WO2023279576A1 - 耦合调节机构、滤波器、双工器、多工器以及通信设备 - Google Patents
耦合调节机构、滤波器、双工器、多工器以及通信设备 Download PDFInfo
- Publication number
- WO2023279576A1 WO2023279576A1 PCT/CN2021/125755 CN2021125755W WO2023279576A1 WO 2023279576 A1 WO2023279576 A1 WO 2023279576A1 CN 2021125755 W CN2021125755 W CN 2021125755W WO 2023279576 A1 WO2023279576 A1 WO 2023279576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coupling
- filter
- adjustment
- cover plate
- groove
- Prior art date
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 187
- 238000010168 coupling process Methods 0.000 title claims abstract description 187
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 187
- 230000007246 mechanism Effects 0.000 title claims abstract description 36
- 238000004891 communication Methods 0.000 title claims abstract description 19
- 230000009471 action Effects 0.000 claims abstract description 10
- 238000003780 insertion Methods 0.000 claims description 33
- 230000037431 insertion Effects 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 13
- 239000012811 non-conductive material Substances 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 claims description 3
- 238000001465 metallisation Methods 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 18
- 238000006073 displacement reaction Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
Definitions
- the present application relates to the technical field of communication equipment, in particular to a coupling adjustment mechanism, a filter, a duplexer, a multiplexer and communication equipment.
- cavity filters are widely used in the field of communication, especially in the field of radio frequency communication.
- the filter is used to select the communication signal and filter out the clutter or interference signal outside the frequency of the communication signal.
- a traditional cavity coaxial filter mainly includes a cavity, a cover plate, a resonant rod, a tuning screw, a coupling screw, a window and a connector.
- the cavity, the window, and the coupling screw constitute the coupling mechanism of the cavity filter.
- the traditional structure uses a coupling screw, it is necessary to set a threaded hole on the cover plate to cooperate with the coupling screw. In the process of coupling the coupling screw and the threaded hole, burrs and debris will inevitably be generated, which reduces the intermodulation of the filter. performance and power performance.
- One of the objectives of the embodiments of the present application is to provide a coupling adjustment mechanism, a filter, a duplexer, a multiplexer and a communication device, aiming at solving the problems of low intermodulation performance and power performance of conventional cavity filters.
- a coupling adjustment mechanism for a filter including a support holder rotatably connected to the cover plate of the filter, and a coupling connected to the support holder, the coupling It is arranged between two resonant tubes of the filter, and the supporting bracket is used to rotate under the action of an external force and drive the coupling part to rotate, so as to adjust the coupling amount between the resonant tubes.
- a through hole is opened on the cover plate, and the support bracket includes a clamping part that is elastically clamped in the through hole, and is connected with the clamping part and is used for connecting the The connecting part of the coupler.
- the coupling member is fixedly connected with the support bracket by clamping.
- the coupling member is fixedly connected with the support bracket through an embedded integrated injection molding process.
- the coupling member is U-shaped, back-shaped, concave-shaped, square-shaped, square-shaped or square-shaped with a gap.
- the coupling adjustment mechanism further includes an adjustment part disposed on the support bracket and used to rotate the support bracket.
- the coupling member is made of conductive metal material.
- the coupling member is made of non-conductive material, and the surface of the non-conductive material is treated with a metallization process to achieve the purpose of surface conduction.
- the support holder is a plastic part
- the coupling member is arranged in the cavity of the filter and coaxially connected with the support holder
- a coupling window is provided in the cavity
- the The coupling piece is arranged at the coupling window
- an adjustment groove is opened on the end surface of the supporting bracket far away from the coupling piece, and the adjusting groove is used for external force to rotate the supporting bracket and drive the supporting bracket.
- the coupling member rotates, thereby adjusting the coupling amount between the resonance tubes.
- the support bracket includes:
- the insertion part is coaxially connected with the end of the adjustment part away from the adjustment groove, and the insertion part is inserted into the cover plate;
- the connecting part is coaxially connected with an end of the limiting part away from the insertion part, and the connecting part is used for connecting the coupling part.
- the outer diameter of the adjustment part is larger than the outer diameter of the insertion part
- the outer diameter of the limiting part is larger than the outer diameter of the insertion part
- the outer diameter of the limiting part is also greater than the outer diameter of the connecting portion
- a through hole is opened on the cover plate along its thickness direction, and the insertion part is inserted into the through hole.
- the insertion part is in interference fit with the through hole; or, the insertion part is fixed in the through hole by dispensing glue; or, the insertion part is fixed in the through hole by ultrasonic welding inside the through hole.
- a chamfer is provided at one end of the regulating portion close to the regulating groove.
- connection part comprises a coaxial connection of:
- the first connecting section is coaxially connected with the limiting part
- a second connection section is connected to the coupling piece, and the outer diameter of the second connection section is smaller than the outer diameter of the first connection section.
- the adjusting groove is a cross groove, a straight groove, an external hexagonal cross groove or an internal hexagonal plum blossom groove.
- a filter including a resonant cavity with an open end, a cover plate covering the open end and connected to the resonant cavity, at least two resonant tubes located in the resonant cavity, And the coupling adjustment mechanism as described above.
- a duplexer which includes a transmit channel filter and a receive channel filter, and the transmit channel filter and the receive channel filter use the filter as described above for filtering.
- a multiplexer including a plurality of transmit channel filters and a plurality of receive channel filters, and the transmit channel filter and the receive channel filter adopt the filter according to claim 17 to filter.
- a communication device including at least one filter as described above.
- the beneficial effect of the coupling adjustment mechanism, filter, duplexer, multiplexer and communication equipment lies in: it makes the support card seat under the action of external force by rotating the support card seat to the cover plate Rotate and drive the coupling to rotate to adjust the coupling between the resonant tubes, cancel and replace the coupling screw of the traditional cavity filter and the threaded hole on the cover plate, thereby avoiding the coupling screw and the threaded hole.
- Factors such as burrs and debris affect the intermodulation performance and high-power index of the cavity filter, which can improve the intermodulation performance and high-power performance of the product, and at the same time improve the production pass rate of the product, reduce the product scrap rate and maintenance cost, and then improve Product market competitiveness.
- Fig. 1 is a cross-sectional view of a filter provided by an embodiment of the present application
- Fig. 2 is a top view of a filter provided by an embodiment of the present application.
- Fig. 3 is a structural diagram of a coupling provided by an embodiment of the present application when it is rotated at 0 degrees;
- Fig. 4 is a structural diagram of a coupling provided by an embodiment of the present application when it is rotated by 45 degrees;
- Fig. 5 is a structural diagram of a coupling provided by an embodiment of the present application when it is rotated by 90 degrees;
- Fig. 6 is a three-dimensional structural view of the coupling provided in the first embodiment of the present application.
- Fig. 7 is a three-dimensional structural view of a coupling provided in the second embodiment of the present application.
- Fig. 8 is a three-dimensional structure diagram of a coupling provided by the third embodiment of the present application.
- Fig. 9 is a three-dimensional structure diagram of a coupling provided by the fourth embodiment of the present application.
- Fig. 10 is a three-dimensional structure diagram of a coupling provided in the fifth embodiment of the present application.
- Fig. 11 is a three-dimensional structural view of a coupling provided in the sixth embodiment of the present application.
- Fig. 12 is a cross-sectional view of a filter provided by another embodiment of the present application.
- Fig. 13 is a top view of the support holder provided by the first embodiment of the present application.
- Fig. 14 is a side view of the support holder provided by the first embodiment of the present application.
- Fig. 15 is a top view of the support holder provided by the second embodiment of the present application.
- Fig. 16 is a side view of the support holder provided by the second embodiment of the present application.
- Fig. 17 is a top view of the support holder provided by the third embodiment of the present application.
- Fig. 18 is a side view of the support holder provided by the third embodiment of the present application.
- Fig. 19 is a top view of the support holder provided by the fourth embodiment of the present application.
- Fig. 20 is a side view of the support holder provided by the fourth embodiment of the present application.
- the filter 100 includes a resonant cavity 10 , a cover plate 20 , a resonant tube 30 and a coupling adjustment mechanism 40 .
- the resonant cavity 10 is a metal cavity
- the resonant cavity 10 can be a metal material as a whole or a metallized cavity with at least an inner surface, which has a resonant cavity 101 and an open end
- the resonant cavity 10 can include at least Two resonant cavities 101 , at least two resonant cavity 101 brackets are separated by a window 50 , and each resonant cavity 101 is provided with a resonant tube 30 .
- the cover plate 20 covers the opening end and is connected with the resonant cavity body 10 .
- the connection method between the cover plate 20 and the resonant cavity body 10 may be screw connection or the like.
- the resonance tube 30 is located in the resonance cavity 10 .
- the resonant tube 30 may be integrally formed with the resonant cavity 10 , that is, the resonant tube 30 is integrally formed on the inner surface of the bottom of the resonant cavity 10 .
- the resonant tube 30 may also be an independently arranged component, and be fixedly connected with the resonant cavity 10 through a fixing element.
- the coupling adjustment mechanism 40 is disposed on the cover plate 20 and located in the window 50 .
- the coupling adjustment mechanism 40 includes a support bracket 41 and a coupling member 42 .
- the support card seat 41 is rotatably connected to the cover plate 20
- the coupling member 42 is connected to the support card seat 41 .
- the coupling piece 42 is disposed between the two above-mentioned resonant tubes 30
- the supporting bracket 41 is used to rotate under the action of an external force and drive the coupling piece 42 to rotate, thereby adjusting the coupling amount between the resonant tubes 30 .
- the coupling distance and the coupling area between it and the resonant tube 30 are changing, and the coupling amount between the resonant tubes 30 is changed by rotating the coupling member 42, so as to adjust the filter 100 for coupling purposes.
- FIG. 3 is a structural diagram when the coupling member 42 rotates 0 degrees provided by the first embodiment of the present application.
- the coupling amount of the filter 100 reaches the limit; please refer to FIG. 4 , for this
- the structural diagram when the coupling member 42 is rotated 90 degrees, when the coupling member 42 is rotated 90 degrees, the coupling amount of the filter 100 also reaches the limit.
- the coupling distance and the coupling area between the coupling member 42 and the resonant tube 30 are constantly changing, and thus the coupling amount of the filter 100 is constantly changing.
- the support bracket 41 is rotatably connected to the cover plate 20, so that the support bracket 41 rotates under the action of an external force and drives the coupling member 42 to rotate, so as to adjust the coupling between the resonance tubes 30. amount, cancel and replace the threaded hole on the coupling screw of the traditional cavity filter and the cover plate 20, thereby avoiding the intermodulation of the cavity filter due to factors such as burrs and debris generated when the coupling screw is matched with the threaded hole
- Performance and high-power indicators can improve product intermodulation performance and high-power performance, and at the same time can improve product production pass rate, reduce product scrap rate and maintenance costs, and then improve product market competitiveness.
- the cover plate 20 is provided with a through hole 23
- the support bracket 41 includes a locking portion 411 and a connecting portion 412 .
- the engaging portion 411 is elastically engaged in the through hole 23
- the connecting portion 412 is connected to the engaging portion 411 and used for connecting the coupling member 42 .
- the clamping part 411 itself has elasticity, and it is clamped in the through hole 23 to realize self-locking; when an external force acts on the clamping part 411, it can rotate relative to the cover plate 20, thereby driving the coupling 42 turns.
- the inner wall of the through hole 23 is smooth, and no burrs and debris will be generated when the engaging portion 411 cooperates with the through hole 23 .
- the engaging portion 411 is in the shape of a claw, and the engaging portion 411 includes a cylindrical columnar portion and a hook protruding outward along the circumferential direction of the columnar portion, the through hole 23 is stepped, and the hook The portion abuts against the step of the through hole 23 to prevent the engaging portion 411 from being displaced along the axial direction of the through hole 23 .
- the engaging portion 411 has a through hole penetrating through the engaging portion 411 to make it elastic.
- the engaging portion 411 may also be of other elastic structures.
- the inner wall of the end of the through hole 23 close to the connecting portion 412 is an inclined surface, and the connecting portion 412 has a protrusion, and the protrusion cooperates with the inclined surface to seal the resonant cavity 10 .
- the coupling member 42 is fixedly connected to the supporting socket 41 through clamping.
- the coupling member 42 and the support bracket 41 are fixedly connected together through an embedded integrated injection molding process, so as to simplify the structure and process and reduce the cost.
- the coupling adjustment mechanism 40 further includes an adjustment portion 43 , which is disposed on the support bracket 41 and used for rotating the support bracket 41 .
- an adjustment portion 43 is provided at the end of the support bracket 41 away from the coupling member 42 , and the force is transmitted to the support bracket 41 through the adjustment portion 43 , so that external force can be applied to the support bracket 41 .
- the adjusting part 43 may be a screw, one end of which is inserted into the through hole of the claw-shaped locking part 411 to interfere with the through hole.
- the support holder 41 is made of plastic, and the coupling member 42 is made of conductive metal material.
- the support holder 41 is made of plastic, and the coupling member 42 is made of non-conductive material, such as plastic or ceramics.
- the surface of the non-conductive material is treated with a metallization process In order to achieve the purpose of surface conductivity.
- FIG. 6 is a three-dimensional structural view of the coupling member 42 provided in the first embodiment of the present application.
- the coupling piece 42 is U-shaped, and the bottom of the U-shaped coupling piece 42 is connected to the connecting portion 412 of the supporting card holder 41, and the two ends of the U-shaped coupling piece 42 are facing to the side of the resonant cavity 10. Bottom extension set.
- FIG. 7 is a three-dimensional structural view of the coupling member 42 provided in the second embodiment of the present application.
- the coupling piece 42 is in the shape of a back shape, and one side of the back-shaped coupling piece 42 is connected to the connecting portion 412 of the support card seat 41 .
- FIG. 8 is a three-dimensional structure diagram of a coupling member 42 provided in the third embodiment of the present application.
- the coupling member 42 is in the shape of a square tube.
- One end of the square tube-shaped coupling member 42 is connected to the connecting portion 412 of the support holder 41 , and the other end is extended toward the bottom of the resonant cavity 10 .
- FIG. 9 is a three-dimensional structure diagram of a coupling member 42 provided in the fourth embodiment of the present application.
- the coupling piece 42 is in the shape of a square, and one side of the square-shaped coupling piece 42 is connected to the connecting portion 412 of the supporting card base 41 .
- FIG. 10 is a three-dimensional structure diagram of a coupling member 42 provided in the fifth embodiment of the present application.
- the coupling piece 42 is in a concave shape
- the bottom of the concave coupling piece 42 is connected to the connecting portion 412 of the support holder 41
- the opening of the concave coupling piece 42 faces the bottom of the resonant cavity 10 .
- FIG. 11 is a three-dimensional structure diagram of a coupling member 42 provided in the sixth embodiment of the present application.
- the coupling member 42 is in the shape of a back shape with a notch, and the notch of the coupling member 42 is connected with the connecting portion 412 of the support card seat 41 .
- the shape of the coupling member 42 may also be other shapes than the above-mentioned shapes, as long as the coupling amount can be changed during the rotation process.
- the filter 100 further includes an adjustment mechanism 60 .
- the cover plate 20 is a deformable cover plate, that is, the cover plate 20 can be deformed under the action of external force, and the adjustment mechanism 60 is disposed on the cover plate 20 .
- the cover plate 20 is continuously deformed by the adjustment mechanism 60 , so that the distance between the cover plate 20 and the resonant tube 30 can be adjusted.
- a groove 21 is provided on the side of the cover plate 20 facing away from the resonance tube 30, and the adjustment mechanism 60 is arranged in the groove 21.
- the adjustment mechanism 60 is used to provide an acting force along the axial direction of the resonance tube 30, so that the The bottom of the groove 21 undergoes continuous deformation to adjust the distance between the cover plate 20 and the resonant tube 30 , thereby adjusting the resonant frequency of the filter 100 .
- the purpose of setting the groove 21 is to make the thickness of the deformed part of the cover plate 20 smaller on the one hand, so that the adjustment mechanism 60 can deform the cover plate 20 with the help of a small external force, which can improve the reliability of the filter 100. Tonality and tuning sensitivity; on the other hand, the overall height of the filter 100 can also be reduced, which is convenient for the miniaturization and thinning of the filter 100 .
- the continuous deformation of the cover plate 20 may include the continuous deformation of the cover plate 20 towards the direction close to the resonant tube 30, at this time, the distance between the cover plate 20 and the resonant tube 30 is continuously reduced;
- the continuous deformation of 20 also includes the continuous deformation of the cover plate 20 away from the resonant tube 30 , at this time, the distance between the cover plate 20 and the resonant tube 30 is continuously increased.
- the resonant tube 30 faces the cover plate 20, and a plate capacitor C is formed between the cover plate 20 and the resonant tube 30.
- a plate capacitor C is formed between the cover plate 20 and the resonant tube 30.
- a groove 21 is provided on the side of the cover plate 20 facing away from the resonance cavity 101, and an adjustment mechanism 60 is provided in the groove 21.
- the adjustment mechanism 60 is used to provide The force acting in the direction makes the bottom of the groove 21 continuously deform to adjust the distance between the cover plate 20 and the resonant tube 30, thereby adjusting the resonant frequency of the filter 100, thus, this embodiment cancels the traditional cavity filter
- the tuning screw and the threaded hole on the cover plate 20 of the filter can avoid factors such as burrs and debris generated when the tuning screw cooperates with the threaded hole from affecting the intermodulation performance and high power index of the cavity filter, and can improve product interaction. At the same time, it can improve the pass rate of product production, reduce product scrap rate and maintenance cost, and then improve the market competitiveness of products.
- the adjustment mechanism 60 includes a support cover 61 , an adjustment rod 62 and an adjustment nut 63 .
- the support cover plate 61 is arranged at the opening of the groove 21, and one end of the adjustment rod 62 is fixedly connected with the bottom of the groove 21 after passing through the support cover plate 61, and the adjustment nut 63 is sleeved outside the adjustment rod 62.
- 63 is located on the side of the support cover 61 facing away from the groove 21 , and an external thread extending along the axial direction of the adjusting rod 62 is provided on the outer surface of the adjusting rod 62 , and the external thread is used to cooperate with the adjusting nut 63 .
- annular boss 22 is formed at the opening of the groove 21 , and the edge of the support cover 61 abuts against the annular boss 22 .
- the groove 21 is circular, and expands radially outward at the opening of the groove 21 to form a through hole with a diameter larger than the groove 21.
- the axial displacement of the support cover plate 61 in a direction away from the resonant tube 30 may or may not be restricted.
- the adjusting nut 63 can be loosened, and a downward force can be applied to the adjusting rod 62. The acting force causes the cover plate 20 to deform toward the direction close to the resonant tube 30 .
- the adjustment mechanism 60 includes a support cover 61 , an adjustment rod 62 and an adjustment nut 63 .
- the support cover plate 61 is arranged at the opening of the groove 21, and one end of the adjustment rod 62 is fixedly connected with the bottom of the groove 21 after passing through the support cover plate 61.
- the adjustment nut 63 is sleeved outside the adjustment rod 62, and the adjustment nut 63 is located at On the side of the supporting cover plate 61 facing away from the groove 21 , an external thread extending along the axial direction of the adjusting rod 62 is provided on the outer surface of the adjusting rod 62 , and the external thread is used to cooperate with the adjusting nut 63 .
- the support cover 61 can rotate around the adjustment rod 62, and the adjustment nut 63 is fixedly connected to the support cover 61, such as the adjustment nut 63 and the support cover 61 are fixedly connected together by welding or bonding.
- the supporting cover plate 61 can rotate together with the adjusting nut 63 .
- a limiting structure for limiting the displacement of the support cover 61 along the axial direction of the adjustment rod 62 is provided at the opening of the groove 21 .
- the limiting structure may be an annular groove, and the edge of the supporting cover plate 61 is engaged in the annular groove, and can rotate in the annular groove.
- the groove 21 is circular, and the support cover 61 is also circular, so as to facilitate the rotation of the support cover 61 .
- the annular groove can be formed by surrounding the above-mentioned annular boss 22 and a limiting block or a limiting ring arranged at the opening of the groove 21 .
- the supporting cover 61 when the adjusting nut 63 is rotated in the first direction under the action of an external force, the supporting cover 61 will rotate together with the adjusting nut 63. Since the axial displacement of the supporting cover 61 is restricted, the adjusting nut 63 The axial displacement of the rod is also limited, and at this time, a reaction force is applied to the adjusting rod 62, so that the adjusting rod 62 is displaced in a direction away from the resonance tube 30, and then drives the bottom of the groove 21 fixedly connected with it to move away from the resonance tube.
- FIG. 12 is a structural diagram of a filter 100 provided in another embodiment of the present application.
- the coupling adjustment structure 40 is disposed on the cover plate 20 .
- the coupling adjustment structure 40 includes a support bracket 41 and a coupling piece 42 .
- the support holder 41 is rotatably connected to the cover plate 20 of the filter 100;
- the coupling member 42 is arranged in the cavity 10 of the filter 100, and the coupling member 42 is coaxially connected with the support holder 41;
- the cavity 10 is provided with
- the supporting bracket 41 is a plastic supporting member.
- An adjustment slot 410 is provided on the end surface of the support bracket 41 away from the coupling piece 42, and the adjustment slot 410 is used for external force to rotate the support bracket 41 and drive the coupling piece 42 to rotate, thereby adjusting the resonance tube 30. the amount of coupling. Specifically, during the rotation of the coupling member 42, the coupling distance and the coupling area between it and the resonant tube 30 are changing, and the coupling amount between the resonant tubes 30 is changed by rotating the coupling member 42, so as to adjust the filter 100 for coupling purposes.
- the coupling adjustment structure 40 provided in this embodiment adjusts the coupling amount between the two resonant tubes 30 by using the rotation of the supporting bracket 41, cancels and replaces the coupling screw on the traditional cavity filter 100 and the coupling screw on the cover plate 20. Threaded holes, so as to avoid factors such as burrs and debris generated when the coupling screw and the threaded hole cooperate to affect the intermodulation performance and high-power index of the cavity filter, which can improve the intermodulation performance and high-power performance of the product, and can also improve Product production pass rate, reduce product scrap rate and maintenance cost, and then improve product market competitiveness; in addition, due to the use of support card holder 41, and an adjustment groove 410 is provided on the end surface of the support card holder 41 away from the end of the coupling piece 42 , the adjustment groove 410 is used for external force to rotate the supporting bracket 41, so that the adjustment of the coupling adjustment structure 40 is convenient and the cost is low.
- the support bracket 41 includes an adjustment part 413 , an insertion part 414 , a limiting part 415 and a connecting part 416 .
- the above-mentioned adjustment groove 410 is provided on the end surface of the adjustment part 413 away from the end of the coupling part 42; the insertion part 414 is coaxially connected with the end of the adjustment part 413 away from the adjustment groove 410, and the insertion part 414 is inserted into On the cover plate 20; the limiting part 415 is coaxially connected with the end of the insertion part 414 away from the adjustment part 413; To connect the coupling piece 42.
- the adjusting part 413 , the inserting part 414 , the limiting part 415 and the connecting part 416 are sequentially connected coaxially, and the structure is simple and easy to form.
- the adjustment part 413, the insertion part 414, the limit part 415 and the connection part 416 are integrally formed, for example, the adjustment part 413, the insertion part 414, the limit part 415 and the connection part 416 are integrally formed by the same plastic , in order to simplify the structure and save cost.
- the adjusting part 413, the inserting part 414, the limiting part 415 and the connecting part 416 are all cylindrical, and the outer diameter of the adjusting part 413
- the outer diameter of the limiting portion 415 is greater than the outer diameter of the insertion portion 414
- the outer diameter of the limiting portion 415 is also greater than the outer diameter of the connecting portion 416 .
- the outer diameters of the adjusting part 413 and the limiting part 415 are both larger than the outer diameter of the inserting part 414, so as to limit the support holder 41 in the axial direction, so as to prevent the inserting part 414 from slipping out Cover plate 20.
- the outer diameter of the limiting portion 415 is also larger than the outer diameter of the connecting portion 416 , which can save material cost.
- a through hole 201 is opened on the cover plate 20 along its thickness direction, and the insertion portion 414 is inserted into the through hole 201 .
- the insertion portion 414 is elastic, and is inserted into the through hole 201 .
- the inner wall of the through hole 201 is smooth, and no burrs and debris will be generated when the insertion portion 414 is mated with the through hole 201 .
- the through hole 201 is a counterbore.
- the insertion portion 414 is interference fit with the through hole 201 .
- the insertion part 414 is fixed in the through hole 201 through a dispensing process.
- the insertion portion 414 is fixed in the through hole 201 by an ultrasonic welding process.
- a chamfer 419 is provided at the end of the adjustment portion 413 close to the end of the adjustment groove 410 .
- burrs are reduced by creating chamfers 419 .
- the connection portion 416 includes a first connection section 417 and a second connection section 418 that are coaxially connected.
- the first connecting section 417 is coaxially connected with the limiting portion 415
- the second connecting section 418 is connected with the coupling member 42
- the outer diameter of the second connecting section 418 is larger than the outer diameter of the first connecting section 417 .
- the outer diameter of the second connecting section 418 is larger than the outer diameter of the first connecting section 417 , so as to facilitate the positioning of the coupling piece 42 and facilitate the assembly of the coupling piece 42 .
- FIG. 13 and FIG. 14 are structural diagrams of the supporting bracket 41 provided in the first embodiment of the present application.
- the adjusting groove 410 is a straight groove.
- FIG. 15 and FIG. 16 are structural diagrams of the support holder 41 provided in the second embodiment of the present application.
- the adjusting groove 410 is a cross groove.
- FIG. 17 and FIG. 18 are structural diagrams of the support holder 41 provided in the third embodiment of the present application.
- the adjusting groove 410 is an external hexagonal cross groove.
- FIG. 19 and FIG. 20 are structural diagrams of the support holder 41 provided in the fourth embodiment of the present application.
- the adjusting groove 410 is a hexagonal plum blossom groove.
- the shape of the adjustment groove 410 supporting the card seat 41 may also be other shapes than the above-mentioned shapes.
- An embodiment of the present application also provides a duplexer, which includes: a transmit channel filter and a receive channel filter, wherein the transmit channel filter and the receive channel filter use the above-mentioned filter 100 for filtering.
- the transmit channel filter is used to process the transmit signal of the transmitter, and the receive channel filter is used to process the receive signal of the receiver.
- the embodiment of the present application also provides a multiplexer, the multiplexer includes a plurality of transmit channel filters and a plurality of receive channel filters, wherein the transmit channel filters and receive channel filters use the filter 100 for filtering .
- the transmit channel filter is used to process the transmit signal of the transmitter, and the receive channel filter is used to process the receive signal of the receiver.
- An embodiment of the present application further provides a communication device, where the communication device includes at least one filter 100 described above.
- the filter 100, duplexer or multiplexer provided in the above embodiments can be applied to a communication system, such as a communication device (such as a base station or a terminal), and can also be applied to a radar system.
- a communication system such as a communication device (such as a base station or a terminal)
- a radar system such as a radar system.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本申请公开一种耦合调节机构、滤波器、双工器、多工器及通信设备,该耦合调节机构(40)用于滤波器(100),包括转动连接于滤波器(100)的盖板(20)上的支撑卡座(41),以及与支撑卡座(41)连接的耦合件(42),耦合件(42)设置于滤波器(100)的两个谐振管(30)之间,支撑卡座(41)用于在外力的作用下转动并带动耦合件(42)转动,以调节谐振管(30)之间的耦合量。
Description
本申请要求于2021年07月08日在中国专利局提交的、申请号为202110774370.0、发明名称为“一种耦合调节机构、滤波器、双工器、多工器及通信设备”的中国专利申请的优先权,于2021年07月08日在中国专利局提交的、申请号为202121580194.9、发明名称为“一种耦合调节机构、滤波器、双工器、多工器及通信设备”的中国专利申请的优先权,于2021年09月24日在中国专利局提交的、申请号为202122328284.5、发明名称为“一种耦合调节结构、滤波器及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信设备技术领域,具体涉及一种耦合调节机构、滤波器、双工器、多工器以及通信设备。
腔体滤波器作为一种频率选择装置被广泛应用于通信领域,尤其是射频通信领域。在基站中,滤波器用于选择通信信号,滤除通信信号频率外的杂波或干扰信号。
传统的腔体同轴滤波器主要包括腔体、盖板、谐振杆、调谐螺杆、耦合螺杆、窗口及连接器。其中,腔体、窗口、耦合螺杆组成了腔体滤波器的耦合机构,其中,耦合螺杆在腔体内部的长度越长,耦合量越大,反之越小。传统结构由于采用耦合螺杆,需要在盖板上开设螺纹孔与耦合螺杆配合使用,在耦合螺杆与螺纹孔配合的过程中,不可避免地会产生毛刺和碎屑等,降低了滤波器的互调性能和功率性能。
本申请实施例的目的之一在于:提供一种耦合调节机构、滤波器、双工器、多工器以及通信设备,旨在解决传统腔体滤波器互调性能和功率性能低的问题。
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种耦合调节机构,用于滤波器,包括转动连接于所述滤波器的盖板上的支撑卡座,以及与所述支撑卡座连接的耦合件,所述耦合件设置于所述滤波器的两个谐振管之间,所述支撑卡座用于在外力的作用下转动并带动所述耦合件转动,以调节所述谐振管之间的耦合量。
在一个实施例中,所述盖板上开设有通孔,所述支撑卡座包括弹性卡接于所述通孔内的卡接部,以及与所述卡接部连接且用于连接所述耦合件的连接部。
在一个实施例中,所述耦合件与所述支撑卡座通过装夹固定连接在一起。
在一个实施例中,所述耦合件与所述支撑卡座通过嵌入式一体化注塑成型工艺固定连接在一起。
在一个实施例中,所述耦合件呈U字型、回字型、凹字型、口字型、方筒状或具有缺口的口字型。
在一个实施例中,所述耦合调节机构还包括设置于所述支撑卡座上且用于转动所述支撑卡座的调节部分。
在一个实施例中,所述耦合件采用导电金属材料制成。
在一个实施例中,所述耦合件采用非导电材料制成,且所述非导电材料的表面采用金属化处理工艺进行处理以达到表面导电的目的。
在一个实施例中,所述支撑卡座为塑性件,所述耦合件设置于所述滤波器的腔体内且与所述支撑卡座同轴连接,所述腔体内设置有耦合窗口,所述耦合件设置于所述耦合窗口处,所述支撑卡座远离所述耦合件的一端的端面上开设有调节槽,所述调节槽用于供外力作用以转动所述支撑卡座,并带动所述耦合件转动,进而调节所述谐振管之间的耦合量。
在一个实施例中,所述支撑卡座包括:
调节部,其远离所述耦合件的一端的端面上开设有所述调节槽;
插接部,与所述调节部远离所述调节槽的一端同轴连接,所述插接部插接于所述盖板上;
限位部,与所述插接部远离所述调节部的一端同轴连接;以及
连接部,与所述限位部远离所述插接部的一端同轴连接,所述连接部用于连接所述耦合件。
在一个实施例中,所述调节部的外径大于所述插接部的外径,所述限位部的外径大于所述插接部的外径,所述限位部的外径还大于所述连接部的外径。
在一个实施例中,所述盖板上沿其厚度方向开设有通孔,所述插接部插接于所述通孔内。
在一个实施例中,所述插接部与所述通孔过盈配合;或者,所述插接部通过点胶固定于所述通孔内;或者,所述插接部通过超声波焊接固定于所述通孔内。
在一个实施例中,所述调节部靠近所述调节槽的一端开设有倒角。
在一个实施例中,所述连接部包括同轴连接的:
第一连接段,与所述限位部同轴连接;以及
第二连接段,与所述耦合件连接,所述第二连接段的外径小于所述第一连接段的外径。
在一个实施例中,所述调节槽为十字槽、一字槽、外六角十字槽或内六角梅花槽。
第二方面,提供了一种滤波器,包括具有开口端的谐振腔体,覆盖所述开口端并与所述谐振腔体相连接的盖板,位于所述谐振腔体内的至少两个谐振管,以及如上述所述的耦合调节机构。
第三方面,提供了一种双工器,包括发射通道滤波器和接收通道滤波器,所述发射通道滤波器和所述接收通道滤波器采用如上述所述的滤波器进行滤波。
第四方面,提供了一种多工器,包括多个发射通道滤波器和多个接收通道滤波器,所述发射通道滤波器和所述接收通道滤波器采用如权利要求17所述的滤波器进行滤波。
第五方面,提供了一种通信设备,包括至少一个如上述所述的滤波器。
本申请实施例提供的耦合调节机构、滤波器、双工器、多工器以及通信设备的有益效果在于:其通过将支撑卡座转动连接于盖板上,使得支撑卡座在外力的作用下转动并带动那个耦合件转动,以调节谐振管之间的耦合量,取消和替代了传统腔体滤波器的耦合螺杆和盖板上的螺纹孔,从而避免因耦合螺杆与螺纹孔配合时产生的毛刺和碎屑等因素而影响腔体滤波器的互调性能和大功率指标,可提高产品互调性能和大功率性能,同时可提高产品生产通过率,降低产品报废率和维修成本,进而提高产品市场竞争力。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例提供的滤波器的剖视图;
图2是本申请一实施例提供的滤波器的俯视图;
图3是本申请一实施例提供的耦合件旋转0度时的结构图;
图4是本申请一实施例提供的耦合件旋转45度时的结构图;
图5是本申请一实施例提供的耦合件旋转90度时的结构图;
图6是本申请第一实施例提供的耦合件的立体结构图;
图7是本申请第二实施例提供的耦合件的立体结构图;
图8是本申请第三实施例提供的耦合件的立体结构图;
图9是本申请第四实施例提供的耦合件的立体结构图;
图10是本申请第五实施例提供的耦合件的立体结构图;
图11是本申请第六实施例提供的耦合件的立体结构图;
图12是本申请另一实施例提供的滤波器的剖视图;
图13是本申请第一实施例提供的支撑卡座的俯视图;
图14是本申请第一实施例提供的支撑卡座的侧视图;
图15是本申请第二实施例提供的支撑卡座的俯视图;
图16是本申请第二实施例提供的支撑卡座的侧视图;
图17是本申请第三实施例提供的支撑卡座的俯视图;
图18是本申请第三实施例提供的支撑卡座的侧视图;
图19是本申请第四实施例提供的支撑卡座的俯视图;
图20是本申请第四实施例提供的支撑卡座的侧视图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
本申请一实施例提供一种滤波器100,该滤波器100尤其适用于腔体滤波器。请参阅图1及图2,该滤波器100包括谐振腔体10、盖板20、谐振管30和耦合调节机构40。
其中,谐振腔体10为一金属腔体,该谐振腔体10可以整体为金属材料或者为至少内表面金属化的腔体,其具有谐振腔101及开口端,该谐振腔体10可以包括至少两个谐振腔101,至少两个谐振腔101支架通过窗口50隔开,每一谐振腔101内设置有一个谐振管30。盖板20覆盖开口端,并与谐振腔体10连接,盖板20与谐振腔体10的连接方式可以为螺钉连接等。
谐振管30位于谐振腔体10内。在本实施例中,谐振管30可以与谐振腔体10一体形成,即谐振管30一体形成于谐振腔体10的底部的内侧面。在其他实施例中,谐振管30也可以是独立设置的部件,并与谐振腔体10通过固定元件进行固定连接。
耦合调节机构40设置于盖板20上且位于上述窗口50内。在本实施例中,耦合调节机构40包括支撑卡座41和耦合件42。其中,支撑卡座41转动连接于盖板20上,耦合件42与支撑卡座41连接。耦合件42设置于两个上述谐振管30之间,支撑卡座41用于在外力的作用下转动并带动耦合件42转动,进而调节谐振管30之间的耦合量。具体地,在耦合件42的转动过程中,其与谐振管30之间的耦合距离和耦合面积都在发生变化,通过旋转耦合件42来改变谐振管30之间的耦合量,达到调节滤波器100耦合量的目的。
请参阅图3,为本申请第一实施例提供的耦合件42旋转0度时的结构图,当耦合件42旋转0度时,滤波器100的耦合量达到极限;请参阅图4,为本申请第一实施例提供的耦合件42旋转45度时的结构图,当耦合件42旋转45度时,滤波器100的耦合量未达到极限;请参阅图5,为本申请第一实施例提供的耦合件42旋转90度时的结构图,当耦合件42旋转90度时,滤波器100的耦合量也达到极限。在耦合件42的旋转过程中,耦合件42与谐振管30之间的耦合距离和耦合面积不断发生变化,进而使得滤波器100的耦合量不断发生变化。
本实施例提供的滤波器100,通过将支撑卡座41转动连接于盖板20上,使得支撑卡座41在外力的作用下转动并带动耦合件42转动,以调节谐振管30之间的耦合量,取消和替代了传统腔体滤波器的耦合螺杆和盖板20上的螺纹孔,从而避免因耦合螺杆与螺纹孔配合时产生的毛刺和碎屑等因素而影响腔体滤波器的互调性能和大功率指标,可提高产品互调性能和大功率性能,同时可提高产品生产通过率,降低产品报废率和维修成本,进而提高产品市场竞争力。
在一实施例中,盖板20上开设有通孔23,支撑卡座41包括卡接部411和连接部412。其中,卡接部411弹性卡接于通孔23内,连接部412与卡接部411连接且用于连接耦合件42。在本实施例中,卡接部411自身具有弹性,其卡接于通孔23内,可实现自锁;当外力作用于卡接部411时,其可相对盖板20转动,进而带动耦合件42转动。通孔23的内壁光滑,当卡接部411与通孔23配合时不会产生毛刺和碎屑。
在一实施例中,卡接部411呈爪状,且卡接部411包括呈圆柱状的柱状部,以及沿柱状部的圆周方向向外突出设置的钩部,通孔23呈台阶状,钩部抵接于通孔23的台阶上,以防止卡接部411沿通孔23的轴向发生位移。在本实施例中,卡接部411内具有贯穿卡接部411的贯穿孔,使其具有弹性。在其它实施例中,卡接部411也可以是具有弹性的其它结构。
在一实施例中,通孔23靠近连接部412的一端的内壁为斜面,连接部412具有凸起,凸起与斜面配合,以密封谐振腔体10。
在一实施例中,耦合件42与支撑卡座41通过装夹固定连接在一起。在另一实施例中,耦合件42与支撑卡座41通过嵌入式一体化注塑成型工艺固定连接在一起,以简化结构和工艺,降低成本。
在一实施例中,耦合调节机构40还包括调节部分43,该调节部分43设置于支撑卡座41上,且用于转动支撑卡座41。在本实施例中,通过在支撑卡座41远离耦合件42的一端设置调节部分43,通过该调节部分43将作用力传递给支撑卡座41,便于施加外力作用于支撑卡座41上。具体地,该调节部分43可以是螺钉,其一端插入爪形卡接部411的贯穿孔中,与所述贯穿孔过盈配合。
在一实施例中,支撑卡座41采用塑料制成,耦合件42采用导电金属材料制成。在另一实施例中,支撑卡座41采用塑料制成,耦合件42采用非导电材料制成,如塑料或陶瓷等,在本实施例中,非导电材料的表面采用金属化处理工艺进行处理以达到表面导电的目的。
请参阅图6,为本申请第一实施例提供的耦合件42的立体结构图。在本实施例中,耦合件42呈U字型,该U字型耦合件42的底部与支撑卡座41的连接部412连接,而U字型耦合件42的两端朝向谐振腔体10的底部延伸设置。
请参阅图7,为本申请第二实施例提供的耦合件42的立体结构图。在本实施例中,耦合件42呈回字型,该回字型耦合件42的一条边与支撑卡座41的连接部412连接。
请参阅图8,为本申请第三实施例提供的耦合件42的立体结构图。在本实施例中,耦合件42呈方筒状,该方筒状耦合件42的一端与支撑卡座41的连接部412连接,另一端朝谐振腔体10的底部延伸设置。
请参阅图9,为本申请第四实施例提供的耦合件42的立体结构图。在本实施例中,耦合件42呈口字型,该口字型耦合件42的一侧与支撑卡座41的连接部412连接。
请参阅图10,为本申请第五实施例提供的耦合件42的立体结构图。在本实施例中,耦合件42呈凹字型,该凹字型耦合件42的底部与支撑卡座41的连接部412连接,该凹字型耦合件42的开口朝向谐振腔体10的底部。
请参阅图11,为本申请第六实施例提供的耦合件42的立体结构图。在本实施例中,耦合件42呈具有缺口的回字型,该耦合件42的缺口处与支撑卡座41的连接部412连接。
可以理解的是,在其它实施例中,耦合件42的形状也可以是除上述形状外的其它形状,只需满足在转动过程中能够实现耦合量变化即可。
在一实施例中,滤波器100还包括调节机构60。盖板20为变形盖板,即盖板20在外力的作用下能够发生形变,调节机构60设置于盖板20上。
在本实施例中,通过调节机构60使得盖板20发生连续形变,进而使得盖板20与谐振管30之间的距离可调。具体地,在盖板20背向谐振管30的一侧开设有凹槽21,调节机构60设置于凹槽21内,调节机构60用于提供沿谐振管30轴向方向的作用力,使凹槽21的底部发生连续形变以调节盖板20与谐振管30之间的距离,进而调节滤波器100的谐振频率。
其中,设置凹槽21的目的是一方面为了使得盖板20的变形部位的厚度较小,进而使得调节机构60借助较小的外力便可使盖板20发生变形,可提高滤波器100的可调性及调谐灵敏度;另一方面还可降低滤波器100的整体高度,便于滤波器100的小型化和薄型化。
在本实施例中,盖板20的连续形变可包括盖板20朝靠近谐振管30的方向发生的连续变形,此时,盖板20与谐振管30之间的距离发生连续减小;盖板20的连续形变还包括盖板20朝远离谐振管30的方向发生的连续变形,此时,盖板20与谐振管30之间的距离发生连续增加。
在本实施例中,谐振管30正对盖板20,盖板20与谐振管30之间形成平板电容C,通过改变平板电容C的大小来改变滤波器100的频率属性,而平板电容C的大小与盖板20和谐振管30之间的距离有关。故,通过改变盖板20与谐振管30之间的距离来改变滤波器100的谐振频率。滤波器100的谐振频率计算公式为F=1/2*pi*sqrt(L*C),其中,F为谐振频率,pi为常数,L为电感,平板电容C越大,谐振频率F越低,平板电容C越小,谐振频率F越高。
本实施例提供的滤波器100,通过在盖板20背向谐振腔101的一侧开设凹槽21,并于凹槽21内设置调节机构60,该调节机构60用于提供沿谐振管30轴向方向的作用力,使凹槽21的底部发生连续形变以调节盖板20与谐振管30之间的距离,从而调节滤波器100的谐振频率,由此,本实施例取消了传统腔体滤波器的盖板20上的调谐螺杆和螺纹孔,从而避免因调谐螺杆与螺纹孔配合时产生的毛刺和碎屑等因素而影响腔体滤波器的互调性能和大功率指标,可提高产品互调性能和大功率性能,同时可提高产品生产通过率,降低产品报废率和维修成本,进而提高产品市场竞争力。
在一实施例中,调节机构60包括支撑盖板61、调节杆62和调节螺母63。其中,支撑盖板61设置于凹槽21的开口处,调节杆62的一端穿设支撑盖板61后与凹槽21的底部固定连接,调节螺母63套设于调节杆62外,该调节螺母63位于支撑盖板61背向凹槽21的一侧,在调节杆62的外表面上开设有沿调节杆62的轴向方向延伸的外螺纹,该外螺纹用于与调节螺母63配合。
在本实施例中,为了限制支撑盖板61的轴向位移,在凹槽21的开口处形成有环形凸台22,支撑盖板61的边缘抵接于环形凸台22上。具体地,凹槽21呈圆形,在凹槽21的开口处沿径向向外扩展形成直径大于凹槽21的通孔,此时便于在凹槽21的开口处形成环形凸台22,支撑盖板61的底部边缘抵接于环形凸台22上,支撑盖板61的侧面抵接于凹槽21与环形凸台22相邻的侧面上。
在本实施例中,当在外力的作用下转动调节螺母63时,由于支撑盖板61限制了调节螺母63朝靠近谐振管30方向的位移,此时便会对调节杆62施加反作用力,使得调节杆62朝远离谐振管30的方向发生位移,进而带动与之固定连接的凹槽21底部朝远离谐振管30的方向发生形变,从而使得谐振管30与盖板20之间的距离发生连续增加。
在本实施例中,支撑盖板61朝远离谐振管30的方向的轴向位移可被限制,也可不被限制。当盖板20与谐振管30之间的距离需要连续减小,即盖板20需要朝靠近谐振管30的方向发生形变时,可松开调节螺母63,并对调节杆62施加一个向下的作用力,使盖板20朝靠近谐振管30的方向发生形变。
在另一实施例中,调节机构60包括支撑盖板61、调节杆62和调节螺母63。支撑盖板61设置于凹槽21的开口处,调节杆62的一端穿设支撑盖板61后与凹槽21的底部固定连接,调节螺母63套设于调节杆62外,该调节螺母63位于支撑盖板61背向凹槽21的一侧,在调节杆62的外表面上开设有沿调节杆62的轴向方向延伸的外螺纹,该外螺纹用于与调节螺母63配合。
在本实施例中,支撑盖板61能够绕调节杆62转动,调节螺母63与支撑盖板61固定连接,如调节螺母63与支撑盖板61通过焊接或粘接等连接方式固定连接在一起,使得支撑盖板61能够与调节螺母63一起转动。
为了限制支撑盖板61的轴向位移,在凹槽21的开口处设置有用于限制支撑盖板61沿调节杆62的轴向方向发生位移的限位结构。具体地,该限位结构可以是环形凹槽,支撑盖板61的边缘卡接于环形凹槽内,并能够于环形凹槽内转动。具体地,凹槽21呈圆形,支撑盖板61也呈圆形,以便于支撑盖板61的转动。为了便于拆装支撑盖板61,环形凹槽可以由上述环形凸台22和设置于凹槽21的开口处限位块或限位环围合形成。
在本实施例中,当在外力的作用下朝第一方向转动调节螺母63时,支撑盖板61会随着调节螺母63一起转动,由于支撑盖板61的轴向位移被限制,调节螺母63的轴向位移也被限制,此时便会对调节杆62施加反作用力,使得调节杆62朝远离谐振管30的方向发生位移,进而带动与之固定连接的凹槽21的底部朝远离谐振管30的方向发生形变,从而使得谐振管30与盖板20之间的距离发生连续增加;当在外力的作用下朝与第一方向相反的第二方向转动调节螺母63时,支撑盖板61会随着调节螺母63一起转动,由于支撑盖板61的轴向位移被限制,调节螺母63的轴向位移也被限制,此时便会对调节杆62施加反作用力,使得调节杆62朝靠近谐振管30的方向发生位移,进而带动与之固定连接的凹槽21的底部朝靠近谐振管30的方向发生形变,从而使得谐振管30与盖板20之间的距离发生连续减小。
请参阅图12,为本申请另一实施例提供的滤波器100的结构图。在本实施例中,耦合调节结构40设置于盖板20上。耦合调节结构40包括支撑卡座41和耦合件42。其中,支撑卡座41转动连接于滤波器100的盖板20上;耦合件42设置于滤波器100的腔体10内,耦合件42与支撑卡座41同轴连接;腔体10内设置有窗口50,耦合件42设置于窗口50处,且位于滤波器100的两个谐振管30之间。在本实施例中,支撑卡座41为塑性支撑件。
在支撑卡座41远离耦合件42的一端的端面上开设有调节槽410,该调节槽410用于供外力作用以转动支撑卡座41,并带动耦合件42转动,进而调节谐振管30之间的耦合量。具体地,在耦合件42的转动过程中,其与谐振管30之间的耦合距离和耦合面积都在发生变化,通过旋转耦合件42来改变谐振管30之间的耦合量,达到调节滤波器100耦合量的目的。
本实施例提供的耦合调节结构40,通过采用支撑卡座41的转动来调节两个谐振管30之间的耦合量,取消和替代了传统腔体滤波器100的耦合螺杆和盖板20上的螺纹孔,从而避免因耦合螺杆与螺纹孔配合时产生的毛刺和碎屑等因素而影响腔体滤波器的互调性能和大功率指标,可提高产品互调性能和大功率性能,同时可提高产品生产通过率,降低产品报废率和维修成本,进而提高产品市场竞争力;另外,由于采用了支撑卡座41,并在支撑卡座41远离耦合件42的一端的端面上开设有调节槽410,该调节槽410用于供外力作用以转动支撑卡座41,使得耦合调节结构40调节方便,且成本低。
在一实施例中,请一并参阅图13至图20,支撑卡座41包括调节部413、插接部414、限位部415和连接部416。其中,在调节部413远离耦合件42的一端的端面上开设有上述调节槽410;插接部414与调节部413远离调节槽410的一端的端部同轴连接,插接部414插接于盖板20上;限位部415与插接部414远离调节部413的一端的端部同轴连接;连接部416与限位部415远离插接部414的一端同轴连接,连接部416用于连接耦合件42。在本实施例中,调节部413、插接部414、限位部415和连接部416依次同轴连接,其结构简单,便于成型。
在一实施例中,调节部413、插接部414、限位部415和连接部416一体成型,如调节部413、插接部414、限位部415和连接部416采用同一种塑料一体成型,以便于简化结构,并节约成本。
在一实施例中,请一并参阅图13、图15、图17和图19,调节部413、插接部414、限位部415和连接部416均呈圆柱状,调节部413的外径大于插接部414的外径,限位部415的外径大于插接部414的外径,限位部415的外径还大于连接部416的外径。在本实施例中,调节部413和限位部415的外径均大于插接部414的外径,以便于在轴向上对支撑卡座41进行限位,以防止插接部414滑出盖板20。限位部415的外径还大于连接部416的外径,可节约材料成本。
在一实施例中,请参阅图12,盖板20上沿其厚度方向开设有通孔201,插接部414插接于通孔201内。在本实施例中,插接部414自身具有弹性,其插接于通孔201内,当外力作用于调节槽410时,其可相对盖板20转动,进而带动耦合件42转动。通孔201的内壁光滑,当插接部414与通孔201配合时不会产生毛刺和碎屑。具体地,通孔201为沉孔。
在一实施例中,插接部414与通孔201过盈配合。在另一实施例中,当耦合调节结构40调节完成后,插接部414通过点胶工艺固定于通孔201内。在又一实施例中,当耦合调节结构40调节完成后,插接部414通过超声波焊接工艺固定于通孔201内。
在一实施例中,请一并参阅图13、图15、图17和图19,在调节部413靠近调节槽410的一端的端部开设有倒角419。在本实施例中,通过开设倒角419来减少毛刺。
在一实施例中,请一并参阅图13、图15、图17和图19,连接部416包括同轴连接的第一连接段417和第二连接段418。其中,第一连接段417与限位部415同轴连接,第二连接段418与耦合件42连接,第二连接段418的外径大于第一连接段417的外径。在本实施例中,第二连接段418的外径大于第一连接段417的外径,以便于对耦合件42进行定位,进而便于耦合件42的装配。
请参阅图13和图14,为本申请第一实施例提供的支撑卡座41的结构图。在本实施例中,调节槽410为一字槽。
请参阅图15和图16,为本申请第二实施例提供的支撑卡座41的结构图。在本实施例中,调节槽410为十字槽。
请参阅图17和图18,为本申请第三实施例提供的支撑卡座41的结构图。在本实施例中,调节槽410为外六角十字槽。
请参阅图19和图20,为本申请第四实施例提供的支撑卡座41的结构图。在本实施例中,调节槽410为内六角梅花槽。
可以理解的是,在其它实施例中,支撑卡座41的调节槽410的形状也可以是除上述形状外的其它形状。
本申请实施例还提供了一种双工器,该双工器包括:发射通道滤波器和接收通道滤波器,其中,发射通道滤波器和接收通道滤波器采用上述滤波器100进行滤波。发射通道滤波器用于处理发射机的发射信号,接收通道滤波器用于处理接收机的接收信号。
本申请实施例还提供了一种多工器,该多工器包括多个发射通道滤波器和多个接收通道滤波器,其中,发射通道滤波器和接收通道滤波器采用上述滤波器100进行滤波。发射通道滤波器用于处理发射机的发射信号,接收通道滤波器用于处理接收机的接收信号。
本申请实施例还提供一种通信设备,该通信设备包括至少一个上述滤波器100。
可以理解的是,以上实施例提供的滤波器100,双工器或多工器,可以应用于通信系统,如一种通信设备(比如基站或终端)中,也可以应用于雷达系统,在此可以不予限定。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (20)
- 耦合调节机构,用于滤波器,其特征在于,包括转动连接于所述滤波器的盖板上的支撑卡座,以及与所述支撑卡座连接的耦合件,所述耦合件设置于所述滤波器的两个谐振管之间,所述支撑卡座用于在外力的作用下转动并带动所述耦合件转动,以调节所述谐振管之间的耦合量。
- 根据权利要求1所述的耦合调节结构,其特征在于,所述盖板上开设有通孔,所述支撑卡座包括弹性卡接于所述通孔内的卡接部,以及与所述卡接部连接且用于连接所述耦合件的连接部。
- 根据权利要求1或2所述的耦合调节机构,其特征在于,所述耦合件与所述支撑卡座通过装夹固定连接在一起。
- 根据权利要求1或2所述的耦合调节机构,其特征在于,所述耦合件与所述支撑卡座通过嵌入式一体化注塑成型工艺固定连接在一起。
- 根据权利要求1或2所述的耦合调节机构,其特征在于,所述耦合件呈U字型、回字型、凹字型、口字型、方筒状或具有缺口的口字型。
- 根据权利要求1或2所述的耦合调节机构,其特征在于,所述耦合调节机构还包括设置于所述支撑卡座上且用于转动所述支撑卡座的调节部分。
- 根据权利要求1或2所述的耦合调节机构,其特征在于,所述耦合件采用导电金属材料制成。
- 根据权利要求1或2所述的耦合调节机构,其特征在于,所述耦合件采用非导电材料制成,且所述非导电材料的表面采用金属化处理工艺进行处理以达到表面导电的目的。
- 根据权利要求1所述的耦合调节机构,其特征在于,所述支撑卡座为塑性件,所述耦合件设置于所述滤波器的腔体内且与所述支撑卡座同轴连接,所述腔体内设置有耦合窗口,所述耦合件设置于所述耦合窗口处,所述支撑卡座远离所述耦合件的一端的端面上开设有调节槽,所述调节槽用于供外力作用以转动所述支撑卡座,并带动所述耦合件转动,进而调节所述谐振管之间的耦合量。
- 根据权利要求9所述的耦合调节结构,其特征在于,所述支撑卡座包括:调节部,其远离所述耦合件的一端的端面上开设有所述调节槽;插接部,与所述调节部远离所述调节槽的一端同轴连接,所述插接部插接于所述盖板上;限位部,与所述插接部远离所述调节部的一端同轴连接;以及连接部,与所述限位部远离所述插接部的一端同轴连接,所述连接部用于连接所述耦合件。
- 根据权利要求10所述的耦合调节结构,其特征在于,所述调节部的外径大于所述插接部的外径,所述限位部的外径大于所述插接部的外径,所述限位部的外径还大于所述连接部的外径。
- 根据权利要求11所述的耦合调节结构,其特征在于,所述盖板上沿其厚度方向开设有通孔,所述插接部插接于所述通孔内。
- 根据权利要求12所述的耦合调节结构,其特征在于,所述插接部与所述通孔过盈配合;或者,所述插接部通过点胶固定于所述通孔内;或者,所述插接部通过超声波焊接固定于所述通孔内。
- 根据权利要求10所述的耦合调节结构,其特征在于,所述调节部靠近所述调节槽的一端开设有倒角。
- 根据权利要求10所述的耦合调节结构,其特征在于,所述连接部包括同轴连接的:第一连接段,与所述限位部同轴连接;以及第二连接段,与所述耦合件连接,所述第二连接段的外径小于所述第一连接段的外径。
- 根据权利要求9至15任一项所述的耦合调节结构,其特征在于,所述调节槽为十字槽、一字槽、外六角十字槽或内六角梅花槽。
- 滤波器,其特征在于,包括具有开口端的谐振腔体,覆盖所述开口端并与所述谐振腔体相连接的盖板,位于所述谐振腔体内的至少两个谐振管,以及如权利要求1至16任意一项所述的耦合调节机构。
- 双工器,其特征在于,包括发射通道滤波器和接收通道滤波器,所述发射通道滤波器和所述接收通道滤波器采用如权利要求17所述的滤波器进行滤波。
- 多工器,其特征在于,包括多个发射通道滤波器和多个接收通道滤波器,所述发射通道滤波器和所述接收通道滤波器采用如权利要求17所述的滤波器进行滤波。
- 通信设备,其特征在于,包括至少一个如权利要求17所述的滤波器。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202121580194.9 | 2021-07-08 | ||
CN202110774370.0A CN113506965A (zh) | 2021-07-08 | 2021-07-08 | 一种耦合调节机构、滤波器、双工器、多工器及通信设备 |
CN202110774370.0 | 2021-07-08 | ||
CN202121580194.9U CN215771477U (zh) | 2021-07-08 | 2021-07-08 | 一种耦合调节机构、滤波器、双工器、多工器及通信设备 |
CN202122328284.5U CN215771502U (zh) | 2021-09-24 | 2021-09-24 | 一种耦合调节结构、滤波器及通信设备 |
CN202122328284.5 | 2021-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023279576A1 true WO2023279576A1 (zh) | 2023-01-12 |
Family
ID=84800304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/125755 WO2023279576A1 (zh) | 2021-07-08 | 2021-10-22 | 耦合调节机构、滤波器、双工器、多工器以及通信设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023279576A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393980A (zh) * | 2023-12-12 | 2024-01-12 | 成都世源频控技术股份有限公司 | 一种卯榫结构的四工器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6356171B2 (en) * | 1999-03-27 | 2002-03-12 | Space Systems/Loral, Inc. | Planar general response dual-mode cavity filter |
CN201838697U (zh) * | 2010-11-04 | 2011-05-18 | 宁波泰立电子科技有限公司 | 旋转式容性交叉耦合腔体滤波器 |
CN206595372U (zh) * | 2017-03-02 | 2017-10-27 | 艾迪康科技(苏州)有限公司 | 金属同轴腔体滤波器 |
CN111628254A (zh) * | 2020-04-30 | 2020-09-04 | 深圳市大富科技股份有限公司 | 耦合件固定结构以及滤波器 |
CN212257639U (zh) * | 2020-04-30 | 2020-12-29 | 深圳市大富科技股份有限公司 | 耦合件固定结构以及滤波器 |
CN113506965A (zh) * | 2021-07-08 | 2021-10-15 | 大富科技(安徽)股份有限公司 | 一种耦合调节机构、滤波器、双工器、多工器及通信设备 |
-
2021
- 2021-10-22 WO PCT/CN2021/125755 patent/WO2023279576A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6356171B2 (en) * | 1999-03-27 | 2002-03-12 | Space Systems/Loral, Inc. | Planar general response dual-mode cavity filter |
CN201838697U (zh) * | 2010-11-04 | 2011-05-18 | 宁波泰立电子科技有限公司 | 旋转式容性交叉耦合腔体滤波器 |
CN206595372U (zh) * | 2017-03-02 | 2017-10-27 | 艾迪康科技(苏州)有限公司 | 金属同轴腔体滤波器 |
CN111628254A (zh) * | 2020-04-30 | 2020-09-04 | 深圳市大富科技股份有限公司 | 耦合件固定结构以及滤波器 |
CN212257639U (zh) * | 2020-04-30 | 2020-12-29 | 深圳市大富科技股份有限公司 | 耦合件固定结构以及滤波器 |
CN113506965A (zh) * | 2021-07-08 | 2021-10-15 | 大富科技(安徽)股份有限公司 | 一种耦合调节机构、滤波器、双工器、多工器及通信设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393980A (zh) * | 2023-12-12 | 2024-01-12 | 成都世源频控技术股份有限公司 | 一种卯榫结构的四工器 |
CN117393980B (zh) * | 2023-12-12 | 2024-04-02 | 成都世源频控技术股份有限公司 | 一种卯榫结构的四工器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106785269B (zh) | 一种电耦合端口结构及腔体滤波器 | |
WO2023279576A1 (zh) | 耦合调节机构、滤波器、双工器、多工器以及通信设备 | |
US9627732B2 (en) | Connector for cavity filter | |
TWM598559U (zh) | 線纜波紋管安裝裝置 | |
CN113346215A (zh) | 一种谐振器、滤波器、双工器、多工器及通信设备 | |
CN209312975U (zh) | 一种微波滤波器 | |
CN215771477U (zh) | 一种耦合调节机构、滤波器、双工器、多工器及通信设备 | |
WO2016106635A1 (zh) | 腔体滤波器、双工器、信号收发装置、射频拉远设备和塔顶放大器 | |
CN211829143U (zh) | 谐振管组件以及滤波器 | |
CN219123454U (zh) | 耦合调节机构、滤波器及通信设备 | |
CN113506965A (zh) | 一种耦合调节机构、滤波器、双工器、多工器及通信设备 | |
CN215184489U (zh) | 一种谐振器、滤波器、双工器、多工器及通信设备 | |
WO2018133335A1 (zh) | 一种电耦合端口结构及腔体滤波器 | |
WO2023273032A1 (zh) | 谐振器、滤波器、双工器、多工器以及通信设备 | |
CN208539071U (zh) | 低频段腔体滤波器宽带端口与滤波器 | |
CN215732126U (zh) | 一种腔体滤波器 | |
CN215771502U (zh) | 一种耦合调节结构、滤波器及通信设备 | |
WO2021103763A1 (zh) | 射频器件及同轴端口与波导端口的转换装置 | |
CN109037866B (zh) | 低频段腔体滤波器宽带端口及其宽度调节方法与滤波器 | |
CN208622922U (zh) | 同轴腔体谐振器及滤波器 | |
CN215771504U (zh) | 一种谐振器和滤波器 | |
CN221176621U (zh) | 滤波器 | |
WO2018133336A1 (zh) | 一种耦合端口结构及腔体滤波器 | |
CN221176620U (zh) | 滤波器 | |
CN220086343U (zh) | 一种滤波器及其防雷隔直连接组件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21949062 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21949062 Country of ref document: EP Kind code of ref document: A1 |