JPH0669096A - Micromotion positioning device - Google Patents

Micromotion positioning device

Info

Publication number
JPH0669096A
JPH0669096A JP24008892A JP24008892A JPH0669096A JP H0669096 A JPH0669096 A JP H0669096A JP 24008892 A JP24008892 A JP 24008892A JP 24008892 A JP24008892 A JP 24008892A JP H0669096 A JPH0669096 A JP H0669096A
Authority
JP
Japan
Prior art keywords
substrate
actuators
actuator
positioning
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24008892A
Other languages
Japanese (ja)
Other versions
JP2821835B2 (en
Inventor
Shinji Wakui
伸二 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4240088A priority Critical patent/JP2821835B2/en
Publication of JPH0669096A publication Critical patent/JPH0669096A/en
Priority to US08/312,932 priority patent/US5545962A/en
Application granted granted Critical
Publication of JP2821835B2 publication Critical patent/JP2821835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Machine Tool Units (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To achieve a more complete non-interference control and to improve positioning performance with a simple configuration by laying out the drive points by an actuator at the centers of impact of a rigid object each other. CONSTITUTION:In the (x, y) coordinates where the mass of a substrate 1 of a micromotion positioning mechanism is set to m and an inertial main axis center is set to an origin, inertia moments around the x and y axes are set to Jx and Jy, respectively. Actuators 2M, 2R, and 2L are laid out concentrically with a radius of ld in reference to the origin. Also, when 2 M out of three actuators is laid out at (0, ld) of the (x, y) coordinates, the remaining two actuators 2R and 2L are laid out at the fourth and third quadrants of the (x, y) coordinates, respectively. The layout angle is set to thetad for the x axis. In this case, a micromotion positioning mechanism satisfying the expression is taken, thus increasing the loop gain of a control system and improving the performance easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧電素子(ピエゾ)ある
いは電歪素子をアクチュエータとしたサブミクロンオー
ダの位置決め装置に係り、多自由度の干渉を静的にも動
的にも完全に除去した微動位置決め装置を提供せんとす
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submicron-order positioning device using a piezoelectric element (piezo) or an electrostrictive element as an actuator, and completely eliminates interference of multiple degrees of freedom both statically and dynamically. A fine movement positioning device is provided.

【0002】[0002]

【従来の技術】近年、精密加工、組立、調整などにおけ
る微小位置決めに対しては、サブミクロンオーダの位置
決め精度が要求されている。特に、微細パターンの露光
を目的とした超精密位置決めステージにおいては高い駆
動分解能と周波数応答の広帯域化を実現するために、ア
クチュエータとして圧電素子(ピエゾ)や電歪素子が多
用される。一例として、鉛直方向1自由度と水平面内の
傾きの2自由度を位置決め制御する微動位置決め装置を
図1に示す。なお、同図は従来の技術の範囲で実現した
微動位置決め装置を説明する図であると共に本発明に係
る微動位置決め制御装置の一実施例を示すものともなっ
ている。
2. Description of the Related Art In recent years, submicron-order positioning accuracy is required for fine positioning in precision machining, assembly, adjustment and the like. In particular, in an ultra-precision positioning stage for the purpose of exposing a fine pattern, a piezoelectric element (piezo) or an electrostrictive element is often used as an actuator in order to realize a high driving resolution and a wide frequency response band. As an example, FIG. 1 shows a fine movement positioning device that controls positioning with one degree of freedom in the vertical direction and two degrees of freedom of inclination in a horizontal plane. It should be noted that this figure is a diagram for explaining a fine movement positioning device realized within the range of the conventional technique and also shows an embodiment of the fine movement positioning control device according to the present invention.

【0003】同図において、1は位置決めする平板状の
基板、2M,2R,2Lは鉛直方向に変位を発生するア
クチュエータであり、例えば圧電素子を駆動素子とする
変位拡大機構も含まれるものとする。さらに、印加電圧
によって変位を発生する圧電素子とともに、その駆動位
置近傍には基板1のz方向変位を計測する位置センサ3
M,3R,3Lがあり、これらをもって微動位置決め機
構と呼ばれる。ここで、各アクチュエータに対応した位
置センサはこれとほぼ同一位置に設置されているものと
する。
In FIG. 1, reference numeral 1 is a flat plate substrate for positioning, and 2M, 2R, 2L are actuators that generate a displacement in the vertical direction. For example, a displacement magnifying mechanism having a piezoelectric element as a drive element is also included. . Further, along with a piezoelectric element that generates a displacement due to an applied voltage, a position sensor 3 that measures the displacement of the substrate 1 in the z direction near the driving position of the piezoelectric element.
There are M, 3R and 3L, and these are called fine movement positioning mechanism. Here, it is assumed that the position sensor corresponding to each actuator is installed at substantially the same position as this.

【0004】さて、位置センサ3M,3R,3Lによっ
て計測される基板1の変位は、変位増幅器4M,4R,
4Lによって電気信号に変換される。その電気信号は、
指令電圧入力端子5M,5R,5Lに加わる電圧と比較
されて偏差信号eM ,eR ,eL となる。この偏差信号
は所定の感度を得るために前置増幅器6M,6R,6L
に導かれ、制御ループの安定化と、指令電圧に対する偏
差信号零への仕様を満たすための補償器7M,7R,7
Lに導かれる。この補償器の出力をもって電力増幅器8
M,8R,8Lを励磁し、アクチュエータ2M,2R,
2Lの上下動で基板1を上下方向に並進移動させたり、
あるいはz軸に対して傾かせる駆動を行なう。これらの
閉ループはフィードバック装置と呼ぶことにする。
Now, the displacement of the substrate 1 measured by the position sensors 3M, 3R, 3L is calculated by the displacement amplifiers 4M, 4R,
It is converted into an electric signal by 4L. The electrical signal is
The deviation signals e M , e R , and e L are compared with the voltage applied to the command voltage input terminals 5M, 5R, and 5L. This deviation signal is used as a preamplifier 6M, 6R, 6L to obtain a predetermined sensitivity.
The compensators 7M, 7R, 7 for stabilizing the control loop and satisfying the specification to the deviation signal zero with respect to the command voltage are introduced.
Guided by L. The power amplifier 8 with the output of this compensator
Exciting M, 8R, 8L, actuators 2M, 2R,
The vertical movement of 2 L causes the substrate 1 to translate in the vertical direction,
Alternatively, it is driven so as to be tilted with respect to the z axis. These closed loops will be called feedback devices.

【0005】なお、上述の説明において、電力増幅器8
M,8R,8Lが電圧入力に対して電圧を出力するタイ
プの場合、補償器7M,7R,7Lは一般的に積分器を
含むもの、例えばPI補償器となる。ここで、Pは比
例、Iは積分動作を意味する。また、電力増幅器8M,
8R,8Lが電圧入力に対して電流を出力するタイプの
場合、補償器7M,7R,7Lの機能は単純にP動作と
すればよい。なぜならば、アクチュエータ2M,2R,
2Lの構成素子である圧電素子は、電気的にコンデンサ
であり、電力増幅器8M,8R,8Lとそれらが駆動す
る各圧電素子を含めた伝達関数には積分動作が含まれる
ので、いわゆる制御ループは1型となり制御理論によれ
ば定常偏差零が自動的に保証されるからである。
In the above description, the power amplifier 8
When M, 8R and 8L are of a type that outputs a voltage with respect to a voltage input, the compensators 7M, 7R and 7L generally include an integrator, for example, a PI compensator. Here, P means proportional and I means integral operation. Also, the power amplifier 8M,
When 8R and 8L are of a type that outputs a current with respect to a voltage input, the functions of the compensators 7M, 7R and 7L may simply be P operations. Because the actuators 2M, 2R,
The piezoelectric element, which is a 2L constituent element, is an electrical capacitor, and since the transfer function including the power amplifiers 8M, 8R, and 8L and the piezoelectric elements driven by them includes integral operation, the so-called control loop is This is because the type 1 becomes and the steady state error is automatically guaranteed according to the control theory.

【0006】[0006]

【発明が解決しようとする課題】微動位置決め装置の性
能は位置決め時間と位置精度で規定されるが、これらの
仕様は年々きびしくなっている。しかしながら、基板1
が与えられたとき、アクチュエータ2M,2R,2Lと
位置センサ3M,3R,3Lを適当に配置し、その機構
に対して各々独立のフィードバック装置を組み込んだと
きの特性向上は、各駆動軸間の相互作用という干渉に原
因して自ずと限界があった。故に、位置決め時間の短縮
や位置決めの高精度化をさらに向上させるためには、干
渉を除去するような工夫が必要であった。例えば、図1
に示すような微動位置決め機構に対する精密位置決めに
おいて、アクチュエータと位置センサの空間配置に原因
した干渉を除去して注目する指定軸のみを応答させる制
御装置が開発されている。この技術内容は、文献『富田
ほか:パラレルリンク式微動ステージの6自由度位置決
め制御(精密工学会誌58/4/1992,pp.68
4−690)』に詳しく開示されている。簡単に言う
と、アクチュエータ駆動による変位から位置決め点姿勢
までの変換行列と、その姿勢から位置センサの出力まで
の変換行列とを推定しておき、各々の逆行列演算を電力
増幅器の前段と位置センサの後段に挿入して閉ループ制
御系を構成するものである。ここでは、これを非干渉化
制御と呼び、このような逆行列演算を挿入しない従来か
らの制御を独立制御と呼ぶことにしよう。
The performance of the fine movement positioning apparatus is defined by the positioning time and the position accuracy, but these specifications are becoming severer year by year. However, substrate 1
When the actuators 2M, 2R, 2L and the position sensors 3M, 3R, 3L are properly arranged and the independent feedback devices are incorporated in the mechanism, the characteristic improvement between the drive shafts is There was a limit due to the interference of interaction. Therefore, in order to shorten the positioning time and further improve the accuracy of positioning, it is necessary to devise a method for removing interference. For example, in FIG.
In the precision positioning for the fine movement positioning mechanism as shown in (1), a control device has been developed which eliminates interference caused by the spatial arrangement of the actuator and the position sensor and causes only the designated axis of interest to respond. This technical content is described in the document “Tomita et al .: 6-degree-of-freedom positioning control of parallel link type fine movement stage (Journal of Japan Society for Precision Engineering 58/4/1992, pp. 68).
4-690) ”. Briefly, the transformation matrix from the displacement caused by the actuator drive to the positioning point posture and the transformation matrix from the posture to the output of the position sensor are estimated, and the inverse matrix calculation of each is performed in front of the power amplifier and the position sensor. It is inserted in the subsequent stage to form a closed loop control system. Here, this will be called decoupling control, and the conventional control that does not insert such an inverse matrix operation will be called independent control.

【0007】さて、非干渉化制御によれば機構の静的干
渉が解放されて非干渉化が達成されるという効果を持
つ。非干渉化制御がもたらす効果の証明として同文献で
は位置決め特性を示している。例えば、回転運動を指令
したときその他の運動モードの励起が極端に抑えられ
た、という実験結果がある。
The decoupling control has the effect that static interference of the mechanism is released and decoupling is achieved. As a proof of the effect of decoupling control, the same document shows positioning characteristics. For example, there is an experimental result that the excitation of other motion modes is extremely suppressed when a rotational motion is commanded.

【0008】しかしながら、図1に示す微動位置決め機
構へ同文献の方法を適用した結果、性能向上が常に期待
できるものではないことが判明した。図2は、指令電圧
入力端子5Lのみに電圧を印加したときの偏差信号e
M ,eR ,eL の振る舞いである。従来の独立制御の場
合には、指令電圧を与えたL以外の軸MとRにも偏差信
号が出現する。しかし、非干渉化制御を施した場合に
は、指令電圧印加軸L以外の偏差信号eM ,eR は出現
していない。したがって、非干渉化制御は意図通りの動
作を示しているように思われた。すなわち、指定した軸
以外の応答がそれに漏れ込まないので、位置決め時間の
短縮と位置決め精度の向上が期待できそうであった。し
かし、基板1に指令するあらゆる運動姿勢に対しても独
立制御に対する非干渉化制御の優位性が保たれるのであ
ろうか、という疑念が生じた。
However, as a result of applying the method of the same document to the fine movement positioning mechanism shown in FIG. 1, it has been found that improvement in performance cannot always be expected. FIG. 2 shows the deviation signal e when the voltage is applied only to the command voltage input terminal 5L.
This is the behavior of M , e R , and e L. In the case of the conventional independent control, a deviation signal also appears on the axes M and R other than the L to which the command voltage is applied. However, when the decoupling control is performed, the deviation signals e M and e R other than the command voltage application axis L do not appear. Therefore, the decoupling control seemed to behave as intended. In other words, responses other than the designated axis do not leak into it, so it can be expected to shorten the positioning time and improve the positioning accuracy. However, there has been a suspicion that the superiority of the decoupling control over the independent control can be maintained with respect to all the movement postures instructing the board 1.

【0009】そこで、指令電圧印加のパターンを変更し
て独立制御と非干渉化制御の性能比較を行った。図3は
指令電圧入力端子5M,5R,5Lに各々+5[μ
m],+5[μm],−5[μm]相当の指令電圧をス
テップ状に加えた場合の偏差信号eM ,eR ,eL の振
る舞いである。この場合には、非干渉化制御の方がむし
ろ応答は劣化しており、特に偏差信号eR は振動的であ
る。つまり、非干渉化制御の位置決め性能が常に従来の
独立制御のそれに比較して優位とは限らないのである。
この現象は、同文献の非干渉化手法が純静的なものであ
り、動的な非干渉化まで行うものでないことに原因して
いる。さらに、制御理論の教えるところによれば、非干
渉化という座標変換によって安定性に関連する系全体の
固有値は不変である。一方、制御性の難易は零点配置に
関わることは周知であり、非干渉化という座標変換によ
って零点配置が変化しこれがステップ状の指令電圧に対
する応答性に影響を与えることが同文献では十分に配慮
されていないことも原因の1つである。したがって、こ
の零点配置に対する考慮なしに単純な静的非干渉化を施
してもさしたる位置決め性能の向上は期待できないし、
むしろ応答性の劣化を招来することもあると結論され
た。ここで、課題を整理すると次のようになる。
Therefore, the performance of the independent control and the decoupling control was compared by changing the pattern of the command voltage application. Fig. 3 shows that the command voltage input terminals 5M, 5R, and 5L each have a +5 [μ
This is the behavior of the deviation signals e M , e R , and e L when command voltages equivalent to m], +5 [μm], and −5 [μm] are applied in steps. In this case, the response of the decoupling control is rather deteriorated, and the deviation signal e R is particularly oscillatory. That is, the positioning performance of the non-interacting control is not always superior to that of the conventional independent control.
This phenomenon is caused by the fact that the decoupling method of the same document is purely static and does not even perform dynamic decoupling. Furthermore, according to the teaching of control theory, the eigenvalue of the whole system related to stability is invariant due to coordinate transformation called decoupling. On the other hand, it is well known that the difficulty of controllability is related to the zero point arrangement, and it is sufficiently considered in the same document that the zero point arrangement changes due to coordinate transformation called non-interference, which affects the response to the stepped command voltage. One of the causes is that it has not been done. Therefore, even if a simple static decoupling is performed without considering this zero point arrangement, a significant improvement in positioning performance cannot be expected,
Rather, it was concluded that it may cause deterioration of responsiveness. Here is a summary of the issues.

【0010】3つのアクチュエータに対して3つの位置
センサを備えた位置決め機構に対して、各々独立の位置
制御ループから成るフィードバック装置を組み込んだ微
動位置決め装置は既知であり、従来はそれらのアクチュ
エータと位置センサとが位置決め機構の特性を考慮する
ことなく適当に空間配置されていた。したがって、位置
決め時間の短縮と高精度化を達成することにおいて限界
があった。この限界を緩和するため、アクチュエータと
位置センサの空間配置に基づく変換行列の逆行列演算を
フィードバック装置に挿入して、静的な非干渉化を行う
という手段が提案されている。しかし、逆行列演算の挿
入は制御装置の構成を複雑にするのでコスト高になる、
という欠点があった。また、挿入する逆行列演算のパラ
メータは何等かの同定手段を用いて推定せねばならず、
したがって制御装置の性能を満足させるための調整作業
は煩雑になる、と云う欠点もあった。最大の欠点はその
手法が常に位置決め性能の向上をもたらすわけではな
く、却って応答の劣化を招くことが多いと云うことであ
る。
A fine movement positioning device incorporating a feedback device consisting of an independent position control loop for a positioning mechanism having three position sensors for three actuators is known, and conventionally, those actuators and position sensors have been used. The sensor and the sensor were appropriately arranged in space without considering the characteristics of the positioning mechanism. Therefore, there has been a limit in achieving a shorter positioning time and higher accuracy. To alleviate this limitation, a means has been proposed in which an inverse matrix calculation of a conversion matrix based on the spatial arrangement of actuators and position sensors is inserted into a feedback device to perform static decoupling. However, the insertion of the inverse matrix operation complicates the configuration of the control device, resulting in high cost.
There was a drawback. Also, the parameters of the inverse matrix operation to be inserted must be estimated by using some identification means,
Therefore, there is also a drawback that the adjustment work for satisfying the performance of the control device becomes complicated. The biggest drawback is that the method does not always improve the positioning performance, but rather often deteriorates the response.

【0011】本発明の目的は、このような従来技術の問
題点に鑑み、微動位置決め装置において、簡便な構成に
より、より完全な非干渉化制御を達成し、位置決め性能
の向上を図ることにある。
In view of the above problems of the prior art, an object of the present invention is to achieve more complete decoupling control and improve positioning performance in a fine movement positioning device with a simple structure. .

【0012】[0012]

【課題を解決するための手段】本発明は、上述の欠点を
解決し上述の目的を達成するためになされたものであ
り、アクチュエータの空間配置と位置センサのそれに基
づく変換行列の逆行列演算を閉ループ内に挿入するとい
う煩雑な非干渉化制御手法は採用しない。代わりに、微
動位置決め機構そのものを静的にも動的にも非干渉化し
た微動位置決め制御装置を提供せんとするものである。
すなわち、微動位置決め機構そのものを静的・動的干渉
をすべて含めて非干渉化し、その機構に対して各位置セ
ンサの出力情報に基づいてアクチュエータを駆動するフ
ィードバック装置が組み込まれた微動位置決め装置とす
る。
The present invention has been made in order to solve the above-mentioned drawbacks and achieve the above-mentioned object, and performs an inverse matrix calculation of a conversion matrix based on the spatial arrangement of actuators and the position sensor. The complicated decoupling control method of inserting in a closed loop is not adopted. Instead, it is intended to provide a fine movement positioning control device in which the fine movement positioning mechanism itself is statically or dynamically decoupled.
That is, the fine movement positioning mechanism itself is made to be non-interfering including static and dynamic interference, and a fine movement positioning device in which a feedback device for driving the actuator based on the output information of each position sensor is incorporated in the mechanism is provided. .

【0013】図1を参照してより具体的に説明すれば、
微動位置決め機構の基板1の質量をm、慣性主軸中心を
原点として設定した(x,y)座標においてx軸とy軸
回りの慣性モーメントを各々Jx ,Jy とおく。アクチ
ュエータ2M,2R,2Lは、原点を中心とする半径l
d の同心円上に配置される。また、3個のアクチュエー
タの内、2Mは(x,y)座標の(0,ld )に配置す
るとき、残る2つのアクチュエータ2R,2Lは(x,
y)座標の4及び3象限に各々配置するのがバランス的
に最適である。この配置角度をx軸に対してそれぞれθ
d とおく。このとき次の数3及び数4式を満足するよう
な微動位置決め機構となすのである。
More specifically with reference to FIG. 1,
It is assumed that the mass of the substrate 1 of the fine movement positioning mechanism is m, and the moments of inertia about the x-axis and the y-axis at the (x, y) coordinates set with the center of the principal axis of inertia as the origin are J x and J y , respectively. The actuators 2M, 2R, 2L have a radius l centered on the origin.
It is placed on the concentric circle of d . Further, of the three actuators, when 2M is arranged at (0, l d ) of (x, y) coordinates, the remaining two actuators 2R and 2L are (x,
y) It is optimal in terms of balance to arrange them in the 4th and 3rd quadrants of the coordinates. This arrangement angle is θ with respect to the x-axis
Put d . At this time, the fine movement positioning mechanism is formed so as to satisfy the following expressions (3) and (4).

【0014】[0014]

【数3】 [Equation 3]

【0015】[0015]

【数4】 次に、上式に基づく微動位置決め機構に対して、3個の
位置センサ3M,3R,3Lの出力を指令電圧と比較し
て偏差信号eM ,eR ,eL を得、前置増幅器6M,6
R,6Lと補償器7M,7R,7Lを介して電力増幅器
8M,8R,8Lを励磁してアクチュエータ2M,2
R,2Lを駆動するというフィードバック装置を組み込
んで微動位置決め装置と成す。
[Equation 4] Next, with respect to the fine movement positioning mechanism based on the above formula, the deviation signals e M , e R , and e L are obtained by comparing the outputs of the three position sensors 3M, 3R, and 3L with the command voltage, and the preamplifier 6M is used. , 6
The power amplifiers 8M, 8R, 8L are excited via the R, 6L and the compensators 7M, 7R, 7L to drive the actuators 2M, 2
A fine movement positioning device is constructed by incorporating a feedback device for driving R and 2L.

【0016】[0016]

【作用】数3と4式が力学的に意味することは、アクチ
ュエータによる各駆動点が互いに基板1の『打撃の中
心』となっていることであり、これにより、微動位置決
め機構そのものが静的・動的干渉をすべて含めて非干渉
化するように構成される。その機構に対して、各センサ
の位置情報に基づいて各アクチュエータを駆動する閉ル
ープが構成される。したがって、制御ループは単純な単
一ループが3つ構成されることになる。また、微動位置
決め機構そのものが非干渉化できているので制御系のル
ープゲインを上げて性能向上を図ることが容易になされ
る。数3式と数4式の関係を満足しない従来の微動位置
決め機構に対して3つの単一ループを構成した場合にお
いては、他軸からの干渉成分に原因してループゲインを
上げることには限界があり、したがって位置決め性能も
制御されてしまうのである。更に、従来の非干渉化制御
では、制御ループ内に逆行列演算が挿入されるので、そ
のパラメータ決定と共に調整作業が煩雑であった。それ
に加えて、それらの逆行列演算を施さない場合に比較し
て位置決め性能が格段に向上するという保証はないので
ある。
Mathematical meaning of equations (3) and (4) is that the drive points by the actuators are the "center of impact" of the substrate 1 with each other, whereby the fine movement positioning mechanism itself is static. -It is configured to decoupling all dynamic interference. A closed loop that drives each actuator based on the position information of each sensor is configured for the mechanism. Therefore, the control loop is composed of three simple single loops. Further, since the fine movement positioning mechanism itself can be made non-interfering, it is easy to increase the loop gain of the control system to improve the performance. When three single loops are configured for the conventional fine-motion positioning mechanism that does not satisfy the relationship between equations (3) and (4), there is a limit to increasing the loop gain due to interference components from other axes. Therefore, the positioning performance is also controlled. Further, in the conventional decoupling control, since the inverse matrix operation is inserted in the control loop, the adjustment work is complicated together with the parameter determination. In addition, there is no guarantee that the positioning performance will be significantly improved as compared with the case where the inverse matrix calculation is not performed.

【0017】このように、本発明の微動位置決め装置に
おいては、完全非干渉化制御が実現され、パラメータ同
定や調整作業が不要となるので、生産性の向上が図ら
れ、装置のコストも低く抑えられる。
As described above, in the fine movement positioning apparatus of the present invention, complete decoupling control is realized and parameter identification and adjustment work are unnecessary, so that productivity is improved and the apparatus cost is kept low. To be

【0018】[0018]

【実施例】図1は、本発明に係る微動位置決め装置の一
実施例を示すブロック図である。「従来の技術」の項で
もこの図面を使って説明を行ったが、従来技術の範囲で
は微動位置決め機構を構成するアクチュエータや位置セ
ンサが適切に空間配置されていないものであった。しか
し、ここでは、これらの配置を前記数3式と数4式に示
すように最適化する。
1 is a block diagram showing an embodiment of a fine movement positioning device according to the present invention. As described in the "Prior Art" section with reference to this drawing, the actuators and position sensors that form the fine movement positioning mechanism are not properly spatially arranged within the range of the prior art. However, here, these arrangements are optimized as shown in the equations 3 and 4.

【0019】これらの式の導出過程を示す。まず、基板
1を上面から図示した座標を図4に示す。同図におい
て、黒丸印2M,2R,2Lはアクチュエータであり、
図中に記入した座標に配置される。また、座標中心と慣
性中心は一致しているものとし、図示のように(x,
y,z)座標を定める。このとき、運動方程式は次の数
5式のようになる。
The derivation process of these equations will be described. First, FIG. 4 shows the coordinates of the substrate 1 shown from above. In the figure, black circles 2M, 2R, 2L are actuators,
It is placed at the coordinates entered in the figure. Further, it is assumed that the center of coordinates and the center of inertia coincide with each other, and (x,
y, z) Define the coordinates. At this time, the equation of motion is as shown in the following Equation 5.

【0020】[0020]

【数5】 ただし、使用した記号の意味は以下のとおりである。 X=[z,θx ,θyT :慣性主軸の変位ベクトル z[m]:基板1の慣性主軸のz軸変位 θx [rad]:基板1のx軸回りの回転角度 θy [rad]:基板1のy軸回りの回転角度 M=diag(m,Jx ,Jy ):慣性行列 m[kg]:基板1の質量 Jx [Kgm2 ]:基板1のx軸回りの慣性モーメント Jy [Kgm2 ]:基板1のy軸回りの慣性モーメント [ZdM,ZdR,ZdLT [m]:アクチュエータのz軸
方向駆動変位 K[N/m]:2M,2R,2Lのバネ定数 d[Nsec/m]:2M,2R,2Lの粘性摩擦係数 A=diag(aM ,aR ,aL )[m/V]:電圧変
位変換係数 U=[uM ,uR ,uLT [V]:圧電素子への印加
電圧ベクトル θd [rad]:アクチュエータの配置角度 ld [m]:半径 上付添字T:転置行列 ( ):時間微分 s:ラプラス演算子 Jxd:アクチュエータ駆動変位[ZdM,ZdR,ZdLT
から変位Xまでの数6式で示される変換行列
[Equation 5] However, the meanings of the symbols used are as follows. X = [z, θ x , θ y ] T : displacement vector of inertial principal axis z [m]: z-axis displacement of inertial principal axis of substrate 1 θ x [rad]: rotation angle of substrate 1 around x-axis θ y [ rad]: rotation angle of the substrate 1 around the y axis M = diag (m, J x , J y ): inertia matrix m [kg]: mass of the substrate 1 J x [Kgm 2 ]: around the x axis of the substrate 1 Moment of inertia J y [Kgm 2 ]: Moment of inertia about the y-axis of the substrate 1 [Z dM , Z dR , Z dL ] T [m]: Actuator displacement in the z-axis direction K [N / m]: 2M, 2R , 2L spring constant d [Nsec / m]: 2M, 2R, 2L viscous friction coefficient A = diag (a M , a R , a L ) [m / V]: voltage displacement conversion coefficient U = [u M , u R, u L] T [ V]: voltage vector applied to the piezoelectric element θ d [rad]: placement of the actuator angle l d [m]: Diameter superscript subscript T: transposed matrix (·): time derivative s: Laplace operator J xd: actuator drive displacement [Z dM, Z dR, Z dL] T
To the displacement X expressed by the equation 6

【0021】[0021]

【数6】 D:数7式で示される減衰係数行列[Equation 6] D: Damping coefficient matrix expressed by Equation 7

【0022】[0022]

【数7】 K:数8式で示される剛性係数行列[Equation 7] K: Rigidity coefficient matrix expressed by Eq. 8

【0023】[0023]

【数8】 さて、以上の準備のもとに印加電圧ベクトルUから変位
ベクトルXまでの関係は数9式となる。
[Equation 8] Now, based on the above preparation, the relationship from the applied voltage vector U to the displacement vector X is given by the equation (9).

【0024】[0024]

【数9】 上式でUからXまでの関係を表す部分が微動位置決め機
構の伝達関数行列G(s)となる。ここで各要素を数1
0の記号のようにおく。
[Equation 9] In the above equation, the portion representing the relationship from U to X becomes the transfer function matrix G (s) of the fine movement positioning mechanism. Where each element is number 1
Put it like a 0 symbol.

【0025】[0025]

【数10】 このとき、G31(s),G12(s),及びG32(s)そ
れぞれの零点を与える多項式は数11〜13式のように
なる。
[Equation 10] At this time, the polynomials that give the respective zero points of G 31 (s), G 12 (s), and G 32 (s) are as shown in Formulas 11 to 13.

【0026】[0026]

【数11】 [Equation 11]

【0027】[0027]

【数12】 [Equation 12]

【0028】[0028]

【数13】 したがって、上記数11〜13の多項式においてsの係
数をすべて零にできる条件は容易に求められて数14及
び15式となる。
[Equation 13] Therefore, the conditions that all the coefficients of s can be zero in the polynomials of the above equations 11 to 13 are easily obtained, and the equations 14 and 15 are obtained.

【0029】[0029]

【数14】 [Equation 14]

【0030】[0030]

【数15】 すなわち、数14及び15式を満たすようにしたとき数
10式に示す非対角項の伝達関数はすべてゼロとなり、
対角成分G11(s),G22(s),G33(s)だけが非
ゼロとして残る。これは、微動位置決め機構を静的・動
的に非干渉化したことになる。ここでは、完全非干渉化
された微動位置決め機構に対してフィードバック装置が
組み込まれた微動位置決め装置の制御方式を完全非干渉
化制御と呼ぶことにする。
[Equation 15] That is, when the equations 14 and 15 are satisfied, the transfer functions of the off-diagonal terms shown in the equation 10 are all zero,
Only the diagonal components G 11 (s), G 22 (s) and G 33 (s) remain as non-zero. This means that the fine movement positioning mechanism is statically and dynamically decoupled. Here, the control system of the fine movement positioning apparatus in which the feedback device is incorporated in the fine movement positioning mechanism which has been completely decoupled will be referred to as complete decoupling control.

【0031】なお、数14及び15式はG31(s),G
12(s),及びG32(s)の零点を与える多項式におい
てsの係数を同時にゼロと成す条件であったが、この条
件は同時にG13(s),G21(s),G23(s)の各零
点を与える多項式のsの係数をゼロとする条件ともなっ
ている。したがって、数14及び15式によって数10
式の非対角項はすべてゼロとなるのである。
The equations (14) and (15) are G 31 (s), G
In the polynomial that gives the zeros of 12 (s) and G 32 (s), the condition was that the coefficient of s was set to zero at the same time, but this condition was G 13 (s), G 21 (s), and G 23 ( It is also a condition for setting the coefficient of s of the polynomial that gives each zero point of s) to zero. Therefore, the formula 10 is obtained by the formulas 14 and 15.
The off-diagonal terms of the equation are all zero.

【0032】また、基板1の質量m、x軸回りの慣性モ
ーメントJx 、y軸回りの慣性モーメントJy は変更で
きない、つまり所与のものとして数14式をld につい
て解いたものが数3式であり、数15式をθd に関して
解いたものが数4式となっている。つまり、m,Jx
y に過度な設計変更を要請することは、現実的ではな
いのでld ,θd について解を求めたのである。勿論、
d とθd を固定して数14と15式を満たすm,J
x ,Jy の組み合わせを探索しても構わない。要する
に、数14と15式を満足するように微動位置決め機構
を設計すれば、指定した駆動軸以外からの干渉成分はな
くなる。
Further, the mass m of the substrate 1, x axis of the inertial moment J x, can not be changed the moment of inertia J y in y-axis, i.e. the number followed by a number 14 formula as given ones solving for l d Equation 3 is obtained by solving Equation 15 with respect to θ d . That is, m, J x ,
Requesting an excessive design change to J y is not realistic, so a solution was obtained for l d and θ d . Of course,
Fixing l d and θ d , m and J satisfying the equations 14 and 15
A combination of x and J y may be searched. In short, if the fine movement positioning mechanism is designed so as to satisfy the equations (14) and (15), there will be no interference components from other than the designated drive axis.

【0033】次に、完全非干渉化制御を実現した微動位
置決め装置のステップ応答を、完全非干渉化が考慮され
ていない微動位置決め機構に対して独立制御だけが施さ
れた微動位置決め装置のそれと比較して本発明の有効性
を示す。図5は、指令電圧入力端子5Lのみに+5[μ
m]相当の指令電圧を印加したときの偏差信号eM ,e
R ,eL の応答波形である。本発明の完全非干渉化制御
によれば、偏差eR ,eL の応答は完全にゼロとなって
おり、本発明の効果が極めて明確に示されている。もち
ろん、指令電圧入力端子5M,5R,5Lに如何なるパ
ターンの指令を与えても、完全非干渉化制御は完璧に動
作する。すなわち、従来の純静的な非干渉化制御では、
図3に示す如く指令電圧入力端子5M,5R,5Lへの
電圧印加パターンによっては独立制御よりも劣化する場
合もあるが、完全非干渉化制御においてはこのような事
態は発生しない。
Next, the step response of the fine movement positioning device realizing the complete decoupling control is compared with that of the fine movement positioning device in which only the independent control is applied to the fine movement positioning mechanism in which the complete decoupling is not considered. The effectiveness of the present invention is shown. FIG. 5 shows that only the command voltage input terminal 5L has +5 [μ
m] the deviation signals e M , e when a command voltage equivalent to
R, it is a response waveform of e L. According to the complete decoupling control of the present invention, the responses of the deviations e R and e L are completely zero, which clearly shows the effect of the present invention. Of course, no matter what pattern command is given to the command voltage input terminals 5M, 5R, 5L, the complete decoupling control operates perfectly. That is, in the conventional pure static decoupling control,
As shown in FIG. 3, depending on the voltage application pattern to the command voltage input terminals 5M, 5R, 5L, it may be deteriorated compared to the independent control, but such a situation does not occur in the complete decoupling control.

【0034】なお、本実施例においては、3つのアクチ
ュエータ2M,2R,2Lが同一平面内に設けられ、そ
れらの鉛直z軸変位により並進1自由度と回転2自由度
の計3自由度を制御する微動位置決め機構を対象にして
完全非干渉化制御を実現した微動位置決め装置を示し
た。しかし、本発明はこのような3自由度の微動位置決
め機構に限定されるものではなく、より自由度の多い機
構に対しても適用可能である。なぜならば、数11〜1
3式は零点を与える多項式の各係数を同時にゼロと成す
ような機構パラメータの条件であり、求められた数14
と15式が力学的に意味することは、各駆動点が互いに
『打撃の中心』となっていることなのである。したがっ
て、剛物体に対して、少なくとも制御する運動自由度分
のアクチュエータと、少なくとも運動自由度分の位置セ
ンサとを備え、各位置センサの出力をフィードバックし
て対応する各アクチュエータを駆動するフィードバック
装置が組まれた微動位置決め装置において、アクチュエ
ータによる駆動点が互いに打撃の中心に配置される微動
位置決め装置も本発明の範囲に含まれる。
In this embodiment, the three actuators 2M, 2R and 2L are provided in the same plane, and their vertical z-axis displacement controls a total of 3 degrees of freedom including translational 1 degree of freedom and rotational 2 degrees of freedom. A fine movement positioning device that realizes complete decoupling control is shown for the fine movement positioning mechanism. However, the present invention is not limited to such a three-degree-of-freedom fine movement positioning mechanism, and can be applied to a mechanism having more degrees of freedom. Because the numbers 11-1
Equation 3 is a condition of a mechanical parameter such that each coefficient of a polynomial that gives a zero point simultaneously becomes zero.
The mechanical meaning of equations (15) and (15) is that each driving point is “center of impact”. Therefore, there is provided a feedback device that includes an actuator having at least a degree of freedom of movement for controlling a rigid object and a position sensor having at least a degree of freedom of movement, and feeds back the output of each position sensor to drive the corresponding actuator. In the assembled fine movement positioning device, the fine movement positioning device in which the driving points by the actuators are arranged at the centers of the impacts is also included in the scope of the present invention.

【0035】[0035]

【発明の効果】本発明によれば、微動位置決め機構その
ものを静的・動的干渉をすべて含めて非干渉化するよう
に構成し、その機構に対して、各センサの位置情報に基
づいて各アクチュエータを駆動する閉ループを構成する
ようにしたため、制御ループは単純な単一ループが3つ
構成されることになり極めて簡単となる効果がある。ま
た、微動位置決め機構そのものが非干渉化できているの
で、制御系のループゲインを上げて性能向上を図ること
が容易になるという効果もある。そして、完全非干渉化
制御を実現することが可能であり、パラメータ同定や調
整作業が不要となるので、生産性の向上が図れるととも
に装置のコストを低く抑えることができるという効果が
ある。
According to the present invention, the fine movement positioning mechanism itself is constructed so as to be decoupling including all static and dynamic interferences, and each mechanism is provided based on the position information of each sensor. Since the closed loop for driving the actuator is formed, the control loop has three simple single loops, which is extremely simple. Further, since the fine movement positioning mechanism itself can be made non-interfering, there is an effect that it is easy to increase the loop gain of the control system to improve the performance. Further, complete decoupling control can be realized, and parameter identification and adjustment work are not required, so that there is an effect that productivity can be improved and the cost of the device can be kept low.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る微動位置決め装置の一実施例を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a fine movement positioning device according to the present invention.

【図2】 従来の独立制御と非干渉化制御の比較を示す
ステップ応答波形図である。
FIG. 2 is a step response waveform diagram showing a comparison between conventional independent control and decoupling control.

【図3】 従来の非干渉化制御によってステップ応答が
振動的になる位置決め例を示すステップ応答波形図であ
る。
FIG. 3 is a step response waveform chart showing an example of positioning in which a step response becomes oscillating by conventional decoupling control.

【図4】 図1の装置におけるアクチュエータの配置を
示す座標系の説明図である。
4 is an explanatory diagram of a coordinate system showing an arrangement of actuators in the apparatus of FIG.

【図5】 従来の独立制御と本発明の完全非干渉化の比
較を示すステップ応答波形図である。
FIG. 5 is a step response waveform diagram showing a comparison between conventional independent control and complete decoupling of the present invention.

【符号の説明】[Explanation of symbols]

1:基板、2M,2R,2L:圧電素子などのアクチ
ュエータ、3M,3R,3L:位置センサ、4M,4
R,4L:変位増幅器、5M,5R,5L:指令電圧入
力端子、eM ,eR ,eL :偏差信号、6M,6R,6
L:前置増幅器、7M,7R,7L:補償器、8M,8
R,8L:電力増幅器。
1: substrate, 2M, 2R, 2L: actuator such as piezoelectric element, 3M, 3R, 3L: position sensor, 4M, 4
R, 4L: displacement amplifier, 5M, 5R, 5L: command voltage input terminal, e M , e R , e L : deviation signal, 6M, 6R, 6
L: preamplifier, 7M, 7R, 7L: compensator, 8M, 8
R, 8L: power amplifier.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/68 G 8418−4M 41/09 Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01L 21/68 G 8418-4M 41/09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 並進1自由度と回転2自由度を位置決め
する平板状の基板と、 前記基板を駆動するために前記基板の慣性主軸を中心と
するほぼ同一円上に配置される3個のアクチュエータ
と、 前記アクチュエータ近傍にそれぞれ配置されて前記基板
の変位を計測する3個の位置センサと、 前記位置センサの各出力を指令電圧と比較して偏差信号
を得、前置増幅器と補償器を介して電力増幅器を励磁す
ることにより前記アクチュエータを駆動するフィードバ
ック装置とを備えた位置決め装置において、 前記基板の質量をm、前記同一円の半径をld 、前記中
心を原点として前記基板の平面内に定めた(x,y)座
標のx軸およびy軸回りの前記基板の慣性モーメントを
各々Jx ,Jy とし、1個のアクチュエータを座標
(0,ld )に配置し、残る2つのアクチュエータを
(x,y)座標の3及び4象限にx軸に対して各々ほぼ
角度θd の位置に配置するとすれば、数1及び2式が同
時に成立することを特徴とする微動位置決め装置。 【数1】 【数2】
1. A flat plate-like substrate for positioning translational 1-DOF and rotation 2-DOF, and three plate-shaped substrates arranged on substantially the same circle about the principal axis of inertia of the substrate for driving the substrate. An actuator, three position sensors arranged in the vicinity of the actuator to measure the displacement of the substrate, and outputs of the position sensor and a command voltage are compared to obtain a deviation signal, and a preamplifier and a compensator are provided. the positioning device provided with a feedback device for driving the actuator by energizing the power amplifier through the mass of the substrate m, the radius l d of the same circle, the plane of the substrate the center as the origin The moments of inertia of the substrate about the x-axis and the y-axis of the (x, y) coordinates defined in paragraph 1 are defined as J x and J y , respectively, and one actuator is arranged at the coordinate (0, l d ), If the remaining two actuators are arranged in the 3rd and 4th quadrants of the (x, y) coordinates at positions at an angle θ d with respect to the x-axis, the fine movements characterized by the simultaneous establishment of the equations 1 and 2 Positioning device. [Equation 1] [Equation 2]
【請求項2】 位置決めする剛物体と、少なくともこれ
を位置決め制御する運動自由度分のアクチュエータと、
少なくともその運動自由度分の位置センサとを備え、前
記位置センサそれぞれの出力をフィードバックして前記
アクチュエータを駆動する閉ループのフィードバック装
置が組み込まれた位置決め装置において、前記アクチュ
エータによる駆動点が互いに前記剛物体の打撃の中心に
配置されることを特徴とする微動位置決め装置。
2. A rigid object to be positioned, and an actuator having a degree of freedom of movement for controlling positioning of at least the rigid object,
In a positioning device including at least a position sensor for the degree of freedom of movement, and incorporating a closed-loop feedback device that feeds back the outputs of the position sensors to drive the actuators, the driving points of the actuators are the rigid objects. The fine movement positioning device is arranged at the center of the impact of the.
JP4240088A 1992-08-18 1992-08-18 Fine positioning device Expired - Fee Related JP2821835B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4240088A JP2821835B2 (en) 1992-08-18 1992-08-18 Fine positioning device
US08/312,932 US5545962A (en) 1992-08-18 1994-09-30 Positioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240088A JP2821835B2 (en) 1992-08-18 1992-08-18 Fine positioning device

Publications (2)

Publication Number Publication Date
JPH0669096A true JPH0669096A (en) 1994-03-11
JP2821835B2 JP2821835B2 (en) 1998-11-05

Family

ID=17054312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240088A Expired - Fee Related JP2821835B2 (en) 1992-08-18 1992-08-18 Fine positioning device

Country Status (1)

Country Link
JP (1) JP2821835B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148419A (en) * 1995-11-24 1997-06-06 Nec Corp Electrostatic chuck
JP2006339263A (en) * 2005-05-31 2006-12-14 Sumitomo Heavy Ind Ltd Z-axis adjustment mechanism and micromotion stage
JP2007518089A (en) * 2004-01-08 2007-07-05 トーラブズ・インコーポレーテッド Piezoelectric positioning device
JP2008204411A (en) * 2007-02-23 2008-09-04 Tokimec Inc Angle adjustment device for surface to be adjusted
JPWO2014208634A1 (en) * 2013-06-28 2017-02-23 株式会社ニコン MOBILE DEVICE, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148419A (en) * 1995-11-24 1997-06-06 Nec Corp Electrostatic chuck
JP2007518089A (en) * 2004-01-08 2007-07-05 トーラブズ・インコーポレーテッド Piezoelectric positioning device
JP2006339263A (en) * 2005-05-31 2006-12-14 Sumitomo Heavy Ind Ltd Z-axis adjustment mechanism and micromotion stage
JP4489639B2 (en) * 2005-05-31 2010-06-23 住友重機械工業株式会社 Z-axis adjustment mechanism and fine movement stage device
JP2008204411A (en) * 2007-02-23 2008-09-04 Tokimec Inc Angle adjustment device for surface to be adjusted
JPWO2014208634A1 (en) * 2013-06-28 2017-02-23 株式会社ニコン MOBILE DEVICE, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
US10048598B2 (en) 2013-06-28 2018-08-14 Nikon Corporation Movable body apparatus, exposure apparatus, and device manufacturing method
US10353300B2 (en) 2013-06-28 2019-07-16 Nikon Corporation Movable body apparatus, exposure apparatus, and device manufacturing method
US10788760B2 (en) 2013-06-28 2020-09-29 Nikon Corporation Movable body apparatus, exposure apparatus, and device manufacturing method
US11181832B2 (en) 2013-06-28 2021-11-23 Nikon Corporation Movable body apparatus, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP2821835B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
JP3184044B2 (en) Fine movement positioning control device
US5504407A (en) Stage driving system
US7898204B2 (en) High-speed substrate manipulator
US6881963B2 (en) Vibration control of an object
JPH07139582A (en) Control device for vertical vibration isolating stand
JPH10259851A (en) Active vibration isolation device
EP0748951A1 (en) Active anti-vibration apparatus and method of manufacturing the same
JP2003256050A (en) Vibration controller, vibration controlling method, exposure system and manufacturing method of device
US5545962A (en) Positioning system
JP2002242983A (en) Active vibration resistant system
JPH0669096A (en) Micromotion positioning device
JP4165844B2 (en) Vibration isolator
JP2007184621A (en) Device for controlling vibration and method of controlling vibration, exposure device and method of fabricating device
JPH0783276A (en) Control device of vertical air spring type vibration eliminating board
Yuan et al. Two-axis Lorentz actuator for active vibration isolation system in optical payloads
JP2002073111A (en) Stage device, designing method for stage controller, and exposure device
JP2004164029A (en) Elastic vibration control device
US20030117099A1 (en) System and method for reducing oscillating tool-induced reaction forces
JPH05250041A (en) Positioning device provided with multiple acceleration feedback
JPH10256144A (en) Apparatus for eliminating vibration
JPH10116120A (en) Fine movement positioning controller
JP2886053B2 (en) Active anti-vibration apparatus and control method thereof
JP2000120766A (en) Hybrid active vibration isolation device
JP2860623B2 (en) Control device for anti-vibration table
JPH075925A (en) Fine positioning controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110904

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees