WO2023279553A1 - 油水混合液处理装置和方法 - Google Patents

油水混合液处理装置和方法 Download PDF

Info

Publication number
WO2023279553A1
WO2023279553A1 PCT/CN2021/121827 CN2021121827W WO2023279553A1 WO 2023279553 A1 WO2023279553 A1 WO 2023279553A1 CN 2021121827 W CN2021121827 W CN 2021121827W WO 2023279553 A1 WO2023279553 A1 WO 2023279553A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pipe
separator
water mixture
coalescing
Prior art date
Application number
PCT/CN2021/121827
Other languages
English (en)
French (fr)
Inventor
王莉莉
党伟
丁鹏元
胡长朝
毕彩霞
唐志伟
谭文捷
王兴旺
司艳晓
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油勘探开发研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油勘探开发研究院 filed Critical 中国石油化工股份有限公司
Publication of WO2023279553A1 publication Critical patent/WO2023279553A1/zh
Priority to CONC2024/0000536A priority Critical patent/CO2024000536A2/es

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the invention relates to the field of water treatment, in particular to a device for treating oil-water mixed liquid, such as oily sewage, and a method for treating the oil-water mixed liquid.
  • Oilfield chemical enterprises will produce a large amount of oily sewage.
  • the sewage produced by its oil fields reaches 100 ⁇ 10 4 m 3 /d.
  • the emulsification of oily sewage is serious, containing a large number of small oil droplets and suspended substances. These tiny oil droplets and suspended substances will be stably suspended in the sewage, and the separation speed of oil and water is slow and difficult to remove.
  • Chinese patent document CN112520921A discloses a multi-physical field coordinated oily sewage treatment device, which includes a pre-treatment unit and an advanced treatment unit.
  • the pre-processing unit includes a cyclone module, a compact micro-air flotation module, a first medium coalescing module and a multi-media filtration module, which are used to remove dispersed oil droplets with larger particle sizes.
  • the advanced treatment unit includes a dielectric synergistically strengthened demulsification module, which is used to remove emulsified oil droplets with small particle size.
  • this device has a complex structure, a long process, a large floor space, and unsatisfactory treatment effects.
  • the compact micro-air flotation module in the device has high energy consumption, is not easy to operate, and the air flotation process is easy to cause problems such as corrosion and scaling.
  • the treatment effect of the dielectric synergistically strengthened demulsification module in this device is not good, and the cleaning and pollution problems of the plates are also serious.
  • the object of the present invention is to propose a treatment device and method for oil-water mixture.
  • an oil-water mixture treatment device which includes a laminar flow separator and an electric field separator arranged downstream of the laminar flow separator.
  • the laminar flow separator includes a coalescing tube having a coalescing packing disposed therein, a separating tube disposed above the coalescing tube, and a discharge tube disposed above the separating tube.
  • the coalescing pipe, the separation pipe and the discharge pipe are arranged approximately parallel and spaced apart, the coalescing pipe and the separation pipe are connected to each other through a first connecting pipe group, and the separation pipe and the discharge pipe are connected to each other through a second connecting pipe group.
  • the connecting tube groups are connected to each other.
  • the oil-water mixture to be treated After being processed in the coalescing pipe, the oil-water mixture to be treated enters the separation pipe through the first connecting pipe group for laminar flow separation, and the separated oil phase enters the After the discharge pipe, it is discharged from the upper part of the discharge pipe through the oil discharge pipeline, and the separated water phase enters the electric field separator from the lower part of the separation pipe for the next stage of separation.
  • each first communication pipe in the first communication pipe group and each second communication pipe in the second communication pipe group are arranged staggered with each other along the flow direction of the oil-water mixture .
  • the coalescing pipe, the separating pipe and the discharge pipe are all arranged in a spiral manner.
  • the coalescing pipe has a length of 20%-100% of the separation pipe, and the discharge pipe has the same length as the separation pipe.
  • the electric field separator includes several electrode plates arranged approximately in parallel and spaced apart, and a coalescing unit is arranged between two adjacent electrode plates, wherein the electrode plates are arranged along They are arranged obliquely in a direction forming an acute angle with the flow direction of the oil-water mixture.
  • the surface of the electrode plate includes several point-like lipophilic regions, and other regions on the surface of the electrode plate are oleophobic regions.
  • the diameter of the point-shaped lipophilic region is 1-50 mm, and the total area of the point-shaped lipophilic region accounts for 10%-50% of the area of the entire electrode plate.
  • the coalescing unit includes several coalescing plates extending substantially parallel to the electrode plates, and each coalescing plate is connected into a whole by several connecting rods.
  • each coalescing plate is provided with several openings, and each opening on each coalescing plate is staggered relative to openings in adjacent coalescing plates.
  • the electric field separator includes a supporting plate, and the electrode plate is arranged on the supporting plate.
  • a backwash pipe is also provided above the electrode plate, and the end of the backwash pipe is provided with a water outlet bell mouth facing the center of the electrode plate.
  • the oil-water mixture treatment device further includes a chemical separator and a physical settler.
  • the electric field separator, the dosing separator and the physical settler are integrated in a housing, and a first partition and a second partition are arranged in the housing, thereby dividing the inner space of the housing into three areas.
  • the electric field separator, the dosing separator and the physical settler are respectively arranged in the three areas, so as to sequentially process the oil-water mixture.
  • the dosing separator is divided into an upstream coagulation zone and a downstream flocculation zone by a third partition, and the coagulation zone and the flocculation zone are located between the dosing separator.
  • the bottoms are interconnected.
  • the pH value of the oil-water mixture is adjusted to be above 8 by adding medicine in the coagulation zone.
  • the medicine also contains a coagulant.
  • the coagulation area is provided with a first folded plate group installed in the form of different folded plates, and the second folded plate set is installed in the manner of the same folded plate in the flocculation area. board set.
  • the bottom of the electric field separator, the dosing separator and the physical settler are all provided with a sludge collection part, and the tops are all provided with an oil collection tank.
  • the oil-water mixture treatment device further includes a cyclone separator arranged upstream of the laminar flow separator, and a filter arranged downstream of the physical settler.
  • the polarity of each electrode plate in the electric field separator is periodically changed, and the period is 2-24h.
  • the oil-water mixture to be treated when the oil content of the oil-water mixture to be treated is lower than 3000 mg/L, the oil-water mixture to be treated directly enters the laminar flow separator without going through the cyclone separation device.
  • the oil-water mixture to be treated is directly entered into the physical settler from the electric field separator .
  • the oil-water mixture to be treated is removed from the electric field The separator goes directly to the filter.
  • the oil-water mixture to be treated is discharged without passing through the filter.
  • Fig. 1 schematically shows the overall structure of the oil-water mixed liquid treatment device according to the present invention
  • Fig. 2 schematically shows the vertical structure of the laminar flow separator in the device shown in Fig. 1;
  • Fig. 3 schematically shows the planar unfolded structure of the laminar flow separator in the device shown in Fig. 1;
  • Fig. 4 schematically shows the overall structure of the comprehensive treatment unit comprising electric field separator, dosing separator and physical settler in the device shown in Fig. 1;
  • Figure 5 schematically shows a plan view of an electrode plate in an electric field separator according to the present invention
  • Fig. 6 schematically shows the structure of the coalescing unit in the electric field separator according to the present invention.
  • upstream and downstream are both defined with respect to the direction of flow of the fluid to be treated.
  • Fig. 1 shows an oil-water mixture treatment device 10 according to the present invention.
  • the oil-water mixture treatment device 10 is used for treating oily sewage or oilfield production fluid.
  • the oil-water mixture treatment device 10 according to the present invention can also be used to treat other oil-water mixtures, such as municipal sewage.
  • an oil-water mixture treatment device 10 receives oily sewage through a pipeline 20 schematically indicated by an arrow.
  • the oily sewage passes through the cyclone separator 100, the laminar flow separator 200, the electric field separator 300, the dosing separator 400, the physical settler 500 and the filter 600 successively in the oil-water mixed liquid treatment device 10 according to the present invention, and classifies deal with.
  • the purified water exits the entire device via drain line 90 .
  • the cyclone separator 100 of the oil-water mixed liquid treatment device 10 can adopt a cyclone separator known in the art to perform preliminary oil-water separation for oily sewage.
  • the oil phase in the oily sewage treated by the cyclone separator 100 is discharged through the oil discharge pipeline 22 arranged on the upper part of the cyclone separator 100, and the water phase in the oily sewage treated by the cyclone separator 100 is discharged through the set
  • the first pipeline 21 at the lower part of the cyclone separator 100 enters the laminar flow separator 200 for the next stage of treatment.
  • the oily sewage treated by the cyclone separator 100 is called the primary treatment fluid
  • the oily sewage treated by the laminar flow separator 200 is called the secondary treatment fluid, and so on.
  • FIGS. 2 and 3 schematically show the vertical structure and planar unfolded structure of the laminar flow separator 200 in the device shown in Figure 1, respectively.
  • the primary process fluid from the cyclone separator 100 enters the laminar flow separator 200 via a first line 21 .
  • the laminar flow separator 200 includes a coalescing pipe 210 , a separating pipe 220 and a discharge pipe 230 , which are arranged vertically from bottom to top.
  • the coalescing pipe 210, the separating pipe 220, and the discharge pipe 230 are arranged substantially parallel to and spaced apart from each other.
  • a first connecting pipe group 240 is disposed between the coalescing pipe 210 and the separating pipe 220 to connect the coalescing pipe 210 and the separating pipe 220 to each other.
  • a second connecting pipe group 260 is also provided between the separation pipe 220 and the discharge pipe 230 to connect the separation pipe 220 and the discharge pipe 230 to each other.
  • Both the first communication tube group 240 and the second communication tube group 260 include several vertically arranged communication tubes.
  • the primary treatment fluid enters into the coalescing pipe 210 of the laminar flow separator 200 through the first pipeline 21 .
  • a coalescing packing is provided in the coalescing tube 210 (as shown schematically in FIG. 3 ).
  • small oil droplets in the primary treatment fluid collide and coalesce at the surface of the coalescing packing, thereby growing into large oil droplets.
  • the demulsified oil droplets float up to the upper part of the coalescing packing, and gradually enter the separation pipe 220 through the first connecting pipe in the first connecting pipe set 240 .
  • FIG. 241, 242 only one pipe segment 270 disposed between the coalescing pipe 210 and the separation pipe 220 is shown in FIG. 241, 242.
  • the coalescing packing in the coalescing tube 210 can be of a type known in the art, such as granular packing, bundle packing, structured packing, and the like.
  • the primary treatment fluid is fully separated in the separation pipe 220 using the "shallow pool” principle.
  • the liquid level in the separation pipe 220 is low, the liquid flows slowly, and the liquid is easier to maintain a laminar flow state, which is more conducive to the floating of oil droplets.
  • the floating oil droplets gradually enter the discharge pipe 230 through the second connecting pipe in the second connecting pipe set 260 .
  • the water further separated by natural laminar flow in the discharge pipe 230 can return to the separation pipe 220 through the second communication pipe in the second communication pipe set 260 under the action of gravity.
  • the oil phase with low water content formed in the discharge pipe 230 is kept relatively independent from the water phase with low oil content formed in the separation pipe 220, thereby reducing the influence of hydraulic disturbance on the oil-water interface , and significantly improved the oil-water separation efficiency.
  • the separated oil phase will be gradually enriched in the discharge pipe 230 through the second connecting pipe group 260 and discharged through the oil discharge line 22 .
  • the residual water phase will continue to flow along the separation pipe 220, and finally enter the electric field separator 300 through the second pipeline 23 for the next stage of treatment.
  • each first communication pipe in the first communication pipe group 240 and each second communication pipe in the second communication pipe group 260 are arranged in an staggered manner along the flow direction of the oil-water mixture. .
  • the second communication pipe 261 is located in the middle of the first communication pipes 214 and 242 .
  • the length of the coalescing pipe 210 is 20%-100% of the separation pipe 220
  • the length of the discharge pipe 230 is the same as that of the separation pipe 220 .
  • the coalescing pipe 210 , the separating pipe 220 and the discharge pipe 230 are arranged in a spiral manner parallel to each other and spaced apart, as schematically shown in FIG. 2 .
  • each ring in the spirally arranged laminar flow separator 200 constitutes an "elevated" oil-water separator, which has higher separation efficiency than a horizontally arranged laminar flow separator.
  • the water phase outlet of the entire laminar flow separator 200 is arranged below the separation pipe 220 , while the oil phase outlet is arranged above the discharge pipe 230 .
  • the oil content in the water phase below the separation pipe 220 is relatively low, ensuring the water quality of the water phase discharged through the second pipeline 23;
  • the discharged oil phase has a low water content.
  • the coalescing pipe 210 , the separating pipe 220 and the discharge pipe 230 arranged vertically in a spiral manner greatly reduce the footprint of the laminar flow separator 200 , which is convenient for installation and application.
  • the electric field separator 300, the dosing separator 400, and the physical settler 500 of the oil-water mixed liquid treatment device 10 are integrated into a comprehensive treatment unit 800, as shown in FIG. 4 .
  • the comprehensive treatment unit 800 integrating the electric field separator 300 , the dosing separator 400 and the physical settler 500 will be described in detail below.
  • the electric field separator 300 , the drug-feeding separator 400 , and the physical settler 500 are formed separately from each other and connected in series.
  • the comprehensive processing unit 800 includes a cylindrical or square housing 810, and the electric field separator 300, the dosing separator 400 and the physical settler 500 are respectively arranged on the upstream side, the middle side and the downstream side of the housing 810, as shown in the figure Show. Specifically, a first separator 820 and a second separator 830 are arranged in the housing 810, thereby dividing the housing 810 into three parts, namely the left area, the middle area and the right area in FIG.
  • the electric field The separator 300, the drug-feeding separator 400 and the physical settler 500 are respectively arranged therein. It is easy to understand that the heights of the first partition 820 and the second partition 830 are both lower than the height of the side wall of the casing 810 . Also, the height of the first partition 820 is greater than that of the second partition 830 .
  • Electrode plates 320 are arranged inside the electric field separator 300 , which are arranged in parallel and spaced apart from each other. Preferably, the distance between two adjacent electrode plates 320 is, for example, 10-300 mm. These electrode plates 320 are arranged such that positive plates and negative plates are alternately placed.
  • the electrode plate 320 is connected to an unshown power supply and a control unit through electrodes to control the polarity and current magnitude of the electrode plate 320 .
  • a supporting plate 350 is arranged inside the electric field separator 300 , one end of which is connected to the housing 810 , and the other end is connected to the first separator 820 .
  • both the electrode plate 12 and its coalescing material 13 can be arranged on the support plate 350 .
  • a perforated water distribution pipe 340 may also be provided below the support plate 350 for the secondary treatment fluid from the second pipeline 23 to pass through and enter the region of the electrode plate 320 upwards.
  • the electrode plate 320 is arranged obliquely along a direction forming an acute angle with the flow direction of the oil-water mixture (ie, the vertical direction from bottom to top), and the inclination angle is, for example, 10-80 degrees.
  • the electrode plate 320 can provide an oblique plate degreasing effect in addition to the electric field effect.
  • the electrode plate 320 can be made of inert material, such as graphite plate, graphite paper, titanium plate, and so on. According to the present invention, the surface of the electrode plate 320 is modified. As shown in FIG. 5 , the surface of the electrode plate 320 can be modified so that the surface of the electrode plate 320 has dotted lipophilic regions 322 , while the remaining regions are subjected to hydrophobic modification treatment to form oleophobic regions 325 . Studies have shown that the coalescence of oil droplets mainly occurs when the oil droplets collide with the electrode plate. The collision coalescence effect of oil droplets on oleophilic surfaces is better than that on hydrophobic surfaces, however, it is difficult for oil droplets to fall off on oleophilic surfaces.
  • the electrode plate 320 is modified so that it has punctiform lipophilic regions 322 .
  • the coalescence effect is enhanced when the oil droplets impinge on the lipophilic region 322 .
  • the coalesced and grown oil droplets contact the oleophobic region 325, which improves the separation effect and reduces the pollution of the electrode plate.
  • the diameter of the point-shaped lipophilic region 322 is, for example, 1-50 mm, and the area of the point-shaped lipophilic region 322 accounts for 10%-50% of the area of the entire electrode plate. In this way, a good coalescence effect and a separation effect can be combined.
  • the polarity of the electrode plates 320 may be periodically changed. This can be done automatically by a not shown control unit (e. g. PLC). In a specific example, the period of changing the polarity of the electrode plate 320 is 2-24 hours.
  • coalescing material 330 is filled between adjacent electrode plates.
  • the coalescing material can be the existing granular packing, bundle packing, or structured packing with communicating channels between positive and negative electrodes.
  • the coalescing plate and connecting rod are preferably made of corrosion-resistant materials such as stainless steel and plastic.
  • the coalescing material 330 can adopt the structure shown in FIG. 6 .
  • the coalescing material 330 disposed between two adjacent electrode plates 320 is in the form of several layers of plate-shaped coalescing materials spaced apart from each other and extending approximately parallel to the electrode plates 320, that is, coalescing plates 332.
  • Each layer of coalescing plates 332 is connected to each other by a plurality of connecting rods 335 to form an integral structure.
  • six layers of coalescing plates 332 are shown from left to right in FIG. 6 , which are connected to each other by seven horizontally arranged connecting rods 335 .
  • the coalescing plates 332 in each layer are provided with a number of openings 333 .
  • the openings 333 of the coalescing plates 332 in each layer are offset from each other relative to the openings 333 of the coalescing plates 332 in adjacent layers.
  • the oil droplets collided and coalesced on the first layer of coalescing plate 332 are affected by the electric field force, and enter between the first layer of coalescing plate and the second layer of coalescing plate through the opening 333 on the first layer of coalescing plate 332 and continue to move towards the positive electrode under the action of the electric field force, and then collide with the second layer of coalescing plate 332, and so on. Finally, the oil droplets float to the liquid surface to complete the oil-liquid separation.
  • each coalescing plate 332 divides the space between two electrode plates 320 into several layers, which greatly reduces the migration distance of oil droplets and increases the collision probability.
  • the efficiency of collision and coalescence of oil droplets is greatly improved.
  • a backwashing pipe 380 is also provided according to the present invention.
  • the backwash pipe 380 extends into the electric field separator 300 and is located at the center above the electrode plate 320 .
  • the end of the backwash pipe 380 is provided with a water outlet bell mouth 370 .
  • the flushing liquid can be sprayed onto the electrode plate 320 through the backflushing pipe 380 from the water outlet bell mouth 370 for flushing.
  • the second pipeline 23 and the perforated water distribution pipe 340 can also serve as a collection pipe for backwashing wastewater.
  • the sludge phase in the secondary treatment fluid is collected in the sludge collection part 850 located at the bottom of the electric field separator 300 in the casing 810 and discharged through the sludge discharge pipeline 24 .
  • the oil phase in the secondary treatment fluid is discharged through the oil discharge line 22 .
  • the water phase in the secondary treatment liquid passes over the first partition 820 and enters the dosing separator 400 as the tertiary treatment fluid for next-level treatment.
  • the secondary treatment fluid contains Fe 2+ and S 2- .
  • Fe 2+ is oxidized to Fe 3+
  • S 2- is oxidized to S element, which leads to the excessive concentration of suspended matter in the fluid. Therefore, it is necessary to remove suspended matter.
  • the dosing separator 400 is arranged in the middle area of the housing 810 of the comprehensive treatment unit 800, and it is separated from the electric field separator 300 by a first partition 820 on the upstream side (the left side in Figure 4 ). and separated from the physical settler 500 on the downstream side (the right side in FIG. 4 ) by a second partition 830 .
  • the medicated separator 400 includes a third partition 840 , so that two different functional zones are formed in the medicated separator 400 , namely, the upstream coagulation zone 420 and the downstream flocculation zone 430 .
  • the upper end of the third partition 840 is flush with the top of the entire integrated treatment unit 800 , while the lower end is not connected to the bottom of the housing 810 , thereby making the bottoms of the coagulation zone 420 and the flocculation zone 430 communicate with each other.
  • a dosing port 440 for adding NaOH, oxidizing agent, coagulant, coagulant and other medicaments, so as to remove components such as iron and sulfur from the tertiary treatment fluid.
  • NaOH can be added through the dosing port 440 to adjust the pH value to above 8 to remove Fe 2+ .
  • H 2 O 2 can be added through the dosing port 440 to remove S 2 ⁇ .
  • coagulant aids such as PAM, clay, etc.
  • the coagulation zone 420 is provided with a first folded plate group 450 for hydraulic mixing, which is preferably installed in the form of a different wave folded plate, so as to satisfy the hydraulic retention time ⁇ 2min , G value is 500-1000s -1 .
  • a second folded plate group 460 for hydraulic mixing is provided in the flocculation zone 430, which is preferably installed in the same way as the folded plate, so as to satisfy the hydraulic retention time of 10-30min and the G value of 10-75s -1 .
  • the tertiary treatment fluid enters the coagulation zone 420 of the dosing separator 400 across the first partition 820 , and flows through the coagulation zone 420 from top to bottom.
  • the medicament such as NaOH, oxidant, coagulant, coagulant, etc.
  • the tertiary treatment fluid is fully coagulated, and then flows through the third partition.
  • the channel below 840 enters into the flocculation zone 430 and flows through the flocculation zone 430 from bottom to top.
  • the tertiary treatment fluid undergoes sufficient flocculation, and then enters the physical settler 500 from across the second partition 830 . for next level processing.
  • the height of the second partition 830 is smaller than that of the first partition 820 .
  • the physical settler 500 is formed between the second partition 830 and the housing 810 .
  • the physical settler 500 includes a number of inclined plates 510 disposed therein.
  • the physical settler 500 also includes a drug feeding port 540 above the second partition 830 for adding pH regulators, corrosion inhibitors, scale inhibitors and other chemicals.
  • an acid can be added through the dosing port 540 to adjust the pH of the base-added liquid to neutral.
  • Fe 2+ in the fourth-stage treatment fluid forms Fe(OH) 3 flocs, which are wrapped with suspended matter that was not removed in the dosing separator 400 .
  • the fluid settles through the sloping plate 510, thereby removing suspended matter in the fourth-stage treatment fluid.
  • the fifth-stage treatment fluid treated by the physical settler 500 is discharged through the third pipeline 25 arranged above the inclined plate 510 .
  • mud collecting parts 860 and 870 are respectively provided at the bottoms of the dosing separator 400 and the physical settler 500 of the housing 810 .
  • the sludge phase formed in the chemical separator 400 and the physical settler 500 is collected at the sludge collection parts 860 and 870 and discharged through the sludge discharge pipeline 24 .
  • oil collection tanks 40 , 41 , 42 and 43 are respectively provided on the side wall of the housing 810 of the comprehensive treatment unit 810 and both sides of the third partition 840 for collecting the separated oil phase. These separated oil phases can be discharged through the oil discharge pipeline 22 and enter the crude oil system for further processing.
  • the five-stage treatment fluid from the physical settler 500 is discharged into the filter 600 through the third pipeline 25 , thereby further removing fine oil droplets and suspended matter.
  • the six-stage treatment fluid treated by the filter 600 is discharged through the drainage pipeline 90 as the final purified drainage.
  • a booster pump 610 may also be provided on the third pipeline 25, so that the fifth-stage treatment fluid enters the filter 600 after being pressurized, so as to improve the filtering effect.
  • the oily sewage passes through the cyclone separator 100, the laminar flow separator 200, the electric field separator 300, the dosing separator 400, the physical settler 500 and the filter 600 successively in the oil-water mixed liquid treatment device 10, and carries out six steps. level processing.
  • the separated oil phase is discharged through the oil discharge pipeline 22 and enters the crude oil system for further processing; the separated mud phase is discharged through the sludge discharge pipeline 24; the purified water phase is discharged through the discharge pipeline 90, and its effluent water quality can be Meet the requirements of different injection water quality, under ideal conditions, it can reach "oil content ⁇ 5mg/L, suspended solids ⁇ 1mg/L, median particle size of suspended solids ⁇ 1 ⁇ m".
  • the oil-water mixed liquid treatment device 10 according to the present invention can be used especially for treating oil well production fluid and oily sewage with an oil content of less than 40%.
  • the electric field separator 300 , the dosing separator 400 , and the physical settler 500 of the oil-water mixed liquid treatment device 10 are integrated in the housing 810 of the comprehensive treatment unit 800 .
  • the flow of the fluid between the electric field separator 300 , the dosing separator 400 and the physical settler 500 only needs to cross the corresponding partitions, and the process path is short.
  • such an integrated structure according to the invention avoids complicated line connections and associated further contamination while reducing head loss and hydraulic lift.
  • the oil-water mixture treatment device 10 described above includes a cyclone separator 100, a laminar flow separator 200, an electric field separator 300, a chemical separator 400, a physical settler 500 and a filter 600 These six parts, however, according to the requirements of specific circumstances, some of the components can also be omitted. For example, if the oil-water mixture to be treated has a low oil concentration, the cyclone separator 100 can be omitted. If the Fe 2+ content in the oil-water mixture to be treated is very small, the dosing separator 400 may not be used. If the content of Fe 2+ and suspended matter in the oil-water mixture to be treated is low, the dosing separator 400 and the physical settler 500 may not be used. In addition, the filter 600 can be omitted if the water quality requirement of the discharged water is not high.
  • the influent water is the oily sewage after preliminary treatment of the production fluid of an oilfield, the oil content of the influent water is 50-250mg/L, and the concentration of suspended solids is 13-45.8mg/L.
  • the oil-water mixture treatment device including four parts of laminar flow separator 200 , electric field separator 300 , physical settler 500 and filter 600 is used for treatment.
  • the electrode plates in the electric field separator 300 are made of graphite, the inclination angle of the electrode plates is 10-45°, and the distance between the electrode plates is 10-300 mm.
  • the spherical agglomerated material has a particle size of 3-20 mm. Apply a voltage of 2-50V and a current of 100-2000A to the electrode plate.
  • the average influent oil content was 140.5mg/L, and the average influent suspended matter concentration was 32.6mg/L.
  • the oil content of the effluent is 1.7 mg/L, and the concentration of suspended solids in the effluent is 4.0 mg/L.
  • Example 1 a study of periodically changing the polarity of the electrode plates was also conducted.
  • the current of the electrode plate drops to 48% of the initial current after 36 hours of operation.
  • the current can still maintain more than 93.5% of the initial value after 72 hours of operation. It can be seen that periodically changing the polarity of the electrode plates can effectively reduce the pollution of the electrode plates.
  • the influent water is the produced fluid of an oilfield, and the oil content of the influent water is 8 ⁇ 10 4 mg/L-40 ⁇ 10 4 mg/L.
  • the oil-water mixture treatment device including six parts: cyclone separator 100 , laminar flow separator 200 , electric field separator 300 , chemical separator 400 , physical settler 500 and filter 600 is used for treatment. The rest of the conditions are the same as Example 1.
  • the average oil content of influent water was 18.7 ⁇ 10 4 mg/L.
  • the oil content of effluent water was 3.0 mg/L, and the concentration of suspended solids in effluent water was less than 5 mg/L.
  • the influent water is the oily sewage after preliminary treatment of the production fluid of an oilfield, and the oil content of the influent water is 87.3-3512.7mg/L.
  • the oil-water mixture treatment device including a laminar flow separator 200 , an electric field separator 300 , a physical settler 500 and an optional filter 600 is used for treatment. The rest of the conditions are the same as Example 1. The experiment was repeated 9 times.
  • the oil content in the water is much lower than that after only relying on gravity to settle.
  • the influent water is the oily sewage after preliminary treatment of the production fluid of an oilfield.
  • the sewage contains more Fe 2+ and the concentration of suspended solids in the influent water is 13.0-57.8mg/L.
  • the oil-water mixture treatment device including a laminar flow separator 200 , an electric field separator 300 , a dosing separator 400 and a physical settler 500 is used for treatment.
  • the rest of the conditions are the same as Example 1. The experiment was repeated 14 times.
  • the concentration of suspended solids in the treated effluent is shown in Table 2, unit: mg/L.
  • part of Fe 2+ is oxidized to Fe 3+ , forming fine suspended Fe(OH) 3 precipitates, resulting in the effluent of the electric field separator 300 having a yellower chroma and a higher content of suspended solids.
  • a small amount of NaOH is added to the fluid in the dosing separator 400, and flocs are formed immediately. The flocs are clear and transparent after being treated by the physical settler 500 .

Abstract

一种油水混合液处理装置(10)和方法,其包括层流分离器(200)和电场分离器(300)。层流分离器(200)包括其中设有聚结填料的聚结管(210)、设置在聚结管(210)上方的分离管(220),以及设置在分离管(220)上方的排出管(230)。聚结管(210)、分离管(220)和排出管(230)大致平行且间隔开地布置,聚结管(210)和分离管(220)之间通过第一连通管组(240)彼此相连,分离管(220)与排出管(230)之间通过第二连通管组(260)彼此相连。待处理的油水混合液在聚结管(210)中处理后通过第一连通管组(240)进入到分离管(220)进行层流分离,所分离的油相通过第二连通管组(260)进入排出管(230)后从排出管(230)的上部经排油管线(22)排出,所分离的水相从分离管(220)的下部进入所述电场分离器(300),以进行下一级分离。

Description

油水混合液处理装置和方法
相关申请的交叉引用
本申请要求享有于2021年7月7日提交的发明名称为“油水混合液处理装置和方法”中国专利申请202110769487.X的优先权,这件专利申请的全部内容通过引用结合于本文中。
技术领域
本发明涉及水处理领域,具体地涉及一种对油水混合液,例如含油污水进行处理的装置,以及一种油水混合液处理方法。
背景技术
油田化工企业会产出大量的含油污水。例如,仅就中石化集团而言,其各油田产出污水就达100×10 4m 3/d。一般来说,含油污水的乳化严重,含有大量粒径微小的油滴及悬浮物质。这些微小的油滴及悬浮物质会稳定地悬浮在污水中,油水分离速度慢,去除困难。
为了加快油水分离,在现有技术中一般需要投加除油剂、絮凝剂或浮选剂、助凝剂等大量药剂,其加药量从几十mg/L到200mg/L,高的可达超过600 mg/L。然而,大量加药会导致一系列问题,例如污水处理成本高、污泥产量大等等,给油田的生产运行带来沉重负担。
因此,近年来,含油污水的处理逐步向着不加药、低污泥产量的技术发展。中国专利文献CN112520921A公开了一种多物理场协同的含油污水处理装置,包括前期处理单元和深度处理单元。前期处理单元包括旋流模块、紧凑微气浮模块、第一介质聚结模块和多介质过滤模块,用于去除粒径较大的分散油滴。深度处理单元包括电介协同强化破乳模块,用于去除粒径较小的乳化油滴。
然而,这种装置的结构复杂,流程长,占地面积大,并且处理效果也不太理想。该装置中的紧凑微气浮模块能耗高,不易运行操作,且气浮工艺易造成腐蚀、结垢等问题。另外,该装置中电介协同强化破乳模块的处理效果欠佳,同时极板的清洗及污染问题也比较严重。
发明内容
本发明的目的在于提出一种油水混合液处理装置及方法。
根据本发明的一个方面,提供了一种油水混合液处理装置,其包括层流分离器和设于所述层流分离器的下游的电场分离器。所述层流分离器包括其中设有聚结填料的聚结管、设置在所述聚结管上方的分离管,以及设置在所述分离管上方的排出管。所述聚结管、分离管和排出管大致平行且间隔开地布置,所述聚结管和分离管之间通过第一连通管组彼此相连,所述分离管与排出管之间通过第二连通管组彼此相连。待处理的油水混合液在所述聚结管中处理后通过所述第一连通管组进入到所述分离管进行层流分离,所分离的油相通过所述第二连通管组进入所述排出管后从所述排出管的上部经排油管线排出,所分离的水相从所述分离管的下部进入所述电场分离器,以进行下一级分离。
在一个优选的实施例中,所述第一连通管组中的各个第一连通管与所述第二连通管组中的各个第二连通管沿油水混合液的流动方向彼此之间错开地布置。
在一个优选的实施例中,所述聚结管、分离管和排出管均呈螺旋式布置。优选地,所述聚结管的长度为所述分离管的20%-100%,所述排出管的长度与所述分离管的长度相同。
在一个优选的实施例中,所述电场分离器包括若干块大致平行且间隔开地布置的电极板,在相邻两块电极板之间设置有聚结单元,其中,所述电极板沿着与油水混合液的流动方向呈锐角的方向倾斜地布置。
在一个优选的实施例中,所述电极板的表面包括若干点状的亲油性区域,所述电极板的表面的其它区域为疏油性区域。
在一个具体的实施例中,所述点状的亲油性区域的直径为1-50mm,并且所述点状的亲油性区域的总面积占整个电极板的面积的10%-50%。
在一个优选的实施例中,所述聚结单元包括若干个大致平行于所述电极板延伸的聚结板,各所述聚结板通过若干连接杆相连成一个整体。
在一个优选的实施例中,每个聚结板均设有若干开口,每个聚结板上的每个开口相对于相邻聚结板中的开口均彼此错开。
在一个优选的实施例中,所述电场分离器包括承托板,所述电极板设置在所述承托板上。在所述电极板的上方还设有反冲洗管,所述反冲洗管的末端设有正对所述电极板的中心的出水喇叭口。
在一个优选的实施例中,所述油水混合液处理装置还包括加药分离器和物理沉降器。其中,所述电场分离器、加药分离器和物理沉降器集成在一个壳体内,在所述壳体中布置有第一隔板和第二隔板,从而将所述壳体的内部空间分成三个区域。所述电场分离器、加药分离器和物理沉降器分别设置在所述三个区域中,以便依次处理油水混合液。
在一个优选的实施例中,所述加药分离器通过第三隔板分隔成处于上游的混凝区和处于下游的絮凝区,所述混凝区和絮凝区在所述加药分离器的底部相互连通。
在一个优选的实施例中,在所述混凝区中通过加入药物来将油水混合液的pH值调节至8以上。在悬浮物含量低于25mg/L的情况下,所述药物还包含有助凝剂。
在一个优选的实施例中,在所述混凝区内设有以异波折板的方式安装的第一折板组,在所述絮凝区内设有以同波折板的方式安装的第二折板组。
在一个优选的实施例中,所述电场分离器、加药分离器和物理沉降器的底部均设有集泥部,顶部均设有集油槽。
在一个优选的实施例中,所述油水混合液处理装置还包括设于所述层流分离器的上游的旋流分离器,以及设于所述物理沉降器的下游的过滤器。
根据本发明的另一个方面,提供了一种使用如上所述的油水混合液处理装置来处理油水混合液的方法。
在一个优选的实施例中,定期地改变所述电场分离器中的各电极板的极性,周期为2-24h。
在一个优选的实施例中,在待处理的油水混合液的含油量低于3000mg/L的情况下,使待处理的油水混合液直接进入所述层流分离器而不经过所述旋流分离器。
在一个优选的实施例中,在待处理的油水混合液中的总铁含量低于0.5mg/L的情况下,使待处理的油水混合液从所述电场分离器直接进入所述物理沉降器。
在一个优选的实施例中,在待处理的油水混合液中的总铁含量低于0.5mg/L及悬浮物含量低于50mg/L的情况下,使待处理的油水混合液从所述电场分离器直接进入所述过滤器。
在一个优选的实施例中,在所述电场分离器的出水满足水质标准情况下,使待处理的油水混合液不经过所述过滤器而排出。
附图说明
下面将结合附图来对本发明进行详细地描述,在图中:
图1示意性显示了根据本发明的油水混合液处理装置的整体结构;
图2示意性显示了图1所示装置中的层流分离器的垂直结构;
图3示意性显示了图1所示装置中的层流分离器的平面展开结构;
图4示意性显示了图1所示装置中的包括电场分离器、加药分离器和物理沉降器的综合处理单元的整体结构;
图5示意性显示了根据本发明的电场分离器中的电极板的平面图;
图6示意性显示了根据本发明的电场分离器中的聚结单元的结构。
在附图中,相同的部件使用相同的附图标记表示。附图并未按照实际的比例绘制,并且各幅图中的某些细节被故意放大以便显示出所需要的细节之处。
具体实施方式
下面将结合附图来对本发明进行进一步的说明。在本文中,用语“上游”和“下游”均针对待处理流体的流动方向而定义。
图1显示了根据本发明的油水混合液处理装置10。该油水混合液处理装置10用于处理含油污水或油田采出液。然而可以理解,根据本发明的油水混合液处理装置10也可以用于处理其它油水混合液,例如市政污水。
如图1所示,根据本发明的油水混合液处理装置10通过由箭头示意性示出的管线20接受含油污水。含油污水在根据本发明的油水混合液处理装置10中依次经过旋流分离器100、层流分离器200、电场分离器300、加药分离器400、物理沉降器500以及过滤器600,进行分级处理。最终,经净化的水经由排水管线90排出整个装置。
在下文中将详细介绍根据本发明的油水混合液处理装置10的各个组成部分。
根据本发明的油水混合液处理装置10的旋流分离器100可采用本领域所公知的旋流分离器,用于对含油污水进行初步的油水分离。经旋流分离器100处理后的含油污水中的油相通过设置在旋流分离器100的上部的排油管线22排出,而经旋流分离器100处理后的含油污水中的水相通过设置在旋流分离器100的下部的第一管线21进入层流分离器200中,以便进行下一级处理。为方便起见,在本文中,经旋流分离器100处理后的含油污水称为一级处理流体,经层流分离 器200处理后的含油污水称为二级处理流体,以此类推。
图2和3分别示意性显示了图1所示装置中的层流分离器200的垂直结构和平面展开结构。如图2和3所示,来自旋流分离器100的一级处理流体经由第一管线21进入层流分离器200中。层流分离器200包括聚结管210、分离管220以及排出管230,它们沿垂直方向由下往上地依次布置。聚结管210、分离管220以及排出管230彼此大致平行且间隔开地布置。
根据本发明,在聚结管210与分离管220之间设置有第一连通管组240,从而将聚结管210与分离管220彼此相连。类似地,在分离管220与排出管230之间也设置有第二连通管组260,从而将分离管220与排出管230彼此相连。第一连通管组240和第二连通管组260均包括若干个竖直布置的连通管。
如图3所示,一级处理流体经由第一管线21进入到层流分离器200的聚结管210中。在聚结管210中设有聚结填料(如图3中示意性示出)。因此,一级处理流体中的细小油滴会在聚结填料的表面碰撞和聚结,从而长大成为大油滴。随着一级处理流体在聚结管210中流动,逐步实现破乳。破乳后的油滴上浮至聚结填料的上部,并逐步通过第一连通管组240中的第一连通管进入到分离管220中。为清楚起见,在图3中仅示出了设置在聚结管210和分离管220之间的一个管段270,以及位于管段270两侧的第一连通管组240中的两个第一连通管241、242。
聚结管210中的聚结填料可使用本领域所公知的类型,例如粒状填料、束状填料、规整填料等。
一级处理流体在分离管220中利用“浅池”原理而充分分离。相较于普通的斜板除油等“浅池”除油装置,分离管220中的液面深度低,液体流动缓慢,液体更易保持层流状态,更有利于油滴的上浮。之后,上浮的油滴逐步通过第二连通管组260中的第二连通管进入排出管230中。同时,在排出管230中通过自然层流作用进一步分离出的水可在重力作用下通过第二连通管组260中的第二连通管返回到分离管220中。
在根据本发明的层流分离器200中,排出管230中形成的低含水的油相与分离管220形成中的低含油的水相保持相对独立,从而减小了水力扰动对油水界面的影响,并显著提高了油水分离效率。
随着一级处理流体在分离管220中以层流的形式流动,所分离出的油相将经过第二连通管组260逐步富集在排出管230中,并经排油管线22而排出。同时, 残余的水相将沿分离管220继续流动,最后经第二管线23进入电场分离器300,以进行下一级处理。为清楚起见,在图3中仅示出了设置在分离管220和排出管230之间的三个管段281、282、283,以及位于这些管段附近的第二连通管组260中的三个第二连通管261、262、263。
根据本发明的一个具体的实施例,第一连通管组240中的各个第一连通管与第二连通管组260中的各个第二连通管沿油水混合液的流动方向彼此之间错开地布置。如图3所示,第二连通管261处于第一连通管214和242的中间。通过这种设置方式,避免了在第一连通管组240与第二连通管组260之间形成短路,使得进入到分离管220中的流体必须沿分离管220流动一段距离后才可能进入到排出管230中,而在排出管230中进一步分离出的水也必须沿出管230流动一段距离后才可能返回到分离管220中。同时,这种设置方式还减小了第一连通管组240对第二连通管组260和排出管230的水力冲击。
根据本发明的一个具体的实施例,聚结管210的长度为分离管220的20%-100%,而排出管230的长度与分离管220的长度相同。根据本发明的一个优选的实施例,聚结管210、分离管220以及排出管230相互平行且间隔开地呈螺旋式布置,如图2示意性所示。通过这种方式,螺旋式布置的层流分离器200中的每一环都构成“仰角式”的油水分离器,相比于水平放置的层流分离器而言具有更高的分离效率。由于水相和油相的密度差,水相相对向下运动而油相相对向上运动。根据本发明,整个层流分离器200的水相出口设置在分离管220的下方,而油相出口设置在排出管230的上方。这样,分离管220下方的水相中的油含量较低,保证了经第二管线23排出的水相的水质;而排出管230上方的油相中含水量较低,使得经排油管线22排出的油相含水率低。此外,通过螺旋式竖直设置的聚结管210、分离管220以及排出管230,极大地减小了层流分离器200的占地面积,便于安装应用。
根据本发明,油水混合液处理装置10的电场分离器300、加药分离器400、物理沉降器500集成在一个综合处理单元800中,如图4所示。以下详细介绍这种集成了电场分离器300、加药分离器400和物理沉降器500的综合处理单元800。然而可以理解,在本发明的一个未示出的实施例中,电场分离器300、加药分离器400、物理沉降器500彼此之间单独地形成,并且串联在一起。
如图4所示,来自层流分离器200的二级处理流体经由第二管线23进入综合处理单元800的电场分离器300中。综合处理单元800包括一个圆柱形或方形 的壳体810,电场分离器300、加药分离器400和物理沉降器500分别设置在该壳体810的上游侧、中间侧和下游侧,如图所示。具体地说,在壳体810内设置有第一隔板820和第二隔板830,从而将壳体810分成三个部分,即图4中的左侧区域、中部区域和右侧区域,电场分离器300、加药分离器400和物理沉降器500分别设置在其中。容易理解,第一隔板820和第二隔板830的高度均低于壳体810的侧壁的高度。并且,第一隔板820的高度大于第二隔板830的高度。
在电场分离器300内设置有若干电极板320,它们平行且彼此间隔开地布置。优选地,相邻的两块电极板320之间的间距例如为10-300mm。这些电极板320布置成正极板和负极板交替地摆放。电极板320通过电极与未示出的电源和控制单元相连,以控制电极板320的极性及电流大小。
根据本发明,电场分离器300内设置承托板350,其一端与壳体810相连,另一端与第一隔板820相连。这样,电极板12及其聚结材料13均可布置在承托板350上。在承托板350的下方还可设置穿孔布水管340,以供来自第二管线23的二级处理流体由此穿过而向上进入到电极板320的区域。
在本发明的一个优选的实施例中,电极板320沿着与油水混合液的流动方向(即由下至上的垂直方向)呈锐角的方向倾斜地布置,倾斜的角度例如为10-80度。通过倾斜布置电极板320,使得电极板320除了提供电场作用之外,还能够提供斜板除油作用。
电极板320可采用惰性材料制造,例如石墨板、石墨纸、钛板,等等。根据本发明,对电极板320的表面进行了改性处理。如图5所示,可对电极板320的表面进行改性处理,使得电极板320的表面具有点状的亲油性区域322,而其余区域进行疏水改性处理,形成疏油性区域325。研究表明,油滴的聚结主要发生在油滴碰撞在电极板上时。油滴在亲油表面的碰撞聚结效果优于疏水表面,然而,亲油表面的油滴脱落困难。因此,根据本发明对电极板320进行改性,使之具备点状的亲油性区域322。这样,油滴碰撞在亲油性区域322上时聚结效果增强。聚结长大后的油滴接触疏油性区域325,提高了分离效果,减轻了电极板的污染。
根据本发明的一个具体的实施例,点状的亲油性区域322的直径例如为1-50mm,并且点状的亲油性区域322的面积占整个电极板的面积的10%-50%。由此能够兼顾良好的聚结效果和分离效果。
为了减轻电极板的污染,可以定期改变电极板320的极性。这可通过未示出 的控制单元(例如PLC)来自动地实现。在一个具体的例子中,电极板320的极性的改变周期为2-24h。
根据本发明,在相邻的电极板之间填充有聚结材料330。聚结材料可为现有的粒状填料、束状填料,或者在正负极之间具有联通通道的规整填料。聚结板及连接杆材质优选采用不锈钢、塑料等耐腐蚀材料。
在一个优选的实施例中,聚结材料330可以采用图6所示的结构。如图6所示,设置在两块相邻的电极板320之间的聚结材料330的形式为若干层彼此间隔开的大致平行于电极板320延伸的板状聚结材料,即聚结板332。各层聚结板332彼此之间通过若干连接杆335相连,形成一个整体式结构。作为示例,在图6中显示了从左至右的六层聚结板332,它们通过七根水平布置的连接杆335彼此相连。每一层中的聚结板332均设置有若干开口333。优选地,每一层中的聚结板332的开口333相对于相邻层中的聚结板332的开口333彼此错开。
这样,当乳化油滴在电极板320之间受到电场力的作用时,会产生从负极板(例如图6中的左侧电极板)向正极板(例如图6中的右侧电极板)的移动。油滴碰撞在聚结板332上时会发生聚结。在第一层聚结板332上碰撞聚结后的油滴受电场力作用,通过第一层聚结板332上的开口333进入到第一层聚结板和第二层聚结板之间的空隙中,并在电场力的作用下继续向正极移动,进而碰撞在第二层聚结板332上,以此类似。最后,油滴上浮至液面,完成油液分离。
根据本发明,各个聚结板332将两块电极板320之间的空间分割为数层,大大减小了油滴运移距离,增大了碰撞几率。同时,根据“浅池”理论,油滴的碰撞聚结效率大大提高。
对于粒状填料及上下联通的规整填料,根据本发明还设置了反冲洗管380。该反冲洗管380伸入到电场分离器300内,处于电极板320之上的中心位置。反冲洗管380的末端设有出水喇叭口370。由此,冲洗液体可通过反冲洗管380由出水喇叭口370喷淋到电极板320上,以进行冲洗。此外,第二管线23和穿孔布水管340可兼作反冲洗废水的收集管。
在经过电场分离器300的处理后,二级处理流体中的泥相收集在壳体810中的位于电场分离器300的底部处的集泥部850中,并经由排泥管线24排出。二级处理流体中的油相通过排油管线22排出。二级处理液体中的水相作为三级处理流体越过第一隔板820而进入到加药分离器400中,以进行下一级处理。
在很多情况下,二级处理流体中含有Fe 2+和S 2-。经过电场处理后,Fe 2+被氧 化为Fe 3+,而S 2-氧化为S单质,进而导致流体中的悬浮物浓度超标。因此,有必要进行悬浮物的去除。如图4所示,加药分离器400设置在综合处理单元800的壳体810的中间区域,其在上游侧(图4中的左侧)通过第一隔板820与电场分离器300分隔开,而在下游侧(图4中的右侧)通过第二隔板830与物理沉降器500分隔开。
根据本发明,加药分离器400包括第三隔板840,从而在加药分离器400中形成了两个不同的功能区,即处于上游的混凝区420和处于下游的絮凝区430。第三隔板840的上端与整个综合处理单元800的顶部齐平,而下端不与壳体810的底部相连,由此使得混凝区420和絮凝区430的底部彼此连通。
在混凝区420的上部设有加药口440,用于加注NaOH、氧化剂、混凝剂、助凝剂等药剂,以便从三级处理流体中除去铁和硫等成分。作为一个实施例,可以通过加药口440加入NaOH,将pH值调节至8以上,去除Fe 2+。在另外一个实施例中,可以通过加药口440加入H 2O 2,去除S 2-。另外,在某些情况下,例如在悬浮物含量低于25mg/L的情况下,还需要加入助凝剂,如PAM、黏土等。
另外,根据本发明的一个具体的实施例,在混凝区420内设有起水力混合作用的第一折板组450,其优选地以异波折板的方式安装,从而满足水力停留时间<2min、G值为500-1000s -1。同时,在絮凝区430内设有起水力混合作用的第二折板组460,其优选地以同波折板的方式安装,从而满足水力停留时间10-30min、G值为10-75s -1
这样,三级处理流体越过第一隔板820而进入到加药分离器400的混凝区420中,由上往下地流过该混凝区420。在来自加药口440的药剂(例如NaOH、氧化剂、混凝剂、助凝剂等)以及第一折板组450的作用下,三级处理流体经过充分的混凝,然后从第三隔板840下方的通道进入到絮凝区430中,由下往上地流过该絮凝区430。在第二折板组460的作用下,三级处理流体发生充分的絮凝,然后从越过第二隔板830进入到物理沉降器500中。以进行下一级处理。
容易理解,根据本发明,第二隔板830的高度小于第一隔板820的高度。
物理沉降器500形成在第二隔板830和壳体810之间。物理沉降器500包括设置在其中的若干斜板510。另外,物理沉降器500还包括处于第二隔板830的上方的加药口540,用于加入pH调节剂、缓蚀剂、阻垢剂等药剂。例如,可以通过加药口540加入酸,将加碱后的液体的pH值调节至中性。这样,四级处理流体中的Fe 2+形成Fe(OH) 3絮体,并包裹有在加药分离器400中未去除的悬浮物。 流体通过斜板510发生沉降,由此除去四级处理流体中的悬浮物。经物理沉降器500处理后的五级处理流体通过设置在斜板510上方的第三管线25排出。
根据本发明,在壳体810的位于加药分离器400和物理沉降器500的底部处均还分别设有集泥部860和870。这样,在加药分离器400和物理沉降器500中形成的泥相收集于集泥部860和870处,并经由排泥管线24排出。
另外,根据本发明,在综合处理单元810的壳体810的侧壁以及第三隔板840的两侧分别设有收油槽40、41、42和43,用于收集分离出的油相。这些分离出的油相可经排油管线22排出,进入原油系统作进一步处理。
如图1所示,来自物理沉降器500的五级处理流体经第三管线25排出到过滤器600中,由此进一步去除细小油滴及悬浮物。经过滤器600处理后的六级处理流体经由排水管线90排出,作为最终的净化后的排水。
作为一个可选的示例,在第三管线25上还可以设置增压泵610,使得五级处理流体经增压后进入过滤器600,以提高过滤效果。
根据本发明,含油污水在油水混合液处理装置10中依次经过旋流分离器100、层流分离器200、电场分离器300、加药分离器400、物理沉降器500以及过滤器600,进行六级处理。最终,所分离出的油相经排油管线22排出,进入原油系统作进一步处理;所分离出的泥相经排泥管线24排出;净化过的水相经由排水管线90排出,其出水水质可满足不同注水水质要求,在理想状况下可达到“含油量≤5mg/L,悬浮固体≤1mg/L,悬浮固体粒径中值≤1μm”。根据本发明的油水混合液处理装置10尤其可用来处理含油量小于40%的油井采出液及含油污水。
根据本发明,油水混合液处理装置10的电场分离器300、加药分离器400、物理沉降器500集成在综合处理单元800的壳体810中。这使得油水混合液处理装置10的结构十分紧凑。同时,流体在电场分离器300、加药分离器400和物理沉降器500之间的流动只需要越过相应的隔板,流程路程短。因此,根据本发明的这种集成结构避免了复杂的管线连接和相关的进一步污染,同时减小了水头损失和水力提升。
需要说明的是,尽管在上文中所介绍的油水混合液处理装置10包括旋流分离器100、层流分离器200、电场分离器300、加药分离器400、物理沉降器500以及过滤器600这六个部分,然而根据具体情况的要求,其中的部分部件也可以省略。例如,如果待处理的油水混合液的含油浓度较低,可以省略旋流分离器 100。如果待处理的油水混合液中的Fe 2+含量很少,可以不使用加药分离器400。如果待处理的油水混合液中的Fe 2+及悬浮物含量均较低,可以不使用加药分离器400和物理沉降器500。另外,如果对排出水的水质要求不高,可以省略过滤器600。
以下通过若干示例来说明根据本发明的油水混合液处理装置10的处理效果。
示例1
进水为某油田采出液经初步处理后的含油污水,进水含油率为50-250mg/L、悬浮物浓度为13-45.8mg/L。采用包括层流分离器200、电场分离器300、物理沉降器500和过滤器600这四个部分的油水混合液处理装置进行处理。电场分离器300中的电极板采用石墨制成,电极板的倾斜角度为10-45°,电极板的间距为10-300mm。使得球状聚结材料,粒径为3-20mm。对电极板施加2-50V的电压和100-2000A的电流。
经检测,在处理前,平均进水含油率为140.5mg/L,平均进水悬浮物浓度为32.6mg/L。在经过上述油水混合液处理装置处理之后,出水含油率为1.7mg/L,出水悬浮物浓度为4.0mg/L。
另外,在示例1中还进行了定期改变电极板的极性的研究。在对电极板不进行极性改变的处理时,在运行36h后,电极板的电流下降至初始电流的48%。而在对电极板进行极性改变的处理时,在运行72h后,电流仍可保持在初始的93.5%以上。由此可知,定期改变电极板的极性能够有效地降低电极板的污染。
示例2
进水为某油田采出液,进水含油率8×10 4mg/L-40×10 4mg/L。采用包括旋流分离器100、层流分离器200、电场分离器300、加药分离器400、物理沉降器500以及过滤器600这六个部分的油水混合液处理装置进行处理。其余条件同示例1。
经检测,在处理前,平均进水含油率为18.7×10 4mg/L在处理后,出水含油率为3.0mg/L,出水悬浮物浓度小于5mg/L。
示例3
进水为某油田采出液经初步处理后的含油污水,进水含油率为87.3-3512.7mg/L。采用包括层流分离器200、电场分离器300、物理沉降器500以及选择性设置的过滤器600的油水混合液处理装置进行处理。其余条件同示例1。试验重复9次。
经各级处理后的出水的含油率及仅依靠重力沉降而未作其他处理的水中含油率如表1所示,单位:mg/L。
表1
Figure PCTCN2021121827-appb-000001
从表1可以看出,对于出水含油率的降低起决定作用的部分为层流分离器200和电场分离器300。经过这两级处理后,除油率达93.2%-99.9%。
此外,经过根据本发明的油水混合液处理装置处理之后,水中含油率远低于单纯依靠重力沉降后的水中含油率。
示例4
进水为某油田采出液经初步处理后的含油污水,污水中含Fe 2+较多,进水悬浮物浓度为13.0-57.8mg/L。采用包括层流分离器200、电场分离器300、加药分离器400和物理沉降器500的油水混合液处理装置进行处理。其余条件同示例1。试验重复14次。
经处理后的出水中的悬浮物浓度如表2所示,单位:mg/L。
表2
编号 进水 电场分离器 物理沉降器
1 45.8 27.6 1.5
2 39.3 23.8 1.2
3 17.1 16.9 1.3
4 20.6 17.2 1.5
5 15.7 16.0 1.4
6 13.0 15.3 0.9
7 16.1 15.7 1.0
8 43.7 26.3 1.8
9 50.6 30.1 2.0
10 38.7 27.5 1.6
11 57.8 33.8 1.9
12 38.2 24.8 1.6
13 30.8 20.5 1.1
14 29.6 21.6 1.4
平均 32.6 22.7 1.4
经过电场分离器300处理后的出水,部分Fe 2+氧化为Fe 3+,生成细小的悬浮Fe(OH) 3沉淀,导致电场分离器300的出水的色度较黄,悬浮物含量偏高。在加药分离器400中向流体中加入少量NaOH,立即生成絮体。絮体经物理沉降器500处理后清澈透明。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (21)

  1. 油水混合液处理装置(10),包括层流分离器(200)和设于所述层流分离器的下游的电场分离器(300),
    其中,所述层流分离器(200)包括其中设有聚结填料的聚结管(210)、设置在所述聚结管上方的分离管(220),以及设置在所述分离管上方的排出管(230),
    所述聚结管、分离管和排出管大致平行且间隔开地布置,所述聚结管和分离管之间通过第一连通管组(240)彼此相连,所述分离管与排出管之间通过第二连通管组(260)彼此相连,
    待处理的油水混合液在所述聚结管中处理后通过所述第一连通管组进入到所述分离管进行层流分离,所分离的油相通过所述第二连通管组进入所述排出管后从所述排出管的上部经排油管线(22)排出,所分离的水相从所述分离管的下部进入所述电场分离器,以进行下一级分离。
  2. 根据权利要求1所述的油水混合液处理装置,其特征在于,所述第一连通管组中的各个第一连通管与所述第二连通管组中的各个第二连通管沿油水混合液的流动方向彼此之间错开地布置。
  3. 根据权利要求1或2所述的油水混合液处理装置,其特征在于,所述聚结管、分离管和排出管均呈螺旋式布置,以及
    所述聚结管的长度为所述分离管的20%-100%,所述排出管的长度与所述分离管的长度相同。
  4. 根据权利要求1到3中任一项所述的油水混合液处理装置,其特征在于,所述电场分离器包括若干块大致平行且间隔开地布置的电极板(320),在相邻两块电极板之间设置有聚结单元(330),其中,所述电极板(320)沿着与油水混合液的流动方向呈锐角的方向倾斜地布置。
  5. 根据权利要求4所述的油水混合液处理装置,其特征在于,所述电极板的表面包括若干点状的亲油性区域(322),所述电极板的表面的其它区域为疏油性区域(325)。
  6. 根据权利要求5所述的油水混合液处理装置,其特征在于,所述点状的亲油性区域的直径为1-50mm,并且所述点状的亲油性区域的总面积占整个电极板的面积的10%-50%。
  7. 根据权利要求4所述的油水混合液处理装置,其特征在于,所述聚结单元包括若干个大致平行于所述电极板延伸的聚结板(332),各所述聚结板通过 若干连接杆(335)相连成一个整体。
  8. 根据权利要求7所述的油水混合液处理装置,其特征在于,每个聚结板均设有若干开口(333),每个聚结板上的每个开口相对于相邻聚结板中的开口均彼此错开。
  9. 根据权利要求4所述的油水混合液处理装置,其特征在于,所述电场分离器包括承托板(350),所述电极板设置在所述承托板上,以及
    在所述电极板的上方还设有反冲洗管(380),所述反冲洗管的末端设有正对所述电极板的中心的出水喇叭口(370)。
  10. 根据权利要求4到9中任一项所述的油水混合液处理装置,其特征在于,所述油水混合液处理装置还包括加药分离器(400)和物理沉降器(500),
    其中,所述电场分离器、加药分离器和物理沉降器集成在一个壳体(810)内,在所述壳体中布置有第一隔板(820)和第二隔板(830),从而将所述壳体的内部空间分成三个区域,所述电场分离器、加药分离器和物理沉降器分别设置在所述三个区域中,以便依次处理油水混合液。
  11. 根据权利要求10所述的油水混合液处理装置,其特征在于,所述加药分离器通过第三隔板(840)分隔成处于上游的混凝区(420)和处于下游的絮凝区(430),所述混凝区和絮凝区在所述加药分离器的底部相互连通。
  12. 根据权利要求11所述的油水混合液处理装置,其特征在于,在所述混凝区中通过加入药物来将油水混合液的pH值调节至8以上,以及
    在悬浮物含量低于25mg/L的情况下,所述药物还包含有助凝剂。
  13. 根据权利要求11所述的油水混合液处理装置,其特征在于,在所述混凝区内设有以异波折板的方式安装的第一折板组(450),在所述絮凝区内设有以同波折板的方式安装的第二折板组(460)。
  14. 根据权利要求10所述的油水混合液处理装置,其特征在于,所述电场分离器、加药分离器和物理沉降器的底部均设有集泥部,顶部均设有集油槽。
  15. 根据权利要求10所述的油水混合液处理装置,其特征在于,所述油水混合液处理装置还包括设于所述层流分离器的上游的旋流分离器(100),以及设于所述物理沉降器的下游的过滤器(600)。
  16. 使用根据权利要求10到15中任一项所述的油水混合液处理装置来处理油水混合液的方法。
  17. 根据权利要求16所述的方法,其特征在于,定期地改变所述电场分离 器中的各电极板的极性,周期为2-24h。
  18. 根据权利要求16所述的方法,其特征在于,在待处理的油水混合液的含油量低于3000mg/L的情况下,使待处理的油水混合液直接进入所述层流分离器而不经过所述旋流分离器。
  19. 根据权利要求16所述的方法,其特征在于,在待处理的油水混合液中的总铁含量低于0.5mg/L的情况下,使待处理的油水混合液从所述电场分离器直接进入所述物理沉降器。
  20. 根据权利要求16所述的方法,其特征在于,在待处理的油水混合液中的总铁含量低于0.5mg/L及悬浮物含量低于50mg/L的情况下,使待处理的油水混合液从所述电场分离器直接进入所述过滤器。
  21. 根据权利要求16所述的方法,其特征在于,在所述电场分离器的出水满足水质标准情况下,使待处理的油水混合液不经过所述过滤器而排出。
PCT/CN2021/121827 2021-07-07 2021-09-29 油水混合液处理装置和方法 WO2023279553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CONC2024/0000536A CO2024000536A2 (es) 2021-07-07 2024-01-23 Dispositivo de tratamiento de mezcla de petróleo y agua y método

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110769487.X 2021-07-07
CN202110769487 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023279553A1 true WO2023279553A1 (zh) 2023-01-12

Family

ID=84800287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121827 WO2023279553A1 (zh) 2021-07-07 2021-09-29 油水混合液处理装置和方法

Country Status (3)

Country Link
CN (5) CN115650463A (zh)
CO (1) CO2024000536A2 (zh)
WO (1) WO2023279553A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671487A (zh) * 2013-11-27 2015-06-03 中国石油化工股份有限公司 一种分水净化装置及其净化方法
CN106517402A (zh) * 2016-11-29 2017-03-22 森松(江苏)重工有限公司 一种管式油水分离装置
CN106861294A (zh) * 2015-12-10 2017-06-20 通用电气公司 用于分离流体的装置和方法及包含其的油气生产系统和方法
US20180002212A1 (en) * 2014-12-30 2018-01-04 Absolute Graphic Technologies Usa, Inc. Treating Water
CN107648884A (zh) * 2017-10-30 2018-02-02 南通旭越光电科技有限公司 一种电动管式油水分离装置
CN108434785A (zh) * 2018-04-24 2018-08-24 中国科学院力学研究所 一种油水分离装置及应用
CN109553166A (zh) * 2017-09-27 2019-04-02 中国石油化工股份有限公司 一种电吸附聚结填料及电吸附聚结污水处理装置和方法
CN209836093U (zh) * 2018-12-30 2019-12-24 中海油能源发展股份有限公司安全环保分公司 一种油田采出液油水分离装置
CN111825174A (zh) * 2019-04-23 2020-10-27 中国石油化工股份有限公司 一种用于水包油乳化液的破乳装置和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671487A (zh) * 2013-11-27 2015-06-03 中国石油化工股份有限公司 一种分水净化装置及其净化方法
US20180002212A1 (en) * 2014-12-30 2018-01-04 Absolute Graphic Technologies Usa, Inc. Treating Water
CN106861294A (zh) * 2015-12-10 2017-06-20 通用电气公司 用于分离流体的装置和方法及包含其的油气生产系统和方法
CN106517402A (zh) * 2016-11-29 2017-03-22 森松(江苏)重工有限公司 一种管式油水分离装置
CN109553166A (zh) * 2017-09-27 2019-04-02 中国石油化工股份有限公司 一种电吸附聚结填料及电吸附聚结污水处理装置和方法
CN107648884A (zh) * 2017-10-30 2018-02-02 南通旭越光电科技有限公司 一种电动管式油水分离装置
CN108434785A (zh) * 2018-04-24 2018-08-24 中国科学院力学研究所 一种油水分离装置及应用
CN209836093U (zh) * 2018-12-30 2019-12-24 中海油能源发展股份有限公司安全环保分公司 一种油田采出液油水分离装置
CN111825174A (zh) * 2019-04-23 2020-10-27 中国石油化工股份有限公司 一种用于水包油乳化液的破乳装置和方法

Also Published As

Publication number Publication date
CN115650461A (zh) 2023-01-31
CN115594261A (zh) 2023-01-13
CN115594262A (zh) 2023-01-13
CO2024000536A2 (es) 2024-03-07
CN115650463A (zh) 2023-01-31
CN115650462A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US8632685B2 (en) Multistage DAF-advanced oxidation system
US7175768B2 (en) Method and device for clarification of liquids, particularly water, loaded with material in suspension
CN107082506B (zh) 一种油田采出水的处理方法及工艺流程
KR100992430B1 (ko) 침전 장치 및 이를 포함하는 하ㆍ폐수 처리 장치
CN205095472U (zh) 沉降除油罐及采出水处理系统
CN107720959B (zh) 一种气液固三相分离器
KR20160029272A (ko) 다단 기포주입 부상분리조를 이용한 간이 하 폐수 처리 시스템 및 이를 이용한 간이 하 폐수 처리 방법
CN205442919U (zh) 一种油田采出水处理系统
CN107522310A (zh) 不加药处理含油污水回注工艺
KR20140127180A (ko) 용존공기부상장치 분리조 하부에 구비되는 헤더 및 이를 포함하는 용존공기부상장치
KR101773379B1 (ko) 사이클론을 포함하는 수평형 유도가스 부상분리를 이용한 유수처리 장치 및 그 방법
WO2023279553A1 (zh) 油水混合液处理装置和方法
CN106830442A (zh) 含油污水处理系统及方法
CN111825265A (zh) 油田采出水处理方法
CN113023914B (zh) 一种油田化学驱驱油采出水油水分离的处理系统及处理方法
CN112811667A (zh) 一种序列式除油系统及方法
CN106517568A (zh) 精细化含油污水处理装置
WO2009129590A1 (en) Multi-stage water clarifier
CN215365280U (zh) 一种采油废水一体化处理设备
CN216426944U (zh) 油水分离装置
CN114538639B (zh) 一种含油污水进生化前的预处理系统及方法
CN217947860U (zh) 一种复杂废水、废液高效处理装置
CN213680253U (zh) 一种具有破乳功能的气旋浮油田采出水处理装置
CN210367068U (zh) 一种压裂返排液及油田采出水固液分离系统
CN213202583U (zh) 一种油回收及油泥去除一体化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024/0044.1

Country of ref document: KZ

WWE Wipo information: entry into national phase

Ref document number: 2023135926

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE