WO2023279723A1 - 一种空调器的新风控制方法及装置 - Google Patents

一种空调器的新风控制方法及装置 Download PDF

Info

Publication number
WO2023279723A1
WO2023279723A1 PCT/CN2022/076599 CN2022076599W WO2023279723A1 WO 2023279723 A1 WO2023279723 A1 WO 2023279723A1 CN 2022076599 W CN2022076599 W CN 2022076599W WO 2023279723 A1 WO2023279723 A1 WO 2023279723A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
air
supply device
air supply
exchange air
Prior art date
Application number
PCT/CN2022/076599
Other languages
English (en)
French (fr)
Inventor
刘光朋
张鹏
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023279723A1 publication Critical patent/WO2023279723A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, in particular to a fresh air control method and device for an air conditioner.
  • An air conditioner is a widely used household appliance, generally having heating and cooling functions. When the ambient temperature is too low or too high, the air conditioner can adjust the temperature of the indoor air to provide users with a suitable indoor environment and effectively improve the user's quality of life.
  • the existing air conditioner when the existing air conditioner is heating or cooling, it only circulates and heats or cools the indoor air. In order to maintain the indoor temperature, the user will close the doors and windows of the living room at the same time, resulting in the gradual deterioration of the indoor air quality, which is harmful to the user. adversely affect their health. In particular, with the increasing air pollution, especially in the winter heating season, most users are reluctant to open windows for ventilation, resulting in worsening indoor air quality and lower oxygen content, which affects the health of users.
  • the fresh air device is introduced into the air conditioner, when the fresh air function is enabled, although the indoor air quality is improved, it also has a great impact on the indoor ambient temperature.
  • the heating capacity of the air conditioner remains unchanged, it will take longer for the air conditioner to reach the temperature set by the user during operation, which will make the heating effect worse and affect the user experience.
  • the present application provides a fresh air control method and device for an air conditioner, which is used to solve the problem that it is difficult for existing air conditioners to improve the indoor air quality by sending fresh air while ensuring the heat exchange effect on the indoor environment.
  • the present application provides a fresh air control method for an air conditioner, including: obtaining the ambient temperature and carbon dioxide concentration in the operating space of the air conditioner; The open state of the air supply device; if the temperature difference between the ambient temperature and the set temperature is within the heat exchange capacity range of the first heat exchange air supply device and the second heat exchange air supply device, according to the open state , control the first heat exchange air supply device and the second heat exchange air supply device; wherein, the air conditioner includes a casing; the casing wall is provided with an indoor air inlet, a fresh air inlet and an outlet tuyere; the first heat exchange air supply device and the second heat exchange air supply device are arranged in the casing; one end of the first heat exchange air supply device communicates with the indoor air inlet, and the One end of the second heat exchange air supply device communicates with the fresh air inlet, and the other end of the first heat exchange air supply device and the other end of the second heat exchange air supply device communicate with the air outlet respectively.
  • the determining the open states of the first heat exchange air supply device and the second heat exchange air supply device according to the carbon dioxide concentration includes: when the carbon dioxide concentration is at In the case of a safe threshold range, control to turn on the first heat exchange air supply device, and close the second heat exchange air supply device; when the carbon dioxide concentration is higher than the maximum value of the safety threshold range, control to turn on The second heat exchange air supply device closes the first heat exchange air supply device.
  • controlling to turn on the second heat exchange air supply device further includes: according to the The carbon dioxide concentration is determined to determine the target wind speed for air blowing by the second heat exchange air blowing device; according to the target wind speed, the second heat exchange air blowing device is controlled.
  • the fresh air control method of an air conditioner further includes: when the temperature difference between the ambient temperature and the set temperature is greater than a preset value, controlling to turn on the first heat exchange air supply device and the first heat exchange air supply device at the same time The second heat exchange air supply device.
  • the first heat exchange air supply device includes a first heat exchanger, a first fan, and a first air duct; the first side of the first heat exchanger Facing the indoor air inlet, the second side of the first heat exchanger faces the first port of the first air channel, and the second port of the first air channel communicates with the air outlet;
  • a fan is arranged in the first air channel;
  • the second heat exchange air supply device includes a second heat exchanger, a second fan and a second air channel; the first side of the second heat exchanger faces the Fresh air inlet, the second side of the second heat exchanger faces the first port of the second air channel, and the second port of the second air channel communicates with the air outlet;
  • the second fan is located at Inside the second air duct.
  • At least one of the first fan and the second fan is a centrifugal fan; when the first fan is a centrifugal fan, the first The air passage is in the shape of a volute; when the second fan is a centrifugal fan, the second air passage is in the shape of a volute.
  • the air outlet is provided with an air outlet regulating device, and the air outlet regulating device has a first state of closing the air outlet and a second state of opening the air outlet.
  • the method also includes: detecting the operating state of the air conditioner; when the operating state satisfies the preset condition, controlling the air outlet control device to be in the first state, controlling the first heat exchange air
  • the air supply device sucks air from the indoor air inlet, and the second heat exchange air supply device sends air toward the fresh air inlet, or controls the first heat exchange air supply device to send air toward the indoor air inlet, and
  • the second heat exchange air supply device draws air from the fresh air inlet;
  • the preset conditions include that the air conditioner receives a start-up instruction signal, the air conditioner receives a shutdown instruction signal, and the air conditioner
  • the running time is greater than any one of the first preset durations.
  • the present application also provides a fresh air control device for an air conditioner, including: an acquisition module, a determination module, and a control module; the acquisition module is used to acquire the ambient temperature and carbon dioxide concentration in the working space of the air conditioner; The concentration of carbon dioxide is determined to determine the open state of the first heat exchange air supply device and the second heat exchange air supply device; Within the heat exchange capacity range of the second heat exchange air supply device, according to the open state, control the first heat exchange air supply device and the second heat exchange air supply device; wherein, the air conditioner It includes a casing; the casing wall is provided with an indoor air inlet, a fresh air inlet and an air outlet; the first heat exchange air supply device and the second heat exchange air supply device are arranged in the casing ; One end of the first heat exchange air supply device communicates with the indoor air inlet, one end of the second heat exchange air supply device communicates with the fresh air inlet, and the other end of the first heat exchange air supply device And the other end of the second heat exchange air supply device communicates with the air outlet respectively.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, the air conditioner as described in any one of the above is realized. The steps of the fresh air control method of the device.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the fresh air control method for an air conditioner as described in any one of the above are realized.
  • the fresh air control method and device for an air conditioner obtained the ambient temperature and carbon dioxide concentration in the operating space of the air conditioner, and based on the determination of the carbon dioxide concentration and the temperature difference between the ambient temperature and the set temperature, the second Controlling the opening state of the first heat exchange air supply device and the second heat exchange air supply device can not only improve the indoor air quality by sending fresh air to the indoor environment, but also ensure the heat exchange efficiency of the indoor environment and improve the user experience.
  • Fig. 1 is a schematic flow chart of a fresh air control method for an air conditioner provided by the present application
  • Fig. 2 is one of structural representations of the air conditioner provided by the present application.
  • Fig. 3 is the second structural representation of the air conditioner provided by the application.
  • Fig. 4 is the third structural representation of the air conditioner provided by the present application.
  • Fig. 5 is the fourth structural representation of the air conditioner provided by the present application.
  • Fig. 6 is a schematic structural view of the fresh air control device of the air conditioner provided by the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by the present application.
  • this embodiment provides a fresh air control method for an air conditioner, including:
  • Step 110 acquiring ambient temperature and carbon dioxide concentration in the operating space of the air conditioner.
  • Step 120 determine the opening status of the first heat exchange air supply device and the second heat exchange air supply device.
  • Step 130 if the temperature difference between the ambient temperature and the set temperature is within the heat exchange capacity range of the first heat exchange air supply device and the second heat exchange air supply device, control the first heat exchange air supply device according to the open state With the second heat exchange air supply device.
  • the first heat exchange air blowing device and the second Controlling the opening state of the heat exchange air supply device can not only improve the indoor air quality by sending fresh air to the indoor environment, but also ensure the heat exchange efficiency of the indoor environment and improve the user experience.
  • the heat exchange capacity range of the first heat exchange air supply device and the second heat exchange air supply device refers to the heat exchange mode of the first heat exchange air supply device or the second heat exchange air supply device. , the ability to adjust a unit volume of air from a first preset temperature to a second preset temperature.
  • the temperature difference when the temperature difference between the ambient temperature and the set temperature is small, the temperature difference may be within the heat exchange capacity range of the first heat exchange air supply device or the second heat exchange air supply device. Any one of the hot air supply device and the second heat exchange air supply device can realize rapid adjustment of the indoor temperature; correspondingly, when the temperature difference between the ambient temperature and the set temperature is large, the temperature difference may be at It is outside the heat exchange capacity range of the first heat exchange air supply device or the second heat exchange air supply device. At this time, turning on either of the first heat exchange air supply device or the second heat exchange air supply device cannot Meet the requirements for rapid adjustment of indoor temperature.
  • this embodiment can detect the ambient temperature in the operating space of the air conditioner through the temperature sensor located at the air inlet of the air conditioner, and detect the ambient temperature in the operating space of the air conditioner through the carbon dioxide concentration sensor located at the air inlet of the air conditioner. carbon dioxide concentration.
  • the air conditioner shown in this embodiment can be either a wall-mounted air conditioner or a cabinet-type air conditioner.
  • the air conditioner shown in this embodiment includes a casing 1; the wall of the casing 1 is provided with an indoor air inlet 2, a fresh air inlet 3 and an air outlet 4;
  • the device 5 and the second heat exchange air supply device 6 are arranged in the casing 1; one end of the first heat exchange air supply device 5 communicates with the indoor air inlet 2, and one end of the second heat exchange air supply device 6 communicates with the fresh air inlet 3 , the other end of the first heat exchange air supply device 5 and the other end of the second heat exchange air supply device 6 communicate with the air outlet 4 respectively.
  • the fresh air inlet 3 is used to communicate with one end of the fresh air pipe 9, and the other end of the fresh air pipe 9 is used to communicate with the outdoor environment.
  • the first heat exchange air supply device 5 when the first heat exchange air supply device 5 is activated, the first heat exchange air supply device 5 is used to suck air from the indoor air inlet 2 to cool or cool the air in the room (the working space of the air conditioner). Heating treatment, the treated air is exhausted into the room through the air outlet 4.
  • the second heat exchange air supply device 6 when the second heat exchange air supply device 6 is activated, the second heat exchange air supply device 6 is used to draw air from the fresh air inlet 3 to cool or heat the fresh air outside. The air is exhausted into the room through the air outlet 4. In this way, based on the heat exchange and blowing process of the outdoor fresh air by the second heat exchange air supply device 6, the temperature of the indoor fresh air can be ensured, and the carbon dioxide concentration in the indoor environment can be effectively reduced, which improves the user experience.
  • the first heat exchange air supply device 5 shown in this embodiment includes a first heat exchanger 51, a first fan 52 and a first air duct 53; the first side of the first heat exchanger 51 faces The indoor air inlet 2, the second side of the first heat exchanger 51 faces the first port of the first air duct 53, and the second port of the first air duct 53 communicates with the air outlet 4;
  • the second heat exchange air delivery device 6 includes a second heat exchanger 61, a second fan 62 and a second air duct 63; the first side of the second heat exchanger 61 faces the fresh air inlet 3, and the second heat exchange
  • the second side of the device 61 faces the first port of the second air channel 63 , and the second port of the second air channel 63 communicates with the air outlet 4 ; the second fan 62 is arranged in the second air channel 63 .
  • At least one of the first fan 52 and the second fan 62 shown in this embodiment is a centrifugal fan; when the first fan 52 is a centrifugal fan, the first air duct 53 is in the shape of a volute; When the second fan 62 is a centrifugal fan, the second air channel 63 is in the shape of a volute.
  • the first fan 52 and the second fan 62 shown in this embodiment are preferably centrifugal fans.
  • the first air duct 53 and the second air duct 63 shown in this embodiment are correspondingly designed in a volute shape.
  • the first blower fan 52 and the second blower fan 62 shown in this embodiment can start to run when a certain current is input. Since the first heat exchanger 51 and the second heat exchanger 61 shown in this embodiment communicate with the condenser of the air conditioner external unit through refrigerant pipelines respectively, the first heat exchanger 51 and the second heat exchanger can be exchanged by controlling The control valve on the corresponding connecting pipeline of the heat exchanger 61 is opened, so as to start the cooling or heating operation of the first heat exchanger 51 and the second heat exchanger 61 .
  • the determination of the opening status of the first heat exchange air supply device and the second heat exchange air supply device according to the concentration of carbon dioxide shown in this embodiment includes but is not limited to the following steps:
  • the first heat exchange air supply device When the carbon dioxide concentration is within the safe threshold range, the first heat exchange air supply device is controlled to be turned on, and the second heat exchange air supply device is turned off. In this way, in this embodiment, when the carbon dioxide concentration is within the safe threshold range, the indoor environment can be normally refrigerated or heated through the first heat exchange air supply device. The second heat exchange air supply device.
  • the second heat exchange air supply device when the carbon dioxide concentration is higher than the maximum value of the safety threshold range, the second heat exchange air supply device is controlled to be turned on, and the first heat exchange air supply device is turned off. At this time, because the concentration of carbon dioxide is too high, it may affect the normal living requirements of household personnel. At this time, the second heat exchange air supply device can be turned on separately to deliver the fresh air after heat exchange treatment to the room, which can ensure the input To the temperature of indoor fresh air, it can effectively reduce the concentration of carbon dioxide in the indoor environment and improve the user experience.
  • the safety threshold range of the carbon dioxide concentration shown in this embodiment can be set to 0.01%-0.4%.
  • controlling to turn on the second heat exchange air supply device further includes:
  • the concentration of carbon dioxide determine the target wind speed for air blowing by the second heat exchange air supply device; according to the target wind speed, control the second heat exchange air supply device.
  • this embodiment can set the target wind speed to a high wind speed, and control the second fan of the second heat exchange air supply device to run at a high wind speed to increase The volume of fresh air sent to the room.
  • this embodiment can set the target wind speed as a low wind speed, and control the second fan of the second heat exchange air supply device to run at a low wind speed, so as to Reduce the air volume that sends fresh air into the room.
  • the fresh air control method of the air conditioner shown in this embodiment further includes: when the temperature difference between the ambient temperature and the set temperature is greater than a preset value, controlling to simultaneously turn on the first heat exchange air supply device and the second Heat exchange air supply device.
  • the temperature difference between the ambient temperature and the set temperature is greater than the preset value, it can be determined that the temperature difference may be outside the range of the heat exchange capacity of the first heat exchange air supply device or the second heat exchange air supply device. Since turning on any one of the first heat exchange air supply device and the second heat exchange air supply device alone cannot meet the requirements for rapid adjustment of the indoor temperature, the first heat exchange air supply device and the second heat exchange air supply device can be turned on at the same time.
  • the heat exchange air supply device is used to quickly adjust the indoor temperature and reduce the concentration of carbon dioxide in the indoor air by sending fresh air.
  • the air outlet 4 shown in this embodiment is provided with an air outlet control device, and the air outlet control device has a first state of closing the air outlet 4 and a second state of opening the air outlet 4 .
  • the air outlet control device shown in this embodiment when the air conditioner shown in this embodiment is an air conditioner cabinet, in order to realize the opening and closing control of the air outlet 4, the air outlet control device shown in this embodiment includes a windshield 10 and a linear drive Mechanism; the driving end of the linear drive mechanism is connected with the windshield 10 to drive the windshield 10 to move along the height direction of the air conditioner cabinet.
  • the windshield 10 covers the air outlet 4 ; when the air outlet control device is in the second state, the windshield 10 is separated from the air outlet 4 .
  • the linear drive mechanism shown in this embodiment is not specifically shown in FIG. 2 and FIG. 5 .
  • slide rails can be provided on the casing 1 , and the slide rails are arranged along the height direction of the casing 1 .
  • the wind deflector 10 shown in this embodiment is slidably installed on the slide rail, and can stably move up and down along the height direction of the casing 1 under the guidance of the slide rail.
  • the linear drive mechanism shown in this embodiment is preferably an electric push rod or screw drive mechanism.
  • the drive end of the linear drive mechanism may be specifically configured to be connected to the lower end of the wind deflector 10 .
  • the driving end of the linear driving mechanism can move up and down along the height direction of the casing 1 , and the driving end of the linear driving mechanism is connected to the back of the windshield 10 .
  • the air inlet 2 is provided with an air inlet grille 7 .
  • the second heat exchanger 61 of the second heat exchange air supply device 6 in order to form physical protection for the second heat exchanger 61 of the second heat exchange air supply device 6, and perform preliminary purification treatment on the air entering the casing 1, the second heat exchanger 61 and An air purification structure 8 is provided between the fresh air inlets 3 .
  • the air purification structure 8 is preferably a HEPA filter known in the art.
  • the method shown in this embodiment includes but Not limited to the following steps:
  • Step 101 detecting the running state of the air conditioner.
  • Step 102 when the operating state satisfies the preset condition, control the air outlet control device to be in the first state, control the first heat exchange air supply device to suck air from the indoor air inlet, and control the second heat exchange air supply device to face the fresh air inlet Air supply, or control the first heat exchange air supply device to supply air toward the indoor air inlet, and the second heat exchange air supply device to suck air from the fresh air inlet.
  • the preset condition includes any one of the air conditioner receiving a power-on command signal, the air conditioner receiving a power-off command signal, and the air conditioner running for longer than a first preset duration.
  • the connection between the first heat exchange air supply device and the second heat exchange air supply device is controlled.
  • the blowing device blows air in the opposite direction, which can conveniently carry out reverse blowing of the dust attached to the first heat exchanger of the first heat exchange air blowing device and the second heat exchanger of the second heat exchange air blowing device.
  • the first fan of the first heat exchange air supply device when the first heat exchange air supply device is controlled to suck air from the indoor air inlet, the first fan of the first heat exchange air supply device can be controlled to run in the first rotation direction.
  • the indoor air inlet is blowing air
  • the first fan of the first heat exchange air supply device can be controlled to run in the second rotation direction, and the rotation direction of the first rotation direction is opposite to that of the second rotation direction.
  • the second fan of the second heat exchange air supply device when the second heat exchange air supply device is controlled to draw air from the fresh air inlet, the second fan of the second heat exchange air supply device can be controlled to operate in the first rotation direction, and the second heat exchange air supply device can be controlled to When the device blows air toward the fresh air inlet, the second fan of the second heat exchange air supply device can be controlled to run in the second rotation direction.
  • this embodiment can perform a reverse purge on the first heat exchanger and the second heat exchanger respectively when the air conditioner is turned on, and can also be used when the air conditioner is turned off. , perform a reverse purge on the first heat exchanger and the second heat exchanger respectively, and also perform a reverse purge on the first heat exchanger and the second heat exchanger respectively when the operating time of the air conditioner is greater than the first preset time Perform a reverse purge to achieve a better cleaning effect.
  • the first preset duration shown in this embodiment may be 6-12 hours, for example: the first preset duration is specifically 6 hours, 8 hours, 10 hours, 12 hours, which is not specifically limited.
  • this embodiment also provides a fresh air control device for an air conditioner, including:
  • the acquiring module 610 is configured to acquire the ambient temperature and carbon dioxide concentration in the operating space of the air conditioner.
  • the determination module 620 is configured to determine the open states of the first heat exchange air supply device and the second heat exchange air supply device according to the carbon dioxide concentration.
  • the control module 630 is used to control the first heat exchange air supply device according to the open state if the temperature difference between the ambient temperature and the set temperature is within the heat exchange capacity range of the first heat exchange air supply device and the second heat exchange air supply device. device and the second heat exchange air supply device.
  • the air conditioner includes a casing; the casing wall is provided with an indoor air inlet, a fresh air inlet and an air outlet; the first heat exchange air supply device and the second heat exchange air supply device are arranged in the casing; One end of the hot air supply device communicates with the indoor air inlet, one end of the second heat exchange air supply device communicates with the fresh air inlet, and the other end of the first heat exchange air supply device and the other end of the second heat exchange air supply device communicate with the outlet respectively.
  • the vents are connected.
  • the first heat exchange air blowing device and the second Controlling the opening state of the heat exchange air supply device can not only improve the indoor air quality by sending fresh air to the indoor environment, but also ensure the heat exchange effect of the indoor environment and improve the user experience.
  • FIG. 7 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 710, a communication interface (Communications Interface) 720, a memory (memory) 730 and a communication bus 740, Wherein, the processor 710 , the communication interface 720 , and the memory 730 communicate with each other through the communication bus 740 .
  • the processor 710 can call the logic instructions in the memory 730 to execute the fresh air control method of the air conditioner.
  • the method includes: obtaining the ambient temperature and carbon dioxide concentration in the operating space of the air conditioner; The open state of the heat exchange air supply device and the second heat exchange air supply device; if the temperature difference between the ambient temperature and the set temperature is between the first heat exchange air supply device and the second heat exchange air supply device Within the range of heat exchange capacity, the first heat exchange air supply device and the second heat exchange air supply device are controlled according to the open state.
  • the above-mentioned logic instructions in the memory 730 may be implemented in the form of software functional units and may be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer
  • the computer can execute the fresh air control method of the air conditioner provided by the above methods, the method includes: acquiring the ambient temperature and carbon dioxide concentration in the working space of the air conditioner; determining the first heat exchange rate according to the carbon dioxide concentration; The open state of the air supply device and the second heat exchange air supply device; if the temperature difference between the ambient temperature and the set temperature is in the Within the capability range, the first heat exchange air supply device and the second heat exchange air supply device are controlled according to the open state.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the fresh air control methods of the air conditioners provided above, the method
  • the method includes: obtaining the ambient temperature and carbon dioxide concentration in the working space of the air conditioner; determining the open state of the first heat exchange air supply device and the second heat exchange air supply device according to the carbon dioxide concentration;
  • the temperature difference value of the set temperature is within the heat exchange capacity range of the first heat exchange air supply device and the second heat exchange air supply device, and the first heat exchange air supply device and the second heat exchange air supply device are controlled according to the open state.
  • the second heat exchange air supply device is obtaining the ambient temperature and carbon dioxide concentration in the working space of the air conditioner; determining the open state of the first heat exchange air supply device and the second heat exchange air supply device according to the carbon dioxide concentration;
  • the temperature difference value of the set temperature is within the heat exchange capacity range of the first heat exchange air supply device and the second heat
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供一种空调器的新风控制方法及装置,所述空调器的新风控制方法包括获取所述空调器的作用空间内的环境温度与二氧化碳浓度;根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状态,控制所述第一换热风送装置与所述第二换热风送装置。本申请基于对第一换热风送装置与第二换热风送装置的开启状态的控制,既可通过向室内环境送新风的方式改善室内空气质量,又确保对室内环境的换热效率,提升了用户体验。

Description

一种空调器的新风控制方法及装置
相关申请的交叉引用
本申请要求于2021年07月06日提交的申请号为202110762828.0,名称为“一种空调器的新风控制方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器的新风控制方法及装置。
背景技术
空调器是一种广泛应用的家用电器,一般具有制热和制冷功能。在环境温度过低或过高时,空调器可对室内空气的温度进行调节,为用户提供一个适宜的室内环境,有效地提高用户的生活品质。
然而,现有空调器在制热或制冷时,只是对室内的空气进行循环加热或降温,用户为了保持室内的温度,会将居室的门窗同时关闭,导致室内的空气质量逐渐变差,对用户的身体健康造成不利影响。特别地,随着大气污染的日益加剧,尤其在冬季供暖季节,用户大多不愿开窗通风,导致室内空气质量会越来越差,含氧量越来越低,影响到用户身体健康。
目前,空调器引入新风装置后,在启用新风功能时,尽管改善了室内空气质量,但是,同样对室内环境温度造成较大的影响。在空调制热能力不变的前提下,空调运行时需要更长的时间才能到达用户设定的温度,会使得制热效果变差,影响到用户体验。
发明内容
本申请提供一种空调器的新风控制方法及装置,用以解决现有的空调器难以在通过送新风的方式改善室内空气质量的同时,确保对室内环境的换热效果的问题。
本申请提供一种空调器的新风控制方法,包括:获取所述空调器的作 用空间内的环境温度与二氧化碳浓度;根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状态,控制所述第一换热风送装置与所述第二换热风送装置;其中,所述空调器包括机壳;所述机壳的壳壁上设有室内进风口、新风入口及出风口;所述第一换热风送装置与所述第二换热风送装置设于所述机壳内;所述第一换热风送装置的一端与所述室内进风口连通,所述第二换热风送装置的一端与所述新风入口连通,所述第一换热风送装置的另一端及所述第二换热风送装置的另一端分别与所述出风口连通。
根据本申请提供的一种空调器的新风控制方法,所述根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态,包括:在所述二氧化碳浓度处于安全阈值范围内的情况下,控制开启所述第一换热风送装置,关闭所述第二换热风送装置;在所述二氧化碳浓度高于安全阈值范围的最大值的情况下,控制开启所述第二换热风送装置,关闭所述第一换热风送装置。
根据本申请提供的一种空调器的新风控制方法,所述在所述二氧化碳浓度高于安全阈值范围的最大值的情况下,控制开启所述第二换热风送装置,进一步包括:根据所述二氧化碳浓度,确定所述第二换热风送装置进行风送的目标风速;根据所述目标风速,控制所述第二换热风送装置。
根据本申请提供的一种空调器的新风控制方法,还包括:在所述环境温度与设定温度的温差值大于预设值的情况下,控制同时开启所述第一换热风送装置与所述第二换热风送装置。
根据本申请提供的一种空调器的新风控制方法,所述第一换热风送装置包括第一换热器、第一风机及第一风道;所述第一换热器的第一侧面朝向所述室内进风口,所述第一换热器的第二侧面朝向所述第一风道的第一端口,所述第一风道的第二端口与所述出风口连通;所述第一风机设于所述第一风道内;所述第二换热风送装置包括第二换热器、第二风机及第二风道;所述第二换热器的第一侧面朝向所述新风入口,所述第二换热器的第二侧面朝向所述第二风道的第一端口,所述第二风道的第二端口与所述 出风口连通;所述第二风机设于所述第二风道内。
根据本申请提供的一种空调器的新风控制方法,所述第一风机与所述第二风机当中至少一者为离心风扇;在所述第一风机为离心风扇的情况下,所述第一风道呈蜗壳状;在所述第二风机为离心风扇的情况下,所述第二风道呈蜗壳状。
根据本申请提供的一种空调器的新风控制方法,所述出风口设有出风调控装置,所述出风调控装置具有闭合所述出风口的第一状态与打开所述出风口的第二状态,所述方法还包括:检测所述空调器的运行状态;在所述运行状态满足预设条件的情况下,控制所述出风调控装置处于第一状态,控制所述第一换热风送装置从所述室内进风口吸风,且所述第二换热风送装置朝向所述新风入口送风,或者控制所述第一换热风送装置朝向所述室内进风口送风,且所述第二换热风送装置从所述新风入口吸风;其中,所述预设条件包括所述空调器接收到开机指令信号、所述空调器接收到关机指令信号及所述空调器的运行时间大于第一预设时长当中的任一种。
本申请还提供一种空调器的新风控制装置,包括:获取模块、确定模块及控制模块;获取模块用于获取所述空调器的作用空间内的环境温度与二氧化碳浓度;确定模块用于根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;控制模块用于若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状态,控制所述第一换热风送装置与所述第二换热风送装置;其中,所述空调器包括机壳;所述机壳的壳壁上设有室内进风口、新风入口及出风口;所述第一换热风送装置与所述第二换热风送装置设于所述机壳内;所述第一换热风送装置的一端与所述室内进风口连通,所述第二换热风送装置的一端与所述新风入口连通,所述第一换热风送装置的另一端及所述第二换热风送装置的另一端分别与所述出风口连通。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述任一种所述的空调器的新风控制方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程 序,该计算机程序被处理器执行时实现如上述任一种所述的空调器的新风控制方法的步骤。
本申请提供的一种空调器的新风控制方法及装置,通过获取空调器的作用空间内的环境温度与二氧化碳浓度,基于对二氧化碳浓度及环境温度与设定温度的温差值的判定,可对第一换热风送装置与第二换热风送装置的开启状态进行控制,既可通过向室内环境送新风的方式改善室内空气质量,又确保对室内环境的换热效率,提升了用户体验。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的空调器的新风控制方法的流程示意图;
图2是本申请提供的空调器的结构示意图之一;
图3是本申请提供的空调器的结构示意图之二;
图4是本申请提供的空调器的结构示意图之三;
图5是本申请提供的空调器的结构示意图之四;
图6是本申请提供的空调器的新风控制装置的结构示意图;
图7是本申请提供的电子设备的结构示意图;
附图标记:
1:机壳;        2:室内进风口;         3:新风入口;
4:出风口;      5:第一换热风送装置;   6:第二换热风送装置;
7:进风格栅;    8:空气净化结构;       9:新风管;
10:挡风板;     51:第一换热器;        52:第一风机;
53:第一风道;   61:第二换热器;        62:第二风机;
63:第二风道。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的 实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1-图7描述本申请的一种空调器的新风控制方法及装置。
如图1所示,本实施例提供一种空调器的新风控制方法,包括:
步骤110,获取空调器的作用空间内的环境温度与二氧化碳浓度。
步骤120,根据二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态。
步骤130,若环境温度与设定温度的温差值处于第一换热风送装置与第二换热风送装置的换热能力范围内,根据所述开启状态,控制第一换热风送装置与第二换热风送装置。
具体地,本实施例通过获取空调器的作用空间内的环境温度与二氧化碳浓度,基于对二氧化碳浓度及环境温度与设定温度的温差值的判定,可对第一换热风送装置与第二换热风送装置的开启状态进行控制,既可通过向室内环境送新风的方式改善室内空气质量,又确保了对室内环境的换热效率,提升了用户体验。
在此应指出的是,第一换热风送装置与第二换热风送装置的换热能力范围,是指第一换热风送装置或第二换热风送装置通过热交换的方式,将单位体积的空气从第一预设温度调节至第二预设温度的能力。
显然,在环境温度与设定温度的温差值较小时,该温差值可能处于第一换热风送装置或第二换热风送装置的换热能力范围内,此时,单独开启第一换热风送装置与第二换热风送装置当中的任一者,均能实现对室内温度的快速调节;相应地,在环境温度与设定温度的温差值较大时,该温差值可能处于第一换热风送装置或第二换热风送装置的换热能力范围外,此时,单独开启第一换热风送装置与第二换热风送装置当中的任一者,并不能满足对室内温度的快速调节要求。
与此同时,本实施例可通过设于空调器的进风口的温度传感器检测空调器的作用空间内的环境温度,并通过设于空调器的进风口的二氧化碳浓度传感器检测空调器的作用空间内的二氧化碳浓度。本实施例所示的空调器既可以为壁挂式空调器,也可以是柜式空调器。
如图2至图5所示,本实施例所示的空调器包括机壳1;机壳1的壳壁上设有室内进风口2、新风入口3及出风口4;第一换热风送装置5与第二换热风送装置6设于机壳1内;第一换热风送装置5的一端与室内进风口2连通,第二换热风送装置6的一端与新风入口3连通,第一换热风送装置5的另一端及第二换热风送装置6的另一端分别与出风口4连通。其中,新风入口3用于与新风管9的一端连通,新风管9的另一端用于与室外环境连通。
其中,本实施例在启动第一换热风送装置5时,第一换热风送装置5用于从室内进风口2吸风,以对室内(空调器的作用空间)的空气进行制冷或制热处理,处理后的空气通过出风口4排向室内。
相应地,本实施例在启动第二换热风送装置6时,第二换热风送装置6用于从新风入口3吸风,以对室外的新鲜空气进行制冷或制热处理,处理后的空气通过出风口4排向室内。如此,基于第二换热风送装置6对室外新风的换热与风送处理,既可确保输入至室内新风的温度,又可有效地降低室内环境的二氧化碳浓度,提升了用户体验。
如图2所示,本实施例所示的第一换热风送装置5包括第一换热器51、第一风机52及第一风道53;第一换热器51的第一侧面朝向室内进风口2,第一换热器51的第二侧面朝向第一风道53的第一端口,第一风道53的第二端口与出风口4连通;第一风机52设于第一风道53内;第二换热风送装置6包括第二换热器61、第二风机62及第二风道63;第二换热器61的第一侧面朝向新风入口3,第二换热器61的第二侧面朝向第二风道63的第一端口,第二风道63的第二端口与出风口4连通;第二风机62设于第二风道63内。
进一步地,本实施例所示的第一风机52与第二风机62当中至少一者为离心风扇;在第一风机52为离心风扇的情况下,第一风道53呈蜗壳状;在第二风机62为离心风扇的情况下,第二风道63呈蜗壳状。
其中,为了提升风送效率,减小对空调内部空间的占用,本实施例所示的第一风机52与第二风机62优选为离心风扇。在第一风机52与第二风机62设计为离心风扇的情况下,本实施例所示的第一风道53与第二风道63均相应地设计呈蜗壳状。
与此同时,本实施例所示的第一风机52与第二风机62在输入一定的电流的情况下,即可启动运行。由于本实施例所示的第一换热器51与第二换热器61分别通过制冷剂管路与空调外机的冷凝器连通,从可通过控制第一换热器51与第二换热器61相应连接管路上的控制阀开启,以实现启动第一换热器51与第二换热器61的制冷或制热运行。
优选地,为了实现对室内环境的送新风控制,本实施例所示的根据二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态,包括但不限于如下步骤:
在二氧化碳浓度处于安全阈值范围内的情况下,控制开启第一换热风送装置,关闭第二换热风送装置。如此,本实施例在二氧化碳浓度处于安全阈值范围内,可通过第一换热风送装置对室内环境进行正常地制冷或制热处理,此时,由于二氧化碳浓度符合家居人员的正常生活要求,无需开启第二换热风送装置。
相应地,在二氧化碳浓度高于安全阈值范围的最大值的情况下,控制开启第二换热风送装置,关闭第一换热风送装置。此时,由于二氧化碳浓度过高,可能影响到家居人员的正常生活要求,此时,可单独开启第二换热风送装置,以向室内室内输送经过热交换处理后的新风,既可确保输入至室内新风的温度,又可有效地降低室内环境的二氧化碳浓度,提升了用户体验。
其中,根据人体对二氧化碳浓度的适应性程度,本实施例所示的二氧化碳浓度的安全阈值范围可设置为0.01%-0.4%。
进一步地,本实施例所示的在二氧化碳浓度高于安全阈值范围的最大值的情况下,控制开启第二换热风送装置,进一步包括:
根据二氧化碳浓度,确定第二换热风送装置进行风送的目标风速;根据目标风速,控制第二换热风送装置。
具体地,在二氧化碳浓度过高时,为了尽快降低室内的二氧化碳浓度,本实施例可设置目标风速为高风速,并控制第二换热风送装置的第二风机以高风速运行,以增大向室内送新风的风量。
在二氧化碳浓度相对较低时,例如:二氧化碳浓度接近安全阈值范围的最小值,本实施例可设置目标风速为低风速,并控制第二换热风送装置 的第二风机以低风速运行,以降低向室内送新风的风量。
优选地,本实施例所示的空调器的新风控制方法,还包括:在环境温度与设定温度的温差值大于预设值的情况下,控制同时开启第一换热风送装置与第二换热风送装置。
具体地,在环境温度与设定温度的温差值大于预设值时,可判定该温差值可能处于第一换热风送装置或第二换热风送装置的换热能力范围外,此时,由于单独开启第一换热风送装置与第二换热风送装置当中的任一者,均不能满足对室内温度的快速调节要求,则可同时开启第一换热风送装置与第二换热风送装置,以在对室内温度进行快速调节的同时,还通过送新风降低室内空气中的二氧化碳浓度。
如图2与图5所示,本实施例所示的出风口4设有出风调控装置,出风调控装置具有闭合出风口4的第一状态与打开出风口4的第二状态。
具体地,在本实施例所示的空调器具体为空调柜机的情况下,为了实现对出风口4的开闭控制,本实施例所示的出风调控装置包括挡风板10与直线驱动机构;直线驱动机构的驱动端与挡风板10连接,以驱动挡风板10沿空调柜机的高度方向移动。在出风调控装置处于第一状态时,挡风板10遮挡于出风口4;在出风调控装置处于第二状态时,挡风板10与出风口4分离。其中,本实施例所示的直线驱动机构在图2与图5中未具体示意出。
进一步地,本实施例可在机壳1上设置滑轨,滑轨沿着机壳1的高度方向排布。本实施例所示的挡风板10可滑动的安装于滑轨上,并可在滑轨的引导下沿机壳1的高度方向稳定地上下移动。
与此同时,为了便于实现对挡风板10的移动控制,本实施例所示的直线驱动机构优选为电动推杆或丝杠驱动机构。其中,本实施例可具体设置直线驱动机构的驱动端与挡风板10的下端连接。直线驱动机构的驱动端可沿机壳1的高度方向上下移动,且直线驱动机构的驱动端连接于挡风板10的背面。
如图2与图3所示,为了对第一换热风送装置5的第一换热器51形成物理性防护,并对进入机壳1内的空气进行初步净化处理,本实施例在室内进风口2设有进风格栅7。
相应地,为了对第二换热风送装置6的第二换热器61形成物理性防护,并对进入机壳1内的空气进行初步净化处理,本实施例在第二换热器61与新风入口3之间设有空气净化结构8。其中,空气净化结构8优选为本领域公知的HEPA滤网。
进一步地,为了便捷地对第一换热风送装置的第一换热器及第二换热风送装置的第二换热器上附着的灰尘进行清理,本实施例所示的方法包括但不限于如下步骤:
步骤101,检测空调器的运行状态。
步骤102,在运行状态满足预设条件的情况下,控制出风调控装置处于第一状态,控制第一换热风送装置从室内进风口吸风,且第二换热风送装置朝向新风入口送风,或者控制第一换热风送装置朝向室内进风口送风,且第二换热风送装置从新风入口吸风。
其中,预设条件包括空调器接收到开机指令信号、空调器接收到关机指令信号及空调器的运行时间大于第一预设时长当中的任一种。
具体地,由于在出风口关闭时,第一换热风送装置的另一端与第二换热风送装置的另一端相连通,则通过控制第一换热风送装置与第二换热风送装置以相反的方向送风,可便捷地对第一换热风送装置的第一换热器及第二换热风送装置的第二换热器上附着的灰尘进行反向吹扫。
本实施例在控制第一换热风送装置从室内进风口吸风时,可控制第一换热风送装置的第一风机以第一旋向运转,在控制第一换热风送装置朝向室内进风口送风时,可控制第一换热风送装置的第一风机以第二旋向运转,且第一旋向与第二旋向的旋转方向相反。
相应地,本实施例在控制第二换热风送装置从新风入口吸风时,可控制第二换热风送装置的第二风机以第一旋向运转,在控制第二换热风送装置朝向新风入口送风时,可控制第二换热风送装置的第二风机以第二旋向运转。
基于本实施例所示的方法的控制逻辑,本实施例既可在空调器开机时,对第一换热器与第二换热器分别进行一次反向吹扫,也可在空调器关机时,对第一换热器与第二换热器分别进行一次反向吹扫,还可在空调器的运行时间大于第一预设时长时,对第一换热器与第二换热器分别进行一次反向 吹扫,以达到较好的清扫效果。
其中,本实施例所示的第一预设时长可以为6-12小时,例如:第一预设时长具体为6小时、8小时、10小时、12小时,对此不作具体限定。
如图6所示,本实施例还提供一种空调器的新风控制装置,包括:
获取模块610,用于获取空调器的作用空间内的环境温度与二氧化碳浓度。
确定模块620,用于根据二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态。
控制模块630,用于若环境温度与设定温度的温差值处于第一换热风送装置与第二换热风送装置的换热能力范围内,根据开启状态,控制第一换热风送装置与第二换热风送装置。
其中,空调器包括机壳;机壳的壳壁上设有室内进风口、新风入口及出风口;第一换热风送装置与第二换热风送装置设于机壳内;第一换热风送装置的一端与室内进风口连通,第二换热风送装置的一端与新风入口连通,第一换热风送装置的另一端及第二换热风送装置的另一端分别与出风口连通。
具体地,本实施例通过获取空调器的作用空间内的环境温度与二氧化碳浓度,基于对二氧化碳浓度及环境温度与设定温度的温差值的判定,可对第一换热风送装置与第二换热风送装置的开启状态进行控制,既可通过向室内环境送新风的方式改善室内空气质量,又确保室内环境的换热效果,提升了用户体验。
图7示例了一种电子设备的实体结构示意图,如图7所示,该电子设备可以包括:处理器(processor)710、通信接口(Communications Interface)720、存储器(memory)730和通信总线740,其中,处理器710,通信接口720,存储器730通过通信总线740完成相互间的通信。处理器710可以调用存储器730中的逻辑指令,以执行空调器的新风控制方法,该方法包括:获取所述空调器的作用空间内的环境温度与二氧化碳浓度;根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状态,控制所 述第一换热风送装置与所述第二换热风送装置。
此外,上述的存储器730中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的空调器的新风控制方法,该方法包括:获取所述空调器的作用空间内的环境温度与二氧化碳浓度;根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状态,控制所述第一换热风送装置与所述第二换热风送装置。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的空调器的新风控制方法,该方法包括:获取所述空调器的作用空间内的环境温度与二氧化碳浓度;根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状态,控制所述第一换热风送装置与所述第二换热风送装置。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现 本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种空调器的新风控制方法,其特征在于,包括:
    获取所述空调器的作用空间内的环境温度与二氧化碳浓度;
    根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;
    若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状态,控制所述第一换热风送装置与所述第二换热风送装置;
    其中,所述空调器包括机壳;所述机壳的壳壁上设有室内进风口、新风入口及出风口;所述第一换热风送装置与所述第二换热风送装置设于所述机壳内;所述第一换热风送装置的一端与所述室内进风口连通,所述第二换热风送装置的一端与所述新风入口连通,所述第一换热风送装置的另一端及所述第二换热风送装置的另一端分别与所述出风口连通。
  2. 根据权利要求1所述的空调器的新风控制方法,其特征在于,所述根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态,包括:
    在所述二氧化碳浓度处于安全阈值范围内的情况下,控制开启所述第一换热风送装置,关闭所述第二换热风送装置;
    在所述二氧化碳浓度高于安全阈值范围的最大值的情况下,控制开启所述第二换热风送装置,关闭所述第一换热风送装置。
  3. 根据权利要求2所述的空调器的新风控制方法,其特征在于,所述在所述二氧化碳浓度高于安全阈值范围的最大值的情况下,控制开启所述第二换热风送装置,进一步包括:
    根据所述二氧化碳浓度,确定所述第二换热风送装置进行风送的目标风速;
    根据所述目标风速,控制所述第二换热风送装置。
  4. 根据权利要求1至3任一所述的空调器的新风控制方法,其特征在于,还包括:在所述环境温度与设定温度的温差值大于预设值的情况下,控制同时开启所述第一换热风送装置与所述第二换热风送装置。
  5. 根据权利要求1至3任一所述的空调器的新风控制方法,其特征 在于,所述第一换热风送装置包括第一换热器、第一风机及第一风道;所述第一换热器的第一侧面朝向所述室内进风口,所述第一换热器的第二侧面朝向所述第一风道的第一端口,所述第一风道的第二端口与所述出风口连通;所述第一风机设于所述第一风道内;
    所述第二换热风送装置包括第二换热器、第二风机及第二风道;所述第二换热器的第一侧面朝向所述新风入口,所述第二换热器的第二侧面朝向所述第二风道的第一端口,所述第二风道的第二端口与所述出风口连通;所述第二风机设于所述第二风道内。
  6. 根据权利要求5所述的空调器的新风控制方法,其特征在于,
    所述第一风机与所述第二风机当中至少一者为离心风扇;在所述第一风机为离心风扇的情况下,所述第一风道呈蜗壳状;在所述第二风机为离心风扇的情况下,所述第二风道呈蜗壳状。
  7. 根据权利要求1至3任一所述的空调器的新风控制方法,其特征在于,所述出风口设有出风调控装置,所述出风调控装置具有闭合所述出风口的第一状态与打开所述出风口的第二状态,所述方法还包括:检测所述空调器的运行状态;
    在所述运行状态满足预设条件的情况下,控制所述出风调控装置处于第一状态,控制所述第一换热风送装置从所述室内进风口吸风,且所述第二换热风送装置朝向所述新风入口送风,或者控制所述第一换热风送装置朝向所述室内进风口送风,且所述第二换热风送装置从所述新风入口吸风;
    其中,所述预设条件包括所述空调器接收到开机指令信号、所述空调器接收到关机指令信号及所述空调器的运行时间大于第一预设时长当中的任一种。
  8. 一种空调器的新风控制装置,其特征在于,包括:
    获取模块,用于获取所述空调器的作用空间内的环境温度与二氧化碳浓度;
    确定模块,用于根据所述二氧化碳浓度,确定第一换热风送装置与第二换热风送装置的开启状态;
    控制模块,用于若所述环境温度与设定温度的温差值处于所述第一换热风送装置与所述第二换热风送装置的换热能力范围内,根据所述开启状 态,控制所述第一换热风送装置与所述第二换热风送装置;
    其中,所述空调器包括机壳;所述机壳的壳壁上设有室内进风口、新风入口及出风口;所述第一换热风送装置与所述第二换热风送装置设于所述机壳内;所述第一换热风送装置的一端与所述室内进风口连通,所述第二换热风送装置的一端与所述新风入口连通,所述第一换热风送装置的另一端及所述第二换热风送装置的另一端分别与所述出风口连通。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的空调器的新风控制方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的空调器的新风控制方法的步骤。
PCT/CN2022/076599 2021-07-06 2022-02-17 一种空调器的新风控制方法及装置 WO2023279723A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110762828.0 2021-07-06
CN202110762828.0A CN113587241A (zh) 2021-07-06 2021-07-06 一种空调器的新风控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023279723A1 true WO2023279723A1 (zh) 2023-01-12

Family

ID=78246283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076599 WO2023279723A1 (zh) 2021-07-06 2022-02-17 一种空调器的新风控制方法及装置

Country Status (2)

Country Link
CN (1) CN113587241A (zh)
WO (1) WO2023279723A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587241A (zh) * 2021-07-06 2021-11-02 重庆海尔空调器有限公司 一种空调器的新风控制方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504615A (zh) * 2017-08-18 2017-12-22 广东美的制冷设备有限公司 空调器及其控制方法、装置
CN107631435A (zh) * 2017-10-02 2018-01-26 广东美的制冷设备有限公司 新风机与空调联动系统及其控制方法、装置及存储介质
CN110617554A (zh) * 2019-09-27 2019-12-27 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和可读存储介质
CN110986256A (zh) * 2019-12-16 2020-04-10 广东美的制冷设备有限公司 空调器的自清洁控制方法、装置、空调器及存储介质
CN112413733A (zh) * 2020-10-27 2021-02-26 青岛海尔空调器有限总公司 一种新风空调运行控制方法及新风空调器
CN113587241A (zh) * 2021-07-06 2021-11-02 重庆海尔空调器有限公司 一种空调器的新风控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304106A (ja) * 2007-06-06 2008-12-18 Denso Corp 空調装置の掃除方法
CN103807916B (zh) * 2012-11-06 2016-08-24 珠海格力电器股份有限公司 空调器
CN109724226B (zh) * 2018-12-13 2021-05-25 青岛海尔空调器有限总公司 空调器的控制方法
CN110410970B (zh) * 2019-07-12 2022-09-02 青岛海尔空调器有限总公司 用于空调室内机的控制方法及空调室内机
CN112555995A (zh) * 2020-11-30 2021-03-26 珠海格力电器股份有限公司 一种空调装置及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504615A (zh) * 2017-08-18 2017-12-22 广东美的制冷设备有限公司 空调器及其控制方法、装置
CN107631435A (zh) * 2017-10-02 2018-01-26 广东美的制冷设备有限公司 新风机与空调联动系统及其控制方法、装置及存储介质
CN110617554A (zh) * 2019-09-27 2019-12-27 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和可读存储介质
CN110986256A (zh) * 2019-12-16 2020-04-10 广东美的制冷设备有限公司 空调器的自清洁控制方法、装置、空调器及存储介质
CN112413733A (zh) * 2020-10-27 2021-02-26 青岛海尔空调器有限总公司 一种新风空调运行控制方法及新风空调器
CN113587241A (zh) * 2021-07-06 2021-11-02 重庆海尔空调器有限公司 一种空调器的新风控制方法及装置

Also Published As

Publication number Publication date
CN113587241A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN112944414B (zh) 油烟空调一体机及其控制方法、存储介质、控制装置
JP4581024B1 (ja) 空気調和機
US10488070B1 (en) Systems and methods for controlling an intake fan
KR100907604B1 (ko) 천장형 공기조화기 및 에너지 절감형 공조시스템
WO2021218349A1 (zh) 空调器的控制方法
CN112413733A (zh) 一种新风空调运行控制方法及新风空调器
WO2023279723A1 (zh) 一种空调器的新风控制方法及装置
WO2023279724A1 (zh) 一种空调柜机及其湿度调控方法
CN112146214A (zh) 厨房空气质量改善装置及系统
WO2011030603A1 (ja) 空気調和機
CN201748555U (zh) 一种用于机房的空调器
JP4478004B2 (ja) 空気調和機
KR20230054798A (ko) 시로코팬 직결형 송풍기를 갖는 수직형 공조기
CN213178643U (zh) 厨房空气质量改善装置及系统
KR20230085987A (ko) 실내 온도를 조절하기 위한 창문형 스마트 환기시스템
CN110894992B (zh) 空调器的控制方法
JP4296876B2 (ja) 空調装置
JP3723167B2 (ja) 空調用室内ユニットおよびこれを備えた空気調和機
KR100907606B1 (ko) 천장형 공기조화기 및 에너지 절감형 공조시스템
JP2009222300A (ja) 空気調和装置
TWM592495U (zh) 可攜帶式微型空調機
KR20050055105A (ko) 환기 장치를 구비한 공기 조화기 및 그 운용 방법
KR102645951B1 (ko) 환기장치
CN114484800B (zh) 空调器控制方法、装置和空调器
KR102645950B1 (ko) 환기장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE