WO2023276911A1 - Curable resin composition, cured film obtained therefrom, and layered product - Google Patents

Curable resin composition, cured film obtained therefrom, and layered product Download PDF

Info

Publication number
WO2023276911A1
WO2023276911A1 PCT/JP2022/025437 JP2022025437W WO2023276911A1 WO 2023276911 A1 WO2023276911 A1 WO 2023276911A1 JP 2022025437 W JP2022025437 W JP 2022025437W WO 2023276911 A1 WO2023276911 A1 WO 2023276911A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
monomer
resin composition
acrylic
cured film
Prior art date
Application number
PCT/JP2022/025437
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 阿波
Original Assignee
大阪有機化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪有機化学工業株式会社 filed Critical 大阪有機化学工業株式会社
Priority to CN202280042876.5A priority Critical patent/CN117500855A/en
Priority to KR1020247000767A priority patent/KR20240018633A/en
Priority to JP2023531912A priority patent/JPWO2023276911A1/ja
Publication of WO2023276911A1 publication Critical patent/WO2023276911A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups

Definitions

  • the present invention relates to a curable resin composition, and a cured film and laminate using the same, and specifically, photospacers, members of optical sensors (collimator portions, etc.), overcoat layers of displays and touch sensors, and the like. It relates to a curable resin composition suitable for the production of, and a cured film and laminate using the same.
  • curable resin compositions using (meth)acrylates
  • cured products using these compositions are used in various devices.
  • a cured film (organic film) using a curable resin composition can be applied to a wide variety of applications, including photo spacers, optical sensor members (collimator parts, etc.), and overcoat layers for displays and touch sensors.
  • the demand for the performance of curable resin compositions is increasing more and more. For example, when forming a layered cured film, it is important to precisely control the shape of the cured film. It has become to.
  • Such examples include, for example, a negative photosensitive composition that can be developed even with a low-concentration alkaline developer, has excellent environmental resistance, and can be formed into a thick film (see the following patents: Reference 1).
  • the present invention aims to provide a curable resin composition capable of suppressing shrinkage stress during the formation of a cured film, a cured film using the same, and a laminate. .
  • ⁇ 1> a monomer having 1 to 6 (meth)acrylic groups in one molecule;
  • ⁇ 3> The curable resin composition according to ⁇ 1> or ⁇ 2>, wherein the monomer has only one of an acrylic group and a methacrylic group as the (meth)acrylic group.
  • ⁇ 6> The curable resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the (meth)acrylic equivalent of the monomer is 220 or more.
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, wherein the mass ratio (x:y) between the monomer (x) and the polymer (y) is 30:100 to 160:100.
  • ⁇ 8> A cured film formed using the curable resin composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> The cured film according to ⁇ 8>, having a thickness of 10 ⁇ m or more.
  • ⁇ 10> The cured film according to ⁇ 8> or ⁇ 9> above, wherein the curl generated by heating at 230° C. for 30 minutes has a curl diameter of 9.0 mm or more.
  • a laminate comprising a substrate and the cured film according to any one of ⁇ 8> to ⁇ 10> formed on the substrate.
  • a curable resin composition capable of suppressing shrinkage stress during the formation of a cured film, a cured film using the same, and a laminate.
  • this embodiment the form for carrying out the present invention (hereinafter referred to as “this embodiment") will be described in detail.
  • the present invention is not limited to this, and various modifications are possible without departing from the scope of the invention.
  • the terms "(meth)acrylic group”, “(meth)acrylate”, “(meth)acrylic acid”, etc. include both an acrylic group (acryloyl group) and a methacrylic group (methacryloyl group). used with meaning.
  • the curable resin composition of the present embodiment includes a monomer having 1 to 6 (meth)acrylic groups in one molecule, and A curable resin composition comprising a polymer having a (meth)acrylic group, wherein the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer is 2 or less. be.
  • a monomer having 1 to 6 (meth)acrylic groups in one molecule hereinafter sometimes referred to as "monomer component” and a (meth) ) a polymer having an acrylic group (hereinafter sometimes referred to as “polymer component”). Furthermore, in the resin composition of the present embodiment, the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer is 2 or less in one molecule of the monomer.
  • the resin composition of the present embodiment can suppress shrinkage stress during the formation of a cured film. As a result, it is possible to suppress the occurrence of warpage of the cured film that occurs when forming a cured film on a glass substrate or when forming a thick cured film.
  • the cured film obtained from the curable composition of the present embodiment has excellent resistance to solvents such as N-methylpyrrolidone (NMP) (hereinafter sometimes referred to as "solvent resistance").
  • NMP N-methylpyrrolidone
  • the reason why the shrinkage stress is suppressed in the cured film using the resin composition of the present embodiment is unknown, but while the monomer component has a (meth) acrylic group like the polymer component, and the (meth) Since the total number of (meth)acrylic groups of the same type as acrylic groups is 2 or less, the degree of reaction between the monomer component and the polymer component by the (meth)acrylic groups is controlled, and the occurrence of shrinkage stress during curing is suppressed. It is assumed that there are On the other hand, since the curable composition of the present embodiment is also excellent in solvent resistance as described above, it is presumed that the curing reaction proceeds sufficiently while the generation of shrinkage stress is suppressed.
  • the resin composition of this embodiment contains a monomer having 1 to 6 (meth)acrylic groups in one molecule.
  • the total number of (meth)acrylic groups of the same kind as the (meth)acrylic groups of the polymer in one molecule of the monomer is 2 or less.
  • a monomer having 1 to 6 (meth)acrylic groups in one molecule means that the total number of (meth)acrylic groups contained in one molecule of the monomer component is 1 to 6. means.
  • the monomer component only a single monomer may be used, or a plurality of monomers may be used in combination.
  • the total number of (meth)acrylic groups in one molecule of the monomer component is the (meth)acrylic group in one molecule of the monomer. ), and corresponds to the total number of “acryl groups” and “methacryl groups” contained in one molecule of the monomer.
  • the number of (meth)acrylic groups of the monomer components is the number of (meth)acrylic groups possessed by each monomer in the total monomer components of each monomer. It is the value calculated by multiplying the mass ratio, and it is the total number of this value for each monomer component.
  • the "number of (meth)acrylic groups" of the monomer component can be calculated, for example, as follows.
  • the monomer component contains a monomer containing an acrylic group and a monomer containing a methacrylic group, or a monomer containing both an acrylic group and a methacrylic group
  • the total number of acrylic groups and the total number of methacrylic groups for each monomer component are Each value calculated by multiplying the mass ratio of each monomer in the total monomer component is calculated separately, and the total value is the total number.
  • Number of acrylic groups (or methacrylic groups) of monomer components containing multiple monomers [(total number of acrylic groups (or methacrylic groups) of component 1) ⁇ (ratio of component 1 to the total monomer components)) + [(total number of acrylic groups (or methacrylic groups) of component 2) ⁇ (monomer component of component 2 Ratio to the whole)) + ... + [(Total number of acrylic groups (or methacrylic groups) of component n) ⁇ (Ratio of component n to the total monomer components))
  • the monomer component contains a monomer component 1 having one acrylic group and a monomer component 2 having two acrylic groups at a mass ratio of 20/80
  • the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer is the acrylic group contained in one molecule of the monomer component when the polymer has an acrylic group.
  • the number of (meth)acrylic groups in one molecule of the monomer component is 1-6.
  • the number of (meth)acrylic groups in one molecule of the monomer component is 0, the reactivity with polymers having (meth)acrylic groups may decrease. Further, when the number of (meth)acrylic groups in one molecule of the monomer component exceeds 6, the effect of suppressing shrinkage stress during curing is reduced.
  • the number of (meth)acrylic groups in one molecule of the monomer component is not particularly limited, but is preferably 1 to 4, more preferably 1 to 3.5, from the viewpoint of the effect of suppressing shrinkage stress during curing. 1 to 2 are more preferred.
  • the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one monomer molecule of the monomer component is 2 or less. If the total number of (meth)acrylic groups exceeds 2, the effect of suppressing shrinkage stress during curing is reduced.
  • the total number is preferably 1 or less, more preferably 0, from the viewpoint of the effect of suppressing shrinkage stress during curing.
  • the monomer component of the present embodiment preferably has only one of an acrylic group and a methacrylic group as the (meth)acrylic group from the viewpoint of the effect of suppressing shrinkage stress during curing.
  • the polymer component when the monomer component has only one of an acrylic group and a methacrylic group, and the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer is 0 , the polymer component will have only methacrylic groups or acrylic groups, whichever group the monomer component does not have.
  • the (meth)acrylic equivalent of the monomer component is preferably 220 or more, more preferably 300 or more, and particularly preferably 350 or more, from the viewpoint of the effect of suppressing shrinkage stress during curing.
  • the (meth)acrylic equivalent of the monomer component in the composition can be calculated by (formula weight of monomer)/(number of (meth)acrylic groups).
  • the (meth)acrylic equivalent is a value calculated by multiplying the (meth)acrylic equivalent of each monomer by the mass ratio of each monomer in the total monomer components, and summing this value for each monomer component value.
  • Monomers having one acrylic group include ⁇ -(1-oxo-2-propen-1-yl)- ⁇ -[4-(1-methyl-1-phenylethyl)phenoxy]poly(oxyethylene), hydroxy ethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, n-octyl acrylate, isononyl acrylate, lauryl acrylate, isodecyl acrylate, stearyl acrylate, isobornyl acrylate, tetrahydrofurfuryl acrylate, Tetrahydrofurfuryl acrylate, cyclohexyl acrylate, benzyl acrylate, phenoxyethyl acrylate, ethyl carbitol acrylate, methoxyethyl acrylate, methoxytriethylene glycol
  • Monomers having one methacrylic group include hydroxyethyl methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, isononyl methacrylate, lauryl methacrylate, isodecyl methacrylate, and stearyl methacrylate.
  • Examples of monomers having two acrylic groups include the following bisphenol AEO 3.8 mol adduct diacrylate, the following ethoxylated bisphenol A diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9 -Nonanediol diacrylate, tripropylene glycol diacrylate, bisphenol A diglycidyl ether acrylic acid adduct, diethylene glycol diacrylate, polyethylene glycol #400 diacrylate, polypropylene glycol #400 diacrylate, polypropylene glycol #700 diacrylate, polytetramethylene Glycol diacrylate, 1,6-hexanediol acrylic acid polymer ester, dioxane glycol diacrylate, and the like can be mentioned.
  • Monomers having two methacrylic groups include the following ethoxylated bisphenol A dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, and tripropylene glycol dimethacrylate. , bisphenol A diglycidyl ether acrylic acid adduct, diethylene glycol dimethacrylate, polyethylene glycol #400 dimethacrylate, polypropylene glycol #400 dimethacrylate, polypropylene glycol #700 dimethacrylate, polytetramethylene glycol dimethacrylate, and the like.
  • Monomers having 3 or more acrylic groups include tris-(2-acryloyloxyethyl) isocyanurate (number of acrylic groups: 3), dipentaerythritol hexaacrylate (number of acrylic groups: 6), dipentaerythritol pentaacrylate (number of acrylic groups: 5 ), trimethylolpropane triacrylate (acrylic group number: 3), pentaerythritol tri- and tetraacrylate (acrylic group number: 3-4), ethoxylated pentaerythritol tri- and tetraacrylate (acrylic group number: 3-4), ethoxylated glycerin triacrylate Acrylate (number of acrylic groups: 3), propoxylated pentaerythritol tetraacrylate (number of acrylic groups: 4), ditrimethylolpropane tetraacrylate (number of acrylic groups: 4), and the like.
  • Monomers having 3 or more methacrylic groups include tris-(2-methacryloyloxyethyl) isocyanurate (number of methacrylic groups: 3), dipentaerythritol hexamethacrylate (number of methacrylic groups: 5), trimethylolpropane trimethacrylate (number of methacrylic groups: 3 ), pentaerythritol tri- and tetramethacrylate (number of methacrylic groups: 3-4), ethoxylated pentaerythritol tri- and tetramethacrylate (number of methacrylic groups: 3-4), ethoxylated glycerin trimethacrylate (number of methacrylic groups: 3), propoxylated pentaerythritol Examples include tetramethacrylate (number of methacrylic groups: 4), ditrimethylolpropane tetramethacrylate (number
  • ⁇ -(1-oxo-2-propen-1-yl)- ⁇ -[4-(1-methyl-1-phenylethyl)phenoxy]poly(oxyethylene) bisphenol AEO 3.8 molar adduct diacrylate, ethoxylated bisphenol A dimethacrylate, tris-(2-acryloxyethyl)isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate are preferred, bisphenol AEO 3.8 molar adduct diacrylate, ⁇ -(1-oxo-2-propen-1-yl)- ⁇ -[4-(1-methyl-1-phenylethyl)phenoxy]poly(oxyethylene) is more preferred.
  • the content of the monomer component in the present embodiment in the resin composition is not particularly limited, but for example, from the viewpoint of suppressing shrinkage stress during curing, the total solid content in the composition is 5 to 60. % by mass is preferable, 10 to 50% by mass is more preferable, and 20 to 40% by mass is particularly preferable.
  • total solids used throughout this specification means all components other than the solvent in the resin composition.
  • the resin composition of the present embodiment may contain other monomers within a range that does not affect the effects of the present invention.
  • the other monomer a photopolymerizable monomer used in a general photosensitive resin composition can be used.
  • the content of the monomer component in the present embodiment is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more, in all monomers.
  • 30: 100 to 160: 100 is preferable, 40: 100 to 100: 100 is more preferable, and 50: 100 to 80: 100 is preferable.
  • 30: 100 to 160: 100 is preferable, 40: 100 to 100: 100 is more preferable, and 50: 100 to 80: 100 is preferable.
  • 50: 100 to 80: 100 is preferable.
  • the mass ratio between the polymer component [x] and the monomer component [y] can be adjusted by appropriately changing the charged amount of the monomer component and the polymer component.
  • the method for measuring the mass ratio is not particularly limited, the polymer component and the monomer component contained in the resin composition are separated by a known means, and the polymer component and the monomer component of the present embodiment are specified respectively.
  • the polymer component is precipitated with a solvent having a low polarity (for example, normal hexane), separated from the monomer (including the photopolymerization initiator) component, then the mass excluding the solvent in each component is determined, and each The mass ratio of the polymer component [x] to the monomer component [y] can be obtained by analyzing the contents of the polymer component and the monomer component in this embodiment.
  • a solvent having a low polarity for example, normal hexane
  • LCMS liquid chromatography mass spectrometry
  • GC gas chromatography
  • a highly accurate mass ratio can be obtained by quantitative analysis such as (LC).
  • the resin composition of this embodiment contains a polymer having a (meth)acrylic group in one molecule.
  • the polymer component in this embodiment it is preferable to use an alkali-soluble resin.
  • the polymer component in the present embodiment preferably has only one of an acrylic group and a methacrylic group as the (meth)acrylic group.
  • the (meth)acrylic equivalent of the polymer component is preferably 520 or more, more preferably 600 or more, and particularly preferably 700 or more, from the viewpoint of the effect of suppressing shrinkage stress during curing.
  • the polymer component may have reactive groups other than (meth)acrylic groups.
  • Other reactive groups include, for example, a thermally crosslinkable group and a photocrosslinkable group, and among these, it is preferable to have a thermally crosslinkable group as the other reactive group.
  • the thermally crosslinkable group equivalent of the polymer component is also From the viewpoint of suppressing shrinkage stress during curing, it is preferably more than 520, more preferably 600 or more, and particularly preferably 700 or more.
  • the weight average molecular weight of the polymer component is preferably 3,000 to 50,000, preferably 4,000 to 30, from the viewpoint of suppressing stickiness (tack) of the cured film and from the viewpoint of manufacturability when forming the cured film. ,000 is more preferred, and 5,000 to 20,000 is particularly preferred.
  • Molecular weight measurement of the polymer component is performed by gel permeation chromatography (manufactured by Tosoh Corporation, product number: HLC-8120, column: two connections of G-5000HXL and G-3000HXL, detector: RI, mobile phase: tetrahydrofuran). be able to.
  • the polymer component in this embodiment may be used alone or in combination.
  • the content of the alkali-soluble resin in the resin composition of the present embodiment is not particularly limited. Although it can be determined, for example, from the viewpoint of solubility in a developer when used as a photoresist material, the total solid content in the composition is preferably 5 to 80% by mass, and 10 to 60 % by mass is more preferred, and 20 to 40% by mass is particularly preferred.
  • any polymer containing a unit structure having a (meth)acrylic group in one molecule can be used without any particular limitation.
  • the unit structure in the present embodiment is not particularly limited, but examples include (meth)acrylic acid; alkyl (meth)acrylates such as methyl (meth)acrylate and butyl acrylate; 2-hydroxyethyl methacrylate; dicyclopentanyl methacrylate ; unit structures derived from benzyl methacrylate and the like.
  • the unit structure having a (meth)acrylic group includes, for example, glycidyl methacrylate, 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, 4-hydroxybutyl acrylate glycidyl ether, 3,4-epoxy
  • a unit structure having a (meth)acrylic group can be obtained by reacting with cyclohexylmethyl methacrylate or the like.
  • Examples of the polymer component in this embodiment include those having the following structures.
  • the resin composition of the present embodiment may contain, for example, a photopolymerization initiation aid, fine particles of 100 nm or less, and the like, as long as the effects of the resin composition of the present embodiment are not impaired.
  • the photopolymerization initiation aid is a compound that does not function as a photopolymerization initiator by itself, but increases the ability of the photopolymerization initiator when used in combination with the photopolymerization initiator.
  • photopolymerization initiation aids include tertiary amines such as triethanolamine, which are effective when used in combination with benzophenone.
  • Fine particles of 100 nm or less can improve the elastic recovery rate of the cured film of the resin composition of the present embodiment.
  • Fine particles of 100 nm or less are not particularly limited, but examples thereof include Al 2 O 3 , TiO 2 , Fe 2 O 3 , ZnO, CeO 2 , Y 2 O 3 , Mn 3 O 4 and SiO 2 .
  • the shape of the fine particles is not particularly limited, but examples include spherical, spherical, and polyhedral shapes.
  • the resin composition of the present embodiment may optionally contain a photopolymerization initiator, a solvent, a surfactant, a leveling agent, a chain transfer agent, a polymerization inhibitor, and a viscosity modifier. , etc., and mixed.
  • the resin composition of the present embodiment can be a negative photocurable resin.
  • the resin composition in this embodiment can contain a photopolymerization initiator.
  • a photopolymerization initiator one having an absorption wavelength in the i-line (365 nm) can be preferably used.
  • photopolymerization initiators include, but are not limited to, acetophenone, 2,2′-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone, trichloroacetophenone, p- Acetophenones such as tert-butylacetophenone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-( ⁇ -aminoketone-based photopolymerization initiators such as 4-morpholin-4-yl-phenyl)-butan-1-one, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one , 1,2-octanedione 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone-1-[
  • -Carbazol-3-yl]-1-(O-acetyloxime) and other oxime ester photopolymerization initiators benzophenone, 2-chlorobenzophenone, p,p'-bisdimethylaminobenzophenone and other benzophenones; benzyl, Benzoin ethers such as benzoin, benzoin methyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzyl dimethyl ketal, thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2-methylthioxanthone, 2-isopropyl sulfur compounds such as thioxanthone; anthraquinones such as 2-ethylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone and 2,3-diphenylanthraquinone; 2,4
  • the content of the photopolymerization initiator in the resin composition of the present embodiment is not particularly limited. 0% by mass is preferred, 0.5 to 7.5% by mass is more preferred, and 1.0 to 5.0% by mass is particularly preferred.
  • solvent a known solvent used in photosensitive resin compositions can be appropriately selected and used.
  • solvents include, but are not limited to, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate (PGMAc ), esters such as propylene glycol monoethyl ether acetate and methyl-3-methoxypropionate, and ethers such as polyoxyethylene lauryl ether, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether and diethylene glycol methyl ethyl ether.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • amides such as dimethylformamide, dimethyl
  • surfactant a known surfactant used in photosensitive resin compositions can be appropriately selected and used.
  • the surfactant include silicone-based surfactants, acrylic surfactants, fluorine-based surfactants, and the like.
  • a cured film using the resin composition of the present embodiment has reduced shrinkage stress during curing and is less warped. Further, by providing the cured film of the present embodiment on a substrate, it is possible to obtain a laminate including the substrate and the cured film formed on the substrate. Since the cured film formed using the resin composition of the present embodiment is also excellent in solvent resistance, for example, when forming another organic film on the cured film of the present embodiment, when forming the organic layer It has strong resistance to the solvent used, and can suppress the decrease in film thickness due to the influence of the solvent and the generation of defects due to penetration of the solvent at the film interface.
  • the cured film and laminate of this embodiment can be formed by forming a coating film containing a resin composition on a substrate, and exposing and developing the coating film.
  • the exposure method is not particularly limited, but the resin composition of the present embodiment can also be employed, for example, in a projection exposure (lens scan) method using a multi-lens system.
  • the substrate can be appropriately selected according to the use of the cured film, and for example, known substrates such as glass plates and polyimide films can be appropriately used.
  • an alkaline aqueous solution for the development, water, an organic solvent, an alkaline aqueous solution, or the like can be used as appropriate. Considering the load on the environment, etc., it is preferable to use an alkaline aqueous solution.
  • the alkaline aqueous solution include aqueous solutions of inorganic salts such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, and aqueous solutions of organic salts such as hydroxytetramethylammonium and hydroxytetraethylammonium.
  • the polymer and the monomer tend to react during curing.
  • the monomer component in this embodiment and the polymer component in this embodiment have different (meth)acrylic groups, the polymers tend to react with each other and the monomers tend to react with each other during curing.
  • the resin composition of the present embodiment Since the resin composition of the present embodiment has suppressed shrinkage stress during the formation of a cured film, it can be used particularly useful for forming a thick organic film.
  • the lower limit of the thickness of the cured film using the resin composition of the present embodiment is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more, depending on the application.
  • the upper limit of the thickness of the cured film can be 100 ⁇ m or less, preferably 90 ⁇ m or less, more preferably 80 ⁇ m or less, depending on the application.
  • the cured film in the present embodiment has a suppressed shrinkage stress during film curing. It can be 0 mm or more, preferably 15.0 mm or more, more preferably 20.0 mm or more.
  • the curl diameter measured under the same conditions is 9.0 mm or more.
  • the curl diameter measured under the same conditions is 9.0 mm or more.
  • the curl diameter the more suppressed the warpage of the cured film.
  • the curl is 9 mm or more, for example, even when a cured film is provided on a large substrate of 600 mm ⁇ 720 mm or more (for example, a glass plate, a polyimide film, etc.), the substrate may warp or the cured film may be damaged. It is possible to effectively suppress the occurrence of cracks, chipping, and the like.
  • the thickness of the cured film is approximately 1 mm or less, the curl tends to decrease as the thickness of the cured film increases. For the curl, a numerical value measured by the method described in Examples below can be used.
  • “Use applications” Cured products and laminates formed from the resin composition of the present embodiment can be suitably used in various applications, particularly optical members and display applications in which an organic film of 10 ⁇ m or more is used. Specific uses include, for example, photospacers, members of optical sensors (collimators, etc.), overcoat layers of displays and touch sensors, and color filters.
  • the type of (meth)acrylate that the polymer had was only acrylate.
  • the weight average molecular weight (Mw) of Polymer B was 12,300, and the acrylic equivalent calculated from the charge molar ratio was 728.
  • the structure of the obtained compound is shown below.
  • the type of (meth)acrylate contained in the polymer was only methacrylate. Further, as a result of measuring the molecular weight by GPC, the weight average molecular weight (Mw) of polymer B-2 was 7,400, and the methacrylic equivalent calculated from the charging molar ratio was 735. The structure of the obtained compound is shown below.
  • the type of (meth)acrylate possessed by the polymer was only methacrylate.
  • the weight average molecular weight (Mw) of Polymer B-3 was 10,000, and the methacrylic equivalent calculated from the charging molar ratio was 705.
  • the type of (meth)acrylate possessed by the polymer was only methacrylate.
  • the weight average molecular weight (Mw) of the polymer B-4 was 8,000, and the methacrylic equivalent calculated from the charging molar ratio was 523.
  • curable resin composition PR-1 (Preparation of curable resin composition PR-1) Polymer B-1 (100 parts by mass (solid content)), monomer A-1 ((meth) acrylic equivalent 354.45 (60 parts by mass (solid content)), photopolymerization initiator (product name: IRGACURE OXE01, BASF Japan Co., Ltd.) (0.8 parts by mass (solid content)) and a surfactant (product name: DOWSIL Fz2122, manufactured by Dow Chemical Co.) (0.2 parts by mass) are mixed, and the solid content concentration is 40 mass. %, an organic solvent, propylene glycol monomethyl ether acetate, was added. After stirring these mixtures, they were filtered through a membrane filter with a pore size of 5.0 ⁇ m to prepare a curable resin composition PR-1.
  • curable resin compositions PR-2 to PR-18 and curable resin compositions CE-1 to CE-2) In the same manner as in Example 1 except that the types and amounts of polymer components, monomer components, photopolymerization initiators, surfactants, organic solvents and optional components shown in Table 1 below were used, a curable resin composition PR- 2 to PR-18, and CE-1 to CE-4 were prepared.
  • A-2) Bisphenol A EO 3.8 mol adduct diacrylate (product name: Viscoat #700HV, manufactured by Osaka Organic Chemical Industry Co., Ltd., acrylic equivalent (average value) 338.4, number of acrylic groups: 2, number of methacrylic groups: 0 )
  • A-3 A mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate (product name: Aronix M-402, manufactured by Toagosei Co., Ltd., acrylic equivalent (average value) 99.8, number of acrylic groups (average value): 5. 6, number of methacrylic groups: 0)
  • A-4) Tris-(2-acryloxyethyl) isocyanurate (product name: NK Ester A-9300, Shin-Nakamura Chemical Co., Ltd., acrylic equivalent 141.1, number of acrylic groups: 3, number of methacrylic groups: 0)
  • A- Monomer (A-6) A mixture of tripentaerythritol acrylate, mono- and dipentaerythritol acrylate, and polypentaerythritol acrylate (product name: Viscoat #802, manufactured by Osaka Organic Chemical Industry Co., Ltd., average acrylic equivalent 101.4, number of acrylic groups (average value) : 6.8, number of methacrylic groups: 0)
  • the obtained cured film-coated polyimide film was separated from the glass substrate with a cutter knife, the polyimide film was wound up due to the stress of the cured film itself. At this time, the curled polyimide film was observed from the side in the winding direction, and the curl diameter was measured with a vernier caliper. Specifically, the average value of the length of the longest side and the length of the shortest side was taken as the curl diameter, and the average value of the values obtained by doing this twice was taken as the curl diameter in the present invention.
  • the length of the longest side and the length of the shortest side are lengths that do not include the cured product and the polyimide film, and are, so to speak, the inner diameter of the curled cured film-coated polyimide film.
  • the curable resin composition of each example was applied onto a soda glass having a size of 10 cm ⁇ 10 cm and a thickness of 0.7 mm to prepare a cured film-coated glass.
  • the coating amount of the curable resin composition was the same as in the preparation of the cured film-coated polyimide film for the curl test.
  • the cured film was prepared under the same conditions as those for coating the curable resin composition on the polyimide film in the preparation of the cured film-coated polyimide film for the curl test.
  • part of the cured film on the cured film-coated glass substrate for film thickness measurement was peeled off with a razor and measured with a stylus surface profiler (product name: P-10, manufactured by KLA-Tencor). , the film thickness of the cured film was measured.
  • NMP N-methylpyrrolidone
  • Remaining film rate (%) after solvent resistance test [(Film thickness of cured film after solvent resistance test) ⁇ (Film thickness of cured film before solvent resistance test)] ⁇ 100
  • the curable resin compositions of Examples can form thick films, and all of them have a curl diameter of 9.0 mm or more, and contraction stress during the formation of a cured film is suppressed. rice field. Moreover, the solvent resistance of the resulting cured film was also excellent.
  • the number of (meth)acrylic groups in one molecule of the monomer is 6 or less, but the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer exceeds 2.
  • Curing of Comparative Example 1 The curable resin composition and the curable resin composition of Comparative Example 2 using a monomer having more than 6 (meth)acrylic groups in one molecule both have a curl diameter of 9 mm or less, and the cured film It can be seen that the shrinkage stress during formation is not sufficiently suppressed.

Abstract

A curable resin composition comprising a monomer having one to six (meth)acryl groups in the molecule and a polymer having a (meth)acryl group in the molecule, wherein the total number of (meth)acryl groups in the monomer molecule which are the same as the (meth)acryl group of the polymer is 2 or less.

Description

硬化性樹脂組成物、並びに、これを用いた硬化膜、及び、積層体Curable resin composition, cured film using the same, and laminate
 本発明は、硬化性樹脂組成物、並びに、これを用いた硬化膜及び積層体に関し、具体的には、フォトスペーサ、光学センサの部材(コリメータ部等)、ディスプレイ及びタッチセンサのオーバーコート層等の製造に適した硬化性樹脂組成物、並びに、これを用いた硬化膜及び積層体に関する。 TECHNICAL FIELD The present invention relates to a curable resin composition, and a cured film and laminate using the same, and specifically, photospacers, members of optical sensors (collimator portions, etc.), overcoat layers of displays and touch sensors, and the like. It relates to a curable resin composition suitable for the production of, and a cured film and laminate using the same.
 近年、(メタ)アクリレートを用いた硬化性樹脂組成物の用途が拡大しており、当該組成物を用いた硬化物が種々の装置に用いられている。例えば、硬化性樹脂組成物を用いた硬化膜(有機膜)は、フォトスペーサや光学センサの部材(コリメータ部等)を始め、ディスプレイやタッチセンサのオーバーコート層など多岐の用途に適用可能である。また、近年の技術の発展に伴い硬化性樹脂組成物の性能に対する要求はますます高まっており、例えば、層状の硬化膜を形成した場合、硬化膜の形状などを精密に制御することが重要になってきている。 In recent years, the use of curable resin compositions using (meth)acrylates has expanded, and cured products using these compositions are used in various devices. For example, a cured film (organic film) using a curable resin composition can be applied to a wide variety of applications, including photo spacers, optical sensor members (collimator parts, etc.), and overcoat layers for displays and touch sensors. . In addition, with the development of technology in recent years, the demand for the performance of curable resin compositions is increasing more and more. For example, when forming a layered cured film, it is important to precisely control the shape of the cured film. It has become to.
 特に近年では厚さ10μmを超えるような所謂厚膜の有機膜に対する要求が高まってきている。このような例としては、例えば、低濃度アルカリ現像液を用いても現像可能であり、耐環境性にも優れ、且つ、厚膜化が可能なネガ型感光性組成物が挙げられる(下記特許文献1参照)。 Especially in recent years, there has been an increasing demand for so-called thick organic films exceeding 10 μm in thickness. Such examples include, for example, a negative photosensitive composition that can be developed even with a low-concentration alkaline developer, has excellent environmental resistance, and can be formed into a thick film (see the following patents: Reference 1).
特開2021-26029号公報Japanese Patent Application Laid-Open No. 2021-26029
 一方、厚膜形成用途においては独自の特性が求められる場合も多い。例えば、樹脂組成物の硬化時に収縮応力が生じるが、当該収縮応力が強すぎると基板が大きく反る現象や膜のひび割れや亀裂などが発生することがある。これら収縮応力による弊害は特に大型のガラス基板上に硬化膜を形成したり、厚膜の硬化膜を形成する際に特に顕著となる。このため、硬化膜形成時の収縮応力を抑制可能な硬化性樹脂組成物の開発が切に望まれている。 On the other hand, unique characteristics are often required for thick film formation applications. For example, shrinkage stress is generated when the resin composition is cured, and if the shrinkage stress is too strong, a phenomenon such as a large warpage of the substrate or cracks or fissures in the film may occur. The adverse effects of these shrinkage stresses are particularly noticeable when a cured film is formed on a large glass substrate or when a thick cured film is formed. Therefore, development of a curable resin composition capable of suppressing shrinkage stress during the formation of a cured film is earnestly desired.
 本発明は、上述の課題を解決すべく、硬化膜形成時の収縮応力を抑制可能な硬化性樹脂組成物、並びに、これを用いた硬化膜、及び、積層体を提供することを目的とする。 In order to solve the above-mentioned problems, the present invention aims to provide a curable resin composition capable of suppressing shrinkage stress during the formation of a cured film, a cured film using the same, and a laminate. .
 本発明者らは、前記課題を解決するために鋭意検討した。その結果、特定のモノマーとアルカリ可溶性ポリマーとを組み合わせることで、上述の課題が達成できることを見出し、本発明を完成するに至った。 The inventors diligently studied to solve the above problems. As a result, the inventors have found that the above-described problems can be achieved by combining a specific monomer and an alkali-soluble polymer, and have completed the present invention.
 <1> 1分子中に1~6個の(メタ)アクリル基を有するモノマーと、
 1分子中に(メタ)アクリル基を有するポリマーと、を含む硬化性樹脂組成物であって、
 前記モノマー1分子中の、前記ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が2以下である、硬化性樹脂組成物。
 <2> 1分子中の(メタ)アクリル基の総数が1~2である前記モノマーを含む、前記<1>に記載の硬化性樹脂組成物。
 <3> 前記モノマーが、前記(メタ)アクリル基として、アクリル基及びメタクリル基のいずれか一方のみを有する、前記<1>又は前記<2>に記載の硬化性樹脂組成物。
 <4> 前記モノマー1分子中における、前記ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が0である、前記<1>~前記<3>のいずれかに記載の硬化性樹脂組成物。
 <5> 前記ポリマーにおける、(メタ)アクリル当量が520以上である、前記<1>~前記<4>のいずれかに記載の硬化性樹脂組成物。
 <6> 前記モノマーにおける(メタ)アクリル当量が220以上である、前記<1>~前記<5>のいずれかに記載の硬化性樹脂組成物。
 <7> 前記モノマー(x)と、前記ポリマー(y)との質量比(x:y)が、30:100~160:100である前記<1>~前記<6>のいずれかに記載の硬化性樹脂組成物。
 <8> 前記<1>~前記<7>のいずれかに記載の硬化性樹脂組成物を用いて形成された硬化膜。
 <9> 膜厚が10μm以上である前記<8>に記載の硬化膜。
 <10> 230℃で30分間加熱して生じるカールの直径が9.0mm以上である前記<8>又は前記<9>に記載の硬化膜。
 <11> 基板と、前記基板上に形成された前記<8>~前記<10>のいずれかに記載の硬化膜と、を備えた積層体。
<1> a monomer having 1 to 6 (meth)acrylic groups in one molecule;
A curable resin composition containing a polymer having a (meth) acrylic group in one molecule,
The curable resin composition, wherein the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer is 2 or less in one molecule of the monomer.
<2> The curable resin composition according to <1>, comprising the monomer having 1 to 2 (meth)acrylic groups in total per molecule.
<3> The curable resin composition according to <1> or <2>, wherein the monomer has only one of an acrylic group and a methacrylic group as the (meth)acrylic group.
<4> The curability according to any one of <1> to <3>, wherein the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer is 0. Resin composition.
<5> The curable resin composition according to any one of <1> to <4>, wherein the polymer has a (meth)acrylic equivalent of 520 or more.
<6> The curable resin composition according to any one of <1> to <5>, wherein the (meth)acrylic equivalent of the monomer is 220 or more.
<7> Any one of <1> to <6>, wherein the mass ratio (x:y) between the monomer (x) and the polymer (y) is 30:100 to 160:100. A curable resin composition.
<8> A cured film formed using the curable resin composition according to any one of <1> to <7>.
<9> The cured film according to <8>, having a thickness of 10 μm or more.
<10> The cured film according to <8> or <9> above, wherein the curl generated by heating at 230° C. for 30 minutes has a curl diameter of 9.0 mm or more.
<11> A laminate comprising a substrate and the cured film according to any one of <8> to <10> formed on the substrate.
 本発明によれば、硬化膜形成時の収縮応力を抑制可能な硬化性樹脂組成物、並びに、これを用いた硬化膜、及び、積層体を提供することができる。 According to the present invention, it is possible to provide a curable resin composition capable of suppressing shrinkage stress during the formation of a cured film, a cured film using the same, and a laminate.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。しかし、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、本明細書において「(メタ)アクリル基」「(メタ)アクリレート」「(メタ)アクリル酸」などと称した場合、アクリル基(アクリロイル基)及びメタクリル基(メタクリロイル基)等の双方を含む意味で使用される。 Hereinafter, the form for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. However, the present invention is not limited to this, and various modifications are possible without departing from the scope of the invention. In the present specification, the terms "(meth)acrylic group", "(meth)acrylate", "(meth)acrylic acid", etc. include both an acrylic group (acryloyl group) and a methacrylic group (methacryloyl group). used with meaning.
《硬化性樹脂組成物》
 本実施形態の硬化性樹脂組成物(以下、単に「樹脂組成物」と称することがある。)は、1分子中に1~6個の(メタ)アクリル基を有するモノマーと、1分子中に(メタ)アクリル基を有するポリマーと、を含む硬化性樹脂組成物であって、前記モノマー1分子中の、前記ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が2以下である。
<<Curable resin composition>>
The curable resin composition of the present embodiment (hereinafter sometimes simply referred to as "resin composition") includes a monomer having 1 to 6 (meth)acrylic groups in one molecule, and A curable resin composition comprising a polymer having a (meth)acrylic group, wherein the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer is 2 or less. be.
 本実施形態の樹脂組成物によれば、1分子中に1~6個の(メタ)アクリル基を有するモノマー(以下、「モノマー成分」と称することがある。)と、1分子中に(メタ)アクリル基を有するポリマー(以下、「ポリマー成分」と称することがある。)と、を含む樹脂組成物である。さらに本実施形態の樹脂組成物においては、前記モノマー1分子中の、前記ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が2以下である。 According to the resin composition of the present embodiment, a monomer having 1 to 6 (meth)acrylic groups in one molecule (hereinafter sometimes referred to as "monomer component") and a (meth) ) a polymer having an acrylic group (hereinafter sometimes referred to as “polymer component”). Furthermore, in the resin composition of the present embodiment, the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer is 2 or less in one molecule of the monomer.
 本実施形態の樹脂組成物は、これら要件を満たすモノマー成分とポリマー成分とを含むことで、硬化膜形成時の収縮応力を抑制することができる。これにより、ガラス基板上に硬化膜を形成したり、厚膜の硬化膜を形成する際に発生する硬化膜の反りの発生を抑制することができる。加えて、本実施形態の硬化性組成物から得られた硬化膜は、N-メチルピロリドン(NMP)等の溶剤に対する耐性(以下、「耐溶剤性」と称することがある)に優れている。 By containing a monomer component and a polymer component that satisfy these requirements, the resin composition of the present embodiment can suppress shrinkage stress during the formation of a cured film. As a result, it is possible to suppress the occurrence of warpage of the cured film that occurs when forming a cured film on a glass substrate or when forming a thick cured film. In addition, the cured film obtained from the curable composition of the present embodiment has excellent resistance to solvents such as N-methylpyrrolidone (NMP) (hereinafter sometimes referred to as "solvent resistance").
 本実施形態の樹脂組成物を用いた硬化膜において収縮応力が抑制される理由は不明だが、モノマー成分がポリマー成分と同様に(メタ)アクリル基を有しながら、且つ、ポリマー成分の(メタ)アクリル基と同種の(メタ)アクリル基の総数が2以下であるため、(メタ)アクリル基によるモノマー成分とポリマー成分との反応の程度が制御され、硬化時の収縮応力の発生が抑制されているものと推測される。一方、上述のように本実施形態の硬化性組成物は、耐溶剤性にも優れていることから、収縮応力の発生が抑制されながらも十分に硬化反応が進んでいるものと推測される。 The reason why the shrinkage stress is suppressed in the cured film using the resin composition of the present embodiment is unknown, but while the monomer component has a (meth) acrylic group like the polymer component, and the (meth) Since the total number of (meth)acrylic groups of the same type as acrylic groups is 2 or less, the degree of reaction between the monomer component and the polymer component by the (meth)acrylic groups is controlled, and the occurrence of shrinkage stress during curing is suppressed. It is assumed that there are On the other hand, since the curable composition of the present embodiment is also excellent in solvent resistance as described above, it is presumed that the curing reaction proceeds sufficiently while the generation of shrinkage stress is suppressed.
(モノマー成分)
 本実施形態の樹脂組成物は、1分子中に1~6個の(メタ)アクリル基を有するモノマーを含む。また、前記モノマーは、モノマー1分子中の、ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が2以下である。
(monomer component)
The resin composition of this embodiment contains a monomer having 1 to 6 (meth)acrylic groups in one molecule. In addition, the total number of (meth)acrylic groups of the same kind as the (meth)acrylic groups of the polymer in one molecule of the monomer is 2 or less.
-モノマー成分の1分子中に含まれる(メタ)アクリル基の数-
 ここで、「1分子中に1~6個の(メタ)アクリル基を有するモノマー」とは、モノマー成分の1分子中に含まれる(メタ)アクリル基の総数が1~6個であることを意味する。モノマー成分としては単独のモノマーのみを用いてもよいし、複数のモノマーを組み合わせて用いてもよい。
-Number of (meth)acrylic groups contained in one molecule of the monomer component-
Here, "a monomer having 1 to 6 (meth)acrylic groups in one molecule" means that the total number of (meth)acrylic groups contained in one molecule of the monomer component is 1 to 6. means. As the monomer component, only a single monomer may be used, or a plurality of monomers may be used in combination.
 本実施形態の樹脂組成物がモノマー成分としてモノマー1種を単独で用いる場合、当該モノマー成分の1分子中に有する(メタ)アクリル基の総数は、モノマーが1分子中に有する(メタ)アクリル基)の数と一致し、モノマーの1分子中に含まれる“アクリル基”と“メタクリル基”との総数がこれに該当する。 When the resin composition of the present embodiment uses a single monomer as a monomer component, the total number of (meth)acrylic groups in one molecule of the monomer component is the (meth)acrylic group in one molecule of the monomer. ), and corresponds to the total number of “acryl groups” and “methacryl groups” contained in one molecule of the monomer.
 また、本実施形態の樹脂組成物が複数種類のモノマー成分を用いる場合、モノマー成分の(メタ)アクリル基の数は、各モノマーの有する(メタ)アクリル基の数を各モノマーのモノマー成分全体における質量割合を乗じて算出した値とし、各モノマーの成分におけるこの値を合計した数とする。モノマー成分の“(メタ)アクリル基の数”は、例えば、以下のように算出することができる。なお、モノマー成分がアクリル基を含むモノマーとメタクリル基を含むモノマー、又は、アクリル基とメタアクリル基の両方を有するモノマーとを含む場合には、各モノマー成分について総アクリル基数と総メタクリル基数とに各モノマーのモノマー成分全体における質量割合を乗じて算出した値を各々別に算出し、その合計値が総数となる。 Further, when the resin composition of the present embodiment uses a plurality of types of monomer components, the number of (meth)acrylic groups of the monomer components is the number of (meth)acrylic groups possessed by each monomer in the total monomer components of each monomer. It is the value calculated by multiplying the mass ratio, and it is the total number of this value for each monomer component. The "number of (meth)acrylic groups" of the monomer component can be calculated, for example, as follows. In addition, when the monomer component contains a monomer containing an acrylic group and a monomer containing a methacrylic group, or a monomer containing both an acrylic group and a methacrylic group, the total number of acrylic groups and the total number of methacrylic groups for each monomer component are Each value calculated by multiplying the mass ratio of each monomer in the total monomer component is calculated separately, and the total value is the total number.
 複数のモノマー(成分1~成分n)を含むモノマー成分のアクリル基(又はメタクリル基)の数=
〔(成分1のアクリル基(又はメタクリル基)の総数)×(成分1のモノマー成分全体に対する比率))+〔(成分2のアクリル基(又はメタクリル基)の総数)×(成分2のモノマー成分全体に対する比率))+・・・・+〔(成分nのアクリル基(又はメタクリル基)の総数)×(成分nのモノマー成分全体に対する比率))
Number of acrylic groups (or methacrylic groups) of monomer components containing multiple monomers (component 1 to component n) =
[(total number of acrylic groups (or methacrylic groups) of component 1) × (ratio of component 1 to the total monomer components)) + [(total number of acrylic groups (or methacrylic groups) of component 2) × (monomer component of component 2 Ratio to the whole)) + ... + [(Total number of acrylic groups (or methacrylic groups) of component n) × (Ratio of component n to the total monomer components))
 例えば、モノマー成分が、アクリル基を1つ有するモノマー成分1と、アクリル基を2つ有するモノマー成分2とを、質量割合20/80で含む場合、当該モノマー成分の(メタ)アクリル基の数は、1×(20/(20+80))+2×(80/(20+80))=1.8となる。 For example, when the monomer component contains a monomer component 1 having one acrylic group and a monomer component 2 having two acrylic groups at a mass ratio of 20/80, the number of (meth)acrylic groups in the monomer component is , 1*(20/(20+80))+2*(80/(20+80))=1.8.
-モノマー1分子中の、ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数-
 つぎに、「モノマー1分子中の、ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数」とは、ポリマーがアクリル基を有する場合にはモノマー成分の1分子中に含まれるアクリル基の総数、ポリマーがメタクリル基を有する場合にはモノマー成分の1分子中に含まれるメタクリル基の総数、ポリマーがアクリル基及びメタクリル基の両者を有する場合には、ポリマー成分の1分子中に含まれるアクリル基の総数及びメタクリル基の総数をいう。
-The total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer-
Next, "the total number of (meth)acrylic groups of the same kind as the (meth)acrylic groups of the polymer in one molecule of the monomer" is the acrylic group contained in one molecule of the monomer component when the polymer has an acrylic group. The total number of groups, the total number of methacrylic groups contained in one molecule of the monomer component when the polymer has methacrylic groups, and the total number of methacrylic groups contained in one molecule of the polymer component when the polymer has both acrylic groups and methacrylic groups. refers to the total number of acrylic groups and the total number of methacrylic groups.
 モノマー成分の1分子中の(メタ)アクリル基の数は1~6である。前記モノマー成分の1分子中の(メタ)アクリル基の数が0であると、(メタ)アクリル基を有するポリマーとの反応性が低下する場合がある。また、前記モノマー成分の1分子中の(メタ)アクリル基の数が6を超えると、硬化時の収縮応力の抑制効果が低減する。モノマー成分の1分子中の(メタ)アクリル基の数は特に限定されるものではないが、硬化時の収縮応力の抑制効果の観点から1~4が好ましく、1~3.5がより好ましく、1~2がさらに好ましい。 The number of (meth)acrylic groups in one molecule of the monomer component is 1-6. When the number of (meth)acrylic groups in one molecule of the monomer component is 0, the reactivity with polymers having (meth)acrylic groups may decrease. Further, when the number of (meth)acrylic groups in one molecule of the monomer component exceeds 6, the effect of suppressing shrinkage stress during curing is reduced. The number of (meth)acrylic groups in one molecule of the monomer component is not particularly limited, but is preferably 1 to 4, more preferably 1 to 3.5, from the viewpoint of the effect of suppressing shrinkage stress during curing. 1 to 2 are more preferred.
 モノマー成分の、モノマー1分子中の、ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数は2以下である。当該(メタ)アクリル基の総数が2を超えると、硬化時の収縮応力の抑制効果が低減する。また、特に限定されるものではないが、硬化時の収縮応力の抑制効果の観点から前記総数は1以下が好ましく、0がさらに好ましい。さらに、本実施形態のモノマー成分は、硬化時の収縮応力の抑制効果の観点から、(メタ)アクリル基として、アクリル基及びメタクリル基のいずれか一方のみを有することが好ましい。例えば、モノマー成分がアクリル基及びメタクリル基のいずれか一方のみを有し、且つ、モノマー1分子中の、ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が0の場合には、ポリマー成分は、メタクリル基又はアクリル基のうち、モノマー成分が有さない方の基のみを有することになる。 The total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one monomer molecule of the monomer component is 2 or less. If the total number of (meth)acrylic groups exceeds 2, the effect of suppressing shrinkage stress during curing is reduced. Although not particularly limited, the total number is preferably 1 or less, more preferably 0, from the viewpoint of the effect of suppressing shrinkage stress during curing. Furthermore, the monomer component of the present embodiment preferably has only one of an acrylic group and a methacrylic group as the (meth)acrylic group from the viewpoint of the effect of suppressing shrinkage stress during curing. For example, when the monomer component has only one of an acrylic group and a methacrylic group, and the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer is 0 , the polymer component will have only methacrylic groups or acrylic groups, whichever group the monomer component does not have.
 モノマー成分の(メタ)アクリル当量は、硬化時の収縮応力の抑制効果の観点から、220以上が好ましく、300以上がさらに好ましく、350以上が特に好ましい。組成物中のモノマー成分の(メタ)アクリル当量は(モノマーの式量)÷((メタ)アクリル基数)にて算出することができる。複数のモノマー成分を用いる場合、(メタ)アクリル当量は、各モノマーの(メタ)アクリル当量を各モノマーのモノマー成分全体における質量割合を乗じて算出した値とし、各モノマーの成分におけるこの値を合計した値とする。 The (meth)acrylic equivalent of the monomer component is preferably 220 or more, more preferably 300 or more, and particularly preferably 350 or more, from the viewpoint of the effect of suppressing shrinkage stress during curing. The (meth)acrylic equivalent of the monomer component in the composition can be calculated by (formula weight of monomer)/(number of (meth)acrylic groups). When using multiple monomer components, the (meth)acrylic equivalent is a value calculated by multiplying the (meth)acrylic equivalent of each monomer by the mass ratio of each monomer in the total monomer components, and summing this value for each monomer component value.
 モノマー成分の具体例としては以下の化合物が挙げられる。
 アクリル基を1つ有するモノマーとしては、α-(1-オキソ-2-プロペン-1-イル)-ω-[4-(1-メチル-1-フェニルエチル)フェノキシ]ポリ(オキシエチレン)、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、n-オクチルアクリレート、イソノニルアクリレート、ラウリルアクリレート、イソデシルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、フェノキシエチルアクリレート、エチルカルビトールアクリレート、メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート、(3-エチルオキセタン-3-イル)メチルアクリレート、環状トリメチロールプロパンホルマールアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、エトキシ化-o-フェニルフェノールアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ノニルフェノキシポリエチレングリコールアクリレート、ノニルフェノキシポリエチレングリコールアクリレート、テトラヒドロフルフリルアルコール アクリル酸多量体エステル、エトキシエトキシエタノール アクリル酸多量体エステル、2,2,2-トリフルオロエチルアクリレート、2,2,3,3-テトラフルオロプロピルアクリレート、1H,1H,5H-オクタフルオロペンチルアクリレート、1H,1H,2H,2H-トリデカフルオロオクチルアクリレート等が挙げられる。
Specific examples of monomer components include the following compounds.
Monomers having one acrylic group include α-(1-oxo-2-propen-1-yl)-ω-[4-(1-methyl-1-phenylethyl)phenoxy]poly(oxyethylene), hydroxy ethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, n-octyl acrylate, isononyl acrylate, lauryl acrylate, isodecyl acrylate, stearyl acrylate, isobornyl acrylate, tetrahydrofurfuryl acrylate, Tetrahydrofurfuryl acrylate, cyclohexyl acrylate, benzyl acrylate, phenoxyethyl acrylate, ethyl carbitol acrylate, methoxyethyl acrylate, methoxytriethylene glycol acrylate, methoxypolyethylene glycol acrylate, methoxypolyethylene glycol acrylate, (2-methyl-2-ethyl-1 ,3-dioxolan-4-yl)methyl acrylate, (3-ethyloxetan-3-yl)methyl acrylate, cyclic trimethylolpropane formal acrylate, 3,3,5-trimethylcyclohexyl acrylate, ethoxylated-o-phenylphenol acrylate , dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, nonylphenoxypolyethylene glycol acrylate, nonylphenoxypolyethylene glycol acrylate, tetrahydrofurfuryl alcohol multimeric acrylic acid ester, ethoxyethoxyethanol multimeric acrylic acid ester, 2,2,2-trifluoroethyl acrylate, 2,2,3,3-tetrafluoropropyl acrylate, 1H,1H,5H-octafluoropentyl acrylate, 1H,1H,2H,2H-tridecafluorooctyl acrylate, etc. mentioned.
 メタクリル基を1つ有するモノマーとしては、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、n-オクチルメタクリレート、イソノニルメタクリレート、ラウリルメタクリレート、イソデシルメタクリレート、ステアリルメタクリレート、イソボルニルメタクリレート、テトラヒドロフルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、フェノキシエチルメタクリレート、エチルカルビトールメタクリレート、メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルメタクリレート、(3-エチルオキセタン-3-イル)メチルメタクリレート、環状トリメチロールプロパンホルマールメタクリレート、3,3,5-トリメチルシクロヘキシルメタクリレート、エトキシ化-o-フェニルフェノールメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンタニルメタクリレート、ノニルフェノキシポリエチレングリコールメタクリレート、ノニルフェノキシポリエチレングリコールメタクリレート、等が挙げられる。 Monomers having one methacrylic group include hydroxyethyl methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, isononyl methacrylate, lauryl methacrylate, isodecyl methacrylate, and stearyl methacrylate. , isobornyl methacrylate, tetrahydrofurfuryl methacrylate, tetrahydrofurfuryl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, ethylcarbitol methacrylate, methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, methoxypolyethyleneglycol methacrylate, methoxypolyethyleneglycol methacrylate , (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl methacrylate, (3-ethyloxetan-3-yl)methyl methacrylate, cyclic trimethylolpropane formal methacrylate, 3,3,5-trimethyl Cyclohexyl methacrylate, ethoxylated-o-phenylphenol methacrylate, dicyclopentenyl methacrylate, dicyclopentenyloxyethyl methacrylate, dicyclopentanyl methacrylate, nonylphenoxy polyethylene glycol methacrylate, nonylphenoxy polyethylene glycol methacrylate, and the like.
 アクリル基を2つ有するモノマーとしては、下記ビスフェノールAEO3.8モル付加物ジアクリレート、下記エトキシ化ビスフェノールAジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、トリプロピレングリコールジアクリレート、ビスフェノールAジグリシジルエーテル アクリル酸付加物、ジエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリプロピレングリコール#400ジアクリレート、ポリプロピレングリコール#700ジアクリレート、ポリテトラメチレングリコールジアクリレート、1,6-ヘキサンジオールアクリル酸多量体エステル、ジオキサングリコールジアクリレート等が挙げられる。 Examples of monomers having two acrylic groups include the following bisphenol AEO 3.8 mol adduct diacrylate, the following ethoxylated bisphenol A diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9 -Nonanediol diacrylate, tripropylene glycol diacrylate, bisphenol A diglycidyl ether acrylic acid adduct, diethylene glycol diacrylate, polyethylene glycol #400 diacrylate, polypropylene glycol #400 diacrylate, polypropylene glycol #700 diacrylate, polytetramethylene Glycol diacrylate, 1,6-hexanediol acrylic acid polymer ester, dioxane glycol diacrylate, and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 メタクリル基を2つ有するモノマーとしては、下記エトキシ化ビスフェノールAジメタクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、トリプロピレングリコールジメタクリレート、ビスフェノールAジグリシジルエーテル アクリル酸付加物、ジエチレングリコールジメタクリレート、ポリエチレングリコール#400ジメタクリレート、ポリプロピレングリコール#400ジメタクリレート、ポリプロピレングリコール#700ジメタクリレート、ポリテトラメチレングリコールジメタクリレート、等が挙げられる。 Monomers having two methacrylic groups include the following ethoxylated bisphenol A dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, and tripropylene glycol dimethacrylate. , bisphenol A diglycidyl ether acrylic acid adduct, diethylene glycol dimethacrylate, polyethylene glycol #400 dimethacrylate, polypropylene glycol #400 dimethacrylate, polypropylene glycol #700 dimethacrylate, polytetramethylene glycol dimethacrylate, and the like.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 アクリル基を3以上有するモノマーとしては、トリス-(2-アクリロイルオキシエチル)イソシアヌレート(アクリル基数:3)、ジペンタエリスリトールヘキサアクリレート(アクリル基数:6)、ジペンタエリスリトールペンタアクリレート(アクリル基数:5)、トリメチロールプロパントリアクリレート(アクリル基数:3)、ペンタエリスリトールトリ及びテトラアクリレート(アクリル基数:3~4)、エトキシ化ペンタエリスリトールトリ及びテトラアクリレート(アクリル基数:3~4)、エトキシ化グリセリントリアクリレート(アクリル基数:3)、プロポキシ化ペンタエリスリトールテトラアクリレート(アクリル基数:4)、ジトリメチロールプロパンテトラアクリレート(アクリル基数:4)、等が挙げられる。
 メタクリル基を3以上有するモノマーとしては、トリス-(2-メタクリロイルオキシエチル)イソシアヌレート(メタクリル基数:3)、ジペンタエリスリトールヘキサメタクリレート(メタクリル基数:5)、トリメチロールプロパントリメタクリレート(メタクリル基数:3)、ペンタエリスリトールトリ及びテトラメタクリレート(メタクリル基数:3~4)、エトキシ化ペンタエリスリトールトリ及びテトラメタクリレート(メタクリル基数:3~4)、エトキシ化グリセリントリメタクリレート(メタクリル基数:3)、プロポキシ化ペンタエリスリトールテトラメタクリレート(メタクリル基数:4)、ジトリメチロールプロパンテトラメタクリレート(メタクリル基数:4)等が挙げられる。
Monomers having 3 or more acrylic groups include tris-(2-acryloyloxyethyl) isocyanurate (number of acrylic groups: 3), dipentaerythritol hexaacrylate (number of acrylic groups: 6), dipentaerythritol pentaacrylate (number of acrylic groups: 5 ), trimethylolpropane triacrylate (acrylic group number: 3), pentaerythritol tri- and tetraacrylate (acrylic group number: 3-4), ethoxylated pentaerythritol tri- and tetraacrylate (acrylic group number: 3-4), ethoxylated glycerin triacrylate Acrylate (number of acrylic groups: 3), propoxylated pentaerythritol tetraacrylate (number of acrylic groups: 4), ditrimethylolpropane tetraacrylate (number of acrylic groups: 4), and the like.
Monomers having 3 or more methacrylic groups include tris-(2-methacryloyloxyethyl) isocyanurate (number of methacrylic groups: 3), dipentaerythritol hexamethacrylate (number of methacrylic groups: 5), trimethylolpropane trimethacrylate (number of methacrylic groups: 3 ), pentaerythritol tri- and tetramethacrylate (number of methacrylic groups: 3-4), ethoxylated pentaerythritol tri- and tetramethacrylate (number of methacrylic groups: 3-4), ethoxylated glycerin trimethacrylate (number of methacrylic groups: 3), propoxylated pentaerythritol Examples include tetramethacrylate (number of methacrylic groups: 4), ditrimethylolpropane tetramethacrylate (number of methacrylic groups: 4), and the like.
 前記モノマー成分の中でも特に、α-(1-オキソ-2-プロペン-1-イル)-ω-[4-(1-メチル-1-フェニルエチル)フェノキシ]ポリ(オキシエチレン)、ビスフェノールAEO3.8モル付加物ジアクリレート、エトキシ化ビスフェノールAジメタクリレート、トリス-(2-アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートが好ましく、ビスフェノールAEO3.8モル付加物ジアクリレート、α-(1-オキソ-2-プロペン-1-イル)-ω-[4-(1-メチル-1-フェニルエチル)フェノキシ]ポリ(オキシエチレン)がさらに好ましい。 Among the monomer components, α-(1-oxo-2-propen-1-yl)-ω-[4-(1-methyl-1-phenylethyl)phenoxy]poly(oxyethylene), bisphenol AEO 3.8 molar adduct diacrylate, ethoxylated bisphenol A dimethacrylate, tris-(2-acryloxyethyl)isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate are preferred, bisphenol AEO 3.8 molar adduct diacrylate, α -(1-oxo-2-propen-1-yl)-ω-[4-(1-methyl-1-phenylethyl)phenoxy]poly(oxyethylene) is more preferred.
 また、樹脂組成物中における本実施形態におけるモノマー成分の含有量は特に限定はないが、例えば、硬化時の収縮応力を抑制する観点から、組成物中の全固形分に対して、5~60質量%が好ましく、10~50質量%がさらに好ましく、20~40質量%が特に好ましい。本明細書を通じて「全固形分」とは、樹脂組成物における溶媒以外の全成分を意味する。 In addition, the content of the monomer component in the present embodiment in the resin composition is not particularly limited, but for example, from the viewpoint of suppressing shrinkage stress during curing, the total solid content in the composition is 5 to 60. % by mass is preferable, 10 to 50% by mass is more preferable, and 20 to 40% by mass is particularly preferable. The term "total solids" used throughout this specification means all components other than the solvent in the resin composition.
 また、本実施形態の樹脂組成物は、本発明の効果に影響を与えない範囲で他のモノマーを含んでいてもよい。前記他のモノマーとしては、一般的な感光性樹脂組成物において用いられる光重合性モノマーを使用することができる。前記他のモノマーを併用する場合、全モノマー中、本実施形態におけるモノマー成分の含有量は、50質量%以上であることが好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましい。 In addition, the resin composition of the present embodiment may contain other monomers within a range that does not affect the effects of the present invention. As the other monomer, a photopolymerizable monomer used in a general photosensitive resin composition can be used. When other monomers are used in combination, the content of the monomer component in the present embodiment is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more, in all monomers.
 本実施形態の樹脂組成物は、ポリマー成分〔x〕とモノマー成分〔y〕との質量比〔x:y〕(=モノマー成分の含有量(g):ポリマー成分の含有量(g)〕は、特に限定されるものではないが、硬化時の収縮応力の抑制効果の観点から30:100~160:100が好ましく、40:100~100:100がさらに好ましく、50:100~80:100が特に好ましい。 In the resin composition of the present embodiment, the mass ratio [x:y] between the polymer component [x] and the monomer component [y] (= content of monomer component (g): content of polymer component (g)) is , Although not particularly limited, from the viewpoint of the effect of suppressing shrinkage stress during curing, 30: 100 to 160: 100 is preferable, 40: 100 to 100: 100 is more preferable, and 50: 100 to 80: 100 is preferable. Especially preferred.
 ポリマー成分〔x〕とモノマー成分〔y〕との質量比はモノマー成分やポリマー成分の仕込み量を適宜変更することで調整することができる。また、前記質量比の測定方法は特に限定されるものではないが、公知の手段によって樹脂組成物に含まれるポリマー成分とモノマー成分とに分離し、各々本実施形態のポリマー成分及びモノマー成分を特定することで測定することができる。
 例えば、ポリマー成分を極性の低い溶剤(例えばノルマルヘキサン)で析出させ、モノマー(及び光重合開始剤を含む)成分と分離し、次いで、各成分中の溶剤を除いた質量を把握し、且つ各本実施形態のポリマー成分及びモノマー成分の含有量を分析することでポリマー成分〔x〕とモノマー成分〔y〕との質量比を求めることができる。この際、さらにガスクロマトグラフィー質量分析(GCMS)や液体クロマトグラフィー質量分析(LCMS)にてオリゴマーや光重合開始剤やその他添加物の含有量を特定できれば、ガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)等の定量分析により精度の高い前記質量比を得ることができる。
The mass ratio between the polymer component [x] and the monomer component [y] can be adjusted by appropriately changing the charged amount of the monomer component and the polymer component. In addition, although the method for measuring the mass ratio is not particularly limited, the polymer component and the monomer component contained in the resin composition are separated by a known means, and the polymer component and the monomer component of the present embodiment are specified respectively. can be measured by
For example, the polymer component is precipitated with a solvent having a low polarity (for example, normal hexane), separated from the monomer (including the photopolymerization initiator) component, then the mass excluding the solvent in each component is determined, and each The mass ratio of the polymer component [x] to the monomer component [y] can be obtained by analyzing the contents of the polymer component and the monomer component in this embodiment. At this time, if the content of oligomers, photoinitiators and other additives can be specified by gas chromatography mass spectrometry (GCMS) or liquid chromatography mass spectrometry (LCMS), gas chromatography (GC), liquid chromatography A highly accurate mass ratio can be obtained by quantitative analysis such as (LC).
(ポリマー成分)
 本実施形態の樹脂組成物は、1分子中に(メタ)アクリル基を有するポリマーを含む。本実施形態におけるポリマー成分としては、アルカリ可溶性樹脂を用いることが好ましい。また、特に限定されるものではないが、本実施形態におけるポリマー成分は、(メタ)アクリル基として、アクリル基及びメタクリル基のいずれか一方のみを有することが好ましい。
(polymer component)
The resin composition of this embodiment contains a polymer having a (meth)acrylic group in one molecule. As the polymer component in this embodiment, it is preferable to use an alkali-soluble resin. Although not particularly limited, the polymer component in the present embodiment preferably has only one of an acrylic group and a methacrylic group as the (meth)acrylic group.
 ポリマー成分の(メタ)アクリル当量は、硬化時の収縮応力の抑制効果の観点から、520以上が好ましく、600以上がさらに好ましく、700以上が特に好ましい。 The (meth)acrylic equivalent of the polymer component is preferably 520 or more, more preferably 600 or more, and particularly preferably 700 or more, from the viewpoint of the effect of suppressing shrinkage stress during curing.
 ポリマー成分は、(メタ)アクリル基以外の他の反応基を有していてもよい。他の反応基としては、例えば、熱架橋性基、光架橋性基等が挙げられ、この中でも他の反応基としては熱架橋性基を有することが好ましい。 The polymer component may have reactive groups other than (meth)acrylic groups. Other reactive groups include, for example, a thermally crosslinkable group and a photocrosslinkable group, and among these, it is preferable to have a thermally crosslinkable group as the other reactive group.
 また、ポリマー成分が(メタ)アクリル基以外の他の熱架橋性基を有している場合、ポリマー成分の熱架橋性基当量((メタ)アクリル基を含む熱架橋性基総量に対する当量)も、硬化時の収縮応力を抑制する観点から、520超が好ましく、600以上がさらに好ましく、700以上が特に好ましい。 In addition, when the polymer component has a thermally crosslinkable group other than the (meth)acrylic group, the thermally crosslinkable group equivalent of the polymer component (equivalent to the total amount of the thermally crosslinkable group including the (meth)acrylic group) is also From the viewpoint of suppressing shrinkage stress during curing, it is preferably more than 520, more preferably 600 or more, and particularly preferably 700 or more.
 ポリマー成分の重量平均分子量は、硬化膜のべたつき(タック)を抑制する観点や、硬化膜を製膜する際の製造性の観点から、3,000~50,000が好ましく、4,000~30,000がさらに好ましく、5,000~20,000が特に好ましい。ポリマー成分の分子量測定は、ゲルパーミエーションクロマトグラフィー(東ソー(株)製、品番:HLC-8120、カラム:G-5000HXL及びG-3000HXLの2連結、検出器:RI、移動相:テトラヒドロフラン)で行うことができる。 The weight average molecular weight of the polymer component is preferably 3,000 to 50,000, preferably 4,000 to 30, from the viewpoint of suppressing stickiness (tack) of the cured film and from the viewpoint of manufacturability when forming the cured film. ,000 is more preferred, and 5,000 to 20,000 is particularly preferred. Molecular weight measurement of the polymer component is performed by gel permeation chromatography (manufactured by Tosoh Corporation, product number: HLC-8120, column: two connections of G-5000HXL and G-3000HXL, detector: RI, mobile phase: tetrahydrofuran). be able to.
 本実施形態におけるポリマー成分は単独で用いてもよいし複数を組み合わせてもよい。本実施形態の樹脂組成物中におけるアルカリ可溶性樹脂の含有量は特に限定されるものではなく、上述のモノマー成分(x)とポリマー成分(y)との質量比(x:y)に基づいて適宜決定することができるが、例えば、フォトレジスト材料として用いた場合等における現像液への溶解性の観点から、組成物中の全固形分に対して、5~80質量%が好ましく、10~60質量%がさらに好ましく、20~40質量%が特に好ましい。 The polymer component in this embodiment may be used alone or in combination. The content of the alkali-soluble resin in the resin composition of the present embodiment is not particularly limited. Although it can be determined, for example, from the viewpoint of solubility in a developer when used as a photoresist material, the total solid content in the composition is preferably 5 to 80% by mass, and 10 to 60 % by mass is more preferred, and 20 to 40% by mass is particularly preferred.
 本実施形態におけるポリマー成分としては、(メタ)アクリル基を有する単位構造を1分子中に含むポリマーであれば特に限定はなく用いることができる。本実施形態における単位構造としては、特に限定はないが、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、ブチルアクリレート等のアルキル(メタ)アクリレート;2-ヒドロキシエチルメタクリレート;ジシクロペンタニルメタクリレート;ベンジルメタクリレート等に由来する単位構造が挙げられる。 As the polymer component in the present embodiment, any polymer containing a unit structure having a (meth)acrylic group in one molecule can be used without any particular limitation. The unit structure in the present embodiment is not particularly limited, but examples include (meth)acrylic acid; alkyl (meth)acrylates such as methyl (meth)acrylate and butyl acrylate; 2-hydroxyethyl methacrylate; dicyclopentanyl methacrylate ; unit structures derived from benzyl methacrylate and the like.
 また、(メタ)アクリル基を有する単位構造は、例えば、上述の単位構造にグリシジルメタクリレート、2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、4-ヒドロキシブチルアクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチルメタアクリレートなどを反応させることで、(メタ)アクリル基を有する単位構造とすることができる。 Further, the unit structure having a (meth)acrylic group includes, for example, glycidyl methacrylate, 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, 4-hydroxybutyl acrylate glycidyl ether, 3,4-epoxy A unit structure having a (meth)acrylic group can be obtained by reacting with cyclohexylmethyl methacrylate or the like.
 本実施形態におけるポリマー成分としては、例えば、以下の構造のものを挙げることができる。 Examples of the polymer component in this embodiment include those having the following structures.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(その他)
 本実施形態の樹脂組成物は、本実施形態の樹脂組成物の効果を阻害しない範囲で、例えば、光重合開始助剤や100nm以下の微粒子等を含んでいてもよい。
(others)
The resin composition of the present embodiment may contain, for example, a photopolymerization initiation aid, fine particles of 100 nm or less, and the like, as long as the effects of the resin composition of the present embodiment are not impaired.
 前記光重合開始助剤は、単独では光重合開始剤として機能しないが、光重合開始剤と組合せて使用することで光重合開始剤の能力を増大させる化合物である。光重合開始助剤としては、例えば、ベンゾフェノンと組合せて使用すると効果のあるトリエタノールアミン等の3級アミンが挙げられる。 The photopolymerization initiation aid is a compound that does not function as a photopolymerization initiator by itself, but increases the ability of the photopolymerization initiator when used in combination with the photopolymerization initiator. Examples of photopolymerization initiation aids include tertiary amines such as triethanolamine, which are effective when used in combination with benzophenone.
 100nm以下の微粒子を添加すると本実施形態における樹脂組成物の硬化膜の弾性復元率を向上させることができる。100nm以下の微粒子としては、特に限定はないが、例えば、Al、TiO、Fe、ZnO、CeO、Y、Mn、SiOなどが挙げられる。また、微粒子の形状についても特に限定はないが、真球状、球状、多面体形状のものを挙げることができる。 Addition of fine particles of 100 nm or less can improve the elastic recovery rate of the cured film of the resin composition of the present embodiment. Fine particles of 100 nm or less are not particularly limited, but examples thereof include Al 2 O 3 , TiO 2 , Fe 2 O 3 , ZnO, CeO 2 , Y 2 O 3 , Mn 3 O 4 and SiO 2 . Also, the shape of the fine particles is not particularly limited, but examples include spherical, spherical, and polyhedral shapes.
(樹脂組成物の調製)
 本実施形態の樹脂組成物は、上述のモノマー成分、ポリマー成分に加えて、必要に応じて、光重合開始剤、溶剤、界面活性剤、レベリング剤、連鎖移動剤、重合禁止剤、粘度調整剤、などを加え、混合することで調製することができる。特に限定されるものではないが、本実施形態の樹脂組成物はネガ型の光硬化性樹脂とすることが可能である。
(Preparation of resin composition)
In addition to the above-described monomer components and polymer components, the resin composition of the present embodiment may optionally contain a photopolymerization initiator, a solvent, a surfactant, a leveling agent, a chain transfer agent, a polymerization inhibitor, and a viscosity modifier. , etc., and mixed. Although not particularly limited, the resin composition of the present embodiment can be a negative photocurable resin.
-光重合開始剤-
 本実施形態における樹脂組成物は光重合開始剤を含むことができる。特に限定されるものではないが、本実施形態における光重合開始剤は、i線(365nm)に吸収波長を有するものを好適に用いることができる。
- Photoinitiator -
The resin composition in this embodiment can contain a photopolymerization initiator. Although not particularly limited, as the photopolymerization initiator in the present embodiment, one having an absorption wavelength in the i-line (365 nm) can be preferably used.
 光重合開始剤としては、特に限定されるものではないが、例えば、アセトフェノン、2,2’-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-tert-ブチルアセトフェノン等のアセトフェノン類、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等のα-アミノケトン系光重合開始剤や、1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン-1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、1-〔9-エチル-6-ベンゾイル-9.H.-カルバゾール-3-イル〕-オクタン-1-オンオキシム-O-アセテート、1-〔9-エチル-6-(2-メチルベンゾイル)-9.H.-カルバゾール-3-イル〕-エタン-1-オンオキシム-O-ベンゾエート、1-〔9-n-ブチル-6-(2-エチルベンゾイル)-9.H.-カルバゾール-3-イル〕-エタン-1-オンオキシム-O-ベンゾエート、エタノン-1-[9-エチル-6-(2-メチル-4-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)等のオキシムエステル系光重合開始剤や、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジメチルアミノベンゾフェノン等のベンゾフェノン類;ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル類;ベンジルジメチルケタール、チオキサンソン、2-クロロチオキサンソン、2,4-ジエチルチオキサンソン、2-メチルチオキサンソン、2-イソプロピルチオキサンソン等の硫黄化合物、2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノン等のアントラキノン類;2,4-トリクロロメチル-(4’-メトキシフェニル)-6-トリアジン、2,4-トリクロロメチル-(4’-メトキシナフチル)-6-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、2,4-トリクロロメチル-(4’-メトキシスチリル)-6-トリアジン等のトリアジン類;アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、クメンパーオキシド等の有機過酸化物、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール等のチオール化合物等が挙げられる。これらの光重合開始剤は、その1種を単独で用いてもよいが、2種以上を併用することもできる。 Examples of photopolymerization initiators include, but are not limited to, acetophenone, 2,2′-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone, trichloroacetophenone, p- Acetophenones such as tert-butylacetophenone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-( α-aminoketone-based photopolymerization initiators such as 4-morpholin-4-yl-phenyl)-butan-1-one, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one , 1,2-octanedione 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone-1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazole-3 -yl]-1-(O-acetyloxime), 1-[9-ethyl-6-benzoyl-9. H. -carbazol-3-yl]-octan-1-one oxime-O-acetate, 1-[9-ethyl-6-(2-methylbenzoyl)-9. H. -carbazol-3-yl]-ethan-1-one oxime-O-benzoate, 1-[9-n-butyl-6-(2-ethylbenzoyl)-9. H. -carbazol-3-yl]-ethan-1-one oxime-O-benzoate, ethanone-1-[9-ethyl-6-(2-methyl-4-tetrahydrofuranylbenzoyl)-9. H. -carbazol-3-yl]-1-(O-acetyloxime), ethanone-1-[9-ethyl-6-(2-methyl-4-tetrahydropyranylbenzoyl)-9. H. -carbazol-3-yl]-1-(O-acetyloxime), ethanone-1-[9-ethyl-6-(2-methyl-5-tetrahydrofuranylbenzoyl)-9. H. -carbazol-3-yl]-1-(O-acetyloxime), ethanone-1-[9-ethyl-6-{2-methyl-4-(2,2-dimethyl-1,3-dioxolanyl)methoxybenzoyl }-9. H. -Carbazol-3-yl]-1-(O-acetyloxime) and other oxime ester photopolymerization initiators, benzophenone, 2-chlorobenzophenone, p,p'-bisdimethylaminobenzophenone and other benzophenones; benzyl, Benzoin ethers such as benzoin, benzoin methyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzyl dimethyl ketal, thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, 2-methylthioxanthone, 2-isopropyl sulfur compounds such as thioxanthone; anthraquinones such as 2-ethylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone and 2,3-diphenylanthraquinone; 2,4-trichloromethyl-(4′-methoxyphenyl)- 6-triazine, 2,4-trichloromethyl-(4′-methoxynaphthyl)-6-triazine, 2,4-trichloromethyl-(piperonyl)-6-triazine, 2,4-trichloromethyl-(4′-methoxy styryl)-6-triazine and other triazines; azobisisobutyronitrile, benzoyl peroxide, cumene peroxide and other organic peroxides, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, etc. and the like. One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
 本実施形態の樹脂組成物中における光重合開始剤の含有量は特に限定はないが、例えば、硬化膜の硬化性の観点から、組成物中の全固形分に対して、0.1~10.0質量%が好ましく、0.5~7.5質量%がさらに好ましく、1.0~5.0質量%が特に好ましい。 The content of the photopolymerization initiator in the resin composition of the present embodiment is not particularly limited. 0% by mass is preferred, 0.5 to 7.5% by mass is more preferred, and 1.0 to 5.0% by mass is particularly preferred.
-溶剤-
 前記溶剤としては、感光性樹脂組成物に用いられる公知の溶剤を適宜選定して用いることができる。溶剤としては、特に限定されるものではないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類や、酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート(PGMAc)、プロピレングリコールモノエチルエーテルアセテート、メチル-3-メトキシプロピオネート等のエステル類や、ポリオキシエチレンラウリルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールメチルエチルエーテル等のエーテル類や、ベンゼン、トルエン、キシレン等の芳香族炭化水素類やジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類等を挙げることができる。
-solvent-
As the solvent, a known solvent used in photosensitive resin compositions can be appropriately selected and used. Examples of solvents include, but are not limited to, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate (PGMAc ), esters such as propylene glycol monoethyl ether acetate and methyl-3-methoxypropionate, and ethers such as polyoxyethylene lauryl ether, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether and diethylene glycol methyl ethyl ether. , aromatic hydrocarbons such as benzene, toluene and xylene, and amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone.
-界面活性剤-
 前記界面活性剤としては、感光性樹脂組成物に用いられる公知の界面活性剤を適宜選定して用いることができる。前記界面活性剤としては、例えば、シリコーン系界面活性剤、アクリル系界面活性剤、フッ素系界面活性剤等が挙げられる。
-Surfactant-
As the surfactant, a known surfactant used in photosensitive resin compositions can be appropriately selected and used. Examples of the surfactant include silicone-based surfactants, acrylic surfactants, fluorine-based surfactants, and the like.
《硬化膜及び積層体》
 本実施形態の樹脂組成物を用いた硬化膜は、硬化時の収縮応力の発生が抑制されており、反りが少ない。また、本実施形態の硬化膜を基板上に設けることで、基板と、基板上に形成された硬化膜と、を備えた積層体とすることができる。本実施形態の樹脂組成物を用いて形成した硬化膜は耐溶剤性にも優れるため、例えば、本実施形態の硬化膜上に別の有機膜を形成する場合、当該有機層の形成の際に用いられる溶剤に対する耐性が強く、当該溶剤の影響による膜厚の減少や膜界面における溶剤の侵入による欠陥の発生を抑制することができる。
<<Cured film and laminate>>
A cured film using the resin composition of the present embodiment has reduced shrinkage stress during curing and is less warped. Further, by providing the cured film of the present embodiment on a substrate, it is possible to obtain a laminate including the substrate and the cured film formed on the substrate. Since the cured film formed using the resin composition of the present embodiment is also excellent in solvent resistance, for example, when forming another organic film on the cured film of the present embodiment, when forming the organic layer It has strong resistance to the solvent used, and can suppress the decrease in film thickness due to the influence of the solvent and the generation of defects due to penetration of the solvent at the film interface.
 本実施形態の硬化膜及び積層体は、基板上に樹脂組成物を含む塗布膜を形成し、前記塗布膜を露光及び現像することで形成できる。露光方式としては特に限定はないが、本実施形態の樹脂組成物は、例えば、マルチレンズシステムを用いた投影露光(レンズスキャン)方式にも採用可能である。前記基板としては硬化膜用途に応じて適宜選定することが可能だが、例えば、ガラス板やポリイミドフィルムなど公知の基板を適宜用いることができる。 The cured film and laminate of this embodiment can be formed by forming a coating film containing a resin composition on a substrate, and exposing and developing the coating film. The exposure method is not particularly limited, but the resin composition of the present embodiment can also be employed, for example, in a projection exposure (lens scan) method using a multi-lens system. The substrate can be appropriately selected according to the use of the cured film, and for example, known substrates such as glass plates and polyimide films can be appropriately used.
 前記現像には、水、有機溶剤、アルカリ水溶液等を適宜用いることができる。環境への負荷等を考慮すると、アルカリ水溶液を用いることが好ましい。前記アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩の水溶液、ヒドロキシテトラメチルアンモニウム、ヒドロキシテトラエチルアンモニウムなどの有機塩の水溶液を用いることができる。 For the development, water, an organic solvent, an alkaline aqueous solution, or the like can be used as appropriate. Considering the load on the environment, etc., it is preferable to use an alkaline aqueous solution. Examples of the alkaline aqueous solution include aqueous solutions of inorganic salts such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, and aqueous solutions of organic salts such as hydroxytetramethylammonium and hydroxytetraethylammonium.
 特に限定されるものではないが、本実施形態におけるモノマー成分と本実施形態におけるポリマー成分とが同種の(メタ)アクリル基を有する場合には硬化の際にポリマーとモノマーとが反応する傾向にある。一方、本実施形態におけるモノマー成分と本実施形態におけるポリマー成分とが異なる(メタ)アクリル基を有する場合には硬化の際にポリマー同士、及び、モノマー同士が反応する傾向にある。 Although not particularly limited, when the monomer component in the present embodiment and the polymer component in the present embodiment have the same (meth)acrylic group, the polymer and the monomer tend to react during curing. . On the other hand, when the monomer component in this embodiment and the polymer component in this embodiment have different (meth)acrylic groups, the polymers tend to react with each other and the monomers tend to react with each other during curing.
(膜厚)
 本実施形態の樹脂組成物は、硬化膜形成時における収縮応力を抑制されているため、特に厚膜の有機膜形成用途に有用に用いることができる。例えば、本実施形態の樹脂組成物を用いた硬化膜の厚さの下限は、用途に応じて、好ましくは10μm以上、さらに好ましくは、20μm以上、特に好ましくは30μm以上とすることができる。また、硬化膜の厚さの上限は、用途に応じて、100μm以下、好ましくは90μm以下、より好ましくは80μm以下とすることができる。
(film thickness)
Since the resin composition of the present embodiment has suppressed shrinkage stress during the formation of a cured film, it can be used particularly useful for forming a thick organic film. For example, the lower limit of the thickness of the cured film using the resin composition of the present embodiment is preferably 10 µm or more, more preferably 20 µm or more, and particularly preferably 30 µm or more, depending on the application. The upper limit of the thickness of the cured film can be 100 µm or less, preferably 90 µm or less, more preferably 80 µm or less, depending on the application.
(カール)
 本実施形態における硬化膜は、膜硬化時の収縮応力が抑制されており、例えば、試料片(サイズ100mm×100mm×厚さ10μm)を230℃で30分間加熱して生じるカールの直径を9.0mm以上、好ましくは15.0mm以上、さらに好ましくは20.0mm以上とすることができる。また、本実施形態における硬化膜は、厚さ20μmの試料片(サイズ100mm×100mm)とした場合であっても、同条件で測定したカールの直径が9.0mm以上であることが好ましく、厚さ30μmの試料片(サイズ100mm×100mm)とした場合であっても、同条件で測定したカールの直径が9.0mm以上であることが特に好ましい。
(curl)
The cured film in the present embodiment has a suppressed shrinkage stress during film curing. It can be 0 mm or more, preferably 15.0 mm or more, more preferably 20.0 mm or more. In addition, even when the cured film in the present embodiment is a 20 μm thick sample piece (size 100 mm × 100 mm), it is preferable that the curl diameter measured under the same conditions is 9.0 mm or more. Even in the case of a sample piece having a thickness of 30 μm (size of 100 mm×100 mm), it is particularly preferable that the curl diameter measured under the same conditions is 9.0 mm or more.
 前記カールの直径は、大きいほど硬化膜の反りが抑制されていることを意味する。また、前記カールが9mm以上であると、例えば、600mm×720mm以上の大型基板(例えば、ガラス板やポリイミドフィルムなど)上に硬化膜を設けた場合であっても、基板の反りや硬化膜のひび割れ及び欠落などの発生を効果的に抑制することができる。
 なお、硬化膜の厚さがおおよそ1mm以下であれば、硬化膜の厚さが大きいほど、前記カールが小さくなる傾向にある。前記カールは後述の実施例の記載の方法で測定した数値を用いることができる。
The larger the curl diameter, the more suppressed the warpage of the cured film. Further, when the curl is 9 mm or more, for example, even when a cured film is provided on a large substrate of 600 mm × 720 mm or more (for example, a glass plate, a polyimide film, etc.), the substrate may warp or the cured film may be damaged. It is possible to effectively suppress the occurrence of cracks, chipping, and the like.
When the thickness of the cured film is approximately 1 mm or less, the curl tends to decrease as the thickness of the cured film increases. For the curl, a numerical value measured by the method described in Examples below can be used.
《使用用途》
 本実施形態の樹脂組成物によって形成された硬化物及び積層体は、種々の用途、特に10μm以上の有機膜が用いられる光学部材やディスプレイ用途に好適に用いることができる。具体的な用途としては、例えば、フォトスペーサ、光学センサの部材(コリメータ部等)、ディスプレイ及びタッチセンサのオーバーコート層、カラーフィルタ等が挙げられる。
"Use applications"
Cured products and laminates formed from the resin composition of the present embodiment can be suitably used in various applications, particularly optical members and display applications in which an organic film of 10 μm or more is used. Specific uses include, for example, photospacers, members of optical sensors (collimators, etc.), overcoat layers of displays and touch sensors, and color filters.
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically using examples and comparative examples. The present invention is by no means limited by the following examples.
(ポリマーB-1の合成)
 加熱冷却・攪拌装置、還流冷却管、窒素導入管を備えたガラス製フラスコに、プロピレングリコールモノメチルエーテルアセテート(389.5g)、メタクリル酸(50.0g)、メチルメタクリレート(81.4g)、2-ヒドロキシエチルメタクリレート(90.7g)、ジシクロペンタニルメタクリレート(51.2g)を仕込んだ。
 これら混合物を攪拌しながら窒素雰囲気下で1時間パブリングを行い窒素で置換した後、さらに2,2’-アゾビス(イソブチロトリル)(15.3g)を添加し、80℃で8時間反応させた。
(Synthesis of polymer B-1)
Propylene glycol monomethyl ether acetate (389.5 g), methacrylic acid (50.0 g), methyl methacrylate (81.4 g), 2- Hydroxyethyl methacrylate (90.7 g) and dicyclopentanyl methacrylate (51.2 g) were charged.
After bubbling these mixtures under a nitrogen atmosphere for 1 hour while stirring and purging with nitrogen, 2,2′-azobis(isobutyrotril) (15.3 g) was further added and reacted at 80° C. for 8 hours.
 得られた溶液に2-アクリロイルオキシエチルイソシアネート(65.6g)、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(0.01g)を加え60℃で9時間反応させ、目的のポリマーB-1を得た。 2-Acryloyloxyethyl isocyanate (65.6 g) and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl (0.01 g) were added to the resulting solution and reacted at 60° C. for 9 hours. to obtain the desired polymer B-1.
 当該ポリマーが有する(メタ)アクリレートの種類は、アクリレートのみであった。また、GPCにて分子量を測定した結果、ポリマーBの重量平均分子量(Mw)は12,300であり、仕込みモル比率から計算したアクリル当量は728であった。
 得られた化合物の構造を以下に示す。
The type of (meth)acrylate that the polymer had was only acrylate. Moreover, as a result of measuring the molecular weight by GPC, the weight average molecular weight (Mw) of Polymer B was 12,300, and the acrylic equivalent calculated from the charge molar ratio was 728.
The structure of the obtained compound is shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(ポリマーB-2の合成)
 加熱冷却・攪拌装置、還流冷却管、窒素導入管を備えたガラス製フラスコに、プロピレングリコールモノメチルエーテルアセテート(305.1g)、プロピレングリコールモノメチルエーテル(138.7g)、メタクリル酸(100.0g)、メチルメタクリレート(116.3g)、ブチルアクリレート(52.6g)を仕込んだ。
 これら混合物を攪拌しながら窒素雰囲気下で1時間パブリングを行い窒素で置換した後、2,2’-アゾビス(イソブチロトリル)(46.2g)を添加し、80℃で8時間反応させた。
(Synthesis of polymer B-2)
Propylene glycol monomethyl ether acetate (305.1 g), propylene glycol monomethyl ether (138.7 g), methacrylic acid (100.0 g), Methyl methacrylate (116.3 g) and butyl acrylate (52.6 g) were charged.
The mixture was bubbled for 1 hour under a nitrogen atmosphere while being stirred, and after purging with nitrogen, 2,2′-azobis(isobutyrotril) (46.2 g) was added and reacted at 80° C. for 8 hours.
 得られた溶液にグリシジルメタクリレート(66.1g)、ジメチルベンジルアミン(0.6g)、ジブチルヒドロキシトルエン(0.02g)を加え100℃で9時間反応させ、目的のポリマーB-2を得た。 Glycidyl methacrylate (66.1 g), dimethylbenzylamine (0.6 g) and dibutylhydroxytoluene (0.02 g) were added to the resulting solution and reacted at 100°C for 9 hours to obtain the desired polymer B-2.
 当該ポリマーが有する(メタ)アクリレートの種類は、メタクリレートのみであった。また、GPCにて分子量を測定した結果、ポリマーB-2の重量平均分子量(Mw)は7,400であり、仕込みモル比率から計算したメタクリル当量は735であった。
 得られた化合物の構造を以下に示す。
The type of (meth)acrylate contained in the polymer was only methacrylate. Further, as a result of measuring the molecular weight by GPC, the weight average molecular weight (Mw) of polymer B-2 was 7,400, and the methacrylic equivalent calculated from the charging molar ratio was 735.
The structure of the obtained compound is shown below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(ポリマーB-3の合成)
 加熱冷却・攪拌装置、還流冷却管、窒素導入管を備えたガラス製フラスコに、プロピレングリコールモノメチルエーテルアセテート(570.7g)、メタクリル酸(100.0g)、ベンジルメタクリレート(245.6g)を仕込んだ。
 これら混合物を攪拌しながら窒素雰囲気下で1時間パブリングを行い窒素で置換したのち、2,2’-アゾビス(イソブチロトリル)(40.4g)を添加し、80℃で8時間反応させた。
 得られた溶液にグリシジルメタクリレート(103.2g)、ジメチルベンジルアミン(0.6g)、ジブチルヒドロキシトルエン(0.03g)を加え100℃で9時間反応させ、目的のポリマーB-3を得た。
(Synthesis of polymer B-3)
Propylene glycol monomethyl ether acetate (570.7 g), methacrylic acid (100.0 g), and benzyl methacrylate (245.6 g) were placed in a glass flask equipped with a heating/cooling/stirring device, a reflux condenser, and a nitrogen inlet tube. .
The mixture was bubbled for 1 hour under a nitrogen atmosphere while being stirred, and after purging with nitrogen, 2,2′-azobis(isobutyrotril) (40.4 g) was added and reacted at 80° C. for 8 hours.
Glycidyl methacrylate (103.2 g), dimethylbenzylamine (0.6 g) and dibutylhydroxytoluene (0.03 g) were added to the obtained solution and reacted at 100° C. for 9 hours to obtain the desired polymer B-3.
 当該ポリマーが有する(メタ)アクリレートの種類は、メタクリレートのみであった。GPCにて分子量を測定した結果、ポリマーB-3の重量平均分子量(Mw)は10,000であり、仕込みモル比率から計算したメタクリル当量は705であった。 The type of (meth)acrylate possessed by the polymer was only methacrylate. As a result of measuring the molecular weight by GPC, the weight average molecular weight (Mw) of Polymer B-3 was 10,000, and the methacrylic equivalent calculated from the charging molar ratio was 705.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(ポリマーB-4の合成)
 加熱冷却・攪拌装置、還流冷却管、窒素導入管を備えたガラス製フラスコに、シクロペンタノン(371.4g)、メタクリル酸(65.0g)、ジシクロペンタニルメタクリレート(135.0g)、を仕込んだ。
 これら混合物を攪拌しながら窒素雰囲気下で1時間パブリングを行い窒素で置換したのち、2,2’-アゾビス(イソブチロトリル)16.0gを添加し、80℃で8時間反応させた。
 得られた溶液にグリシジルメタクリレート75.0g、ジメチルベンジルアミン0.5g、4-メトキシフェノール0.03gを加え100℃で19時間反応させ、目的のポリマーB-4を得た。
(Synthesis of polymer B-4)
Cyclopentanone (371.4 g), methacrylic acid (65.0 g), and dicyclopentanyl methacrylate (135.0 g) were placed in a glass flask equipped with a heating/cooling/stirring device, a reflux condenser, and a nitrogen inlet tube. I prepared.
The mixture was bubbled for 1 hour under a nitrogen atmosphere while being stirred, and the mixture was replaced with nitrogen.
75.0 g of glycidyl methacrylate, 0.5 g of dimethylbenzylamine and 0.03 g of 4-methoxyphenol were added to the obtained solution and reacted at 100° C. for 19 hours to obtain the desired polymer B-4.
 当該ポリマーが有する(メタ)アクリレートの種類は、メタクリレートのみであった。GPCにて分子量を測定した結果、ポリマーB-4の重量平均分子量(Mw)は8,000であり、仕込みモル比率から計算したメタクリル当量は523であった The type of (meth)acrylate possessed by the polymer was only methacrylate. As a result of measuring the molecular weight by GPC, the weight average molecular weight (Mw) of the polymer B-4 was 8,000, and the methacrylic equivalent calculated from the charging molar ratio was 523.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(硬化性樹脂組成物PR-1の調製)
 ポリマーB-1(100質量部(固形分))、モノマーA-1((メタ)アクリル当量354.45(60質量部(固形分))、光重合開始剤(製品名:IRGACURE OXE01,BASFジャパン(株)製)(0.8質量部(固形分))、界面活性剤(製品名:DOWSIL Fz2122,ダウ・ケミカル社製)(0.2質量部)を混合し、固形分濃度が40質量%となるように有機溶剤であるプロピレングリコールモノメチルエーテルアセテートを加えた。
 これら混合物を撹拌した後、孔径5.0μmのメンブランフィルタで濾過し、硬化性樹脂組成物PR-1を調製した。
(Preparation of curable resin composition PR-1)
Polymer B-1 (100 parts by mass (solid content)), monomer A-1 ((meth) acrylic equivalent 354.45 (60 parts by mass (solid content)), photopolymerization initiator (product name: IRGACURE OXE01, BASF Japan Co., Ltd.) (0.8 parts by mass (solid content)) and a surfactant (product name: DOWSIL Fz2122, manufactured by Dow Chemical Co.) (0.2 parts by mass) are mixed, and the solid content concentration is 40 mass. %, an organic solvent, propylene glycol monomethyl ether acetate, was added.
After stirring these mixtures, they were filtered through a membrane filter with a pore size of 5.0 μm to prepare a curable resin composition PR-1.
(硬化性樹脂組成物PR-2~PR-18,及び硬化性樹脂組成物CE-1~CE-2の調製)
 下記表1に示す種類及び量のポリマー成分、モノマー成分、光重合開始剤、界面活性剤、有機溶媒及び任意成分を使用した以外は実施例1と同様に操作し、硬化性樹脂組成物PR-2~PR-18,及びCE-1~CE-4を調製した。
(Preparation of curable resin compositions PR-2 to PR-18 and curable resin compositions CE-1 to CE-2)
In the same manner as in Example 1 except that the types and amounts of polymer components, monomer components, photopolymerization initiators, surfactants, organic solvents and optional components shown in Table 1 below were used, a curable resin composition PR- 2 to PR-18, and CE-1 to CE-4 were prepared.
 以下に使用したモノマー,光開始剤,界面活性剤,溶剤名を示す。 The names of the monomers, photoinitiators, surfactants, and solvents used are shown below.
(モノマー)
・モノマー(A-1):
 α-(1-オキソ-2-プロペン-1-イル)-ω-[4-(1-メチル-1-フェニルエチル)フェノキシ]ポリ(オキシエチレン)(製品名:ビスコート#315,大阪有機化学工業(株)製,アクリル当量(平均値)322.13、アクリル基の数:1、メタクリル基の数:0)
(monomer)
- Monomer (A-1):
α-(1-oxo-2-propen-1-yl)-ω-[4-(1-methyl-1-phenylethyl)phenoxy]poly(oxyethylene) (product name: Viscoat #315, Osaka Organic Chemical Industry) Co., Ltd., acrylic equivalent (average value) 322.13, number of acrylic groups: 1, number of methacrylic groups: 0)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
・モノマー(A-2):
 ビスフェノールA EO3.8モル付加物ジアクリレート (製品名:ビスコート#700HV,大阪有機化学工業(株)製,アクリル当量(平均値)338.4、アクリル基の数:2、メタクリル基の数:0)
- Monomer (A-2):
Bisphenol A EO 3.8 mol adduct diacrylate (product name: Viscoat #700HV, manufactured by Osaka Organic Chemical Industry Co., Ltd., acrylic equivalent (average value) 338.4, number of acrylic groups: 2, number of methacrylic groups: 0 )
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
・モノマー(A-3):
 ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートの混合物(製品名:アロニックスM-402,東亜合成(株)製,アクリル当量(平均値)99.8、アクリル基の数(平均値):5.6、メタクリル基の数:0)
- Monomer (A-3):
A mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate (product name: Aronix M-402, manufactured by Toagosei Co., Ltd., acrylic equivalent (average value) 99.8, number of acrylic groups (average value): 5. 6, number of methacrylic groups: 0)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
・モノマー(A-4):
 トリス-(2-アクリロキシエチル)イソシアヌレート(製品名:NKエステル A-9300,新中村化学工業(株),アクリル当量141.1、アクリル基の数:3、メタクリル基の数:0)
- Monomer (A-4):
Tris-(2-acryloxyethyl) isocyanurate (product name: NK Ester A-9300, Shin-Nakamura Chemical Co., Ltd., acrylic equivalent 141.1, number of acrylic groups: 3, number of methacrylic groups: 0)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
・モノマー(A-5):
 エトキシ化ビスフェノールAジメタクリレート(製品名:NKエステル BPE-200,新中村化学工業(株)製,アクリル当量(平均値)270.3、アクリル基の数:0、メタクリル基の数:2)
- Monomer (A-5):
Ethoxylated bisphenol A dimethacrylate (product name: NK Ester BPE-200, manufactured by Shin-Nakamura Chemical Co., Ltd., acrylic equivalent (average value) 270.3, number of acrylic groups: 0, number of methacrylic groups: 2)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
・モノマー(A-6):
 トリペンタエリスリトールアクリレート、モノ及びジペンタエリスリトールアクリレート、ポリペンタエリスリトールアクリレートの混合物(製品名:ビスコート#802,大阪有機化学工業(株)製,平均アクリル当量101.4、アクリル基の数(平均値):6.8、メタクリル基の数:0)
- Monomer (A-6):
A mixture of tripentaerythritol acrylate, mono- and dipentaerythritol acrylate, and polypentaerythritol acrylate (product name: Viscoat #802, manufactured by Osaka Organic Chemical Industry Co., Ltd., average acrylic equivalent 101.4, number of acrylic groups (average value) : 6.8, number of methacrylic groups: 0)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(光重合開始剤)
・IRGACURE OXE-01(BASF(株)製)
(界面活性剤)
・シリコーン系界面活性剤(DOESIL Fz2122,ダウ・ケミカル社製)
(溶剤)
・PGMAc:プロピレングリコールモノメチルエーテルアセテート
・PGM:プロピレングリコールモノメチルエーテル
・CPN:シクロペンタノン
(Photoinitiator)
・ IRGACURE OXE-01 (manufactured by BASF Corporation)
(Surfactant)
- Silicone surfactant (DOESIL Fz2122, manufactured by Dow Chemical Company)
(solvent)
・PGMAc: propylene glycol monomethyl ether acetate ・PGM: propylene glycol monomethyl ether ・CPN: cyclopentanone
(カール試験)
-カール試験用硬化膜塗工ポリイミドフィルムの作製-
 ポリイミドフィルム(製品名:Kapton,東レ・デュポン(株)社製;厚さ25μm)を大きさ10cm×10cmに切り取り、大きさ10cm×10cm、厚さ0.7mmのソーダガラス上にテープで張り付け、コート用基板を作製した。ついで、スピンコーターを用いて硬化性樹脂組成物を乾燥膜厚が10μmとなるようにそれぞれ塗布し、ピン上で5分間静置した。その後、100℃のオーブン内で2分間加熱し、膜を乾燥させた。ついで、露光機を用いて露光を行い(22mW,100mJ)光硬化を行なった。さらに、0.4質量%の濃度のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像し、その後、純水にて30秒間リンスを行った。得られた露光及び現像後の膜を230℃のオーブン内で30分間加熱し、カール試験用の硬化膜塗工ポリイミドフィルムを得た。硬化膜の膜厚の測定方法については後述する。
(Curl test)
-Preparation of cured film-coated polyimide film for curl test-
A polyimide film (product name: Kapton, manufactured by Toray DuPont Co., Ltd.; thickness 25 μm) was cut into a size of 10 cm × 10 cm, and attached with a tape on a soda glass having a size of 10 cm × 10 cm and a thickness of 0.7 mm. A substrate for coating was produced. Then, a curable resin composition was applied using a spin coater so that the dry film thickness was 10 μm, and left to stand on a pin for 5 minutes. After that, the film was dried by heating in an oven at 100° C. for 2 minutes. Then, exposure was performed using an exposure machine (22 mW, 100 mJ) and photocuring was performed. Further, development was performed using a tetramethylammonium hydroxide aqueous solution having a concentration of 0.4% by mass, followed by rinsing with pure water for 30 seconds. The obtained film after exposure and development was heated in an oven at 230° C. for 30 minutes to obtain a cured film-coated polyimide film for curl test. A method for measuring the film thickness of the cured film will be described later.
-カール試験-
 得られた硬化膜塗工ポリイミドフィルムをカッターナイフでガラス基板から切り離した際、硬化膜自身の応力により、ポリイミドフィルムが巻き取られた。この際、カールされたポリイミドフィルムを巻き取り方向の真横から観察し、ノギスによりカール直径を測定した。具体的には、最長辺の長さと最短辺の長さとの平均値をカール直径とし、これを2回行った値の平均値を本発明におけるカール直径とした。なお、最長辺の長さと最短辺の長さは、いずれも硬化物とポリイミドフィルムを含まない長さであり、いわば、カールした硬化膜塗工ポリイミドフィルムの内径である。
-Curl test-
When the obtained cured film-coated polyimide film was separated from the glass substrate with a cutter knife, the polyimide film was wound up due to the stress of the cured film itself. At this time, the curled polyimide film was observed from the side in the winding direction, and the curl diameter was measured with a vernier caliper. Specifically, the average value of the length of the longest side and the length of the shortest side was taken as the curl diameter, and the average value of the values obtained by doing this twice was taken as the curl diameter in the present invention. The length of the longest side and the length of the shortest side are lengths that do not include the cured product and the polyimide film, and are, so to speak, the inner diameter of the curled cured film-coated polyimide film.
[膜厚測定用硬化膜塗工ガラスの作製]
 大きさ10cm×10cm、厚さ0.7mmのソーダガラス上に各実施例の硬化性樹脂組成物をそれぞれ塗布し、硬化膜塗工ガラスを作製した。この際、硬化性樹脂組成物の塗布量は、上述のカール試験用の硬化膜塗工ポリイミドフィルムの作製時と同様とした。さらに、硬化膜の作製条件は上述のカール試験用硬化膜塗工ポリイミドフィルムの作製において、ポリイミドフィルム上に硬化性樹脂組成物を塗工した際と同条件で行った。
 ついで、得られた膜厚測定用硬化膜塗工ガラス基板上の硬化膜の一部を剃刀により剥ぎ取り、触針式表面形状測定器(製品名:P-10,KLA-Tencor社製)により、硬化膜の膜厚を測定した。
[Preparation of cured film coated glass for film thickness measurement]
The curable resin composition of each example was applied onto a soda glass having a size of 10 cm×10 cm and a thickness of 0.7 mm to prepare a cured film-coated glass. At this time, the coating amount of the curable resin composition was the same as in the preparation of the cured film-coated polyimide film for the curl test. Further, the cured film was prepared under the same conditions as those for coating the curable resin composition on the polyimide film in the preparation of the cured film-coated polyimide film for the curl test.
Then, part of the cured film on the cured film-coated glass substrate for film thickness measurement was peeled off with a razor and measured with a stylus surface profiler (product name: P-10, manufactured by KLA-Tencor). , the film thickness of the cured film was measured.
[耐溶剤性試験]
 ガラスシャーレにN-メチルピロリドン(NMP)を入れ、NMP内に上述で得られた膜厚測定用硬化膜塗工ガラスを25℃(溶媒温度)で30分間浸漬した。
 30分経過後、NMPから膜厚測定用硬化膜塗工ガラスを取り出し、水洗・乾燥後の硬化膜の膜厚を測定した。耐溶剤性試験後の硬化膜の膜厚変化率(残膜率)を以下に従って算出し、耐溶剤性の指針とした。
[Solvent resistance test]
N-methylpyrrolidone (NMP) was placed in a glass petri dish, and the cured film-coated glass for film thickness measurement obtained above was immersed in NMP at 25° C. (solvent temperature) for 30 minutes.
After 30 minutes had passed, the cured film-coated glass for film thickness measurement was taken out from the NMP, and the film thickness of the cured film after washing with water and drying was measured. The film thickness change rate (remaining film rate) of the cured film after the solvent resistance test was calculated according to the following and used as a guideline for solvent resistance.
耐溶剤性試験後の残膜率(%)=
[(耐溶剤性試験後の硬化膜の膜厚)÷(耐溶剤性試験前の硬化膜の膜厚))]×100
Remaining film rate (%) after solvent resistance test =
[(Film thickness of cured film after solvent resistance test) ÷ (Film thickness of cured film before solvent resistance test)] × 100
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表中の結果に示すように、実施例の硬化性樹脂組成物は、厚膜のフィルムを形成できると共に、いずれもカール直径が9.0mm以上であり硬化膜形成時の収縮応力が抑制されていた。また、得られた硬化膜の耐溶剤性にも優れていた。
 これに対し、モノマー1分子中の(メタ)アクリル基の数は6個以下であるが、ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が2を超える比較例1の硬化性樹脂組成物、及び、1分子中の(メタ)アクリル基の数は6個を超えるモノマーを用いた比較例2の硬化性樹脂組成物は、いずれもカール直径が9mm以下であり、硬化膜形成時の収縮応力が十分に抑制されていないことがわかる。
As shown in the results in the table, the curable resin compositions of Examples can form thick films, and all of them have a curl diameter of 9.0 mm or more, and contraction stress during the formation of a cured film is suppressed. rice field. Moreover, the solvent resistance of the resulting cured film was also excellent.
On the other hand, the number of (meth)acrylic groups in one molecule of the monomer is 6 or less, but the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer exceeds 2. Curing of Comparative Example 1 The curable resin composition and the curable resin composition of Comparative Example 2 using a monomer having more than 6 (meth)acrylic groups in one molecule both have a curl diameter of 9 mm or less, and the cured film It can be seen that the shrinkage stress during formation is not sufficiently suppressed.
 2021年6月28日に出願された日本国特許出願2021-106852号の開示は、その全体が参照により本明細書に取り込まれる。
 また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 
The disclosure of Japanese Patent Application No. 2021-106852 filed on June 28, 2021 is incorporated herein by reference in its entirety.
In addition, all publications, patent applications and technical standards mentioned in the specification shall be referred to to the same extent as if each individual publication, patent application or technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.

Claims (11)

  1.  1分子中に1~6個の(メタ)アクリル基を有するモノマーと、
     1分子中に(メタ)アクリル基を有するポリマーと、を含む硬化性樹脂組成物であって、
     前記モノマー1分子中の、前記ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が2以下である、硬化性樹脂組成物。
    A monomer having 1 to 6 (meth)acrylic groups in one molecule;
    A curable resin composition containing a polymer having a (meth) acrylic group in one molecule,
    The curable resin composition, wherein the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer is 2 or less in one molecule of the monomer.
  2.  1分子中の(メタ)アクリル基の総数が1~2である前記モノマーを含む、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, comprising the monomer having 1 to 2 total (meth)acrylic groups in one molecule.
  3.  前記モノマーが、前記(メタ)アクリル基として、アクリル基及びメタクリル基のいずれか一方のみを有する、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the monomer has only one of an acrylic group and a methacrylic group as the (meth)acrylic group.
  4.  前記モノマー1分子中における、前記ポリマーの(メタ)アクリル基と同種の(メタ)アクリル基の総数が0である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the total number of (meth)acrylic groups of the same type as the (meth)acrylic groups of the polymer in one molecule of the monomer is 0.
  5.  前記ポリマーにおける、(メタ)アクリル当量が520以上である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the polymer has a (meth)acrylic equivalent of 520 or more.
  6.  前記モノマーにおける(メタ)アクリル当量が220以上である、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the (meth)acrylic equivalent of the monomer is 220 or more.
  7.  前記モノマー(x)と、前記ポリマー(y)との質量比(x:y)が、30:100~160:100である請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the mass ratio (x:y) of said monomer (x) and said polymer (y) is 30:100 to 160:100.
  8.  請求項1~請求項7のいずれか一項に記載の硬化性樹脂組成物を用いて形成された硬化膜。 A cured film formed using the curable resin composition according to any one of claims 1 to 7.
  9.  膜厚が10μm以上である請求項8に記載の硬化膜。 The cured film according to claim 8, which has a film thickness of 10 μm or more.
  10.  230℃で30分間加熱して生じるカールの直径が9.0mm以上である請求項8に記載の硬化膜。 The cured film according to claim 8, wherein the diameter of the curl generated by heating at 230°C for 30 minutes is 9.0 mm or more.
  11.  基板と、前記基板上に形成された請求項8に記載の硬化膜と、を備えた積層体。 A laminate comprising a substrate and the cured film according to claim 8 formed on the substrate.
PCT/JP2022/025437 2021-06-28 2022-06-27 Curable resin composition, cured film obtained therefrom, and layered product WO2023276911A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280042876.5A CN117500855A (en) 2021-06-28 2022-06-27 Curable resin composition, and cured film and laminate using same
KR1020247000767A KR20240018633A (en) 2021-06-28 2022-06-27 Curable resin composition, cured film using the same, and laminate
JP2023531912A JPWO2023276911A1 (en) 2021-06-28 2022-06-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-106852 2021-06-28
JP2021106852 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023276911A1 true WO2023276911A1 (en) 2023-01-05

Family

ID=84691359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025437 WO2023276911A1 (en) 2021-06-28 2022-06-27 Curable resin composition, cured film obtained therefrom, and layered product

Country Status (5)

Country Link
JP (1) JPWO2023276911A1 (en)
KR (1) KR20240018633A (en)
CN (1) CN117500855A (en)
TW (1) TW202307042A (en)
WO (1) WO2023276911A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338308A (en) * 1999-05-31 2000-12-08 Toray Ind Inc Antireflection film
JP2002067238A (en) * 2000-09-01 2002-03-05 Nippon Kayaku Co Ltd Film having cured coat of radiation-cured type resin composition
JP2013155340A (en) * 2012-01-31 2013-08-15 Idemitsu Kosan Co Ltd Hard-coat film and resin composition used for producing the same
JP2013155341A (en) * 2012-01-31 2013-08-15 Idemitsu Kosan Co Ltd Hard coat film and resin composition used for production of the same
JP2014118508A (en) * 2012-12-18 2014-06-30 Origin Electric Co Ltd Ultraviolet ray-curable adhesive composition and laminate using the same
WO2022114101A1 (en) * 2020-11-27 2022-06-02 大阪有機化学工業株式会社 Elasatomer-forming composition, elastomer, laminate, armature device, actuator, sensor, and method for manufacturing elasatomer-forming composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026029A (en) 2019-07-31 2021-02-22 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Negative type photosensitive composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338308A (en) * 1999-05-31 2000-12-08 Toray Ind Inc Antireflection film
JP2002067238A (en) * 2000-09-01 2002-03-05 Nippon Kayaku Co Ltd Film having cured coat of radiation-cured type resin composition
JP2013155340A (en) * 2012-01-31 2013-08-15 Idemitsu Kosan Co Ltd Hard-coat film and resin composition used for producing the same
JP2013155341A (en) * 2012-01-31 2013-08-15 Idemitsu Kosan Co Ltd Hard coat film and resin composition used for production of the same
JP2014118508A (en) * 2012-12-18 2014-06-30 Origin Electric Co Ltd Ultraviolet ray-curable adhesive composition and laminate using the same
WO2022114101A1 (en) * 2020-11-27 2022-06-02 大阪有機化学工業株式会社 Elasatomer-forming composition, elastomer, laminate, armature device, actuator, sensor, and method for manufacturing elasatomer-forming composition

Also Published As

Publication number Publication date
KR20240018633A (en) 2024-02-13
CN117500855A (en) 2024-02-02
TW202307042A (en) 2023-02-16
JPWO2023276911A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP5665615B2 (en) Photosensitive resin composition for color filter
KR100793946B1 (en) Photosensitive resin composition for forming column spacer of liquid crystal device
JP4998906B2 (en) Colored photosensitive resin composition, color filter produced using the same, and liquid crystal display device
JP6404557B2 (en) Curable resin composition
JP2008116493A (en) Photosensitive resin composition
JP2006023716A (en) Photosensitive resin composition
KR20130002280A (en) Curable resin composition for photo spacer, column spacer and liquid crystal display
JP6559720B2 (en) PHOTOSENSITIVE RESIN COMPOSITION, PHOTOCURRED PATTERN PRODUCED BY PHOTOSENSITIVE RESIN COMPOSITION, AND IMAGE DISPLAY DEVICE PROVIDED WITH PHOTOCURRED PATTERN
JP2011145677A (en) Photosensitive resin composition
JP4736836B2 (en) Photosensitive resin composition for forming photo spacer
JP5361373B2 (en) Photosensitive resin composition, photospacer and method for forming the same, protective film, coloring pattern, substrate for display device, and display device
JP7463465B2 (en) Transfer film, electrode protection film, laminate, electrostatic capacitance input device, and method for manufacturing touch panel
JP5603634B2 (en) Manufacturing method of resin pattern
KR102149152B1 (en) Photosensitive resin composition for photo spacer, and photo spacer
JP5387370B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film using the same, and optical waveguide using the same
JP2010054912A (en) Color photosensitive resin composition
WO2023276911A1 (en) Curable resin composition, cured film obtained therefrom, and layered product
JP6697222B2 (en) Etching resist composition and dry film
JP2007293241A (en) Photosensitive resin composition for photo spacer formation
KR20150011070A (en) A photosensitive resin composition for spacer and a spacer using the same
CN109100918B (en) Photosensitive resin composition and preparation method and application thereof
JP7309609B2 (en) Photosensitive resin composition for forming photospacer, method for forming photospacer, substrate with photospacer, and color filter
KR20110024070A (en) A colored photosensitive resin composition, color filter and liquid crystal display device having the same
JP6854147B2 (en) Resin for photo spacers, resin composition for photo spacers, photo spacers and color filters
JP7295800B2 (en) Photosensitive resin composition for forming photospacer, method for forming photospacer, substrate with photospacer, and color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531912

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247000767

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000767

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE