WO2023277237A1 - Three-dimensional electromagnetic actuation system - Google Patents

Three-dimensional electromagnetic actuation system Download PDF

Info

Publication number
WO2023277237A1
WO2023277237A1 PCT/KR2021/010602 KR2021010602W WO2023277237A1 WO 2023277237 A1 WO2023277237 A1 WO 2023277237A1 KR 2021010602 W KR2021010602 W KR 2021010602W WO 2023277237 A1 WO2023277237 A1 WO 2023277237A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
dimensional electromagnetic
microrobot
dimensional
drive system
Prior art date
Application number
PCT/KR2021/010602
Other languages
French (fr)
Korean (ko)
Inventor
전승문
이학준
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Publication of WO2023277237A1 publication Critical patent/WO2023277237A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0246Gripping heads and other end effectors servo-actuated actuated by an electromagnet

Definitions

  • the present invention relates to a three-dimensional electromagnetic drive system, and more particularly, by arranging four identical circular coils in a tetrahedral shape to form a small number of three-dimensional coil structures, thereby reducing the control space of a microrobot and improving power efficiency. It relates to a three-dimensional electromagnetic drive system that can be increased.
  • electromagnetic coils unlike permanent magnets, which are difficult to control magnetic fields, can conveniently control the magnetic field generated inside by adjusting the current input to the coil, so they are widely used in various devices such as motors, generators, and electromagnetic actuators.
  • a combination of a plurality of electromagnetic coils is required to generate various types of magnetic fields.
  • a Helmholtz coil or uniform saddle coil can create an axially uniform magnetic field inside, and a Maxwell coil or gradient saddle coil inside An axial gradient magnetic field may be generated, and a Golay coil may generate a lateral gradient magnetic field therein.
  • a conventional electromagnetic coil can generate only one type of magnetic field with one coil, and accordingly, in a device requiring multiple types of magnetic fields, the number of electromagnetic coils must be increased by the type of magnetic field required. In this case, a problem in that the device becomes more complicated and the size becomes larger may occur.
  • the above-mentioned problem is that the magnetic field generation efficiency of the device is also rapidly reduced. can drop
  • Korean Patent Registration No. 10-1450091 discloses an electromagnetic coil system for driving control of a microrobot, comprising: a pair of X-axis Helmholtz coils in which the winding central axis of the coil is placed on the X-axis; a pair of Y-axis Helmholtz coils in which the winding central axis of the coil is placed on the Y-axis; a position recognition system for detecting the position and direction of the microrobot on the workspace; A control unit for controlling the amount of current supplied to the X-axis Helmholtz coil or the Y-axis Helmholtz coil to control the movement of the micro-robot based on the micro-robot motion information obtained from the position recognition system and the input path information of the micro-robot; and a current amplifier supplying a corresponding current to each Helmholtz coil in response to a current control command from the control unit, wherein the pair of X-axis Helmholtz coils are disposed
  • the coils are disposed to face each other, and the X-axis Helmholtz coil and the Y-axis Helmholtz coil are vertically intersected to form a working space of the microrobot, and the control unit has the same size and direction as the rotation current and the same direction.
  • An electromagnetic coil system characterized by performing direction change and movement control of a microrobot by applying a current value obtained by overlapping these opposite propulsion currents to a pair of X-axis Helmholtz coils or a pair of Y-axis Helmholtz coils, respectively. about is disclosed.
  • the conventional technology as described above has a problem in that an effective space for utilizing a magnetic field is relatively small due to a geometrical problem of the coil system.
  • the present invention has been made to solve the above problems, and by arranging the same four circular coils in a tetrahedral shape to form a small number of three-dimensional coil structures, thereby reducing the control space of the microrobot and improving power efficiency. It is an object to provide a three-dimensional electromagnetic drive system that can be increased.
  • an object of the present invention is to provide a three-dimensional electromagnetic drive system in which the control range of the microrobot is increased and the state value of the coil is the same, so that the microrobot can be easily controlled.
  • an object of the present invention is to provide a three-dimensional electromagnetic drive system having a symmetrical structure with respect to the center of the system.
  • the first coil 110 and the second coil 120 maintain a constant angle with each other on the X, Y, and Z axes.
  • the third coil 130 and the fourth coil 140 are arranged in a tetrahedral shape, and a coil unit 100 having a working area formed therein; and a microrobot provided in the control space and whose movement is controlled by the magnetic field generated by the coil unit 100.
  • first coil 110, the second coil 120, the third coil 130, and the fourth coil 140 are characterized in that each radius and the number of wound coils are the same.
  • micro-robot is characterized in that a magnet is provided therein and driven by a magnetic field of the coil unit 100.
  • the three-dimensional electromagnetic drive system is characterized in that it includes a power supply for supplying a current value having the same current direction to the coil unit 100.
  • the power supply unit is connected to the control panel and simultaneously controls the current applied to the first coil 110, the second coil 120, the third coil 130 and the fourth coil 140. to be
  • the 3D electromagnetic drive system arranges four circular coils in a tetrahedral structure to form a 3D coil structure, thereby reducing the control space of the microrobot and increasing power efficiency.
  • controllable range of the microrobot is increased, and since the state values of the coils are the same, it is easy to control the microrobot.
  • FIG. 1 is a front view showing a three-dimensional electromagnetic drive system according to the present invention.
  • FIG. 2 is a plan view showing a three-dimensional electromagnetic drive system according to the present invention.
  • FIG. 3 is a view showing a driving state of a microrobot disposed in an external magnetic field.
  • FIG. 4 is a plan view and a front view showing a coordinate system of a three-dimensional electromagnetic drive system according to the present invention.
  • FIG. 5 is an exemplary view showing a coordinate system of a three-dimensional electromagnetic drive system according to the present invention.
  • the 3D electromagnetic driving system is for performing 3D position and direction control of a microrobot, and includes a coil unit 100 and a microrobot (not shown). do.
  • the coil unit 100 is a tetrahedron in which a first coil 110, a second coil 120, a third coil 130, and a fourth coil 140 maintain constant angles with each other on the X, Y, and Z axes. It is arranged and configured in shape.
  • the first coil 110, the second coil 120, the third coil 130, and the fourth coil 140 have the same shape as each other.
  • the second coil 120, the third coil 130, and the fourth coil 140 are arranged and configured in a tetrahedral shape, thereby having a symmetrical structure with respect to the center of the entire system.
  • a working area is formed inside the coil unit 100, and a microrobot is provided in the control space.
  • the first coil 110, the second coil 120, the third coil 130, and the fourth coil 140 have the same radius and the same number of wound coils.
  • the present invention can reduce the control space of the microrobot and increase power efficiency by arranging the same four circular coils in a tetrahedral shape to form a small number of three-dimensional coil structures.
  • the microrobot (not shown) is provided in the control space and its movement is controlled by a magnetic field generated by the coil unit 100 .
  • the microrobot has a magnet inside and is driven by the magnetic field of the coil unit 100 .
  • the three-dimensional electromagnetic driving system of the present invention includes a power supply unit (not shown) that supplies current values having the same current direction to the coil unit 100 .
  • the power supply unit is connected to a control panel (not shown) to simultaneously control currents applied to the first coil 110, the second coil 120, the third coil 130, and the fourth coil 140. .
  • a 3-dimensional electromagnetic drive system (Quartet of Electromagnetic Coils, QEC) according to the present invention forms a 3-dimensional coil structure by arranging four circular coils in a tetrahedral structure, which can be expressed by the following equation.
  • the three-dimensional electromagnetic drive system (QEC) of the present invention has a form in which four identical circular coils are arranged in a tetrahedral structure.
  • the global coordinate system (X) is defined based on the center of gravity of the three-dimensional electromagnetic drive system and the local coordinate system (Xk) is defined based on the center of each coil
  • the coordinate conversion relationship between the global coordinate system and the local coordinate system of coil k is As follows.
  • the magnetic moment of the microrobot is always parallel to the external magnetic field ( ⁇ ). Therefore, in order to control the alignment and translational motion of the microrobot, a desired three-dimensional magnetic field and magnetic force must be output. Assuming that the microrobot is placed on the center of gravity of the 3D electromagnetic driving system, the equation for controlling the 3D movement of the microrobot is as follows.
  • ⁇ and ⁇ mean the angle formed by the orthographic projection on the xy plane of the desired output with the x-axis, and the angle formed by the desired output with the z-axis, respectively.
  • the magnetic field generated by the burn coil at the periphery of the axis can be expressed by the following equation.
  • the magnetic field generated by the three-dimensional electromagnetic drive system is equal to the sum of the magnetic fields generated by each coil.
  • the total magnetic field generated by the three-dimensional electromagnetic drive system ( ) can be induced.
  • Equation 6 The gradient of the magnetic field distribution from Equation 6 is as follows.
  • class are respectively class to be.
  • Equation 5 the distribution of the magnetic field generated by the coil is proportional to the applied current. Therefore, it can be seen from Equations 8 and 9 that the magnetic field and magnetic force generated by the 3D electromagnetic driving system have a linear relationship with the current applied to each coil.
  • Equation 4 for controlling the three-dimensional motion of the microrobot can be expressed as a system of linear equations for the current applied to each coil.
  • A, I, Y are the coefficient matrix of current and output, respectively, and the current matrix applied to the three-dimensional electromagnetic drive system ( ), which means the desired output.

Abstract

The present invention relates to a three-dimensional electromagnetic actuation system and, more specifically, to a three-dimensional electromagnetic actuation system in which the same four circular coils are arranged in a tetrahedral shape to form a small number of three-dimensional coil structures, so that the control space of a microrobot can be reduced and the power efficiency thereof can be increased. The three-dimensional electromagnetic actuation system according to the present invention comprises: a coil unit (100) which is formed by arranging, in a tetrahedral shape, a first coil (110), a second coil (120), a third coil (130) and a fourth coil (140) that maintain predetermined angles therebetween on the X, Y, and Z axes, and which has a control space (working area) formed therein; and a microrobot provided in the control space so that the motion thereof is controlled by means of a magnetic field generated through the coil unit (100).

Description

3차원 전자기 구동 시스템Three-dimensional electromagnetic drive system
본 발명은 3차원 전자기 구동 시스템에 관한 것으로, 보다 상세하게는 동일한 4개의 원형 코일을 정사면체 형상으로 배치하여 적은 수의 3차원 코일 구조를 형성함으로써, 마이크로 로봇의 제어 공간을 줄이는 한편 전력의 효율성을 높일 수 있는 3차원 전자기 구동 시스템에 관한 것이다.The present invention relates to a three-dimensional electromagnetic drive system, and more particularly, by arranging four identical circular coils in a tetrahedral shape to form a small number of three-dimensional coil structures, thereby reducing the control space of a microrobot and improving power efficiency. It relates to a three-dimensional electromagnetic drive system that can be increased.
일반적으로 전자기 코일은 자기장을 제어하기 어려운 영구자석과는 달리 코일에 입력되는 전류를 조절하여 내부에 생성되는 자기장을 편리하게 제어할 수 있으므로 모터, 발전기, 전자기 액추에이터 등 다양한 장치에서 널리 사용되고 있다.In general, electromagnetic coils, unlike permanent magnets, which are difficult to control magnetic fields, can conveniently control the magnetic field generated inside by adjusting the current input to the coil, so they are widely used in various devices such as motors, generators, and electromagnetic actuators.
특히, 전자기 액추에이터와 같이 자기장을 사용하여 기기의 다양한 역학적 움직임을 생성하는 경우, 여러가지 형태의 자기장 생성이 요구되므로 다수의 전자기 코일의 조합을 갖는다.In particular, in the case of generating various mechanical movements of a device using a magnetic field, such as an electromagnetic actuator, a combination of a plurality of electromagnetic coils is required to generate various types of magnetic fields.
한편, 전자기 코일이 사용되는 장치의 소형화 또는 고효율화를 위해서는 구조적, 전자기적으로 효과적인 전자기 코일의 개발이 요구된다. 기존에는 다양한 형태의 자기장을 생성하기 위해 서로 다른 코일을 이용하고 있다.Meanwhile, in order to downsize or increase the efficiency of a device using an electromagnetic coil, it is required to develop an electromagnetic coil that is structurally and electromagnetically effective. Conventionally, different coils are used to generate various types of magnetic fields.
예를 들면, 헬름홀츠 코일(Helmholtz coil) 또는 유니폼 새들 코일(Uniform saddle coil)은 내부에 축방향 균일 자기장을 생성할 수 있고, 맥스웰 코일(Maxwell coil) 또는 그래디언트 새들 코일(Gradient saddle coil)은 내부에 축방향 경사 자기장을 생성할 수 있으며, 고레이 코일(Golay coil)은 내부에 횡방향 경사 자기장을 생성할 수 있다.For example, a Helmholtz coil or uniform saddle coil can create an axially uniform magnetic field inside, and a Maxwell coil or gradient saddle coil inside An axial gradient magnetic field may be generated, and a Golay coil may generate a lateral gradient magnetic field therein.
다시 말해, 종래의 전자기 코일은 하나의 코일로 한 종류의 자기장만 생성할 수 있는 것이며, 이에 따라 여러 종류의 자기장을 필요로 하는 장치에서는 필요한 자기장의 종류만큼 전자기 코일의 수가 늘어나야 한다. 이 경우 장치는 더 복잡해지고, 크기도 더 커지게 되는 문제가 발생될 수 있다.In other words, a conventional electromagnetic coil can generate only one type of magnetic field with one coil, and accordingly, in a device requiring multiple types of magnetic fields, the number of electromagnetic coils must be increased by the type of magnetic field required. In this case, a problem in that the device becomes more complicated and the size becomes larger may occur.
아울러, 자기장의 세기는 전자기 코일의 반경에 반비례하고, 전류의 세기에는 비례하며, 전자기 코일의 소모 전력은 전자기 코일의 반경에 비례하는 것을 고려할 때, 상기한 문제점은 장치의 자기장 생성 효율도 급격히 떨어뜨릴 수 있다.In addition, considering that the strength of the magnetic field is inversely proportional to the radius of the electromagnetic coil, proportional to the strength of the current, and the power consumption of the electromagnetic coil is proportional to the radius of the electromagnetic coil, the above-mentioned problem is that the magnetic field generation efficiency of the device is also rapidly reduced. can drop
이러한 문제점을 해결하기 위하여, 원통(실린더) 상에 장착이 가능한 구조의 전자기 코일을 다수 개발함으로써 각종 장치에 적용하는데 구조적으로 효과적인 방법을 개발한 사례도 있으나, 이 또한 필요한 자기장의 종류만큼 전자기 코일의 수를 늘려야 하는 한계가 있다.In order to solve this problem, there are cases where a structurally effective method has been developed to apply to various devices by developing a number of electromagnetic coils having a structure that can be mounted on a cylinder (cylinder), There is a limit to how many can be increased.
또한, 코일의 구조로 인한 기하학적인 문제로 인하여 전자기 코일을 이용하여 제어할 수 있는 범위가 작아지게 되고, 저항, 반지름 및 인덕턴스 등 코일의 상태값이 달라지게 되어 각각의 코일마다 다른 파워서플라이를 이용해야 하는 번거로움이 있었다.In addition, due to geometric problems caused by the structure of the coil, the range that can be controlled using the electromagnetic coil is reduced, and the state values of the coil, such as resistance, radius, and inductance, are different, so that each coil uses a different power supply. There was a hassle to do.
이러한 문제를 해결하기 위한 기술의 일예가 하기 문헌 1에 개시되어 있다.An example of a technique for solving this problem is disclosed in Document 1 below.
대한민국 등록특허공보 제10-1450091호(2014.10.06. 등록)에는 마이크로 로봇의 구동 제어를 위한 전자기 코일 시스템으로서, 코일의 권선 중심축이 X축 상에 놓인 한 쌍의 X축 헬름홀츠 코일; 코일의 권선 중심축이 Y축 상에 놓인 한 쌍의 Y축 헬름홀츠 코일; 작업 공간 상에서 마이크로 로봇의 위치 및 방향을 감지하는 위치인식시스템; 상기 위치인식시스템에서 얻은 마이크로 로봇의 움직임 정보와 기입력된 마이크로 로봇의 경로 정보를 기반으로 마이크로 로봇의 움직임을 제어하기 위해 X축 헬름홀츠 코일 또는 Y축 헬름홀츠 코일에 흐르는 전류공급량을 제어하는 제어부; 및 상기 제어부의 전류 제어 명령에 응답하여 각각의 헬름홀츠 코일에 해당 전류를 공급하는 전류증폭부;를 포함하며, 상기 한 쌍의 X축 헬름홀츠 코일은 서로 대향하여 배치되고, 상기 한 쌍의 Y축 헬름홀츠 코일은 서로 대향하여 배치되며, X축 헬름홀츠 코일과 Y축 헬름홀츠 코일은 수직으로 교차하여 설치됨으로써 상기 마이크로 로봇의 작업 공간을 형성하며, 상기 제어부는 크기가 같고 방향이 동일한 회전전류와 크기가 같고 방향이 서로 반대인 추진전류를 중첩한 전류값을 한 쌍의 X축 헬름홀츠 코일 또는 한 쌍의 Y축 헬름홀츠 코일에 각각 인가하여 마이크로 로봇의 방향 전환 및 이동 제어를 수행하는 것을 특징으로 하는 전자기 코일 시스템에 대해 개시되어 있다.Korean Patent Registration No. 10-1450091 (registered on October 6, 2014) discloses an electromagnetic coil system for driving control of a microrobot, comprising: a pair of X-axis Helmholtz coils in which the winding central axis of the coil is placed on the X-axis; a pair of Y-axis Helmholtz coils in which the winding central axis of the coil is placed on the Y-axis; a position recognition system for detecting the position and direction of the microrobot on the workspace; A control unit for controlling the amount of current supplied to the X-axis Helmholtz coil or the Y-axis Helmholtz coil to control the movement of the micro-robot based on the micro-robot motion information obtained from the position recognition system and the input path information of the micro-robot; and a current amplifier supplying a corresponding current to each Helmholtz coil in response to a current control command from the control unit, wherein the pair of X-axis Helmholtz coils are disposed to face each other, and the pair of Y-axis Helmholtz coils face each other. The coils are disposed to face each other, and the X-axis Helmholtz coil and the Y-axis Helmholtz coil are vertically intersected to form a working space of the microrobot, and the control unit has the same size and direction as the rotation current and the same direction. An electromagnetic coil system characterized by performing direction change and movement control of a microrobot by applying a current value obtained by overlapping these opposite propulsion currents to a pair of X-axis Helmholtz coils or a pair of Y-axis Helmholtz coils, respectively. about is disclosed.
그러나, 상술한 바와 같은 종래의 기술은 코일시스템의 기하학적인 문제로 인해 자기장을 활용할 수 있는 유효 공간이 비교적 작다는 문제가 있다.However, the conventional technology as described above has a problem in that an effective space for utilizing a magnetic field is relatively small due to a geometrical problem of the coil system.
본 발명은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 동일한 4개의 원형 코일을 정사면체 형상으로 배치하여 적은 수의 3차원 코일 구조를 형성함으로써, 마이크로 로봇의 제어 공간을 줄이는 한편 전력의 효율성을 높일 수 있는 3차원 전자기 구동 시스템을 제공하는데 목적이 있다.The present invention has been made to solve the above problems, and by arranging the same four circular coils in a tetrahedral shape to form a small number of three-dimensional coil structures, thereby reducing the control space of the microrobot and improving power efficiency. It is an object to provide a three-dimensional electromagnetic drive system that can be increased.
또한, 마이크로 로봇을 제어할 수 있는 범위가 증가되고, 코일의 상태 값이 동일하므로 마이크로 로봇을 제어하기가 용이한 3차원 전자기 구동 시스템을 제공하는데 목적이 있다.In addition, an object of the present invention is to provide a three-dimensional electromagnetic drive system in which the control range of the microrobot is increased and the state value of the coil is the same, so that the microrobot can be easily controlled.
또한, 시스템의 중심을 기준으로 대칭되는 구조를 갖는 3차원 전자기 구동 시스템을 제공하는데 목적이 있다.In addition, an object of the present invention is to provide a three-dimensional electromagnetic drive system having a symmetrical structure with respect to the center of the system.
상기 목적을 달성하기 위해 본 발명에 따른 3차원 전자기 구동 시스템은 3차원 전자기 구동 시스템에 있어서, X, Y, Z축 상에서 상호 간에 일정 각도를 유지하는 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)이 정사면체 형상으로 배치되어 구성되며, 그 내부에 제어공간(working area)이 형성되는 코일부(100); 상기 제어공간에 구비되어 상기 코일부(100)에 의해 생성된 자기장에 의해 움직임이 제어되는 마이크로 로봇;을 포함하는 것을 특징으로 한다.In order to achieve the above object, in the three-dimensional electromagnetic drive system according to the present invention, in the three-dimensional electromagnetic drive system, the first coil 110 and the second coil 120 maintain a constant angle with each other on the X, Y, and Z axes. ), the third coil 130 and the fourth coil 140 are arranged in a tetrahedral shape, and a coil unit 100 having a working area formed therein; and a microrobot provided in the control space and whose movement is controlled by the magnetic field generated by the coil unit 100.
또한, 상기 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)은 각각의 반지름 및 권취되는 코일수가 서로 동일하게 이루어지는 것을 특징으로 한다.In addition, the first coil 110, the second coil 120, the third coil 130, and the fourth coil 140 are characterized in that each radius and the number of wound coils are the same.
또한, 상기 마이크로 로봇은 내부에 자석이 구비되어 코일부(100)의 자기장에 의해 구동되는 것을 특징으로 한다.In addition, the micro-robot is characterized in that a magnet is provided therein and driven by a magnetic field of the coil unit 100.
또한, 상기 3차원 전자기 구동 시스템은, 상기 코일부(100)에 동일한 전류 방향을 갖는 전류 값을 공급하는 전원공급부를 포함하는 것을 특징으로 한다.In addition, the three-dimensional electromagnetic drive system is characterized in that it includes a power supply for supplying a current value having the same current direction to the coil unit 100.
또한, 상기 전원공급부는, 제어패널과 연결되어 상기 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)에 전가되는 전류를 동시에 조절하는 것을 특징으로 한다.In addition, the power supply unit is connected to the control panel and simultaneously controls the current applied to the first coil 110, the second coil 120, the third coil 130 and the fourth coil 140. to be
또한, 상기 마이크로 로봇의 3차원 온동을 제어하기 위한 수학식은,In addition, the equation for controlling the three-dimensional movement of the microrobot,
Figure PCTKR2021010602-appb-img-000001
Figure PCTKR2021010602-appb-img-000001
인 것을 특징으로 한다.It is characterized by being
상술한 바와 같이, 본 발명에 따른 3차원 전자기 구동 시스템은 4개의 원형 코일을 정사면체 구조로 배치하여 3차원 코일 구조를 형성함에 따라 마이크로 로봇의 제어 공간을 줄이는 한편 전력의 효율성을 높이는 효과가 있다.As described above, the 3D electromagnetic drive system according to the present invention arranges four circular coils in a tetrahedral structure to form a 3D coil structure, thereby reducing the control space of the microrobot and increasing power efficiency.
또한, 마이크로 로봇을 제어할 수 있는 범위가 증가되고, 코일의 상태 값이 동일하므로 마이크로 로봇을 제어하기가 용이한 효과가 있다.In addition, the controllable range of the microrobot is increased, and since the state values of the coils are the same, it is easy to control the microrobot.
도 1은 본 발명에 따른 3차원 전자기 구동 시스템을 나타낸 정면도.1 is a front view showing a three-dimensional electromagnetic drive system according to the present invention;
도 2는 본 발명에 따른 3차원 전자기 구동 시스템을 나타낸 평면도.2 is a plan view showing a three-dimensional electromagnetic drive system according to the present invention;
도 3은 외부 자기장 내에 배치된 마이크로 로봇의 구동상태를 나타낸 도면.3 is a view showing a driving state of a microrobot disposed in an external magnetic field.
도 4는 본 발명에 따른 3차원 전자기 구동 시스템의 좌표계를 나타낸 평면도 및 정면도.4 is a plan view and a front view showing a coordinate system of a three-dimensional electromagnetic drive system according to the present invention.
도 5는 본 발명에 따른 3차원 전자기 구동 시스템의 좌표계를 나타낸 예시도.5 is an exemplary view showing a coordinate system of a three-dimensional electromagnetic drive system according to the present invention;
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 상세하게 설명한다.Hereinafter, the most preferred embodiments of the present invention will be described in detail in order to explain the present invention in detail to the extent that those skilled in the art can easily practice the present invention.
도 1 내지 도 5에 도시된 바와 같이, 본 발명에 따른 3차원 전자기 구동 시스템은 마이크로 로봇의 3차원 위치 및 방향 제어를 수행하기 위한 것으로, 코일부(100) 및 마이크로 로봇(미도시)을 포함한다.As shown in FIGS. 1 to 5, the 3D electromagnetic driving system according to the present invention is for performing 3D position and direction control of a microrobot, and includes a coil unit 100 and a microrobot (not shown). do.
상기 코일부(100)는 X, Y, Z축 상에서 상호 간에 일정 각도를 유지하는 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)이 정사면체 형상으로 배치되어 구성된다.The coil unit 100 is a tetrahedron in which a first coil 110, a second coil 120, a third coil 130, and a fourth coil 140 maintain constant angles with each other on the X, Y, and Z axes. It is arranged and configured in shape.
상기 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)은 서로 동일한 형상으로 이루어진다.The first coil 110, the second coil 120, the third coil 130, and the fourth coil 140 have the same shape as each other.
특히, 상기 제2 코일(120), 제3 코일(130) 및 제4 코일(140)은 정사면체 형상으로 배치되어 구성됨으로써 전체 시스템의 중심을 기준으로 대칭된 구조를 갖는다.In particular, the second coil 120, the third coil 130, and the fourth coil 140 are arranged and configured in a tetrahedral shape, thereby having a symmetrical structure with respect to the center of the entire system.
상기 코일부(100)의 내부에는 제어공간(working area)이 형성되고, 상기 제어공간에는 마이크로 로봇이 구비된다.A working area is formed inside the coil unit 100, and a microrobot is provided in the control space.
상기 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)은 각각의 반지름 및 권취되는 코일수가 서로 동일하게 이루어진다.The first coil 110, the second coil 120, the third coil 130, and the fourth coil 140 have the same radius and the same number of wound coils.
상기와 같이, 본 발명은 동일한 4개의 원형 코일을 정사면체 형상으로 배치하여 적은 수의 3차원 코일 구조를 형성함으로써, 마이크로 로봇의 제어 공간을 줄이는 한편 전력의 효율성을 높일 수 있다.As described above, the present invention can reduce the control space of the microrobot and increase power efficiency by arranging the same four circular coils in a tetrahedral shape to form a small number of three-dimensional coil structures.
상기 마이크로 로봇(미도시)은 상기 제어공간에 구비되어 상기 코일부(100)에 의해 생성된 자기장에 의해 움직임이 제어된다.The microrobot (not shown) is provided in the control space and its movement is controlled by a magnetic field generated by the coil unit 100 .
상기 마이크로 로봇은 내부에 자석이 구비되어 코일부(100)의 자기장에 의해 구동된다.The microrobot has a magnet inside and is driven by the magnetic field of the coil unit 100 .
한편, 본 발명의 3차원 전자기 구동 시스템은 상기 코일부(100)에 동일한 전류 방향을 갖는 전류 값을 공급하는 전원공급부(미도시)를 포함한다.Meanwhile, the three-dimensional electromagnetic driving system of the present invention includes a power supply unit (not shown) that supplies current values having the same current direction to the coil unit 100 .
상기 전원공급부는 제어패널(미도시)과 연결되어 상기 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)에 전가되는 전류를 동시에 조절할 수 있다.The power supply unit is connected to a control panel (not shown) to simultaneously control currents applied to the first coil 110, the second coil 120, the third coil 130, and the fourth coil 140. .
본 발명에 따른 3차원 전자기 구동 시스템(Quartet of Electromagnetic Coils, QEC)은 4개의 원형 코일을 정사면체 구조로 배치하여 3차원 코일 구조를 형성하며, 다음과 같은 수학식으로 표현될 수 있다.A 3-dimensional electromagnetic drive system (Quartet of Electromagnetic Coils, QEC) according to the present invention forms a 3-dimensional coil structure by arranging four circular coils in a tetrahedral structure, which can be expressed by the following equation.
본 발명의 3차원 전자기 구동 시스템(QEC)은 4개의 동일한 원형 코일이 정사면체 구조로 배치된 형태이다. 이때, 3차원 전자기 구동 시스템의 무게중심을 기준으로 전역좌표계(X)를, 각 코일의 중심을 기준으로 국소좌표계(Xk)를 정의하면 전역좌표계와 k번 코일의 국소좌표계 사이의 좌표 변환관계는 다음과 같다.The three-dimensional electromagnetic drive system (QEC) of the present invention has a form in which four identical circular coils are arranged in a tetrahedral structure. At this time, if the global coordinate system (X) is defined based on the center of gravity of the three-dimensional electromagnetic drive system and the local coordinate system (Xk) is defined based on the center of each coil, the coordinate conversion relationship between the global coordinate system and the local coordinate system of coil k is As follows.
Figure PCTKR2021010602-appb-img-000002
Figure PCTKR2021010602-appb-img-000002
여기서,
Figure PCTKR2021010602-appb-img-000003
Figure PCTKR2021010602-appb-img-000004
는 각각 전역좌표계의 x와 z축 기준으로
Figure PCTKR2021010602-appb-img-000005
Figure PCTKR2021010602-appb-img-000006
만큼의 회전 행렬을 의미한다.
Figure PCTKR2021010602-appb-img-000007
Figure PCTKR2021010602-appb-img-000008
는 정사면체 구조인 것을 고려하면 아래의 표 1과 같다.
here,
Figure PCTKR2021010602-appb-img-000003
Wow
Figure PCTKR2021010602-appb-img-000004
are based on the x and z axes of the global coordinate system, respectively.
Figure PCTKR2021010602-appb-img-000005
Wow
Figure PCTKR2021010602-appb-img-000006
It means the rotation matrix as much as .
Figure PCTKR2021010602-appb-img-000007
Wow
Figure PCTKR2021010602-appb-img-000008
Considering that is a regular tetrahedral structure, it is shown in Table 1 below.
각도Angle 제1 코일1st coil 제2 코일2nd coil 제3 코일3rd coil 제4 코일4th coil
Figure PCTKR2021010602-appb-img-000009
Figure PCTKR2021010602-appb-img-000009
250.53°250.53° 250.53°250.53° 250.53°250.53°
Figure PCTKR2021010602-appb-img-000010
Figure PCTKR2021010602-appb-img-000010
한편, 외부자기장(
Figure PCTKR2021010602-appb-img-000011
) 내에 놓인 마이크로 로봇은 다음의 자기토크(
Figure PCTKR2021010602-appb-img-000012
)와 자기력(
Figure PCTKR2021010602-appb-img-000013
)을 받는다.
On the other hand, the external magnetic field (
Figure PCTKR2021010602-appb-img-000011
), the microrobot placed in the following magnetic torque (
Figure PCTKR2021010602-appb-img-000012
) and magnetic force (
Figure PCTKR2021010602-appb-img-000013
) is received.
Figure PCTKR2021010602-appb-img-000014
Figure PCTKR2021010602-appb-img-000014
Figure PCTKR2021010602-appb-img-000015
Figure PCTKR2021010602-appb-img-000015
여기서,
Figure PCTKR2021010602-appb-img-000016
은 마이크로 로봇의 자기모멘트(magnetic moment)이다. 마이크로 로봇의 정렬 운동은 병진 운동에 비해 상대적으로 빠르게 평형자세에 수렴한다.
here,
Figure PCTKR2021010602-appb-img-000016
is the magnetic moment of the microrobot. The alignment motion of the microrobot converges to the equilibrium posture relatively quickly compared to the translational motion.
즉, 마이크로 로봇의 자기모멘트는 외부자기장과 항상 평행하다고 가정할 수 있다(
Figure PCTKR2021010602-appb-img-000017
Figure PCTKR2021010602-appb-img-000018
). 그러므로, 마이크로 로봇의 정렬과 병진 운동을 제어하기 위해서는 원하는 3차원 자기장과 자기력을 출력할 수 있어야 한다. 마이크로 로봇이 3차원 전자기 구동 시스템의 무게 중심 위에 놓여있다고 가정하면, 마이크로 로봇의 3차원 운동을 제어하기 위한 식은 다음과 같다.
That is, it can be assumed that the magnetic moment of the microrobot is always parallel to the external magnetic field (
Figure PCTKR2021010602-appb-img-000017
Figure PCTKR2021010602-appb-img-000018
). Therefore, in order to control the alignment and translational motion of the microrobot, a desired three-dimensional magnetic field and magnetic force must be output. Assuming that the microrobot is placed on the center of gravity of the 3D electromagnetic driving system, the equation for controlling the 3D movement of the microrobot is as follows.
Figure PCTKR2021010602-appb-img-000019
Figure PCTKR2021010602-appb-img-000019
여기서,
Figure PCTKR2021010602-appb-img-000020
,
Figure PCTKR2021010602-appb-img-000021
는 원하는 자기장과 자기력의 세기를 의미한다. α와 β는 각각 원하는 출력의 xy평면 위의 정사영이 x축과 이루는 각도를, 원하는 출력이 z축과 이루는 각도를 의미한다.
here,
Figure PCTKR2021010602-appb-img-000020
,
Figure PCTKR2021010602-appb-img-000021
denotes the desired magnetic field and the strength of the magnetic force. α and β mean the angle formed by the orthographic projection on the xy plane of the desired output with the x-axis, and the angle formed by the desired output with the z-axis, respectively.
또한,
Figure PCTKR2021010602-appb-img-000022
번 코일이 축의 주변부에 생성하는 자기장은 다음의 식으로 표현할 수 있다.
Also,
Figure PCTKR2021010602-appb-img-000022
The magnetic field generated by the burn coil at the periphery of the axis can be expressed by the following equation.
Figure PCTKR2021010602-appb-img-000023
Figure PCTKR2021010602-appb-img-000023
여기서,
Figure PCTKR2021010602-appb-img-000024
는 각각 코일의 턴수와 반경, 진공의 투자율, 코일에 인가된 전류이다. 3차원 전자기 구동 시스템이 생성하는 자기장은 각 코일이 생성하는 자기장의 합과 같다. 각 코일의 국소좌표계로 표현된 자기장을 수학식 1의 관계로부터 기저벡터와 좌표를 변환하여 더하면 3차원 전자기 구동 시스템이 생성하는 총 자기장(
Figure PCTKR2021010602-appb-img-000025
)을 유도할 수 있다.
here,
Figure PCTKR2021010602-appb-img-000024
are the number of turns and radius of the coil, the magnetic permeability of the vacuum, and the current applied to the coil, respectively. The magnetic field generated by the three-dimensional electromagnetic drive system is equal to the sum of the magnetic fields generated by each coil. The total magnetic field generated by the three-dimensional electromagnetic drive system (
Figure PCTKR2021010602-appb-img-000025
) can be induced.
Figure PCTKR2021010602-appb-img-000026
Figure PCTKR2021010602-appb-img-000026
상기 수학식 6으로부터 자기장 분포가 갖는 그래디언트(Gradient)는 다음과 같다.The gradient of the magnetic field distribution from Equation 6 is as follows.
Figure PCTKR2021010602-appb-img-000027
Figure PCTKR2021010602-appb-img-000027
따라서, 수학식 6과 수학식 7을 이용하여 3차원 전자기 구동 시스템이 무게중심에 놓인 마이크로 로봇에 가하는 자기장과 자기력은 다음과 같다.Therefore, the magnetic field and magnetic force applied to the microrobot placed at the center of gravity by the three-dimensional electromagnetic drive system using Equations 6 and 7 are as follows.
Figure PCTKR2021010602-appb-img-000028
Figure PCTKR2021010602-appb-img-000028
Figure PCTKR2021010602-appb-img-000029
Figure PCTKR2021010602-appb-img-000029
여기서,
Figure PCTKR2021010602-appb-img-000030
Figure PCTKR2021010602-appb-img-000031
는 각각,
Figure PCTKR2021010602-appb-img-000032
Figure PCTKR2021010602-appb-img-000033
이다. 수학식 5에서 알 수 있듯이, 코일이 생성하는 자기장의 분포는 인가된 전류에 비례한다. 그러므로, 수학식 8과 수학식 9에서 3차원 전자기 구동 시스템이 생성하는 자기장과 자기력도 각 코일에 인가된 전류와 선형 관계인 것을 알 수 있다.
here,
Figure PCTKR2021010602-appb-img-000030
class
Figure PCTKR2021010602-appb-img-000031
are respectively
Figure PCTKR2021010602-appb-img-000032
class
Figure PCTKR2021010602-appb-img-000033
to be. As can be seen from Equation 5, the distribution of the magnetic field generated by the coil is proportional to the applied current. Therefore, it can be seen from Equations 8 and 9 that the magnetic field and magnetic force generated by the 3D electromagnetic driving system have a linear relationship with the current applied to each coil.
따라서, 마이크로 로봇의 3차원 운동을 제어하기 위한 수학식 4는 각 코일에 인가된 전류에 대한 선형 연립방정식으로 표현할 수 있다.Therefore, Equation 4 for controlling the three-dimensional motion of the microrobot can be expressed as a system of linear equations for the current applied to each coil.
Figure PCTKR2021010602-appb-img-000034
Figure PCTKR2021010602-appb-img-000034
여기서, A,I,Y는 각각 전류와 출력의 계수 행렬, 3차원 전자기 구동 시스템에 인가된 전류 행렬(
Figure PCTKR2021010602-appb-img-000035
), 원하는 출력을 의미한다. 결과적으로, 수학식 10으로부터 전류해를 구하면 마이크로 로봇의 이동과 정렬을 제어하기 위해 각 코일에 필요한 전류를 계산할 수 있다.
Here, A, I, Y are the coefficient matrix of current and output, respectively, and the current matrix applied to the three-dimensional electromagnetic drive system (
Figure PCTKR2021010602-appb-img-000035
), which means the desired output. As a result, if the current solution is obtained from Equation 10, the current required for each coil to control the movement and alignment of the microrobot can be calculated.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어져야 한다.Although the present invention has been described with reference to the preferred embodiments with reference to the accompanying drawings, it is clear that various modifications are possible to those skilled in the art from this description without departing from the scope of the present invention. Accordingly, the scope of the present invention should be construed by the claims described to include examples of these many variations.
본 발명에 따른 동일한 4개의 원형 코일을 정사면체 형상으로 배치하여 적은 수의 3차원 코일 구조를 형성함으로써, 마이크로 로봇의 제어 공간을 줄이는 한편 전력의 효율성을 높일 수 있는데 크게 기여할 수 있다.By arranging the same four circular coils according to the present invention in a tetrahedral shape to form a small number of three-dimensional coil structures, it can greatly contribute to reducing the control space of the microrobot and increasing power efficiency.

Claims (6)

  1. 3차원 전자기 구동 시스템에 있어서,In the three-dimensional electromagnetic drive system,
    X, Y, Z축 상에서 상호 간에 일정 각도를 유지하는 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)이 정사면체 형상으로 배치되어 구성되며, 그 내부에 제어공간(working area)이 형성되는 코일부(100);The first coil 110, the second coil 120, the third coil 130, and the fourth coil 140 maintaining a constant angle with each other on the X, Y, and Z axes are arranged in a tetrahedral shape and configured, a coil unit 100 having a working area formed therein;
    상기 제어공간에 구비되어 상기 코일부(100)에 의해 생성된 자기장에 의해 움직임이 제어되는 마이크로 로봇;을 포함하는 것을 특징으로 하는 3차원 전자기 구동 시스템.A three-dimensional electromagnetic drive system comprising a; microrobot provided in the control space and whose movement is controlled by the magnetic field generated by the coil unit 100.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)은 각각의 반지름 및 권취되는 코일수가 서로 동일하게 이루어지는 것을 특징으로 하는 3차원 전자기 구동 시스템.The first coil (110), the second coil (120), the third coil (130), and the fourth coil (140) have the same radius and the same number of wound coils as each other. .
  3. 청구항 1에 있어서,The method of claim 1,
    상기 마이크로 로봇은 내부에 자석이 구비되어 코일부(100)의 자기장에 의해 구동되는 것을 특징으로 하는 3차원 전자기 구동 시스템.The three-dimensional electromagnetic drive system, characterized in that the micro-robot is provided with a magnet inside and driven by the magnetic field of the coil unit (100).
  4. 청구항 1에 있어서,The method of claim 1,
    상기 3차원 전자기 구동 시스템은, 상기 코일부(100)에 동일한 전류 방향을 갖는 전류 값을 공급하는 전원공급부를 포함하는 것을 특징으로 하는 3차원 전자기 구동 시스템.The three-dimensional electromagnetic driving system comprises a power supply unit supplying a current value having the same current direction to the coil part (100).
  5. 청구항 4에 있어서,The method of claim 4,
    상기 전원공급부는, 제어패널과 연결되어 상기 제1 코일(110), 제2 코일(120), 제3 코일(130) 및 제4 코일(140)에 전가되는 전류를 동시에 조절하는 것을 특징으로 하는 3차원 전자기 구동 시스템.The power supply unit is connected to the control panel to simultaneously control the current applied to the first coil 110, the second coil 120, the third coil 130 and the fourth coil 140 Three-dimensional electromagnetic drive system.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 마이크로 로봇의 3차원 온동을 제어하기 위한 수학식은,The equation for controlling the three-dimensional movement of the microrobot is,
    Figure PCTKR2021010602-appb-img-000036
    Figure PCTKR2021010602-appb-img-000036
    인 것을 특징으로 하는 3차원 전자기 구동 시스템.A three-dimensional electromagnetic drive system, characterized in that.
    (여기서,
    Figure PCTKR2021010602-appb-img-000037
    ,
    Figure PCTKR2021010602-appb-img-000038
    는 원하는 자기장과 자기력의 세기, α와 β는 각각 원하는 출력의 xy평면 위의 정사영이 x축과 이루는 각도, 원하는 출력이 z축과 이루는 각도.)
    (here,
    Figure PCTKR2021010602-appb-img-000037
    ,
    Figure PCTKR2021010602-appb-img-000038
    is the strength of the desired magnetic field and magnetic force, α and β are the angle formed by the orthographic projection on the xy plane of the desired output with the x-axis, and the angle formed by the desired output with the z-axis.)
PCT/KR2021/010602 2021-07-02 2021-08-10 Three-dimensional electromagnetic actuation system WO2023277237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210086996A KR102291159B1 (en) 2021-07-02 2021-07-02 Three-dimension eletromagnetic drive system
KR10-2021-0086996 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023277237A1 true WO2023277237A1 (en) 2023-01-05

Family

ID=77466163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010602 WO2023277237A1 (en) 2021-07-02 2021-08-10 Three-dimensional electromagnetic actuation system

Country Status (2)

Country Link
KR (1) KR102291159B1 (en)
WO (1) WO2023277237A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112305A (en) * 1990-09-03 1992-04-14 Agency Of Ind Science & Technol Controller for driven object
KR20100136206A (en) * 2009-06-18 2010-12-28 전남대학교산학협력단 Three-dimension eletromagnetic drive device
KR20130024236A (en) * 2011-08-31 2013-03-08 전남대학교산학협력단 A micro-robot system for intravascular therapy and controling method thereof
KR101450091B1 (en) * 2013-05-08 2014-10-14 한국과학기술연구원 Electromagnetic coil system for driving control of a micro-robot
KR20150042117A (en) * 2013-10-10 2015-04-20 재단법인대구경북과학기술원 Apparatus for steering control of micro robot in 2D plane
KR102274949B1 (en) * 2020-01-09 2021-07-07 공주대학교 산학협력단 Electromagnetic coil system having a triangular structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112305A (en) * 1990-09-03 1992-04-14 Agency Of Ind Science & Technol Controller for driven object
KR20100136206A (en) * 2009-06-18 2010-12-28 전남대학교산학협력단 Three-dimension eletromagnetic drive device
KR20130024236A (en) * 2011-08-31 2013-03-08 전남대학교산학협력단 A micro-robot system for intravascular therapy and controling method thereof
KR101450091B1 (en) * 2013-05-08 2014-10-14 한국과학기술연구원 Electromagnetic coil system for driving control of a micro-robot
KR20150042117A (en) * 2013-10-10 2015-04-20 재단법인대구경북과학기술원 Apparatus for steering control of micro robot in 2D plane
KR102274949B1 (en) * 2020-01-09 2021-07-07 공주대학교 산학협력단 Electromagnetic coil system having a triangular structure

Also Published As

Publication number Publication date
KR102291159B1 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
US5089740A (en) Displacement generating apparatus
US5886432A (en) Magnetically-positioned X-Y stage having six-degrees of freedom
JPH08233964A (en) Movablle stage device, microlithographic equipment mounted with it, and flow cooling system
Nguyen et al. Two-phase Lorentz coils and linear Halbach array for multiaxis precision-positioning stages with magnetic levitation
WO2012026685A2 (en) Linear motor
KR20000012083A (en) Stage system and stage driving method for use in exposure apparatus
JP2002184838A (en) Six-axis positioning system having non-magnetic field space
WO2023277237A1 (en) Three-dimensional electromagnetic actuation system
Zhu et al. Triaxial fast tool servo using hybrid electromagnetic–piezoelectric actuation for diamond turning
WO2023284866A1 (en) Magnetic levitation gravity compensation device and micropositioner
WO2017217671A1 (en) Multi-directional actuating module
US6693284B2 (en) Stage apparatus providing multiple degrees of freedom of movement while exhibiting reduced magnetic disturbance of a charged particle beam
ATE87528T1 (en) MAGNETICALLY SUSPENDED ROBOT WRIST FOR SMALL MOVEMENTS AND WITH PROGRAMMABLE COMPENSATION.
JPH03135360A (en) Linear motor
Kim et al. Integrated multidimensional positioner for precision manufacturing
KR102274949B1 (en) Electromagnetic coil system having a triangular structure
WO2017164677A1 (en) Haptic actuator with linear and rotational movement
WO2020111539A1 (en) Magnetic field drive system
WO2020159253A1 (en) Coil arrangement for electromagnetic machine, and mobile electromagnetic machine using same
WO2023277600A1 (en) Magnetic field generation module and magnetic field generation device comprising same
US11909336B2 (en) Multi degree of freedom magnetic levitation system by single body actuator
Sun et al. Reducing the maximum temperature rise of coil array based on current proportion commutation algorithm for magnetic levitation planar motor
JP2019216591A (en) Linear motor, transfer device, and production device
JPH0669096A (en) Micromotion positioning device
CN113671801A (en) Photoetching machine workpiece table balance positioning system based on superconducting magnetic suspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE