WO2023279454A1 - 一种样品旋转系统及方法 - Google Patents

一种样品旋转系统及方法 Download PDF

Info

Publication number
WO2023279454A1
WO2023279454A1 PCT/CN2021/108465 CN2021108465W WO2023279454A1 WO 2023279454 A1 WO2023279454 A1 WO 2023279454A1 CN 2021108465 W CN2021108465 W CN 2021108465W WO 2023279454 A1 WO2023279454 A1 WO 2023279454A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
carrier
rotation
target position
rotation system
Prior art date
Application number
PCT/CN2021/108465
Other languages
English (en)
French (fr)
Inventor
邱国容
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/648,304 priority Critical patent/US20230012319A1/en
Publication of WO2023279454A1 publication Critical patent/WO2023279454A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes

Definitions

  • the present disclosure relates to, but is not limited to, a sample rotation system and method.
  • TEM When observing and testing the sample slices, TEM uses a dual-focus ion microscope (Dual beam FIB). If there are different heights on the same surface of the sample or large differences in the atomic number of the species on the cross-section, it will cause curtaining effect, which will affect the accuracy of the test results.
  • FIB dual-focus ion microscope
  • the present disclosure provides a sample rotation system and method.
  • a first aspect of the present disclosure provides a sample rotation system comprising:
  • Rotating device said rotating device includes:
  • a first carrier configured to connect to a sample
  • a driving part connected to the first carrier, the driving part is configured to drive the first carrier to rotate, and the first carrier drives the sample to rotate from an initial position to a target position;
  • a collection device configured to collect the rotational state of the sample
  • control unit the control unit is electrically connected to the driving part, and the control unit is configured to control the operation of the driving part.
  • a second aspect of the present disclosure provides a method of sample rotation, the method comprising:
  • the rotation state of the sample it is determined whether the sample is rotated to the target position.
  • the driving part drives the first carrier to rotate, and the first carrier drives the sample to rotate to the target position, completing the rapid flipping of the sample and saving time. And the sample is rotated to the target position, which facilitates the backcutting process and effectively improves the backcutting power and efficiency.
  • Fig. 1 is a schematic structural diagram of a rotating device according to an exemplary embodiment.
  • Fig. 2 is a schematic structural diagram of a limiting part according to an exemplary embodiment.
  • Fig. 3 is a schematic structural diagram of a reference body according to an exemplary embodiment.
  • Fig. 4 is a schematic structural diagram of a reference unit according to an exemplary embodiment.
  • Fig. 5 is a schematic structural diagram of a sample rotation system according to an exemplary embodiment.
  • Fig. 6 is a flowchart of a sample rotation method according to an exemplary embodiment.
  • Fig. 7 is a flowchart of a sample rotation method according to an exemplary embodiment.
  • Fig. 8 is a flow chart of a sample rotation method according to an exemplary embodiment.
  • Fig. 9 is a flow chart of a sample rotation method according to an exemplary embodiment.
  • Fig. 10 is a flow chart of a sample rotation method according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a computer device according to an exemplary embodiment.
  • Reference body 3. Reference unit;
  • the thickness of the sample affects the imaging quality of the sample test under TEM, and the appropriate sample thickness can obtain satisfactory TEM observation effect.
  • the sample is bonded to the substrate, and after the substrate is removed by grinding, the sample preparation is performed. This method is time-consuming and cannot be fixed-point cutting.
  • a tangential method is used to process the sample to obtain an observation area with a larger area.
  • this method is time-consuming and has a low success rate. After tangent processing, the structure under the sample still cannot be effectively observed due to the existence of the curtain effect, and accurate observation results cannot be obtained.
  • the present disclosure provides a sample rotation system, the sample rotation system includes a rotation device, and the rotation device includes a first carrier, a driving part, a collection device and a control unit.
  • the first carrier is connected to the sample
  • the driving part is connected to the first carrier
  • the driving part is set to drive the first carrier to rotate
  • the first carrier drives the sample to rotate from the initial position to the target position
  • the collection device is set to a rotating state for collecting the sample.
  • the control unit is electrically connected with the driving part, and the control unit is configured to control the operation of the driving part.
  • the driving part in the present disclosure drives the first carrier to rotate, and the first carrier drives the sample to rotate to the target position, completing the rapid flipping of the sample and saving time. And the sample is rotated to the target position, which facilitates the backcutting process and effectively improves the backcutting power and efficiency.
  • FIG. 1 shows a schematic diagram of a rotating device provided according to an exemplary embodiment of the present disclosure.
  • a sample rotation system includes a rotation device 1 , and the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (shown in FIG. 5 ).
  • the first carrier 11 is connected to the sample.
  • the sample may be a silicon substrate. In the installed state, take the side of the sample to be observed facing down as an example.
  • the first carrier 11 can be a first probe, and the first probe can be made of tungsten material, so that the first carrier 11 has the characteristics of high hardness, wear resistance, good strength and toughness, heat resistance and corrosion resistance.
  • the free end of the first carrier 11 is adhesively connected with the sample, and the free end is pointed.
  • the first carrier 11 can be bonded to the sample by means of a deposition process.
  • the driving part 12 is connected to the first carrier 11 , and the fixed end of the first carrier 11 is mounted on the driving part 12 .
  • the driving part 12 is configured to drive the first carrier 11 to rotate, and the first carrier 11 drives the sample to rotate from the initial position to the target position, so that the side of the sample to be observed faces upwards, so as to undercut the sample.
  • the sample after undercut has a larger observation area, which meets the basic needs of observation and testing, and is convenient for partial observation of the sample.
  • the collection device 13 is set to collect the rotation state of the sample, and determine whether the current position of the sample is the target position, so as to avoid the deviation of the sample rotation and affect the accuracy of backcutting. If the sample is not rotated to the target position, it can be adjusted in time to ensure smooth backcutting.
  • the control unit 14 is electrically connected to the drive part 12, and the control unit 14 is configured to control the operation of the drive part 12.
  • the first carrier 11 and the drive part 12 rotate synchronously, and drive the sample to follow the rotation to realize the rotation of the sample.
  • the control unit 14 controls the operation of the drive unit 12 to realize the automation of the sample rotation system and ensure precise rotation.
  • the first carrier 11 is driven to rotate by the driving part 12, and the first carrier 11 drives the sample to rotate, and the sample is rotated to the target position, saving the time of the backcut process, ensuring the accuracy of the backcut process, and improving the efficiency and success of the backcut process Rate. Partially observe the sample after cutting, so as to realize the test and analysis of the sample.
  • orientation words such as upper and lower are based on the orientations in the illustrations, and this embodiment is described without limiting the present application.
  • a sample rotation system includes a rotation device 1 , and the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (refer to FIG. 5 ).
  • the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (refer to FIG. 5 ).
  • the first carrier 11 drives the sample to rotate from the initial position to the target position, and there is a preset angle between the initial position and the target position, and the preset angle is any angle from 0° to 180°.
  • Focused ion beam is used when performing the downcut process on the sample. Focused ion beam can be widely used in small-scale structure analysis, section cutting, transmission electron microscope sample preparation, etc. Focused ion beam is the ion beam produced by the liquid metal Ga+ (Jia) ion source, which is accelerated and focused by the ion gun and irradiated on the surface of the sample. The surface atoms are stripped by the strong current ion beam to complete the micron and nanometer surface beam pattern. surface topography processing.
  • the focused ion beam includes a single-beam type and a double-beam type.
  • the single-beam type is a focused ion beam with only the ion beam, and the ion beam is mainly used for processing the cross section of the sample.
  • the double-beam type includes ion beam and electron beam. The angle between the electron beam and the ion beam is 52°. When the ion beam is processing the cross section, the electron beam can observe its shape and perform fine analysis.
  • the sample is in the shape of a plate.
  • the sample is placed in the horizontal direction (refer to the Y-axis shown in Figure 1), and the side with the curtain effect is horizontally facing downward.
  • the first carrier 11 drives the sample to rotate 180° relative to the initial position to the target position, revealing the side of the sample with a curtain effect, so as to facilitate the cross-section processing of the sample by the focused ion beam and ensure the accuracy of the back-cutting of the sample.
  • the sample is an odd shape.
  • the plane where the sample processing section is located has an included angle of 10° with the horizontal direction (refer to the Y axis shown in FIG.
  • the sample is processed in cross-section to ensure the accuracy of sample back-cutting.
  • FIG. 2 shows a schematic structural diagram of a limiting part provided in an embodiment shown according to an exemplary embodiment.
  • a sample rotation system includes a rotation device 1 , and the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (shown in FIG. 5 ).
  • the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (shown in FIG. 5 ).
  • the rotating device 1 further includes a stage 15 , on which the driving unit 12 is installed, on which the first carrier 11 is installed, and a fixed end of the first carrier 11 is connected to the driving unit 12 .
  • the drive unit 12 and the first carrier 11 are respectively installed on the stage 15 to improve the stability of the rotation device 1 to ensure the rotation state of the sample and avoid rotation errors.
  • the rotating device 1 further includes a limiting portion 16 , which may be a limiting block, and the limiting block is fixedly arranged on the upper surface of the carrier 15 .
  • the driving part 12 is installed on the stage 15 through the limiting part 16 , and the fixed end of the first carrier 11 is connected with the driving part 12 through the limiting part 16 .
  • the limiting portion 16 includes a first side 161 and a second side 162 , and the limiting portion 16 is provided with a through hole 163 penetrating through the first side 161 and the second side 162 .
  • the driving part 12 is fixedly mounted on the second side 162 , and the fixed end of the first carrier 11 is rotatably passed through the through hole 163 from the first side 161 , and is fixedly connected with the driving part 12 .
  • the fixed end of the first carrier 11 is fixedly connected to the driving part 12 , which improves the reliability of the connection between the first carrier 11 and the driving part 12 and ensures that the driving part 12 can drive the first carrier 11 to rotate.
  • a sample rotation system includes a rotation device 1 , and the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (refer to FIG. 5 ).
  • the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (refer to FIG. 5 ).
  • the sample rotation system also includes a processing device (not shown in the figure), the processing device is electrically connected to the control unit 14 and the collection device 13 respectively, and the processing device is configured to communicate with the collection device 13, so as to receive the graphic information of the collection device 13 , and make corresponding processing based on the graphic information.
  • the acquisition device 13 includes an image acquisition unit, which is electrically connected to the processing device, and the image acquisition unit is configured to acquire graphic information of the position of the sample.
  • the image acquisition unit may include a camera module, the camera module takes pictures of the sample, obtains the graphic information of the position of the sample, determines the current position of the sample, and transmits the graphic information to the processing device, and the processing device analyzes it, so that Determine whether the position of the sample is rotated to the target position. If it is judged that the sample has rotated to the target position, the rotation operation ends.
  • the processing device can send a corresponding command to the control unit 14, and the control unit 14 drives the drive unit 12 based on the command to adjust the position of the sample in time to ensure that the sample reaches the target position.
  • the processing device can also determine the difference between the current position of the sample and the target position of the sample, and directly transmit the difference to the control unit 14, and the control unit 14 drives the driving part 12 based on the difference, and the driving part 12 drives the first A carrier 11 rotates, so that the sample rotates with the first carrier 11 to the target position.
  • FIG. 3 shows a schematic structural diagram of a reference body provided according to an embodiment shown in an exemplary embodiment.
  • a sample rotation system includes a rotation device 1 , and the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (shown in FIG. 5 ).
  • the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (shown in FIG. 5 ).
  • the sample rotation system also includes a reference body 2 , which is a static reference object.
  • the reference body 2 is set at a target position, and the first carrier 11 is set to move relative to the reference body 2 .
  • the sample can be in the shape of a regular plate, which is cross-referenced with the reference body 2 so as to determine whether the sample has rotated to the target position.
  • the image acquisition unit acquires the graphic information of the relative position between the sample and the reference body 2 .
  • the graphic information includes the current position of the sample and the current position of the reference body 2 , and compares the relative positions between the sample and the reference body 2 . If the graphic information indicates that the sample and the reference body 2 overlap each other, it is determined that the sample is rotated to the target position. If the graphic information indicates that the sample and the reference body 2 are in a staggered state, it is determined that the sample has not rotated to the target position and needs to be adjusted.
  • a reference body 2 is set, and the image acquisition unit collects graphic information of relative positions between the sample and the reference body 2 . Based on the graphic information and with the reference body 2 as the benchmark, the current position of the regular-shaped sample is directly judged.
  • the judgment method is relatively simple and intuitive, and the processing device can quickly judge it and draw a conclusion, saving judgment time and improving efficiency.
  • Fig. 4 shows a schematic structural diagram of a reference unit according to an exemplary embodiment.
  • a sample rotation system includes a rotation device 1 , and the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (shown in FIG. 5 ).
  • the rotation device 1 includes a first carrier 11 , a driving part 12 , a collection device 13 and a control unit 14 (shown in FIG. 5 ).
  • the sample rotation system further includes a reference unit 3, which is communicatively connected with the processing device, and the reference unit 3 includes a plurality of reference points. Wherein, each reference point corresponds to a reference value.
  • the reference value is pre-stored in the reference unit, and there is a mapping relationship between the reference point and the reference value.
  • the sample may be of a different shape.
  • the acquisition device 13 collects the current position of the sample to determine the reference point corresponding to the current position of the sample, and determine the corresponding reference value according to the reference point.
  • the processing device compares the corresponding reference value with the reference value of the target position to determine the existing deviation. If the deviation is within the preset range, it is determined that the sample rotates to the target position. If the deviation is outside the preset range, it is determined that the sample is not rotated to the target position and needs to be adjusted. Based on the out of range, to determine the distance of the sample from the target location.
  • FIG. 5 shows a schematic diagram of a sample rotation system provided according to an exemplary embodiment of the present disclosure.
  • a sample rotation system includes a rotation device 1 , a machine platform 6 and a transmission mechanism 4 .
  • Machine 6 is a machine with a double-beam focused ion beam, so that the focused ion beam and electron beam can irradiate the sample.
  • the transmission mechanism 4 is installed on the machine platform 6 , and the transmission mechanism 4 is electrically connected to the control unit 14 .
  • the control unit 14 is configured to drive the transmission mechanism 4 , and the transmission mechanism 4 drives the rotating device 1 to move to a predetermined position of the machine table 6 .
  • the sample is set on the machine platform 6, and the rotating device 1 is moved to a predetermined position on the machine platform 6 through the transmission mechanism 4, and the machine platform 6 transfers the sample to the rotating device 1, and the rotating device 1 rotates the sample.
  • the specific content of rotating the sample by the rotating device 1 has been described in detail in the above embodiment, and will not be repeated here.
  • the sample rotation system further includes a second carrier 5, the second carrier 5 is installed on the machine platform 6, and the second carrier 5 is configured to connect the sample.
  • the second carrier 5 can be a second probe, and the second probe is made of tungsten material, so that the second carrier 5 has the characteristics of high hardness, wear resistance, good strength and toughness, heat resistance and corrosion resistance.
  • the free end of the second carrier 5 is adhesively connected to the sample, and the free end is pointed.
  • the second carrier 5 can be bonded to the sample by means of a deposition process.
  • the second carrier 5 carries the sample to the first carrier 11 , so that the sample is connected to the first carrier 11 , and the sample is separated from the second carrier 5 to realize the transfer of the sample.
  • the final beveled section is an oblique or flat section, and the focused ion beam has an incident angle relative to the sample, so that the beam optical axis of the focused ion beam has a preset angle with the sample.
  • the extension direction of the central axis of the second carrier 5 is parallel to the beam optical axis of the focused ion beam, so that the same preset angle is formed between the second carrier 5 and the sample.
  • the transfer mechanism 4 moves the rotating device 1 to a predetermined position on the platform 6 , which may be near the free end of the second carrier 5 , so as to facilitate sample exchange between the second carrier 5 and the first carrier 11 . After the sample is rotated by the rotating device 1 , the first carrier 11 moves the sample back to the second carrier 5 for processing and obtaining a reverse section.
  • the sample rotation system also includes a positioning unit (not shown in the figure), and the positioning unit may be a sensor or the like.
  • the positioning unit is electrically connected to the processing device, and the positioning unit is set to position the free end of the second carrier 5, so that the rotating device 1 can be accurately moved to a predetermined position, and the first carrier 11 and the second carrier 5 are set correspondingly. Sample transfer.
  • the second carrier is connected to the sample, the second carrier transfers the sample to the first carrier, and the rotation device completes the rotation of the sample so that the side of the sample to be observed faces upward.
  • the first carrier moves the sample back to the second carrier, and the section is processed by the focused ion beam on the machine to obtain the chamfered surface.
  • the inverted section has a large observation area, which meets the basic needs of observation and testing, and is convenient for local observation of samples.
  • FIG. 6 shows a flowchart of a sample rotation method provided according to an exemplary embodiment of the present disclosure.
  • the first carrier 11 is driven to receive the sample, so that the first carrier 11 forms a connection with the sample.
  • the first carrier 11 may be bonded to the sample, and the first carrier 11 may be bonded to the sample by means of a deposition process, so that the connection between the first carrier 11 and the sample is more reliable.
  • the driving part 12 drives the first carrier 11 to rotate, and the first carrier 11 drives the sample to rotate from the initial position to the target position.
  • the driving part 12 drives the rotation of the first carrier 11 to realize fast flipping, save the rotation time of the sample, improve the accuracy of the sample rotation, and improve the efficiency.
  • preset angle between the initial position and the target position, and the preset angle is any angle from 0° to 180°.
  • the processing device judges and analyzes it to determine whether the current position of the sample is the target position. If it is judged that the sample has rotated to the target position, the rotation operation ends. If it is judged that the sample has not rotated to the target position, the processing device can send a corresponding command to the control unit 14, and the control unit 14 drives the drive unit 12 based on the command to adjust the position of the sample in time to ensure that the sample reaches the target position.
  • the first carrier drives the sample to rotate, and the side of the sample to be observed faces up, so as to facilitate cross-section processing and realize downcutting.
  • the first carrier is driven by the driving part, which improves the accuracy of sample rotation and saves the rotation time of the sample.
  • the rotation time can be shortened to less than 30min/EA, which improves the efficiency and reduces the test cost.
  • FIG. 7 shows a flowchart of a sample rotation method provided according to an exemplary embodiment of the present disclosure.
  • Step S21-Step S22 are the same as Step S11-Step S12 in the above-mentioned embodiment, which have been described in detail in the above-mentioned embodiment, and will not be repeated here.
  • the collecting device 13 can collect the graphic information of the position of the reference body 2 .
  • the acquisition device 13 may include a graphic acquisition unit, which may be a camera module, and the camera module takes pictures of the current carrier 15 to obtain graphic information of the current position of the reference body 2 .
  • the acquisition device 13 when the acquisition device 13 takes pictures of the current stage 15, the sample and the reference body 2 are located in the same frame, and the acquisition device 13 can also capture the graphic information of the current position of the sample.
  • S25 Determine whether the sample is rotated to the target position according to the deviation information between the graphic information of the position of the reference body and the graphic information of the position of the sample.
  • the processing device receives the graphic information of the position of the sample and the graphic information of the position of the reference body 2 acquired by the acquisition device 13 .
  • the reference body 2 is used as a reference object, and the graphic information of the position of the sample is compared with the graphic information of the position of the reference body 2 to determine the deviation information between the two. Based on this deviation information, it is finally determined whether the sample is rotated to the target position.
  • the sample rotates to the target position, and the rotation ends.
  • the deviation information is greater than the preset threshold, the sample has not rotated to the target position.
  • the processing device sends a corresponding instruction to the control unit 14, the control unit 14 executes the instruction, controls the operation of the driving part 12, the driving part 12 drives the first carrier 11 to continue to rotate, and the first carrier 11 drives The rotation ends when the sample rotates to the target position.
  • a reference body is set, and the current position of the sample is directly judged by using the reference body as a reference object.
  • the judgment method is relatively simple and intuitive, and the processing device can quickly judge it and draw a conclusion, saving judgment. time and improve efficiency.
  • FIG. 8 shows a flowchart of a sample rotation method provided according to an exemplary embodiment of the present disclosure.
  • Step S31-Step S33 are the same as Step S21, Step S22, and Step S24 in the above embodiment, which have been described in detail in the above embodiment, and will not be repeated here.
  • configuration information is pre-stored in the reference unit, and the configuration information is used to characterize the correspondence between the reference marker point of the reference unit 3 and the target position.
  • each reference point corresponds to a reference value
  • the target position has a target reference value.
  • S35 Determine whether the sample is rotated to the target position according to the graphic information and configuration information of the position of the sample.
  • the collection device 13 collects the current position of the sample to determine the reference point corresponding to the current position of the sample, and determines the corresponding reference value according to the reference point.
  • the processing device compares the corresponding reference value with the reference value of the target position to determine the existing deviation. If the deviation is within the preset range, it is determined that the sample rotates to the target position. If the deviation exceeds the preset range, it is determined that the sample has not rotated to the target position.
  • a reference unit is set, multiple reference points are used as reference datums, and the reference points have matching reference values, the current position of the sample is accurately positioned, and the distance between the current position of the sample and the target position is determined. Deviation, automatic adjustment, to realize the automation of the sample rotation system.
  • An exemplary embodiment of the present disclosure provides a sample rotation method, which can be applied to a sample rotation system, and the sample rotation system includes a rotation device, a second carrier, and a machine platform.
  • FIG. 9 shows a flowchart of a sample rotation method provided according to an exemplary embodiment of the present disclosure.
  • the processing device sends an instruction to the control unit 14, and the control unit 14 controls the connection between the second carrier 5 and the sample.
  • the second carrier 5 can be bonded to the sample, and the second carrier 5 can be bonded to the sample by means of a deposition process, so that the connection between the second carrier 5 and the sample is more reliable.
  • the processing device sends an instruction to the control unit 14, and the control unit 14 controls the first carrier 11 to receive the sample, and carries the sample from the second carrier 5 to the first carrier 11, and the first carrier 11 carries the sample.
  • An exemplary embodiment of the present disclosure provides a sample rotation method, which can be applied to a sample rotation system, and the sample rotation system includes a rotation device, a second carrier, and a machine platform.
  • FIG. 10 shows a flowchart of a sample rotation method provided according to an exemplary embodiment of the present disclosure.
  • Step S51 is the same as step S41 in the above embodiment, which has been described in detail in the above embodiment, and will not be repeated here.
  • the positioning unit positions the free end of the second carrier 5, and the predetermined position is at the free end of the second carrier 5, so that the processing device determines the predetermined position.
  • the processing device sends an instruction to the control unit 14, the control unit 14 controls the operation of the transmission mechanism 4, the transmission mechanism 4 transmits the rotating device 1 to a predetermined position, and the free end of the first carrier 11 is close to the free end of the second carrier 5. end, so that the sample can be transferred from the second carrier 5 to the first carrier 11, and the first carrier 11 carries the sample to complete the transfer of the sample.
  • Fig. 11 is a block diagram of a computer device 900 used in a sample rotation system according to an exemplary embodiment.
  • computer device 900 may be provided as a sample rotation system.
  • a computer device 900 includes a processor 901 , and the number of processors can be set to one or more as required.
  • the computer device 900 also includes a memory 902 for storing instructions executable by the processor 901 , such as application programs.
  • the number of memories can be set to one or more as required. It can store one or more applications.
  • the processor 901 is configured to execute instructions to perform the above method.
  • the embodiments of the present disclosure may be provided as a method, an apparatus (device), or a computer program product. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
  • Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data , including but not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can be used in Any other medium, etc. that stores desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media, as is well known to those skilled in the art.
  • a non-transitory computer-readable storage medium including instructions, such as the memory 902 including instructions, which can be executed by the processor 901 of the device 900 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a non-transitory computer readable storage medium instructions in the storage medium, when executed by a processor of the sample rotation system, enable the sample rotation system to perform:
  • Control the first carrier to receive the sample drive the first carrier to rotate, so that the first carrier drives the sample to rotate from the initial position to the target position; collect the rotation state of the sample; determine whether the sample rotates to the target position according to the rotation state of the sample.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • the second carrier in the sample rotation system, is connected to the sample, the second carrier transfers the sample to the first carrier, and the rotation of the sample is completed by the rotating device, so that The curtain side of the sample is exposed.
  • the first carrier moves the sample back to the second carrier, and the section is processed by the focused ion beam on the machine to obtain the chamfered surface.
  • the inverted section has a large observation area, which meets the basic needs of observation and testing, and is convenient for local observation of samples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种样品旋转系统及方法,样品旋转系统包括旋转装置(1),旋转装置(1)包括:第一载体(11),与样品连接;驱动部(12),与第一载体(11)连接,驱动部(12)被设置为驱动第一载体(11)转动,第一载体(11)带动样品由初始位置旋转至目标位置;采集装置(13),采集装置(13)被设置为采集样品的旋转状态;控制单元(14),控制单元(14)与驱动部(12)电连接,控制单元(14)被设置为控制驱动部(12)运转。

Description

一种样品旋转系统及方法
本公开基于申请号为202110776194.4,申请日为2021年07月08日,申请名称为“一种样品旋转系统及方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于一种样品旋转系统及方法。
背景技术
目前,在半导体制造技术领域中,对半导体器件内部进行分析时,需要制备样品,并配置透射电子显微镜(Transmission Electron Microscope,简称TEM),以观察样品内部微观结构,实现样品的测试和分析。
对样品切片进行观察测试时,TEM采用的是双聚焦式离子显微镜(Dual beam FIB)。若样品中同一个表面存在高低不一或者截面上物种原子序大小差异较大时,会引发窗帘效应(curtaining effect),进而影响测试结果的准确性。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种样品旋转系统及方法。
本公开的第一方面提供一种样品旋转系统,其包括:
旋转装置,所述旋转装置包括:
第一载体,被设置为与样品连接;
驱动部,与所述第一载体连接,所述驱动部被设置为驱动所述第一载体转动,所述第一载体带动所述样品由初始位置旋转至目标位置;
采集装置,所述采集装置被设置为采集所述样品的旋转状态;
控制单元,所述控制单元与所述驱动部电连接,所述控制单元被设置为 控制所述驱动部运转。
本公开的第二方面提供一种样品旋转方法,所述方法包括:
控制第一载体接收样品;
驱动所述第一载体转动,使所述第一载体带动所述样品由初始位置旋转至目标位置;
采集所述样品的旋转状态;
根据所述样品的旋转状态,以确定所述样品是否旋转至所述目标位置。
本公开实施例所提供的样品旋转系统及方法,样品旋转系统内,驱动部带动第一载体转动,第一载体带动样品旋转至目标位置,完成了样品的快速翻转,节省时间。且将样品旋转至目标位置,便于倒切工艺的进行,有效提升倒切成功率和倒切效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的一种旋转装置的结构示意图。
图2是根据一示例性实施例示出的一种限位部的结构示意图。
图3是根据一示例性实施例示出的一种参照体的结构示意图。
图4是根据一示例性实施例示出的一种参照单元的结构示意图。
图5是根据一示例性实施例示出的一种样品旋转系统的结构示意图。
图6是根据一示例性实施例示出的一种样品旋转方法的流程图。
图7是根据一示例性实施例示出的一种样品旋转方法的流程图。
图8是根据一示例性实施例示出的一种样品旋转方法的流程图。
图9是根据一示例性实施例示出的一种样品旋转方法的流程图。
图10是根据一示例性实施例示出的一种样品旋转方法的流程图。
图11是根据一示例性实施例示出的一种计算机设备的框图。
附图标记:
1、旋转装置;
11、第一载体;12、驱动部;13、采集装置;14、控制单元;15、载台;
16、限位部;161、第一侧面;162、第二侧面;163、贯穿通孔;
2、参照体;3、参照单元;
4、传送机构;5、第二载体;6、机台。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
样品的厚度影响TEM下样品测试的成像质量,合适的样品厚度,可以获得满意的TEM观察效果。
一示例性地,将样品粘接于基板,并将基板研磨去除后,进行样品制备。该种方式耗时且无法定点切割。
另一示例性地,采用正切的方式,以对样品进行处理,以获得具有较大面积的观察区域。但是,该种方式耗时且成功率低。正切处理后,样品下方的结构由于窗帘效应的存在,样品下方的结构依然不能进行有效观察,无法获得准确的观察结果。
本公开提供了一种样品旋转系统,该样品旋转系统包括旋转装置,旋转装置包括第一载体、驱动部、采集装置和控制单元。第一载体与样品连接,驱动部与第一载体连接,驱动部被设置为驱动第一载体转动,第一载体带动样品由初始位置旋转至目标位置,采集装置被设置为采集样品的旋转状态。控制单元与驱动部电连接,控制单元被设置为控制驱动部运转。本公开中的驱动部带动第一载体转动,第一载体带动样品旋转至目标位置,完成了样品 的快速翻转,节省时间。且将样品旋转至目标位置,便于倒切工艺的进行,有效提升倒切成功率和倒切效率。
如图1所示,图1示出了根据本公开一示例性的实施例提供的旋转装置的示意图。
一种样品旋转系统包括旋转装置1,旋转装置1包括第一载体11、驱动部12、采集装置13和控制单元14(参照图5所示)。
第一载体11与样品连接,样品可以是硅基板,安装状态下,以样品待观察的一侧朝下为例。第一载体11可以是第一探针,第一探针可以由钨材料制成,使得第一载体11具有硬度高、耐磨、强度和韧性较好、耐热和耐腐蚀等特点。
第一载体11的自由端部与样品粘接连接,自由端部呈尖端状,第一载体11可以采用沉积工艺手段,以实现与样品的粘接。
驱动部12与第一载体11连接,第一载体11的固定端部安装于驱动部12。驱动部12被设置为驱动第一载体11转动,第一载体11带动样品由初始位置旋转至目标位置,使样品待观察的一侧朝上,以便于对样品进行倒切。倒切后的样品具有较大的观察区域,满足观察测试的基本需求,便于对样品进行局部观察。
采集装置13被设置为采集样品的旋转状态,确定样品的当前位置是否为目标位置,避免样品旋转出现偏差,影响倒切时的精准度。若是样品未旋转至目标位置,可以及时调整,以保证倒切的顺利进行。
控制单元14与驱动部12电连接,控制单元14被设置为控制驱动部12运转,第一载体11与驱动部12同步转动,并带动样品跟随转动,实现样品的旋转。控制单元14控制驱动部12运转,实现样品旋转系统的自动化,保证精准转动。
通过驱动部12驱动第一载体11旋转,第一载体11带动样品进行旋转,将样品旋转至目标位置,节省倒切工艺的时间,保证倒切工艺的精准度,提升倒切工艺的效率和成功率。局部观察倒切后的样品,以实现对样品的测试和分析。
在此,需要说明的是,对于上述关于上、下等方位词,均是以图示中的方位为基础,对本实施例进行说明,并不对本申请构成限制。
如图1所示,一种样品旋转系统包括旋转装置1,旋转装置1包括第一载体11、驱动部12、采集装置13和控制单元14(参照图5所示)。关于上述连接方式以及功能,上述实施例中均已详细陈述,在此,不再重复赘述。
第一载体11带动样品由初始位置旋转至目标位置,初始位置和目标位置之间具有预设夹角,预设夹角为0°至180°中的任意角度。
对样品进行倒切工艺时,利用聚焦离子束。聚焦离子束可以广泛地应用于小尺寸结构分析、截面切割、透射电镜样品制备等。聚焦离子束是将液态金属Ga+(稼)离子源产生的离子束,经过离子枪加速、聚焦后照射于样品表面,用强电流离子束对表面原子进行剥离,以完成微米、纳米级表束型表面形貌加工。
其中,聚焦离子束包括单束型和双束型。单束型是只有离子束的聚焦离子束,离子束主要应用于样品截面加工。而双束型包括离子束和电子束,电子束与离子束之间具有52°夹角,在离子束进行截面加工时,电子束可以对其进行形貌观察,并进行精细分析。
一个示例中,样品呈板形状。样品沿水平方向(参照图1所示的Y轴)放置,且具有窗帘效应的一侧水平朝下时。第一载体11带动样品相对初始位置旋转180°至目标位置,显露出样品的具有窗帘效应的一侧,以便于聚焦离子束对样品进行截面加工,保证样品倒切加工时的准确性。
另一个示例中,样品为异形状。样品加工截面所在的平面与水平方向(参照图1所示的Y轴)具有10°夹角,则第一载体11带动样品相对初始位置旋转170°,完成样品的翻转,以便于聚焦离子束对样品进行截面加工,保证样品倒切加工时的准确性。
如图1、图2所示,图2示出了根据一示例性实施例示出的实施例提供的限位部的结构示意图。
一种样品旋转系统包括旋转装置1,旋转装置1包括第一载体11、驱动部12、采集装置13和控制单元14(参照图5所示)。关于上述连接方式以及功能,上述实施例中均已详细陈述,在此,不再重复赘述。
旋转装置1还包括载台15,驱动部12安装于载台15,第一载体11安装于载台15,第一载体11的固定端部与驱动部12连接。驱动部12和第一载体11分别安装于载台15,提升旋转装置1的稳定性,以保证样品的旋转状 态,避免出现旋转误差。
旋转装置1还包括限位部16,限位部16可以是限位块,限位块固定设置于载台15的上表面。驱动部12通过限位部16安装于载台15,第一载体11的固定端部穿过限位部16与驱动部12连接。
其中,限位部16包括第一侧面161和第二侧面162,限位部16设置有贯穿第一侧面161和第二侧面162的贯穿通孔163。驱动部12固定安装于第二侧面162,第一载体11的固定端部由第一侧面161可转动地穿过该贯穿通孔163,并与驱动部12固定连接。
第一载体11的固定端部与驱动部12固定连接,提升第一载体11与驱动部12之间的连接的可靠性,保证驱动部12可以带动第一载体11转动。
如图1所示,一种样品旋转系统包括旋转装置1,旋转装置1包括第一载体11、驱动部12、采集装置13和控制单元14(参照图5所示)。关于上述连接方式以及功能,上述实施例中均已详细陈述,在此,不再重复赘述。
样品旋转系统还包括处理装置(图中未示出),处理装置分别与控制单元14和采集装置13电连接,处理装置被设置为与采集装置13通信连接,以便于接收采集装置13的图形信息,基于图形信息,做出相应处理。
采集装置13包括图像采集单元,图像采集单元与处理装置电连接,图像采集单元被设置为采集样品所处位置的图形信息。图像采集单元可以包括摄像模组,摄像模组对样品进行拍照,获取样品所处位置的图形信息,确定样品的当前位置,并将图形信息传输给处理装置,处理装置对其进行分析,以便于判断样品所处的位置是否旋转至目标位置。若判断出样品转动至目标位置,则旋转动作结束。若判断出样品未转动至目标位置,则处理装置可以发出相应的指令给控制单元14,控制单元14基于该指令驱动驱动部12,及时调整样品所处的位置,保证样品至目标位置处。
处理装置也可以判断出样品的当前位置与样品的目标位置的差值,直接将其差值传输给控制单元14,控制单元14基于该差值驱动给驱动部12,并由驱动部12带动第一载体11转动,使得样品随第一载体11转动至目标位置处。
如图1、图3所示,图3示出了根据一示例性实施例示出的实施例提供的参照体的结构示意图。
一种样品旋转系统包括旋转装置1,旋转装置1包括第一载体11、驱动部12、采集装置13和控制单元14(参照图5所示)。关于上述连接方式以及功能,上述实施例中均已详细陈述,在此,不再重复赘述。
样品旋转系统还包括参照体2,参照体2为静态参照物,参照体2设置于目标位置,第一载体11设置为相对参照体2运动。样品可以为规则的板形,与参照体2相互参照比对,以便于确定样品是否转动至目标位置处。其中,图像采集单元采集样品和参照体2之间的相对位置的图形信息。该图形信息内包含样品的当前所处的位置和参照体2当前所处的位置,比对样品和参照体2之间的相对位置。若图形信息内表示样品和参照体2之间相互重合,则确定样品旋转至目标位置处。若图形信息内表示样品和参照体2之间为错开状态,则确定样品未旋转至目标位置,需要对其进行调整。
设置参照体2,图像采集单元采集样品和参照体2之间的相对位置的图形信息。基于图形信息,以参照体2为基准,直接对呈规则形状的样品的当前位置进行判断,判断方式比较简单、直观,处理装置可以对其进行快速判断,并得出结论,节省判断时间,提高效率。
如图1、图4所示,图4示出了根据一示例性实施例示出的实施例提供参照单元的结构示意图。
一种样品旋转系统包括旋转装置1,旋转装置1包括第一载体11、驱动部12、采集装置13和控制单元14(参照图5所示)。关于上述连接方式以及功能,上述实施例中均已详细陈述,在此,不再重复赘述。
样品旋转系统还包括参照单元3,参照单元3与处理装置通信连接,参照单元3包括多个参考表示点。其中,每个参考点对应一个参考值。参考值预存于参考单元内,参考点与参考值存在映射关系。
样品可以是异形,当样品旋转完毕后,采集装置13采集样品的当前位置,以确定样品当前所处位置所对应的参考点,根据参考点确定对应的参考值。处理装置将其对应的参考值与目标位置的参考值进行比对,以确定存在的偏差。若偏差在预设范围内,则确定样品旋转至目标位置处。若偏差超出预设范围,则确定样品未旋转至目标位置,需要对其进行调整。基于超出范围,以确定样品距离目标位置的距离。
设置参照单元3,多个参考点作为参考基准,且参考点具有匹配的参考 值,准确定位样品的所处的当前位置,确定样品的所处的当前位置与目标位置之间的偏差,自动调整,实现样品旋转系统的自动化。
如图5所示,图5示出了根据本公开一示例性的实施例提供的样品旋转系统的示意图。
一种样品旋转系统包括旋转装置1、机台6和传送机构4。机台6为具有双束型聚焦离子束机台,使聚焦离子束和电子束可以照射样品。
传送机构4安装于机台6,传送机构4与控制单元14电连接。控制单元14被设置为驱动传送机构4,传送机构4带动旋转装置1移动至机台6的预定位置。样品设置于机台6,旋转装置1通过传送机构4移动至机台6的预定位置处,由机台6将样品移送至旋转装置1,旋转装置1对样品进行旋转。而旋转装置1旋转样品的具体内容,上述实施例中,已做详细说明,在此不再重复赘述。
其中,样品旋转系统还包括第二载体5,第二载体5安装于机台6,第二载体5被设置为连接样品。第二载体5可以为第二探针,第二探针由钨材料制成,使得第二载体5具有硬度高、耐磨、强度和韧性较好、耐热和耐腐蚀等特点。
第二载体5的自由端部与样品粘结连接,自由端部呈尖端状,第二载体5可以采用沉积工艺手段,以实现与样品的粘接。第二载体5将样品承载至第一载体11,使样品与第一载体11连接,且样品与第二载体5分离,实现了样品的移送。倒切工艺过程中,其最终呈现的倒切截面为斜切面或平切面,聚焦离子束相对样品,具有入射角度,使得聚焦离子束的束光轴与样品之间具有预设夹角。为了避免聚焦离子束的入射角度出现偏差,第二载体5的中心轴的延伸方向与聚焦离子束的束光轴平行,使得第二载体5与样品之间也形成了相同的预设夹角。
传送机构4将旋转装置1移动至机台6的预定位置,预定位置可以是第二载体5的自由端部附近,以便于第二载体5和第一载体11之间交换样品。当样品通过旋转装置1完成旋转后,第一载体11将样品回移至第二载体5,以便于对其进行加工,获得倒切截面。
样品旋转系统还包括定位单元(图中未示出),定位单元可以是传感器等。定位单元与处理装置电连接,定位单元被设置为对第二载体5的自由端 部定位,使得旋转装置1可以被精准移动至预定位置处,第一载体11和第二载体5对应设置,完成样品的转移。
本公开中的样品旋转系统,第二载体与样品连接,由第二载体将样品转移给第一载体,并通过旋转装置完成对样品的旋转,使得样品待观察的一侧朝上。第一载体将样品回移至第二载体,由机台上的聚焦离子束进行截面加工,以获得倒切面。倒切面具有较大的观察区域,满足观察测试的基本需求,便于对样品进行局部观察。
本公开示例性的实施例中提供一种样品旋转方法,该方法可应用于样品旋转系统,样品旋转系统包括旋转装置。如图6所示,图6示出了根据本公开一示例性的实施例提供的样品旋转方法的流程图。
S11、驱动第一载体接收样品。
在该步骤中,驱动第一载体11接收样品,使得第一载体11与样品形成连接。第一载体11与样品可以是粘结连接,第一载体11可以采用沉积工艺的方式,实现与样品的粘结连接,使得第一载体11与样品之间的连接更加可靠。
S12、驱动第一载体转动,使第一载体带动样品由初始位置旋转至目标位置。
在该步骤中,第一载体11与样品稳定连接后,驱动部12驱动第一载体11转动,第一载体11带动样品由初始位置旋转至目标位置。驱动部12驱动第一载体11转动,实现了快速翻转,节省了样品的旋转时间,提升了样品旋转的准确性,提升了效率。
初始位置和目标位置之间具有预设夹角,预设夹角为0°至180°中的任意角度。
S13、根据样品的旋转状态,以确定样品是否旋转至目标位置。
在该步骤中,根据样品的旋转状态,确定样品是否旋转至目标位置。旋转装置1的采集装置13采集样品的当前所处的位置,并将采集结果传输给处理装置,处理装置对其进行判断和分析,以确定样品当前所处的位置是否为目标位置。若判断出样品转动至目标位置,则旋转动作结束。若判断出样品未转动至目标位置,则处理装置可以发出相应的指令给控制单元14,控制单元14基于该指令驱动驱动部12,及时调整样品所处的位置,保证样品至目 标位置处。
本实施例中的样品旋转方法,通过驱动第一载体转动,第一载体带动样品旋转,将样品待观察的一侧朝上,以便于进行截面加工,实现倒切。由驱动部驱动第一载体,提升了样品旋转的准确度,节省了样品的旋转时间,旋转时间可以缩短至30min/EA以下,提高了效率,降低了测试成本。
本公开示例性的实施例中提供一种样品旋转方法,该方法可应用于样品旋转系统,样品旋转系统包括旋转装置。如图7所示,图7示出了根据本公开一示例性的实施例提供的样品旋转方法的流程图。
S21、驱动第一载体接收样品。
S22、驱动第一载体转动,使第一载体带动样品由初始位置旋转至目标位置。
步骤S21-步骤S22与上述实施例中的步骤S11-步骤S12相同,上述实施例中已做详细陈述,在此,不再重复赘述。
S23、获取参照体所处位置的图形信息。
在该步骤中,采集装置13可以采集参照体2所处位置的图形信息。采集装置13可以包括图形采集单元,图形采集单元可以是摄像模组,摄像模组对当前载台15进行拍照,以获取参照体2当前所处位置的图形信息。
S24、采集样品所处位置的图形信息。
在该步骤中,采集装置13对当前载台15进行拍照时,样品与参照体2位于同框内,采集装置13也能够拍摄到样品当前所处位置的图形信息。
S25、根据参照体所处位置的图形信息和样品所处位置的图形信息之间的偏差信息,确定样品是否旋转至目标位置。
在该步骤中,处理装置接收到采集装置13所获取的样品所处位置的图形信息和参照体2所处位置的图形信息。参照体2作为参照物,对样品所处位置的图形信息和和参照体2所处位置的图形信息进行比对,以确定二者之间存在的偏差信息。基于该偏差信息,最终确定样品是否旋转至目标位置。
当偏差信息小于或等于预设阈值,则样品旋转至目标位置,旋转动作结束。当偏差信息大于预设阈值,则样品未旋转至目标位置。
当样品未旋转至目标位置时,则处理装置发出相应的指令给控制单元14,控制单元14执行该指令,控制驱动部12运转,驱动部12驱动第一载体11 继续转动,第一载体11带动样品旋转至目标位置时,旋转动作结束。
本实施例中的方法,设置参照体,以参照体为参照物,直接对样品的当前位置进行判断,判断方式比较简单、直观,处理装置可以对其进行快速判断,并得出结论,节省判断时间,提高效率。
本公开示例性的实施例中提供一种样品旋转方法,该方法可应用于样品旋转系统,样品旋转系统包括旋转装置。如图8所示,图8示出了根据本公开一示例性的实施例提供的样品旋转方法的流程图。
S31、驱动第一载体接收样品。
S32、驱动第一载体转动,使第一载体带动样品由初始位置旋转至目标位置。
S33、采集样品所处位置的图形信息。
步骤S31-步骤S33与上述实施例中的步骤S21、步骤S22、步骤S24相同,上述实施例中已做详细陈述,在此,不再重复赘述。
S34、获取配置信息,配置信息用于表征参照单元的参考标识点与目标位置的对应关系。
在该步骤中,参考单元内预存有配置信息,配置信息用于表征参照单元3的参考标识点与所述目标位置的对应关系。其中,每个参考点对应一个参考值,目标位置具有目标参考值。
S35、根据样品所处位置的图形信息与配置信息,以确定样品是否旋转至目标位置。
在该步骤中,采集装置13采集样品的当前位置,以确定样品当前所处位置所对应的参考点,根据参考点确定对应的参考值。处理装置将其对应的参考值与目标位置的参考值进行比对,以确定存在的偏差。若偏差在预设范围内,则确定样品旋转至目标位置处。若偏差超出预设范围,则确定样品未旋转至目标位置。
本实施例中的方法,设置参照单元,多个参考点作为参考基准,且参考点具有匹配的参考值,准确定位样品当前所处位置,确定样品的所处的当前位置与目标位置之间的偏差,自动调整,实现样品旋转系统的自动化。
本公开示例性的实施例中提供一种样品旋转方法,该方法可应用于样品旋转系统,样品旋转系统包括旋转装置、第二载体和机台。如图9所示,图 9示出了根据本公开一示例性的实施例提供的样品旋转方法的流程图。
S41、控制第二载体连接样品。
在该步骤中,处理装置发出指令至控制单元14,控制单元14控制第二载体5与样品连接。第二载体5与样品可以是粘结连接,第二载体5可以采用沉积工艺的方式,实现与样品的粘结连接,使得第二载体5与样品之间的连接更加可靠。
S42、将样品由第二载体承载至第一载体,第一载体承载样品。
在该步骤中,处理装置发出指令至控制单元14,控制单元14控制第一载体11接收样品,将样品由第二载体5承载至第一载体11,第一载体11承载样品。
本公开示例性的实施例中提供一种样品旋转方法,该方法可应用于样品旋转系统,样品旋转系统包括旋转装置、第二载体和机台。如图10所示,图10示出了根据本公开一示例性的实施例提供的样品旋转方法的流程图。
S51、控制第二载体连接样品。
步骤S51与上述实施例中的步骤S41相同,上述实施例中已做详细陈述,在此,不再重复赘述。
S52、获取样品旋转系统在机台中的预定位置。
在该步骤中,定位单元定位第二载体5的自由端部,该预定位置为第二载体5的自由端部处,使得处理装置确定该预定位置。
S53、将样品旋转系统的旋转装置传送至预定位置,样品能够从第二载体传输至第一载体,第一载体承载样品。
在该步骤中,处理装置发出指令至控制单元14,控制单元14控制传送机构4运转,传送机构4将旋转装置1传送至预定位置,第一载体11的自由端部靠近第二载体5的自由端部,使得样品能够从第二载体5传输至第一载体11,第一载体11承载样品,完成样品转移。
图11是根据一示例性实施例示出的一种用于样品旋转系统的计算机设备900的框图。例如,计算机设备900可以被提供为一样品旋转系统。参照图9,计算机设备900包括处理器901,处理器的个数可以根据需要设置为一个或者多个。计算机设备900还包括存储器902,用于存储可由处理器901的执行的指令,例如应用程序。存储器的个数可以根据需要设置一个或者多 个。其存储的应用程序可以为一个或者多个。处理器901被配置为执行指令,以执行上述方法。
本领域技术人员应明白,本公开的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质,包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质等。此外,本领域技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
在示例性实施例中,提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器902,上述指令可由装置900的处理器901执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由样品旋转系统的处理器执行时,使得样品旋转系统能够执行:
控制第一载体接收样品;驱动第一载体转动,使第一载体带动样品由初始位置旋转至目标位置;采集样品的旋转状态;根据样品的旋转状态,以确定样品是否旋转至目标位置。
本公开是参照根据本公开实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一 个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在本公开中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
尽管已描述了本公开的优选实施例,但本领域技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开的意图也包含这些改动和变型在内。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例所提供的样品旋转系统及样品旋转方法中,样品旋转系统,第二载体与样品连接,由第二载体将样品转移给第一载体,并通过旋转装置完成对样品的旋转,使得样品的具有窗帘效应的一侧处于暴露状态。第一载体将样品回移至第二载体,由机台上的聚焦离子束进行截面加工,以获得倒切面。倒切面具有较大的观察区域,满足观察测试的基本需求,便于对样品进行局部观察。

Claims (19)

  1. 一种样品旋转系统,所述样品旋转系统包括旋转装置,所述旋转装置包括:
    第一载体,被设置为与样品连接;
    驱动部,与所述第一载体连接,所述驱动部被设置为驱动所述第一载体转动,所述第一载体带动所述样品由初始位置旋转至目标位置;
    采集装置,所述采集装置被设置为采集所述样品的旋转状态;
    控制单元,所述控制单元与所述驱动部电连接,所述控制单元被设置为控制所述驱动部运转。
  2. 根据权利要求1所述的样品旋转系统,其中,所述初始位置与所述目标位置之间具有预设夹角,所述预设夹角为0°至180°中的任意角度。
  3. 根据权利要求1所述的样品旋转系统,所述旋转装置还包括载台,所述驱动部安装于所述载台,所述第一载体安装于所述载台,所述第一载体的固定端部与所述驱动部连接。
  4. 根据权利要求3所述的样品旋转系统,所述旋转装置还包括与所述载台固定连接的限位部,所述驱动部通过所述限位部安装于所述载台,所述第一载体的所述固定端部穿过所述限位部与所述驱动部连接。
  5. 根据权利要求1所述的样品旋转系统,所述样品旋转系统还包括处理装置,所述处理装置分别与所述控制单元和所述采集装置电连接,所述处理装置被设置为与所述采集装置通信连接。
  6. 根据权利要求5所述的样品旋转系统,其中,所述采集装置包括图像采集单元,所述图像采集单元与所述处理装置电连接,所述图像采集单元被设置为采集所述样品所处位置的图形信息。
  7. 根据权利要求6所述的样品旋转系统,其中,所述图像采集单元包括摄像模组。
  8. 根据权利要求6所述的样品旋转系统,所述样品旋转系统还包括参照体,所述参照体设置于所述目标位置,所述第一载体设置为相对所述参照体运动;
    其中,所述图像采集单元采集所述样品和所述参照体之间的相对位置的 图形信息。
  9. 根据权利要求6所述的样品旋转系统,所述样品旋转系统还包括参照单元,所述参照单元与所述处理装置通信连接,所述参照单元包括多个参考标识点。
  10. 根据权利要求5所述的样品旋转系统,所述样品旋转系统还包括机台和传送机构,所述传送机构安装于所述机台,所述传送机构与所述控制单元电连接;
    所述控制单元被设置为驱动所述传送机构,所述传送机构带动所述旋转装置移动至所述机台的预定位置。
  11. 根据权利要求10所述的样品旋转系统,所述样品旋转系统还包括第二载体,所述第二载体安装于所述机台;
    所述第二载体被设置为连接所述样品,并将所述样品承载至所述第一载体,使所述样品与所述第一载体连接,且所述样品与所述第二载体分离。
  12. 根据权利要求11所述的样品旋转系统,所述样品旋转系统还包括定位单元,所述定位单元与所述处理装置电连接,所述定位单元被设置为对所述第二载体的自由端部定位。
  13. 一种样品旋转方法,所述样品旋转方法包括:
    控制第一载体接收样品;
    驱动所述第一载体转动,使所述第一载体带动所述样品由初始位置旋转至目标位置;
    采集所述样品的旋转状态;
    根据所述样品的旋转状态,以确定所述样品是否旋转至所述目标位置。
  14. 根据权利要求13所述的样品旋转方法,其中,所述根据所述样品的旋转状态,以确定所述样品是否旋转至所述目标位置,包括:
    获取参照体所处位置的图形信息;
    采集所述样品所处位置的图形信息;
    根据所述参照体所处位置的图形信息和所述样品所处位置的图形信息之间的偏差信息,确定所述样品是否旋转至所述目标位置。
  15. 根据权利要求14所述的样品旋转方法,其中,所述根据所述参照体所处位置的图形信息和所述样品所处位置的图形信息之间的偏差信息,确定 所述样品是否旋转至所述目标位置,包括:
    当所述偏差信息小于或等于预设阈值,则所述样品旋转至所述目标位置;
    当所述偏差信息大于预设阈值,则所述样品未旋转至所述目标位置。
  16. 根据权利要求15所述的样品旋转方法,所述样品旋转方法还包括:
    当所述样品未旋转至所述目标位置时,控制驱动部运转,所述驱动部驱动所述第一载体转动,所述第一载体带动所述样品旋转至所述目标位置。
  17. 根据权利要求14所述的样品旋转方法,其中,所述根据所述样品的旋转状态,以确定所述样品是否旋转至所述目标位置,包括:
    采集所述样品所处位置的图形信息;
    获取配置信息,所述配置信息用于表征参照单元的参考标识点与所述目标位置的对应关系;
    根据所述样品所处位置的图形信息与所述配置信息,以确定所述样品是否旋转至所述目标位置。
  18. 根据权利要求13所述的样品旋转方法,其中,所述控制第一载体接收样品包括:
    控制第二载体连接所述样品;
    将所述样品由所述第二载体承载至所述第一载体,所述第一载体承载所述样品。
  19. 根据权利要求18所述的样品旋转方法,其中,所述将所述样品承载至第一载体,所述第一载体接收所述样品,包括:
    获取所述样品旋转系统在机台中的预定位置;
    将所述样品旋转系统的旋转装置传送至所述预定位置,所述样品能够从所述第二载体传输至所述第一载体,所述第一载体承载所述样品。
PCT/CN2021/108465 2021-07-08 2021-07-26 一种样品旋转系统及方法 WO2023279454A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/648,304 US20230012319A1 (en) 2021-07-08 2022-01-19 Sample rotation system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110776194.4 2021-07-08
CN202110776194.4A CN115602514A (zh) 2021-07-08 2021-07-08 一种样品旋转系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/648,304 Continuation US20230012319A1 (en) 2021-07-08 2022-01-19 Sample rotation system and method

Publications (1)

Publication Number Publication Date
WO2023279454A1 true WO2023279454A1 (zh) 2023-01-12

Family

ID=84801178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108465 WO2023279454A1 (zh) 2021-07-08 2021-07-26 一种样品旋转系统及方法

Country Status (2)

Country Link
CN (1) CN115602514A (zh)
WO (1) WO2023279454A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214004A1 (en) * 2014-01-24 2015-07-30 Carl Zeiss Microscopy Gmbh Method for preparing and analyzing an object as well as particle beam device for performing the method
CN107204268A (zh) * 2016-03-18 2017-09-26 日本株式会社日立高新技术科学 聚焦离子束装置
CN109709116A (zh) * 2018-11-23 2019-05-03 中国石油天然气股份有限公司 一种步进旋转样品台、微观颗粒三维表面成像方法及系统
CN109813586A (zh) * 2019-02-27 2019-05-28 南京理工大学 一种轴向旋转装置
CN110246735A (zh) * 2019-05-20 2019-09-17 北京工业大学 一种转移微纳样品的结构及制备方法及使用方法
CN111819675A (zh) * 2018-03-20 2020-10-23 科磊股份有限公司 用于实时测量控制的方法及系统
CN112198174A (zh) * 2020-08-25 2021-01-08 华东师范大学 一种透射电子显微镜的装样装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214004A1 (en) * 2014-01-24 2015-07-30 Carl Zeiss Microscopy Gmbh Method for preparing and analyzing an object as well as particle beam device for performing the method
CN107204268A (zh) * 2016-03-18 2017-09-26 日本株式会社日立高新技术科学 聚焦离子束装置
CN111819675A (zh) * 2018-03-20 2020-10-23 科磊股份有限公司 用于实时测量控制的方法及系统
CN109709116A (zh) * 2018-11-23 2019-05-03 中国石油天然气股份有限公司 一种步进旋转样品台、微观颗粒三维表面成像方法及系统
CN109813586A (zh) * 2019-02-27 2019-05-28 南京理工大学 一种轴向旋转装置
CN110246735A (zh) * 2019-05-20 2019-09-17 北京工业大学 一种转移微纳样品的结构及制备方法及使用方法
CN112198174A (zh) * 2020-08-25 2021-01-08 华东师范大学 一种透射电子显微镜的装样装置

Also Published As

Publication number Publication date
CN115602514A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
EP2351063B1 (en) Method and device for high throughput crystal structure analysis by electron diffraction
US9106807B2 (en) Device for noncontact determination of edge profile at a thin disk-shaped object
US5777327A (en) Pattern shape inspection apparatus for forming specimen image on display apparatus
US8227781B2 (en) Variable-tilt specimen holder and method and for monitoring milling in a charged-particle instrument
CN104777024A (zh) 一种透射电镜样品的制备方法及定位方法
CN110291438A (zh) 用以在显微镜术中促进大区域成像的相机与试样对准
JP2002150990A (ja) 微小試料加工観察方法及び装置
JP5309552B2 (ja) 電子線トモグラフィ法及び電子線トモグラフィ装置
JP2012242146A (ja) 走査電子顕微鏡及び試料作成方法
CN106910665A (zh) 一种全自动化的扫描电子显微镜及其探测方法
US20220344123A1 (en) Electron microscope imaging adaptor
US9111721B2 (en) Ion beam device and machining method
WO2023279454A1 (zh) 一种样品旋转系统及方法
JP2000149011A (ja) イメ―ジングシステムで得られた信号からのノイズの除去
JP2024012432A (ja) 検査システム、及び非一時的コンピュータ可読媒体
CN206480587U (zh) 一种全自动化的扫描电子显微镜
US11133152B2 (en) Methods and apparatus for performing profile metrology on semiconductor structures
JP2003007241A (ja) 走査型電子顕微鏡と集束イオンビーム装置との共用試料ホルダー及び透過型電子顕微鏡用の試料作製方法
JP4673278B2 (ja) ウエハの検査方法
JP4988175B2 (ja) 荷電粒子装置用試料台
US20230012319A1 (en) Sample rotation system and method
JP2008014899A (ja) 試料作製方法
JP4874157B2 (ja) アトムプローブ装置
US20230377836A1 (en) Analysis System
JP2014022174A (ja) 試料台およびそれを備えた電子顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE