测设备
CN113238298A (zh) * 2021-07-09 2021-08-10 同方威视技术股份有限公司 检查系统及方法

Also Published As

Publication number Publication date
EP4369061A1 (en) 2024-05-15
CN113238298B (zh) 2022-03-04
CN113238298A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2023280057A1 (zh) 检查系统及方法
WO2023280062A1 (zh) 检查系统及方法
WO2023280060A1 (zh) 检查系统及方法
WO2023280056A1 (zh) 辐射检查系统及方法
US10368428B2 (en) Source for intra-pulse multi-energy X-ray cargo inspection
US7646851B2 (en) Device and method for generating X-rays having different energy levels and material discrimination system
WO2023280130A1 (zh) 射线产生设备及其控制方法
US7538325B2 (en) Single-pulse-switched multiple energy X-ray source applications
US9086496B2 (en) Feedback modulated radiation scanning systems and methods for reduced radiological footprint
US7483511B2 (en) Inspection system and method
US10228487B2 (en) Rapidly relocatable modular cargo container scanner
US10129971B2 (en) Standing wave electron linear accelerator and container/vehicle inspection system
CN203786061U (zh) 多能量多剂量加速器和具有该加速器的快检系统
US20040213375A1 (en) Radiation sources and radiation scanning systems with improved uniformity of radiation intensity
Kutsaev et al. Electron accelerators for novel cargo inspection methods
Chen et al. Linatron mi6, the x-ray source for cargo inspection
CN117849077A (zh) 一种检测方法
US7952304B2 (en) Radiation system
CN108076579A (zh) 用于操作线性加速器方法和线性加速器
EP3491426B1 (en) Inspection system with source of radiation and method
Lee et al. Development of Dual Energy Container Inspection System for Harbor Security in KAERI
CN117630064A (zh) 一种检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022836808

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022836808

Country of ref document: EP

Effective date: 20240209