WO2023279397A1 - 定时提前方法、装置、通信设备及存储介质 - Google Patents

定时提前方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2023279397A1
WO2023279397A1 PCT/CN2021/105597 CN2021105597W WO2023279397A1 WO 2023279397 A1 WO2023279397 A1 WO 2023279397A1 CN 2021105597 W CN2021105597 W CN 2021105597W WO 2023279397 A1 WO2023279397 A1 WO 2023279397A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
timing advance
frequency band
zero
target
Prior art date
Application number
PCT/CN2021/105597
Other languages
English (en)
French (fr)
Inventor
胡子泉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002130.7A priority Critical patent/CN115836549A/zh
Priority to PCT/CN2021/105597 priority patent/WO2023279397A1/zh
Publication of WO2023279397A1 publication Critical patent/WO2023279397A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to the technical field of communication, and in particular to a timing advance method, device, communication device and storage medium.
  • Uu interface cellular communication interface
  • PC5 interface direct connection communication interface
  • the terminal device uses the Uu interface to transmit uplink (UpLink, UL) data to the network device, or uses the PC5 interface to transmit sidelink (SideLink, SL) data to other terminal devices.
  • UpLink uplink
  • UL uplink
  • SideLink sidelink
  • SL data may collide with other types of data during transmission.
  • SL data and UL data are transmitted simultaneously on the same frequency band, since UL data corresponds to a timing advance, there is Possibility of SL data colliding with UL data.
  • Embodiments of the present disclosure provide a timing advance method, device, communication device, and storage medium, and the technical solution is as follows:
  • a timing advance method is provided, the method is executed by a terminal device, and the method includes:
  • a timing advance method is provided, the method is executed by a network device, and the method includes:
  • Target information element Sending a target information element to the terminal device, where the target information element is used to indicate to the terminal device that a non-zero first timing advance is configured for the SL data.
  • a timing advance device includes: a configuration module;
  • the configuration module is configured to configure a non-zero first timing advance for SL data.
  • a timing advance device comprising: an indication module;
  • the indicating module is configured to send a target information element to the terminal equipment, where the target information element is used to indicate to the terminal equipment that a non-zero first timing advance is configured for the SL data.
  • a terminal device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein, the The processor is configured to load and execute the executable instructions to implement the timing advance method as described in the above aspects.
  • a network device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein, the The processor is configured to load and execute the executable instructions to implement the timing advance method as described in the above aspect.
  • a chip is provided, and the chip includes a programmable logic circuit and/or program instructions, which are used to implement the timing advance method described in the above aspect when the chip is running.
  • a computer-readable storage medium wherein executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above-mentioned aspects. timing advance method.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the timing advance method provided in the above aspect.
  • Timing advance avoids the possibility of the above two types of data conflicts, such as avoiding the conflict between the currently transmitted UL data with timing advance and the previously transmitted SL data without timing advance, thus ensuring the successful transmission of data.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of timing advance provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of transmission conflict between UL data and SL data provided by an exemplary embodiment of the present disclosure
  • FIG. 4 is a flowchart of a timing advance method provided by an exemplary embodiment of the present disclosure
  • Fig. 5 is a flowchart of a timing advance method provided by an exemplary embodiment of the present disclosure
  • FIG. 6 is a flowchart of a timing advance method provided by an exemplary embodiment of the present disclosure.
  • Fig. 7 is a block diagram of a timing advance device provided by an exemplary embodiment of the present disclosure.
  • Fig. 8 is a block diagram of a timing advance device provided by an exemplary embodiment of the present disclosure.
  • Fig. 9 is a block diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • Fig. 1 shows a block diagram of a communication system supporting direct communication provided by an exemplary embodiment of the present disclosure.
  • the communication system may be a schematic diagram of a non-roaming 5G system architecture (Non-roaming 5G system architecture), and the system architecture may be applied to a vehicle networking (Vehicle to everything, V2X) service using D2D technology.
  • Non-roaming 5G system architecture Non-roaming 5G system architecture
  • V2X vehicle networking
  • the system architecture includes a data network (Data Network, DN), in which a V2X application server (Application Server) required by the V2X service is set.
  • the system architecture also includes the 5G core network.
  • the network functions of the 5G core network include: unified data management (Unified Data Management, UDM), policy control function (Policy Control Function, PCF), network exposure function (Network Exposure Function, NEF), Application Function (Application Function, AF), Unified Data Repository (Unified Data Repository, UDR), Access and Mobility Management Function (Access and Mobility Management Function, AMF), Session Management Function (Session Management Function, SMF) and user plane Function (User Plane Function, UPF).
  • the system framework also includes: a radio access network (New Generation-Radio Access Network, NG-RAN) and exemplarily shown four terminal devices (namely terminal device 1 to terminal device 4), wherein each terminal device A V2X application (Application) is provided.
  • NG-RAN New Generation-Radio Access Network
  • terminal device 1 to terminal device 4 terminal device 1 to terminal device 4
  • V2X application Application
  • One or more access network devices such as base stations (gNBs), are set in the radio access network.
  • gNBs base stations
  • the data network and the user plane function in the 5G core network are connected through the N6 reference point (Reference Point), and the V2X application server and the V2X application in the terminal device are connected through the V1 reference point; the wireless access network and the 5G core network
  • the AMF function and UPF function in the connection, the wireless access network is respectively connected to the terminal device 1 and the terminal device 5 through the Uu reference point; multiple terminal devices communicate directly through the PC5 reference point, and multiple V2X applications are connected through the PC5 reference point.
  • V5 reference point connection may also be referred to as "interfaces".
  • the terminal device transmits UL data to the wireless access network through the Uu interface, or transmits SL data to other terminal devices through the PC5 interface.
  • a terminal device may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or user device.
  • UE User Equipment
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (Wireless Local Loop, WLL) station, a Personal Digital Assistant (PDA) , handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the fifth generation mobile communication system (5th Generation System, 5GS) or future evolution public
  • the terminal equipment in the land mobile communication network Public Land Mobile Network, PLMN
  • the devices mentioned above are collectively referred to as terminal devices.
  • the network device refers to an access network device, such as a base station.
  • Timing Advance for NR licensed spectrum services
  • the timing advance is used for the uplink transmission of the terminal equipment, which means that the system frame that the terminal equipment sends UL data should be ahead of the corresponding downlink frame by a certain time, so that the signals from different terminal equipment in the same subframe but with different frequency domain resources can reach the network
  • the device's time is basically aligned.
  • the network device sends the uplink timing advance to each terminal device, and the terminal device determines the timing of sending UL data according to the received timing advance.
  • a specific timing advance is (N TA +N TA offset )Tc.
  • N TA is the measurement sent to the end device as part of the timing advance command.
  • ⁇ N TA Offset is a fixed value that varies according to different frequency bands and subcarrier spacing.
  • Tc is the basic time unit of the 5G NR system.
  • the N TA offset is configured by the network and configured to the terminal device through the information element (Information Element, IE) n-TimingAdvanceOffset (see TS 38.331):
  • the start time of the transmission of the uplink radio frame 22 of the terminal device is (N TA +N TA offset ) Tc seconds earlier than the start time of the corresponding downlink radio frame 21 .
  • N TA is indicated by the Medium Access Control (MAC) Control Element (Control Element, CE) or the Random Access Response (Random Access Response, RAR) sent by the network device (see TS 38.213-4.2) .
  • MAC Medium Access Control
  • CE Control Element
  • RAR Random Access Response
  • N TA T A ⁇ 16 ⁇ 64/2 ⁇
  • is a value corresponding to the sub-carrier spacing (Sub-Carrier Spacing, SCS).
  • N TA_new N TA_old +(T A -31) ⁇ 16 ⁇ 64/2 ⁇ , where ⁇ is the value corresponding to the subcarrier spacing, N TA_old is the N TA value before indication, and N TA_new is the N TA value after indication.
  • N TA offset The value of N TA offset can be found in the table below (see TS 38.133):
  • V2X Vehicle networking technology
  • Uu interface cellular communication interface
  • PC5 interface direct connection communication interface
  • 3GPP defines that the transmission timing advance of SL data is zero, while the UL data of the Uu interface has a transmission timing advance.
  • NR licensed spectrum service and the NR Sidelink service share the same frequency band, NR licensed spectrum will appear.
  • the UL data corresponding to the service may conflict with the SL data corresponding to the NR Sidelink service, resulting in incorrect reception or omission of data.
  • the embodiments of the present disclosure mainly solve the problem of possible conflicts when NR licensed spectrum services and NR Sidelink services are simultaneously performed on the same frequency band.
  • the terminal device configures a non-zero first timing advance for SL data.
  • the UL data corresponding to the NR licensed spectrum service corresponds to the NR Sidelink service.
  • the timing of the SL data is advanced during transmission, avoiding the possibility of the above two types of data conflicts, such as avoiding the conflict between the currently transmitted UL data whose timing is advanced and the previously transmitted SL data that has not been timing advanced, ensuring Successful transfer of data.
  • Fig. 4 shows a flowchart of a timing advance method provided by an exemplary embodiment of the present disclosure, which can be applied to a terminal device in the communication system shown in Fig. 1 .
  • the method may include (step 402):
  • Step 402 the terminal device configures a non-zero first timing advance for SL data.
  • the SL data corresponds to a non-zero first timing advance.
  • the system frame in which the terminal device sends SL data is advanced by the first timing advance amount in the time domain compared with the corresponding downlink frame.
  • the first timing advance corresponding to the SL data is calculated based on the following formula: (N TA +N TA offset )Tc.
  • N TA offset is, for example, a non-zero value.
  • N TA is a non-zero value.
  • both N TA offset and N TA have non-zero values.
  • the terminal device configures a non-zero first timing advance for SL data.
  • the UL data corresponding to the NR licensed spectrum service is all timed ahead of time during transmission, avoiding the possibility of the above two types of data conflicts, such as avoiding the UL data currently transmitted with advanced timing and the previously transmitted SL data without timing advance A conflict occurs, which ensures the successful transmission of data.
  • the terminal device configures a non-zero first timing advance for SL data on a target frequency band; wherein, the target frequency band is a frequency band that allows SL data and UL data to coexist.
  • the terminal device judges according to the frequency band used by the NR Sidelink service, whether it is necessary to configure a non-zero first timing advance for SL data, in the frequency band where the NR licensed spectrum service and the NR Sidelink service are allowed to coexist, that is, SL data and UL data are allowed For the target frequency band of data coexistence, configure a non-zero first timing advance for the SL data corresponding to the NR Sidelink service working in the target frequency band. Since the terminal device specifically configures the first timing advance amount for the SL data on some frequency bands, the energy consumption of terminal device configuration is saved.
  • the target frequency band is specified by a communication standard.
  • the target frequency band is n47 frequency band.
  • the terminal device configures a non-zero first timing advance for SL data on the target frequency band
  • a manner for the terminal device to determine the value of the first timing advance will be described.
  • the terminal device configures the corresponding first timing advance for the SL data according to the second timing advance corresponding to the UL data coexisting on the same frequency band.
  • the second timing advance is calculated based on the following formula: (N TA +N TA offset )Tc.
  • the terminal device configures the SL data on the target frequency band with a non-zero first timing advance according to the second timing advance of the target UL data on the target frequency band.
  • the target UL data on the target frequency band includes: in the time domain corresponding to the target frequency band, the UL data whose data transmission position is located after the SL data, or, in the time domain corresponding to the target frequency band, the data transmission position of the SL data UL data originally planned to be transmitted at the location (actually, the data transmission location has transmitted SL data but not UL data).
  • This scheme is illustrated in conjunction with FIG. 5 .
  • Fig. 5 shows a flowchart of a timing advance method provided by an exemplary embodiment of the present disclosure, which can be applied to a terminal device in the communication system shown in Fig. 1 .
  • the method may include (step 502 to step 506):
  • Step 502 the network device sends a timing advance command to the terminal device, where the timing advance command is used to indicate the second N TA .
  • the second N TA is a timing advance measurement value corresponding to the target UL data on the target frequency band.
  • the network device performs synchronous detection on the UL data sent by the terminal device and determines the second N TA , the specific process is as follows:
  • the terminal device realizes the initial uplink synchronization through the random access process.
  • the network device measures the random access (Random Access Channel, RACH) signal according to the random access preamble (preamble) sent by the terminal device. Calculate the specific timing advance value.
  • RACH Random Access Channel
  • the terminal device After the initial connection is completed, the terminal device needs to continuously update its uplink timing advance to maintain uplink synchronization, and the network device determines the timing advance of each terminal device based on the uplink measurement. If the terminal device in the embodiment of the present disclosure needs to perform timing advance correction, the network device will send a Timing Advance Command (TAG) to the terminal device, requesting it to adjust the uplink transmission timing, and the terminal device will advance the timing based on According to the instruction of the command, the timing advance measurement value corresponding to the target UL data is adjusted to the second N TA .
  • TAG Timing Advance Command
  • Step 504 the terminal device receives the timing advance command sent by the network device.
  • the timing advance command is used to indicate the second N TA
  • the second N TA is a timing advance measurement value corresponding to the target UL data on the target frequency band.
  • Step 506 the terminal device determines the first timing advance corresponding to the SL data based on the sum between the second N TA corresponding to the target UL data on the target frequency band and the second N TA offset .
  • the second N TA offset is a timing advance offset value corresponding to the target UL data on the target frequency band.
  • the value of the second N TA offset is determined based on Table 7.1.2-2 in TS 38.133 as described above.
  • the first timing advance (second N TA +second N TA offset )Tc.
  • the terminal device configures a non-zero first timing advance for SL data.
  • the UL data corresponding to the NR licensed spectrum service is all timed ahead of time during transmission, avoiding the possibility of the above two types of data conflicts, such as avoiding the UL data currently transmitted with advanced timing and the previously transmitted SL data without timing advance A conflict occurs, which ensures the successful transmission of data.
  • the terminal device configures the corresponding first timing advance for SL data according to the second timing advance corresponding to the UL data coexisting on the same frequency band, so as to ensure that an appropriate first timing advance is determined To avoid conflicts between UL data corresponding to NR licensed spectrum services and SL data corresponding to NR Sidelink services.
  • the terminal device autonomously configures a non-zero first timing advance for the SL data.
  • the terminal device configures a non-zero first timing advance for the SL data based on the instruction of the network device. This implementation manner is exemplarily described with reference to FIG. 6 .
  • Fig. 6 shows a flowchart of a timing advance method provided by an exemplary embodiment of the present disclosure, which may be applied to the communication system shown in Fig. 1 .
  • the method may include (step 602 to step 606):
  • Step 602 the network device sends the target cell to the terminal device.
  • the target information element is used to indicate to the terminal device that a non-zero first timing advance is configured for the SL data.
  • the target cell is a newly introduced cell compared with the cell recorded in the existing version of the standard.
  • the target cell is marked as SL-TimingAdvanceOffset-flag.
  • the target information element is carried in the following signaling: radio resource control (Radio Resource Control, RRC) signaling; or, MAC CE; or, RAR.
  • RRC Radio Resource Control
  • the network device sends the target cell to the terminal device.
  • Step 604 the terminal device receives the target cell sent by the network device.
  • the terminal device receives the target cell sent by the network device.
  • the target information element is used to indicate the target frequency band to the terminal equipment, and the target frequency band is a frequency band allowing coexistence of SL data and UL data.
  • the target cell is carried in the following signaling: RRC signaling; or, MAC CE; or, RAR.
  • Step 606 the terminal device configures a non-zero first timing advance for the SL data based on the indication of the target cell.
  • the terminal device by configuring the target cell for the terminal device, it helps the terminal device determine whether to configure a non-zero first timing advance of SL data.
  • the target information element includes an indication bit. If the indication bit is a target value, if the indication bit is 0 or 1, the terminal device configures a non-zero first timing advance for the SL data.
  • the terminal device configures a non-zero first timing advance for SL data.
  • the UL data corresponding to the NR licensed spectrum service is all timed ahead of time during transmission, avoiding the possibility of the above two types of data conflicts, such as avoiding the UL data currently transmitted with advanced timing and the previously transmitted SL data without timing advance A conflict occurs, which ensures the successful transmission of data.
  • the network device sends the target cell to the terminal device, so that the terminal device can configure a non-zero first timing advance for SL data based on the indication of the target cell, thereby ensuring that the network device side
  • the terminal device side can explicitly advance timing for SL data.
  • the non-zero first timing advance is related to the non-zero first N TA offset corresponding to the SL data.
  • the first timing advance corresponding to the SL data is calculated based on the following formula: (N TA +N TA offset )Tc.
  • N TA offset has a non-zero value.
  • the network device performs synchronous detection on the UL data sent by the terminal device, determines the N TA that the terminal device needs to use to send uplink data next time, and notifies the terminal device through a timing advance command.
  • the terminal device switches from the NR licensed spectrum service to the NR Sidelink service, the terminal device uses the sum of the second N TA originally configured by the network device for the next UL data transmission and the corresponding second N TA offset as the SL for switching transmission The first N TA offset of the data, thereby determining the non-zero first timing advance of the SL data.
  • the determination method of N TA offset is relatively simple compared with N TA , the method provided in this embodiment sets the N TA offset corresponding to SL data to non- If the value is zero, N TA remains zero, so that the SL data corresponds to a non-zero first timing advance, which saves the workload of standardization and reduces the difficulty of implementation.
  • the steps performed by the terminal device can be independently implemented as a timing advance method on the terminal device side
  • the steps performed by the network device can be independently implemented as a timing advance method on the network device side.
  • FIG. 7 shows a structural block diagram of a timing advance device provided by an exemplary embodiment of the present disclosure.
  • the device can be implemented as a terminal device, or can be implemented as a part of the terminal device.
  • the device includes: a configuration module 702;
  • the configuration module 702 is configured to configure a non-zero first timing advance for the SL data.
  • the configuration module 702 is configured to configure a non-zero first timing advance for the SL data on the target frequency band
  • the target frequency band is a frequency band that allows the SL data and UL data to coexist.
  • the configuration module 702 is configured to configure a non-zero timing advance for the SL data on the target frequency band according to the second timing advance of the UL data on the target frequency band.
  • the first timing advance is configured to configure a non-zero timing advance for the SL data on the target frequency band according to the second timing advance of the UL data on the target frequency band. The first timing advance.
  • the configuration module 702 is configured to determine, based on the sum between the second N TA corresponding to the target UL data on the target frequency band and the second N TA offset , that the SL data corresponds to The first timing advance of .
  • the target UL data includes: in the time domain corresponding to the target frequency band, the UL data whose data transmission position is after the SL data; or, in the time domain corresponding to the target frequency band In the time domain, the data transmission position of the SL data is the UL data originally planned to be transmitted.
  • the device further includes: a command receiving module
  • the command receiving module is configured to receive a timing advance command sent by a network device
  • the timing advance command is used to indicate the second N TA .
  • the non-zero first timing advance is related to the non-zero first N TA offset corresponding to the SL data.
  • the configuration module 702 is configured to receive a target cell sent by a network device; based on an indication of the target cell, configure a non-zero first timing advance for the SL data quantity.
  • the target information element is carried in the following signaling:
  • RRC signaling or, MAC CE; or, RAR.
  • FIG. 8 shows a structural block diagram of a timing advance device provided by an exemplary embodiment of the present disclosure.
  • the device can be implemented as a network device, or can be implemented as a part of the network device.
  • the device includes: an indication module 802;
  • the indicating module 802 is configured to send a target information element to the terminal device, where the target information element is used to indicate to the terminal device that a non-zero first timing advance is configured for the SL data.
  • the target information element is carried in the following signaling:
  • RRC signaling or, MAC CE; or, RAR.
  • the terminal device configures a non-zero first timing advance for the SL data on a target frequency band, where the target frequency band allows the SL data and UL data to coexist frequency band.
  • the terminal device configures the non-zero first timing advance for the SL data on the target frequency band according to the second timing advance of the UL data on the target frequency band. timing advance.
  • the terminal device determines the second NTA corresponding to the SL data based on the sum between the second NTA corresponding to the target UL data on the target frequency band and the second NTA offset . A certain amount of time in advance.
  • the target UL data includes: in the time domain corresponding to the target frequency band, the UL data whose data transmission position is after the SL data; or, in the time domain corresponding to the target frequency band In the time domain, the data transmission position of the SL data is the UL data originally planned to be transmitted.
  • the device further includes: a command sending module
  • the command sending module is configured to send a timing advance command to the terminal device
  • the timing advance command is used to indicate the second N TA .
  • the non-zero first timing advance is related to the non-zero first N TA offset corresponding to the SL data.
  • FIG. 9 shows a schematic structural diagram of a communication device (terminal device or network device) provided by an exemplary embodiment of the present disclosure.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 can be implemented as a communication component, which can be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or their combination.
  • the volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Electrically Erasable Programmable Read Only Memory (EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory ( Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a chip is also provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the timing advance method described in the above aspects.
  • a computer-readable storage medium stores at least one instruction, at least one program, a code set or an instruction set, the at least one instruction, the At least one section of program, the code set or instruction set is loaded and executed by the processor to implement the timing advance method provided by the above method embodiments.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the timing advance method provided in the above aspects.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开包括一种定时提前方法、装置、通信设备及存储介质。该方法由终端设备执行,该方法包括:为SL数据配置非零的第一定时提前量(402)。本公开实施例所提供的方法,通过终端设备为SL数据配置非零的第一定时提前量,当NR授权频谱业务与NR Sidelink业务共用同一频段时,NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据在传输时均进行定时提前,避免了上述两种类型的数据冲突的可能性,避免当前传输的定时提前的UL数据与之前传输的未进行定时提前的SL数据发生冲突,保障了数据的成功传输。

Description

定时提前方法、装置、通信设备及存储介质 技术领域
本公开涉及通信技术领域,特别涉及一种定时提前方法、装置、通信设备及存储介质。
背景技术
在车联网系统(Vehicle to everything,V2X)中,可提供两种通信接口,分别称为Uu接口(蜂窝通信接口)和PC5接口(直连通信接口)。
终端设备利用Uu接口,向网络设备传输上行链路(UpLink,UL)数据,或者,利用PC5接口,向其他终端设备传输侧行链路(SideLink,SL)数据。
相关技术中,SL数据在传输时存在与其他类型的数据冲突的可能性,如,在在同一个频段上同时进行SL数据与UL数据传输的场景下,由于UL数据对应有定时提前量,存在SL数据与UL数据冲突的可能性。
发明内容
本公开实施例提供了一种定时提前方法、装置、通信设备及存储介质,所述技术方案如下:
根据本公开的一个方面,提供了一种定时提前方法,所述方法由终端设备执行,所述方法包括:
为SL数据配置非零的第一定时提前量。
根据本公开的一个方面,提供了一种定时提前方法,所述方法由网络设备执行,所述方法包括:
向终端设备发送目标信元,所述目标信元用于向所述终端设备指示为SL数据配置非零的第一定时提前量。
根据本公开的一个方面,提供了一种定时提前装置,所述装置包括:配置模块;
所述配置模块,用于为SL数据配置非零的第一定时提前量。
根据本公开的一个方面,提供了一种定时提前装置,所述装置包括:指示模 块;
所述指示模块,用于向终端设备发送目标信元,所述目标信元用于向所述终端设备指示为SL数据配置非零的第一定时提前量。
根据本公开的一个方面,提供了一种终端设备,所述终端设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的定时提前方法。
根据本公开的一个方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的定时提前方法。
根据本公开的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述方面所述的定时提前方法。
根据本公开的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的定时提前方法。
根据本公开的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面提供的定时提前方法。
本公开实施例提供的技术方案至少包括如下有益效果:
通过终端设备为SL数据配置非零的第一定时提前量,当NR授权频谱业务与NR Sidelink业务共用同一频段时,NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据在传输时均进行定时提前,避免了上述两种类型的数据冲突的可能性,如避免当前传输的定时提前的UL数据与之前传输的未进行定时提前的SL数据发生冲突,保障了数据的成功传输。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的定时提前的示意图;
图3是本公开一个示例性实施例提供的UL数据与SL数据传输冲突的示意图;
图4是本公开一个示例性实施例提供的定时提前方法的流程图;
图5是本公开一个示例性实施例提供的定时提前方法的流程图;
图6是本公开一个示例性实施例提供的定时提前方法的流程图;
图7是本公开一个示例性实施例提供的定时提前装置的框图;
图8是本公开一个示例性实施例提供的定时提前装置的框图;
图9是本公开一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1示出了本公开一个示意性实施例提供的支持直连通信的通信系统的框图。该通信系统可以是非漫游5G系统构架(Non-roaming 5G system architecture)的示意图,该系统构架可以应用于使用D2D技术的车联网(Vehicle to everything,V2X)业务。
该系统架构包括数据网络(Data Network,DN),该数据网络中设置有V2X业务所需的V2X应用服务器(Application Server)。该系统构架还包括5G核心网,5G核心网的网络功能包括:统一数据管理(Unified Data Management,UDM)、策略控制功能(Policy Control Function,PCF)、网络开放功能(Network Exposure Function,NEF)、应用功能(Application Function,AF)、统一数据存储(Unified Data Repository,UDR)、接入和移动性管理功能(Access and Mobility Management  Function,AMF)、会话管理功能(Session Management Function,SMF)以及用户面功能(User Plane Function,UPF)。
该系统构架还包括:无线接入网(New Generation-Radio Access Network,NG-RAN)以及示例性示出的4个终端设备(即终端设备1至终端设备4),其中,每个终端设备均设置有V2X应用(Application)。无线接入网中设置有一个或多个接入网设备,比如基站(gNB)。
该系统构架中,数据网络与5G核心网中的用户面功能通过N6参考点(Reference Point)连接,V2X应用服务器与终端设备中的V2X应用通过V1参考点连接;无线接入网与5G核心网中的AMF功能以及UPF功能连接,无线接入网分别通过Uu参考点与终端设备1以及终端设备5连接;多个终端设备之间通过PC5参考点进行直连通信,多个V2X应用之间通过V5参考点连接。上述参考点也可称为“接口”。
在本公开实施例中,终端设备通过Uu接口,向无线接入网传输UL数据,或者,利用PC5接口,向其他终端设备传输SL数据。
在本公开实施例中,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digita1 Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,第五代移动通信系统(5th Generation System,5GS)中的终端设备或者未来演进的公用陆地移动通信网络(Pub1ic Land Mobi1e Network,PLMN)中的终端设备等,本公开实施例对此并不限定。为方便描述,上面提到的设备统称为终端设备。在本公开实施例中,所述的网络设备除特别说明之外,是指接入网设备,如基站。
在介绍本公开技术方案之前,先对本公开涉及的一些技术知识进行介绍说明。
1、NR授权频谱业务的定时提前(Timing Advance,TA)
定时提前用于终端设备的上行传输,是指终端设备发送UL数据的系统帧相 比对应的下行帧要提前一定的时间,使来自同一子帧但不同频域资源的不同终端设备的信号到达网络设备的时间基本上是对齐的。网络设备将上行的定时提前量发送给各个终端设备,终端设备根据所收到的定时提前量来决定发送UL数据的时机。具体的定时提前量为(N TA+N TA offset)Tc。
·N TA是作为定时提前命令的一部分发送给终端设备的测量值。
·N TA Offset是根据不同频带和子载波间隔而变化的固定值。
·Tc为5G NR系统的基本时间单位。
其中:
N TA offset由网络配置,通过信息单元(Information Element,IE)n-TimingAdvanceOffset配置给终端设备(可参见TS 38.331):
Figure PCTCN2021105597-appb-000001
结合参考图2,终端设备的上行链路无线帧22的发送的起始时间相对于对应的下行链路无线帧21的起始时间提前了(N TA+N TA offset)Tc秒。
·N TA由网络设备发送的媒体接入控制(Medium Access Control,MAC)控制信元(Control Element,CE)或者随机接入响应(Random Access Response,RAR)进行指示(可参见TS 38.213-4.2)。
在使用RAR进行指示的情况下,RAR中指示的值为T A,T A=0,1,2,...,3846,相应的,N TA的计算公式为:N TA=T A·16·64/2 μ,其中,μ是子载波间隔(Sub-Carrier Spacing,SCS)对应的值。
在使用MAC CE进行指示的情况下,MAC CE中指示的值为T A,T A=0,1,2,...,63,相应的,N TA的计算公式为:N TA_new=N TA_old+(T A-31)·16·64/2 μ,其中,μ是子载波间隔对应的值,N TA_old为指示前的N TA值,N TA_new为指示后的N TA值。
·N TA offset的值可以参见下表(可参见TS 38.133):
表7.1.2-2:N TA offset的值
Figure PCTCN2021105597-appb-000002
·T C=0.509ns。
2、直连通信(Sidelink)
车联网技术(V2X)可提供两种通信接口,分别称为Uu接口(蜂窝通信接口)和PC5接口(直连通信接口)。在目前R17直连通信增强(sidelink enhancement)项目中,通过了“intra-band con-current V2X operating bands in licensed band”,即同一个频段上同时进行NR授权频谱业务与NR Sidelink业务的新场景。
现有标准中,对于执行NR Sidelink业务的终端设备,N TA=0且N TA offset=0;而对于执行NR授权频谱业务的终端设备,定时提前通过上述方式计算。由此,在目前R17确定同一个频段上同时进行NR授权频谱业务与NR Sidelink业务场景下,存在SL数据与UL数据冲突的可能性,如图3所示:
图3中分别示出了SCS=15kHz、SCS=30kHz和SCS=60kHz这三种情况下的不同时域长度的SL数据,SL数据的发送时刻与终端设备的下行定时对齐,也即,SL数据不存在定时提前。并且,图3中分别示出了定时提前量=15微秒(N TA=2微秒,N TA offset=13微秒)、定时提前量=22微秒(N TA=2微秒,N TA offset=20微秒)这两种情况下的不同时域长度的UL数据,UL数据的发送时刻与终端设备的下行定时不对齐,也即,UL数据存在定时提前。
如图3所示,在UL数据基于定时提前量22微秒提前发送的情况下,会与终端设备之前传输的对应于SCS=60kHz的SL数据冲突。
由上述介绍可知,目前,3GPP定义SL数据的发送定时提前量为零,而Uu接口的UL数据存在发送定时提前量,当NR授权频谱业务与NR Sidelink业务共用同一频段时,会出现NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据冲突的可能,导致数据的错误接收或者漏掉。
因此,本公开实施例主要解决在同一频段上同时进行NR授权频谱业务与NR Sidelink业务下可能的冲突问题。在本公开实施例中,通过终端设备为SL数据配置非零的第一定时提前量,当NR授权频谱业务与NR Sidelink业务共用同一频段时,NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据在传输时均进行定时提前,避免了上述两种类型的数据冲突的可能性,如避免当前传输的定时提前的UL数据与之前传输的未进行定时提前的SL数据发生冲突,保障了数据的成功传输。
下面,通过如下实施例进行示例性的说明。
图4示出了本公开一个示例性实施例提供的定时提前方法的流程图,可以应用于如图1所示的通信系统中的终端设备中。该方法可以包括(步骤402):
步骤402,终端设备为SL数据配置非零的第一定时提前量。
在本公开实施例中,SL数据的传输存在定时提前机制,具体的,SL数据对 应有非零的第一定时提前量。示例性的,终端设备发送SL数据的系统帧相比对应的下行帧在时域上要提前第一定时提前量。
可选的,SL数据对应的第一定时提前量基于如下公式计算得到:(N TA+N TA  offset)Tc。其中,Tc为5G NR系统的基本时间单位,T C=0.509ns;N TA为第一定时提前测量值;N TA offset为第一定时提前偏移值。为了实现非零的第一定时提前量,示例性的,N TA offset为非零值。示例性的,N TA为非零值。示例性的,N TA offset和N TA均为非零值。
综上所述,本实施例提供的方法,通过终端设备为SL数据配置非零的第一定时提前量,当NR授权频谱业务与NR Sidelink业务共用同一频段时,NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据在传输时均进行定时提前,避免了上述两种类型的数据冲突的可能性,如避免当前传输的定时提前的UL数据与之前传输的未进行定时提前的SL数据发生冲突,保障了数据的成功传输。
在示意性实施例中,终端设备为目标频段上的SL数据配置非零的第一定时提前量;其中,目标频段是允许SL数据和UL数据共存的频段。
也即,终端设备根据NR Sidelink业务的使用频段判断,是否需要给SL数据配置非零的第一定时提前量,在允许NR授权频谱业务与NR Sidelink业务共存的频段,即,允许SL数据和UL数据共存的目标频段,为在目标频段工作的NR Sidelink业务对应的SL数据配置非零的第一定时提前量。由于终端设备针对性地为部分频段上的SL数据配置第一定时提前量,节省了终端设备配置的能耗。
可选的,目标频段由通信标准所规定。示例性的,目标频段是n47频段。
下面,在终端设备为目标频段上的SL数据配置非零的第一定时提前量的情况下,对终端设备确定第一定时提前量的值的方式进行说明。
在示意性实施例中,终端设备根据在同一频段上共存的UL数据对应的第二定时提前量,给SL数据配置相应的第一定时提前量。
可选的,第二定时提前量基于如下公式计算得到:(N TA+N TA offset)Tc。其中,Tc为5G NR系统的基本时间单位,T C=0.509ns;N TA为该UL数据对应的定时提前测量值;N TA offset为该UL数据对应的定时提前偏移值。
可选的,终端设备根据目标频段上的目标UL数据的第二定时提前量,为目标频段上的SL数据配置非零的第一定时提前量。
其中,目标频段上的目标UL数据包括:在目标频段对应的时域上,数据传输位置位于该SL数据之后的UL数据,或者,在目标频段上对应的时域上,该SL数据的数据传输位置上原计划传输的UL数据(实际上该数据传输位置进行了SL数据的传输,并未进行UL数据的传输)。结合参加图5对此方案进行说明。
图5示出了本公开一个示例性实施例提供的定时提前方法的流程图,可以应用于如图1所示的通信系统中的终端设备中。该方法可以包括(步骤502至步骤506):
步骤502,网络设备向终端设备发送定时提前命令,定时提前命令用于指示第二N TA
其中,第二N TA是目标频段上的目标UL数据对应的定时提前测量值。
可选的,网络设备对终端设备发送的UL数据进行同步检测并确定第二N TA,具体过程如下:
1)初始上行链路同步
终端设备通过随机接入过程实现初始上行链路同步,在初始接入过程中,网络设备通过测量随机接入(Random Access Channel,RACH)信号,根据终端设备发送的随机接入前导码(preamble)计算具体的定时提前值。
2)上行同步更新
初始连接完成后,终端设备需要不断地更新其上行的定时提前量,以保持上行同步,网络设备基于上行测量来确定各个终端设备的定时提前量。如果本公开实施例中的终端设备需要进行定时提前校正,则网络设备会发送一个定时提前命令(Timing Advance Command,TAG)给该终端设备,要求其调整上行的传输定时,则终端设备基于定时提前命令的指示,将目标UL数据对应的定时提前测量值调整为第二N TA
步骤504,终端设备接收网络设备发送的定时提前命令。
其中,定时提前命令用于指示第二N TA,第二N TA是目标频段上的目标UL数据对应的定时提前测量值。
步骤506,终端设备基于目标频段上的目标UL数据对应的第二N TA与第二 N TA offset之间的和,确定SL数据对应的第一定时提前量。
其中,第二N TA offset是目标频段上的目标UL数据对应的定时提前偏移值。可选的,第二N TA offset的值基于如上所述的TS 38.133中的表7.1.2-2确定。
可选的,第一定时提前量=(第二N TA+第二N TA offset)Tc。其中,Tc为5G NR系统的基本时间单位,T C=0.509ns。
综上所述,本实施例提供的方法,通过终端设备为SL数据配置非零的第一定时提前量,当NR授权频谱业务与NR Sidelink业务共用同一频段时,NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据在传输时均进行定时提前,避免了上述两种类型的数据冲突的可能性,如避免当前传输的定时提前的UL数据与之前传输的未进行定时提前的SL数据发生冲突,保障了数据的成功传输。
同时,本实施例提供的方法,终端设备根据在同一频段上共存的UL数据对应的第二定时提前量,给SL数据配置相应的第一定时提前量,保障确定出合适的第一定时提前量,以避免NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据发生冲突。
在一种可能的实现方式中,终端设备自主为SL数据配置非零的第一定时提前量。
在另一种可能的实现方式中,终端设备基于网络设备的指示,为SL数据配置非零的第一定时提前量。结合参考图6对此实现方式进行示例性的说明。
图6示出了本公开一个示例性实施例提供的定时提前方法的流程图,可以应用于如图1所示的通信系统中。该方法可以包括(步骤602至步骤606):
步骤602,网络设备向终端设备发送目标信元。
其中,目标信元用于向终端设备指示为SL数据配置非零的第一定时提前量。
可选的,目标信元是相较于现有版本的标准中所记载的信元,新引入的一个信元。示例性的,目标信元记为SL-TimingAdvanceOffset-flag。
可选的,目标信元携带在如下信令中:无线资源控制(Radio Resource Control,RRC)信令;或,MAC CE;或,RAR。
可选的,针对目标频段,即允许SL数据和UL数据共存的频段,网络设备向终端设备发送目标信元。
步骤604,终端设备接收网络设备发送的目标信元。
相应的,终端设备接收网络设备发送的目标信元。其中,目标信元用于向终端设备指示目标频段,目标频段是允许SL数据和UL数据共存的频段。
可选的,目标信元携带在如下信令中:RRC信令;或,MAC CE;或,RAR。
步骤606,终端设备基于目标信元的指示,为SL数据配置非零的第一定时提前量。
也即,通过为终端设备配置目标信元的方式,来帮助终端设备确定是否配置SL数据的非零的第一定时提前量。
示例性的,目标信元中包括指示比特位,在指示比特位是目标数值的情况下,如指示比特位为0或1,终端设备则为SL数据配置非零的第一定时提前量。
综上所述,本实施例提供的方法,通过终端设备为SL数据配置非零的第一定时提前量,当NR授权频谱业务与NR Sidelink业务共用同一频段时,NR授权频谱业务对应的UL数据与NR Sidelink业务对应的SL数据在传输时均进行定时提前,避免了上述两种类型的数据冲突的可能性,如避免当前传输的定时提前的UL数据与之前传输的未进行定时提前的SL数据发生冲突,保障了数据的成功传输。
同时,本实施例提供的方法,由网络设备向终端设备发送目标信元,使得终端设备可以基于目标信元的指示,为SL数据配置非零的第一定时提前量,从而保障了网络设备侧与终端设备侧可以明确针对SL数据进行定时提前。
在示意性实施例中,非零的第一定时提前量与SL数据对应的非零的第一N TA offset相关。
也即,SL数据对应的第一定时提前量基于如下公式计算得到:(N TA+N TA  offset)Tc。其中,Tc为5G NR系统的基本时间单位,T C=0.509ns;N TA为第一定时提前测量值;N TA offset为第一定时提前偏移值。为了实现非零的第一定时提前量,N TA offset为非零值。
示例性的,网络设备对终端设备发送的UL数据进行同步检测并决定终端设备下一次发送上行数据所需要采用的N TA,通过定时提前命令通知终端设备。当终端设备进行从NR授权频谱业务到NR Sidelink业务的业务切换时,终端设备将网络设备原本配置给下一次UL数据发送的第二N TA与相应第二N TA offset的和作 为切换发送的SL数据的第一N TA offset,从而确定SL数据的非零的第一定时提前量。
由于现有的为UL数据制定的定时提前相关的标准中,N TA offset相较于N TA而言,确定方式比较简单,本实施例提供的方法,将SL数据对应的N TA offset设置为非零值,N TA依旧保持为零值,从而使得SL数据对应有非零的第一定时提前量,节省了标准化的工作量,减少了实现的难度。
需要说明的是,上述方法实施例可以分别单独实施,也可以组合实施,本公开对此不进行限制。
在上述各个实施例中,由终端设备执行的步骤可以单独实现成为终端设备一侧的定时提前方法,由网络设备执行的步骤可以单独实现成为网络设备一侧的定时提前方法。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图7示出了本公开一个示例性实施例提供的定时提前装置的结构框图,该装置可以实现成为终端设备,或者,实现成为终端设备中的一部分,该装置包括:配置模块702;
所述配置模块702,用于为SL数据配置非零的第一定时提前量。
在一个可选的实施例中,所述配置模块702,用于为目标频段上的所述SL数据配置非零的所述第一定时提前量;
其中,所述目标频段是允许所述SL数据和UL数据共存的频段。
在一个可选的实施例中,所述配置模块702,用于根据所述目标频段上的所述UL数据的第二定时提前量,为所述目标频段上的所述SL数据配置非零的所述第一定时提前量。
在一个可选的实施例中,所述配置模块702,用于基于所述目标频段上的目标UL数据对应的第二N TA与第二N TA offset之间的和,确定所述SL数据对应的所述第一定时提前量。
在一个可选的实施例中,所述目标UL数据包括:在所述目标频段对应的时域上,数据传输位置位于所述SL数据之后的UL数据;或者,在所述目标频段 上对应的时域上,所述SL数据的数据传输位置上原计划传输的UL数据。
在一个可选的实施例中,所述装置还包括:命令接收模块;
所述命令接收模块,用于接收网络设备发送的定时提前命令;
其中,所述定时提前命令用于指示所述第二N TA
在一个可选的实施例中,非零的所述第一定时提前量与所述SL数据对应的非零的第一N TA offset相关。
在一个可选的实施例中,所述配置模块702,用于接收网络设备发送的目标信元;基于所述目标信元的指示,为所述SL数据配置非零的所述第一定时提前量。
在一个可选的实施例中,所述目标信元携带在如下信令中:
RRC信令;或,MAC CE;或,RAR。
图8示出了本公开一个示例性实施例提供的定时提前装置的结构框图,该装置可以实现成为网络设备,或者,实现成为网络设备中的一部分,该装置包括:指示模块802;
所述指示模块802,用于向终端设备发送目标信元,所述目标信元用于向所述终端设备指示为SL数据配置非零的第一定时提前量。
在一个可选的实施例中,所述目标信元携带在如下信令中:
RRC信令;或,MAC CE;或,RAR。
在一个可选的实施例中,所述终端设备为目标频段上的所述SL数据配置非零的所述第一定时提前量,其中,所述目标频段是允许所述SL数据和UL数据共存的频段。
在一个可选的实施例中,所述终端设备根据所述目标频段上的所述UL数据的第二定时提前量,为所述目标频段上的所述SL数据配置非零的所述第一定时提前量。
在一个可选的实施例中,所述终端设备基于所述目标频段上的目标UL数据对应的第二N TA与第二N TA offset之间的和,确定所述SL数据对应的所述第一定时提前量。
在一个可选的实施例中,所述目标UL数据包括:在所述目标频段对应的时域上,数据传输位置位于所述SL数据之后的UL数据;或者,在所述目标频段 上对应的时域上,所述SL数据的数据传输位置上原计划传输的UL数据。
在一个可选的实施例中,所述装置还包括:命令发送模块;
所述命令发送模块,用于向所述终端设备发送定时提前命令;
其中,所述定时提前命令用于指示所述第二N TA
在一个可选的实施例中,非零的所述第一定时提前量与所述SL数据对应的非零的第一N TA offset相关。
图9示出了本公开一个示例性实施例提供的通信设备(终端设备或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述方面所述的定时提前方法。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的定时提前方法。
在示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面提供的定时提前方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (38)

  1. 一种定时提前方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    为侧行链路SL数据配置非零的第一定时提前量。
  2. 根据权利要求1所述的方法,其特征在于,所述为SL数据配置非零的第一定时提前量,包括:
    为目标频段上的所述SL数据配置非零的所述第一定时提前量;
    其中,所述目标频段是允许所述SL数据和上行链路UL数据共存的频段。
  3. 根据权利要求2所述的方法,其特征在于,所述为目标频段上的所述SL数据配置非零的所述第一定时提前量,包括:
    根据所述目标频段上的所述UL数据的第二定时提前量,为所述目标频段上的所述SL数据配置非零的所述第一定时提前量。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述目标频段上的所述UL数据的第二定时提前量,为所述目标频段上的所述SL数据配置非零的所述第一定时提前量,包括:
    基于所述目标频段上的目标UL数据对应的第二定时提前测量值N TA与第二定时提前偏移值N TA offset之间的和,确定所述SL数据对应的所述第一定时提前量。
  5. 根据权利要求4所述的方法,其特征在于,所述目标UL数据包括:
    在所述目标频段对应的时域上,数据传输位置位于所述SL数据之后的UL数据;
    或者,
    在所述目标频段上对应的时域上,所述SL数据的数据传输位置上原计划传输的UL数据。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的定时提前命令;
    其中,所述定时提前命令用于指示所述第二N TA
  7. 根据权利要求1至6任一所述的方法,其特征在于,
    非零的所述第一定时提前量与所述SL数据对应的非零的第一N TA offset相关。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述为SL数据配置非零的第一定时提前量,包括:
    接收网络设备发送的目标信元;
    基于所述目标信元的指示,为所述SL数据配置非零的所述第一定时提前量。
  9. 根据权利要求8所述的方法,其特征在于,所述目标信元携带在如下信令中:
    无线资源控制RRC信令;
    或,
    媒体接入控制控制信元MAC CE;
    或,
    随机接入响应RAR。
  10. 一种定时提前方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向终端设备发送目标信元,所述目标信元用于向所述终端设备指示为侧行链路SL数据配置非零的第一定时提前量。
  11. 根据权利要求10所述的方法,其特征在于,所述目标信元携带在如下信令中:
    无线资源控制RRC信令;
    或,
    媒体接入控制控制信元MAC CE;
    或,
    随机接入响应RAR。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述终端设备为目标频段上的所述SL数据配置非零的所述第一定时提前量,其中,所述目标频段是允许所述SL数据和上行链路UL数据共存的频段。
  13. 根据权利要求12所述的方法,其特征在于,
    所述终端设备根据所述目标频段上的所述UL数据的第二定时提前量,为所述目标频段上的所述SL数据配置非零的所述第一定时提前量。
  14. 根据权利要求13所述的方法,其特征在于,
    所述终端设备基于所述目标频段上的目标UL数据对应的第二定时提前测量值N TA与第二定时提前偏移值N TA offset之间的和,确定所述SL数据对应的所述第一定时提前量。
  15. 根据权利要求14所述的方法,其特征在于,所述目标UL数据包括:
    在所述目标频段对应的时域上,数据传输位置位于所述SL数据之后的UL数据;
    或者,
    在所述目标频段上对应的时域上,所述SL数据的数据传输位置上原计划传输的UL数据。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送定时提前命令;
    其中,所述定时提前命令用于指示所述第二N TA
  17. 根据权利要求10至16任一所述的方法,其特征在于,
    非零的所述第一定时提前量与所述SL数据对应的非零的第一N TA offset相关。
  18. 一种定时提前装置,其特征在于,所述装置包括:配置模块;
    所述配置模块,用于为侧行链路SL数据配置非零的第一定时提前量。
  19. 根据权利要求18所述的装置,其特征在于,
    所述配置模块,用于为目标频段上的所述SL数据配置非零的所述第一定时提前量;
    其中,所述目标频段是允许所述SL数据和上行链路UL数据共存的频段。
  20. 根据权利要求19所述的装置,其特征在于,
    所述配置模块,用于根据所述目标频段上的所述UL数据的第二定时提前量,为所述目标频段上的所述SL数据配置非零的所述第一定时提前量。
  21. 根据权利要求20所述的装置,其特征在于,
    所述配置模块,用于基于所述目标频段上的目标UL数据对应的第二定时提前测量值N TA与第二定时提前偏移值N TA offset之间的和,确定所述SL数据对应的所述第一定时提前量。
  22. 根据权利要求21所述的装置,其特征在于,所述目标UL数据包括:
    在所述目标频段对应的时域上,数据传输位置位于所述SL数据之后的UL数据;
    或者,
    在所述目标频段上对应的时域上,所述SL数据的数据传输位置上原计划传输的UL数据。
  23. 根据权利要求21所述的装置,其特征在于,所述装置还包括:命令接收模块;
    所述命令接收模块,用于接收网络设备发送的定时提前命令;
    其中,所述定时提前命令用于指示所述第二N TA
  24. 根据权利要求18至23任一所述的装置,其特征在于,
    非零的所述第一定时提前量与所述SL数据对应的非零的第一N TA offset相关。
  25. 根据权利要求18至24任一所述的装置,其特征在于,
    所述配置模块,用于接收网络设备发送的目标信元;基于所述目标信元的指示,为所述SL数据配置非零的所述第一定时提前量。
  26. 根据权利要求25所述的装置,其特征在于,所述目标信元携带在如下信令中:
    无线资源控制RRC信令;
    或,
    媒体接入控制控制信元MAC CE;
    或,
    随机接入响应RAR。
  27. 一种定时提前装置,其特征在于,所述装置包括:指示模块;
    所述指示模块,用于向终端设备发送目标信元,所述目标信元用于向所述终端设备指示为侧行链路SL数据配置非零的第一定时提前量。
  28. 根据权利要求27所述的装置,其特征在于,所述目标信元携带在如下信令中:
    无线资源控制RRC信令;
    或,
    媒体接入控制控制信元MAC CE;
    或,
    随机接入响应RAR。
  29. 根据权利要求27或28所述的装置,其特征在于,
    所述终端设备为目标频段上的所述SL数据配置非零的所述第一定时提前量,其中,所述目标频段是允许所述SL数据和上行链路UL数据共存的频段。
  30. 根据权利要求29所述的装置,其特征在于,
    所述终端设备根据所述目标频段上的所述UL数据的第二定时提前量,为所述目标频段上的所述SL数据配置非零的所述第一定时提前量。
  31. 根据权利要求30所述的装置,其特征在于,
    所述终端设备基于所述目标频段上的目标UL数据对应的第二定时提前测量值N TA与第二定时提前偏移值N TA offset之间的和,确定所述SL数据对应的所述第一定时提前量。
  32. 根据权利要求31所述的装置,其特征在于,所述目标UL数据包括:
    在所述目标频段对应的时域上,数据传输位置位于所述SL数据之后的UL数据;
    或者,
    在所述目标频段上对应的时域上,所述SL数据的数据传输位置上原计划传输的UL数据。
  33. 根据权利要求32所述的装置,其特征在于,所述装置还包括:命令发送模块;
    所述命令发送模块,用于向所述终端设备发送定时提前命令;
    其中,所述定时提前命令用于指示所述第二N TA
  34. 根据权利要求27至33任一所述的装置,其特征在于,
    非零的所述第一定时提前量与所述SL数据对应的非零的第一N TA offset相关。
  35. 一种终端设备,其特征在于,所述终端设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至9任一所述的定时提前方法。
  36. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求10至17任一所述的定时提前方法。
  37. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至17任一所述的定时提前方法。
  38. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至17任一所述的定时提前方法。
PCT/CN2021/105597 2021-07-09 2021-07-09 定时提前方法、装置、通信设备及存储介质 WO2023279397A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002130.7A CN115836549A (zh) 2021-07-09 2021-07-09 定时提前方法、装置、通信设备及存储介质
PCT/CN2021/105597 WO2023279397A1 (zh) 2021-07-09 2021-07-09 定时提前方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/105597 WO2023279397A1 (zh) 2021-07-09 2021-07-09 定时提前方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023279397A1 true WO2023279397A1 (zh) 2023-01-12

Family

ID=84800205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105597 WO2023279397A1 (zh) 2021-07-09 2021-07-09 定时提前方法、装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN115836549A (zh)
WO (1) WO2023279397A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537374A (zh) * 2019-06-28 2019-12-03 北京小米移动软件有限公司 数据发送方法、数据接收方法、装置及设备
US20200267692A1 (en) * 2019-02-14 2020-08-20 Qualcomm Incorporated Sidelink radio frame timing synchronization
CN111711982A (zh) * 2014-08-01 2020-09-25 太阳专利信托公司 用于设备到设备通信的通信装置及方法
CN111757459A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711982A (zh) * 2014-08-01 2020-09-25 太阳专利信托公司 用于设备到设备通信的通信装置及方法
US20200267692A1 (en) * 2019-02-14 2020-08-20 Qualcomm Incorporated Sidelink radio frame timing synchronization
CN111757459A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 一种通信方法及装置
CN110537374A (zh) * 2019-06-28 2019-12-03 北京小米移动软件有限公司 数据发送方法、数据接收方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.211, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.5.0, 30 March 2021 (2021-03-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 134, XP052000305 *

Also Published As

Publication number Publication date
CN115836549A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US11706840B2 (en) System enablers for multi-sim devices
US11101939B2 (en) Efficient sparse network resource usage and connection release
KR20220018571A (ko) 듀얼-sim ue 데이터 전송 방법 및 장치, 저장매체 및 사용자 장비
WO2016095078A1 (en) Dual active connections over single radio user equipment
JP7354189B2 (ja) 移動通信ネットワークに通信可能に接続されるユーザー装置(ue)により実行される方法およびユーザー装置(ue)
CN110431874B (zh) 系统信息请求的用户设备及其方法
CN114765506A (zh) 辅链路的psfch传输方法及装置、计算机可读存储介质
WO2020056660A1 (zh) 一种信号传输方法及装置、终端
CN114424666B (zh) 一种通信方法及装置
US11917464B2 (en) 5G NR efficient FR1/FR2 operation
US20230397298A1 (en) Timer operating method, terminal device, and network device
WO2021026717A1 (zh) 一种资源协调方法及装置、终端设备
US11895602B2 (en) Cellular reporting techniques for synchronization state changes
WO2023279397A1 (zh) 定时提前方法、装置、通信设备及存储介质
US20230397174A1 (en) Methods and apparatuses for indicating a set of resources on a nr sidelink
US11032815B2 (en) Wireless communication method and wireless communications apparatus
CN113261382B (zh) 建立双连接的方法和通信装置
EP4087335A1 (en) Method for determining time synchronization and related product
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2020199213A1 (zh) 一种信号传输方法及装置、网络设备
CN115191131A (zh) 用于通信的方法、设备和计算机存储介质
CN114246001A (zh) 无线通信方法、装置和通信设备
KR20210146974A (ko) 채널 전송 방법, 전자 기기 및 저장 매체
JP7431991B2 (ja) 制御チャネルの監視なしのデータ受信
US20230276464A1 (en) Methods and apparatuses for a sidelink resource re-evaluation procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE