WO2023276878A1 - Method for reinforcing base material and composite body obtained by same - Google Patents

Method for reinforcing base material and composite body obtained by same Download PDF

Info

Publication number
WO2023276878A1
WO2023276878A1 PCT/JP2022/025293 JP2022025293W WO2023276878A1 WO 2023276878 A1 WO2023276878 A1 WO 2023276878A1 JP 2022025293 W JP2022025293 W JP 2022025293W WO 2023276878 A1 WO2023276878 A1 WO 2023276878A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
reinforcing
composite
adhered
thickness
Prior art date
Application number
PCT/JP2022/025293
Other languages
French (fr)
Japanese (ja)
Inventor
晶拡 西野
哲也 杉山
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2023276878A1 publication Critical patent/WO2023276878A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • the present invention relates to a method of reinforcing a base material and a composite obtained by the method, and more particularly, but not limited to, structures such as construction structures such as bridges and buildings, and transportation equipment such as automobiles and ships.
  • structures such as construction structures such as bridges and buildings, and transportation equipment such as automobiles and ships.
  • reinforcement for repair and reinforcement (simply referred to as "reinforcement” in this specification), or for example, by bonding a reinforcing material to a steel material to reduce weight while securing rigidity. Used in vehicle manufacturing, etc.
  • the present invention relates to a method of reinforcing a base material that can obtain a composite that can be obtained, and a composite obtained by bonding a reinforcing material to the base material obtained by the method.
  • the reinforcement method which uses an adhesive to attach the reinforcing material to the surface of the base material that makes up the structure, there is no need to use a heavy reinforcing steel plate as the splice plate, and special processing such as providing bolt holes is required. Also, the work can be carried out in a relatively short period of time. Moreover, unlike welding, the object is not limited to structures made of steel.
  • epoxy resin which is highly resistant to heat and has excellent water resistance
  • the adhesive since the epoxy resin adhesive generally has high strength and high rigidity, the stiffening effect of the reinforcing material can be sufficiently exhibited.
  • a reinforcement method in which a reinforcing material such as a fiber-reinforced composite material is adhered to the surface of a base material with an adhesive can reinforce a structure without using bolts or splicing plates. Therefore, if the stiffening efficiency of the reinforcing material is high, the material used for reinforcement can be minimized, which is advantageous in terms of cost and workability. In addition, the stiffening efficiency of the reinforcing material is extremely important in reinforcing the structure and reducing its weight.
  • the present inventors have investigated in detail the factors that contribute to the detachment resistance and rigidity development between the base material and the reinforcing material in the method of reinforcing the base material in which the reinforcing material is adhered to the surface of the base material with an adhesive. Study was carried out. As a result, when a composite is obtained by adhering a reinforcing material to the surface of a base material, a reinforced structure that achieves both peel resistance and rigidity can be realized based on parameters expressed by a predetermined formula. and completed the present invention.
  • an object of the present invention is to provide a method of reinforcing a base material to form a composite by bonding a reinforcing material to the surface of the base material with an adhesive, in which separation resistance and rigidity are compatible, and cost and workability are improved.
  • Another object of the present invention is to provide a method of reinforcing a base material which is advantageous in terms of points and which can achieve weight reduction.
  • Another object of the present invention is to provide a composite body in which a reinforcing material is adhered to a base material that has both peel resistance and rigidity and that can achieve weight reduction.
  • the gist of the present invention is as follows. [1] A method of reinforcing a base material by bonding a reinforcing material to the surface of the base material with an adhesive to form a composite, Reinforcing materials are adhered to both sides of the thickness center line of the composite when viewed in a cross section in the longitudinal direction of the resulting composite, and the following formulas (1) and (2) are satisfied. A method of reinforcing the base material.
  • E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
  • E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
  • G and h represent the shear elastic modulus and thickness of the adhesive layer.
  • l represents the bonding half length between the base material and the reinforcing material.
  • the composite has a reinforcing material adhered to both the front and back surfaces of a plate-shaped base material, and the reinforcing materials are adhered to both sides of the thickness center line in the cross section of the plate-shaped base material in the longitudinal direction.
  • the composite has a hollow columnar base member having a box-shaped cross section and a hollow portion, and a reinforcing member is adhered to the inner wall surface or the outer wall surface of the columnar base member.
  • the method for reinforcing a base material according to [1] wherein the reinforcing material is adhered to both sides of the center line.
  • E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
  • E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
  • G and h represent the shear elastic modulus and thickness of the adhesive layer.
  • l represents the bonding half length between the base material and the reinforcing material.
  • the composite has a hollow columnar base material having a box-shaped cross section and a hollow portion, and a reinforcing material is adhered to the inner wall surface or the outer wall surface of the base material.
  • a composite comprising a reinforcing material adhered to the base material according to [6], wherein the reinforcing material is adhered to both sides of the center line.
  • FIG. 1 shows an example of a composite in which a reinforcing material is adhered to a plate-like base material by the reinforcing method of the present invention.
  • (b) is a cross-sectional (cross-sectional) explanatory view along the cutting line AA.
  • FIG. 2 shows the shear stress ⁇ when the composite of FIG. 1 receives a tensile load 2P in the longitudinal direction in relation to the position x in the bond length 2l.
  • FIG. 3 is a schematic explanatory diagram showing a concept for obtaining the stiffness expression rate ⁇ .
  • FIG. 4 is a graph showing the relationship between cl and the stress concentration factor ⁇ , and the relationship between cl and the stiffness expression rate ⁇ .
  • FIG. 5 shows an example of a composite in which a reinforcing material is adhered to a square pipe-shaped hollow columnar base material by the reinforcing method of the present invention
  • (a) is a perspective explanatory view of the hollow columnar base material.
  • (b) is a cross-sectional view of the obtained composite (a cross section taken along the cutting line BB of the hollow columnar base material).
  • FIG. 6 shows an example of a composite in which a reinforcing material is adhered to a hollow columnar base material obtained by bonding a plate-shaped base material to a hat-shaped base material by the reinforcing method of the present invention.
  • FIG. 7 is an explanatory diagram showing the relationship between the thickness center line H of the composite and the rigidity center line H' of the composite.
  • FIG. 8 is a schematic diagram for explaining a test composite prepared in an example of the present invention, where (a) is an explanatory perspective view and (b) is an explanatory vertical cross-sectional view.
  • FIG. 9 is a graph plotting the area defined by the relational expressions [formulas (1) and (2)] for realizing the ideal reinforcement method according to the present invention and the results of each test composite in the experimental example.
  • FIG. 10 is a conventional example for explaining the shear lag theory, and is a cross-sectional (longitudinal cross-sectional) explanatory view showing a joint portion having an adhesive layer formed by bonding two adherends with an adhesive.
  • the present invention relates to a method of reinforcing a base material to form a composite by bonding a reinforcing material to the surface of the base material with an adhesive. Reinforcing members are adhered on both sides of the thickness center line, and the following formulas (1) and (2) are satisfied.
  • E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
  • E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
  • G and h represent the shear elastic modulus and thickness of the adhesive layer.
  • l represents the bonding half length between the base material and the reinforcing material.
  • Equation (2) is also used in differential equations appearing in Shear lag theory, and is represented by ⁇ in the following equation, for example.
  • E' 1 and t' 1 in the formula represent the elastic modulus and thickness of either the upper adherend or the lower adherend in the double wrap structure
  • E' 2 and t' 2 are the remaining represents the elastic modulus and thickness of the adherend.
  • G' and h' represent the shear elastic modulus and thickness of the adhesive layer made of adhesive in the double wrap structure.
  • the shear lag theory is, for example, the lap joint shown in FIG.
  • both the upper and lower adherends 31 and the adhesive layer 12 are regarded as elastic bodies, and when a tensile load P is applied to these adherends 31 in the x-axis direction and they are pulled together, the adhesive layer 12
  • a so-called "shear delay” occurs in which a uniform shear stress does not occur.
  • this "shear delay” it is considered that the shear stress concentrates on the end portion of the adhesive layer 12 and peeling occurs.
  • the shear lag theory is a theory that deals with the shear stress distribution when bonding dissimilar materials with an adhesive. Therefore, in the present invention, the thickness, elastic modulus, etc. of the base material, reinforcing material, and adhesive layer made of the adhesive are used as material parameters, as in c in the above equation (2). Unlike such adherend joints, the reinforcing method of the present invention relates to a continuous structure of a base material and a reinforcing material, in which the reinforcing material is adhered to the surface of the base material to form a composite.
  • FIG. 1 shows an example of a composite obtained by the base material reinforcement method of the present invention.
  • a reinforcing material 3 is adhered to both front and back surfaces of a plate-like base material 1 with an adhesive layer 2 made of an adhesive.
  • 2 shows the shear stress ⁇ when the composite of FIG. shown in relationship.
  • the reinforcing materials are adhered so as to be symmetrical on both sides of the thickness center line M of the base material, so the tensile load is 2P.
  • the adhesion half between the base material and the reinforcing material is obtained with respect to the material parameter c expressed by the above formula (3).
  • the bond edge stress ⁇ x ⁇ l (MPa) in the continuous structure composite as shown in Fig. 1 above
  • the bond layer edge stress and the stiffness expression rate ⁇ can be expressed by the formulas shown in Table 1 below when derived based on the Shear lag theory. Table 1 also shows the aforementioned material parameter c and rigidity ratio r.
  • the above ⁇ (l) divided by the average shear stress ⁇ ave is the stress concentration factor ⁇
  • the average shear stress ⁇ ave is obtained by dividing the tensile force P by the adhesion area P/l.
  • the stress concentration factor ⁇ can be expressed as follows.
  • the figure compares the displacement in the case of assuming a completely composite cross-section of the base material and the reinforcing material in the absence of the reinforcement.
  • the stiffness expression rate ⁇ is obtained from "rigidity (i) of the composite/rigidity (ii) of the composite assuming a completely composite cross section".
  • the tensile stress generated in the bonding length of the base material with respect to the above “composite stiffness (i)" is as follows. . By dividing this by the elastic modulus of the base material, the strain at the x position of the base material can be calculated. Further, by integrating the strain over the entire bond range in the length direction, the average strain over the bond length of the base material, Elongation can be calculated.
  • the average strain of the composite has the same meaning as the average strain in the bond length of the base material, and the apparent elastic modulus of the composite is "tensile force 2P/composite cross-sectional area 2t 1 +2t 2 /composite average strain", and multiplied by the cross-sectional area of the composite, the stiffness (i) of the composite is obtained.
  • the "rigidity of the composite assuming a completely synthetic cross section (ii)" can be obtained from “rigidity of the reinforcing material + rigidity of the base material”.
  • FIG. 4 is a graph showing the relationship between cl and the stress concentration factor ⁇ , which is an index of peel resistance performance, and the relationship between cl and the stiffness expression rate ⁇ , which is an index of stiffness.
  • an index of peel resistance performance
  • the stiffness expression rate
  • an index of stiffness
  • FIG. 4 what is represented by an approximate curve is a graph showing the relationship between cl and the stiffness expression rate ⁇ .
  • an approximate straight line is a graph showing the relationship between cl and the stress concentration factor ⁇ .
  • the horizontal axis is cl
  • the left vertical axis shows the value of the stiffness expression rate ⁇
  • the right vertical axis shows the stress concentration factor ⁇ .
  • the stress concentration factor ⁇ which is an index of peel resistance performance
  • the stiffness expression rate ⁇ which is an index of rigidity
  • the ideal state in the base material reinforcement method of the present invention is a stiffness expression rate ⁇ of 50% or more and a stress concentration factor ⁇ of 10 or less
  • the equations of the graphs shown in FIG. both r and cl are greater than or equal to 0) yields i) and ii) below.
  • the rigidity ratio r is 9 or less. Therefore, in order to realize an ideal reinforcement method that can increase the rigidity of the composite as much as possible while preventing peeling at the end of the adhesive layer, r ⁇ 9 and r ⁇ cl ⁇ (10/r )+10, that is, to satisfy the formulas (1) and (2) in the present invention. In addition, in the embodiment described later, the area defined by the formulas (1) and (2) is shown graphically (FIG. 8).
  • the base material to be reinforced is not particularly limited, and can be used for any structure that requires reinforcement, such as steel materials, aluminum materials (including aluminum alloy materials, hereinafter the same). , titanium materials (titanium alloys), magnesium (magnesium alloys), etc., and among them, steel materials are preferable.
  • steel material examples include iron and iron-based alloys including stainless steel, but iron and steel materials and iron-based alloys are preferable, and iron and steel materials having a higher elastic modulus than other metals are used. It is more preferable to have Examples of such steel materials include cold-rolled steel sheets for general use, drawing or ultra-deep drawing, which are standardized by Japanese Industrial Standards (JIS) as thin steel sheets used in automobiles, and workability for automobiles.
  • JIS Japanese Industrial Standards
  • steel materials such as cold-rolled high-strength steel sheets, hot-rolled steel sheets for general use and processing, hot-rolled steel sheets for automobile structures, and hot-rolled high-strength steel sheets for automobiles with workability. Carbon steel, alloy steel, high-strength steel and the like used for structures can also be mentioned.
  • the components of such steel materials are not particularly limited, but in addition to Fe and C, Si, Mn, S, P, Al, N, Cr, Mo, Ni, Cu, Ca, Mg, Ce, Hf, La, Zr , and Sb.
  • One or more of these additive elements can be appropriately selected to obtain the desired material strength and formability, and the content thereof can be adjusted as appropriate.
  • the various steel materials described above preferably have a tensile strength of 590 MPa or more, and more preferably have a tensile strength of 980 MPa or more.
  • any surface treatment may be applied to the steel material.
  • the surface treatment includes, for example, various plating treatments such as zinc plating and aluminum plating, chemical conversion treatments such as chromate treatment and non-chromate treatment, and physical or chemical etching such as sandblasting. Examples include, but are not limited to, roughening treatments.
  • alloying of plating or multiple types of surface treatments may be applied.
  • the surface treatment it is preferable that a treatment for the purpose of imparting at least rust resistance is performed.
  • the type of plating applied to the steel material is not particularly limited, and various known plating such as zinc-based plating can be used.
  • plated steel sheets steel materials
  • examples of plated steel sheets include hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, Zn-Al-Mg alloy-plated steel sheets, aluminum-plated steel sheets, electro-galvanized steel sheets, and electro-Zn-Ni alloy-plated steel sheets. can be used.
  • the reinforcing material is not particularly limited, but woven fabrics, knitted fabrics or non-woven fabrics using reinforcing fibers such as glass fibers and carbon fibers, and unidirectional materials (UD materials) in which fibers are aligned in one direction are impregnated with resin and cured. It is preferably a fiber reinforced composite material (Fiber Reinforced Plastics: FRP) obtained by dispersing short fibers of the reinforcing fibers in a resin.
  • FRP Fiber Reinforced Plastics
  • Fiber materials (reinforcing fiber materials) used for FRP include glass fiber, carbon fiber, aramid fiber, basalt fiber, ceramic fiber, etc.
  • glass fiber and carbon fiber are preferable, and carbon fiber is particularly preferable. used.
  • the FRP reinforcing material is preferably plate-shaped, and when manufacturing, the method of heating and pressurizing the laminated FRP molding prepreg (autoclave method, hot press method), or the reinforcing fiber base material placed in the mold
  • RTM method liquid resin into and impregnating and effecting
  • Pultrusion method a method of impregnating continuous fibers with resin and drawing them into a mold and heating and curing
  • resin materials containing short fibers of reinforcing fibers Generally known methods such as a method of melting and injecting into a mold (injection molding method) can be used without particular limitation.
  • the width of the reinforcing material varies depending on the type of reinforcing material, the use of the resulting composite, the purpose of the reinforcement, etc., so it is difficult to specify indiscriminately. It has a width of about 10 to 300 mm when viewed in a vertical section.
  • the thickness of the reinforcing material varies depending on the type and the purpose of the reinforcement, but in the case of the fiber-reinforced composite material as described above, it is generally within the range of 1 to 20 mm.
  • the resin (matrix resin) that forms the reinforcing material is not particularly limited, and may be thermosetting resin such as epoxy resin or vinyl ester resin, or thermoplastic resin such as nylon, polyphenylene sulfide (PPS) resin, or phenoxy resin. Either of them may be used.
  • thermosetting resin such as epoxy resin or vinyl ester resin
  • thermoplastic resin such as nylon, polyphenylene sulfide (PPS) resin, or phenoxy resin. Either of them may be used.
  • the adhesive used in the present invention is also not particularly limited, and generally employed thermosetting resins or thermoplastic resins can be used.
  • thermosetting resins room temperature or thermosetting epoxy resins, vinyl ester resins, MMA resins, acrylic resins, unsaturated polyester resins, phenolic resins, etc. are preferably used.
  • resins thermoplastic polyesters, polyolefins, polyamides, ethylene vinyl acetate and the like can be suitably used.
  • the resin used as the adhesive may be the same as the resin used for the fiber-reinforced composite material used as the reinforcing material, or different resins may be used. Further, the thickness of the adhesive layer formed by these adhesives is generally within the range of 0.1 to 5 mm.
  • the reinforcing material is adhered to both sides of the thickness center line of the composite when viewed in cross section in the longitudinal direction of the composite. This is because if the reinforcing material is adhered to only one side, the effect of bending in the composite cannot be ignored when a tensile load is applied.
  • the concept of the present invention can be applied to a composite in which the reinforcing material is adhered to one side of the base material.
  • the thickness of the composite when viewed in a cross section (cross section) perpendicular to the longitudinal direction of the composite is It is specified to reinforce the base material by adhering reinforcing materials to both sides of the center line.
  • reinforcing members 3 are bonded to both sides of the thickness center line M in the cross section of the plate-like base material 1 in the longitudinal direction via the adhesive layer 2 .
  • a reinforcing material is adhered to the inner wall surface or the outer wall surface of a hollow columnar base material having a box-shaped cross section having a hollow portion.
  • Reinforcing members 3 are adhered to opposing inner wall surfaces via adhesive layers 2, respectively, as shown in cross section (cross section). That is, the reinforcing members 3 are adhered to both sides of the hollow columnar base material 11 in the shape of a square pipe with the thickness center line M in the cross section interposed therebetween.
  • the reinforcement member 3 may be adhered to the outer wall surface of the hollow columnar base material 11 via the adhesive layer 2 instead of the inner wall surface.
  • a plate-like base material 21b is adhered to a hat-shaped base material 21a to form a hollow columnar base material 21 having a hollow portion 4.
  • the reinforcement member 3 is adhered to both sides of the hollow columnar base material 21 formed by bonding the plate-like base material 21b to the hat-shaped base material 21a with the thickness center line M in the cross section interposed therebetween.
  • the reinforcing member 3 may be adhered to the outer wall surfaces of the hat-shaped base material 21a and the plate-shaped base material 21b, respectively.
  • the present invention also includes the case where the width of the reinforcing material does not match the width of the base material, as in the examples of FIG. 5 and FIG. 3 does not match the width of the base material 1, or the width of the reinforcing member 3 shown in FIG. 6(b) does not match the width of the base material 21a or 21b.
  • the present invention operates in the bonded area where the reinforcing material is bonded to the base material.
  • the thickness center line of the composite when viewed in cross section in the longitudinal direction is The base material is reinforced by adhering reinforcing materials on both sides, but from the viewpoint of being able to substantially ignore the effect on stress distribution even if a bending moment is applied to the composite, preferably , the percentage of the ratio H'/H should be within 2%.
  • H' is an eccentric distance representing the distance between the height of the center of gravity (center of gravity position) of the base material and the center line of rigidity of the composite, and H represents the thickness of the entire composite.
  • the thickness of the adhesive layer 2 and the thickness of the reinforcing material 3 on both the front and back surfaces of the plate-shaped base material 1 are the same, and the material is also the same. is the same, the height of the center of gravity of the plate-like base material 1 and the center line of rigidity of the composite are the same, and the percentage of the ratio H'/H is 0%.
  • the eccentric distance H′ which is the distance between the height of the center of gravity of the hollow columnar base material 21 in FIG.
  • the percentage of the ratio H'/H to H [(H'/H) x 100] is within 2%, even if a bending moment is applied to the composite, the effect on the stress distribution should be substantially ignored. and the present invention can be reliably applied.
  • the present invention can be used. can be applied with certainty.
  • the base material reinforcement method of the present invention is used for reinforcement of transportation equipment such as automobiles, trains, and aircraft, and reinforcement of structural members in general industrial field structures such as industrial robots and drones.
  • it can be applied to reinforce base materials such as light metals such as steel and aluminum used in various structures, such as reinforcement of construction structures such as bridges, buildings, constructions, etc.
  • base materials such as light metals such as steel and aluminum used in various structures, such as reinforcement of construction structures such as bridges, buildings, constructions, etc.
  • a reinforcing material is adhered to a base material to obtain a composite body by ensuring rigidity while reducing weight.
  • a reinforcing material for example, by bonding a reinforcing material to a steel material, a composite that can be used for manufacturing vehicles such as electric trains and automobiles, and a composite that can be used for the arms of industrial robots and structural members of drones are obtained. It can be suitably used even in such a case.
  • a high-strength steel plate having an elastic modulus E 2 of 206000 MPa was used as the plate-shaped base material 1 .
  • a pitch-based unidirectionally reinforced CFRP pitch-based CFRP-1 having an elastic modulus E 1 of 411000 MPa and having an epoxy resin matrix was used.
  • the carbon fiber of this CFRP is a pitch-based carbon fiber (XN-80 manufactured by Nippon Graphite Fiber Co., Ltd.).
  • a polyurea-based adhesive (Polyurea-based adhesive FU-Z manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a shear modulus G of 20 MPa was used (simply referred to as polyurea-based in Table 2).
  • each bonding surface of the plate-like base material 1 and the reinforcing material 3 was polished with #120 sandpaper and degreased, and then the front and back surfaces of the plate-like base material 1 were each coated with an adhesive.
  • the reinforcing material 3 was adhered and cured for 7 days in a constant temperature state of room temperature of 20° C. in order to ensure that curing proceeded.
  • Each dimension, elastic modulus, and shear elastic modulus of the test composite described above are all after curing.
  • the stiffness expression rate ⁇ (%) can be obtained from "composite stiffness (i)/composite stiffness (ii) assuming a completely synthetic cross section". simulation). That is, using MSC Software Marc as analysis software, a test composite made of the same material as the base material, reinforcing material and adhesive according to this example and having the same shape was modeled, and the x-axis direction (longitudinal direction) A tensile load is applied to (ii) the composite stiffness when the base material and the reinforcing material are integrated without an adhesive layer (complete synthesis), and (i) the composite stiffness in the test composite of this example was obtained, and the value of (i) was divided by the value of (ii) to calculate the stiffness expression rate ⁇ (%).
  • Example 2-4 Comparative Examples 1-3
  • the PAN-based CFRP in the reinforcing material shown in Table 2 is a PAN-based unidirectionally reinforced CFRP having an elastic modulus E 1 of 135000 MPa with an epoxy resin matrix. TR50S manufactured by Mitsubishi Chemical Corporation).
  • Carbon fiber of CFRP is pitch-based carbon fiber (XN-80 manufactured by Nippon Graphite Fiber Co., Ltd.).
  • FIG. 8(a) is a perspective view of the test composites of Examples 2-4 and Comparative Examples 1-3.
  • FIG. 8(b-1) is a longitudinal sectional view of the test composite of Example 2
  • FIG. 8(b-2) corresponds to a longitudinal sectional view of the test composites of other examples and comparative examples.
  • test composite was evaluated in the same manner as in Example 1. The results are shown in Table 3 and FIG. In the plot of FIG. 9, the position of the test composite corresponding to each example and comparative example is plotted. If there is, it is indicated by x.
  • the present invention it is possible to realize a reinforcing structure that achieves both peel resistance and rigidity. Moreover, it is possible to minimize the material used for reinforcement while increasing the stiffening efficiency, which is advantageous in terms of cost and workability, and thereby reduces the weight of the resulting composite. become.
  • the method of reinforcing the base material in the present invention includes reinforcement of transportation equipment such as automobiles, trains, and aircraft, and reinforcement of structural members in general industrial field structures such as industrial robots and drones. It can be applied to reinforcement of construction structures such as objects, constructions, etc., or reinforcement of base materials such as light metals such as steel and aluminum used in various structures. In addition, it can also be applied to a case where a reinforcing material is adhered to a base material to obtain a composite that is lightweight and secures rigidity.
  • a reinforcing material for example, by bonding a reinforcing material to a steel material, a composite that can be used for manufacturing vehicles such as electric trains and automobiles, and a composite that can be used for the arms of industrial robots and structural members of drones are obtained. It can be suitably used even in such a case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

The present invention provides a method for reinforcing a base material, wherein a reinforcing material is bonded to the surface of a base material by means of an adhesive so as to form a composite body. This method for reinforcing a base material enables the achievement of a good balance between peeling resistance and stiffness, while being advantageous in terms of the cost and the workability, and enabling the achievement of weight reduction. The present invention also provides a composite body which is obtained by this method. A method for reinforcing a base material, wherein if a composite body obtained by this method is viewed in a cross section in the longitudinal direction, reinforcing materials are bonded on both sides of the composite body across the center line of the thickness of the composite body, and the requirements (1) and (2) described below are satisfied; and a composite body which is obtained by this method. E1 and t1 respectively represent the elastic modulus and the thickness of the reinforcing material. E2 and 2t2 respectively represent the elastic modulus and the thickness of the base material. G and h respectively represent the shear elastic modulus and the thickness of an adhesive layer that is formed of an adhesive. l represents the bonding half length of the base material and the reinforcing material. 

Description

母材の補強方法及びそれにより得られる複合体Reinforcement method for base material and composite obtained by the method
 この発明は、母材の補強方法及びそれにより得られる複合体に関し、詳しくは、特に制限されるものではないが、橋梁、建築物等の建設構造物や自動車、船舶等の輸送機といった構造物を補修補強(本明細書では単に「補強」という。)するような場合であったり、また、例えば、鋼材に補強材を接着して軽量化を図りながら剛性を担保して車両製造等に利用可能な複合体を得ることができる母材の補強方法、及び、それにより得られた母材に補強材が接着されてなる複合体に関するものである。 The present invention relates to a method of reinforcing a base material and a composite obtained by the method, and more particularly, but not limited to, structures such as construction structures such as bridges and buildings, and transportation equipment such as automobiles and ships. For repair and reinforcement (simply referred to as "reinforcement" in this specification), or for example, by bonding a reinforcing material to a steel material to reduce weight while securing rigidity. Used in vehicle manufacturing, etc. The present invention relates to a method of reinforcing a base material that can obtain a composite that can be obtained, and a composite obtained by bonding a reinforcing material to the base material obtained by the method.
 木製の建設材で造られた構造物はもとより、鉄鋼やコンクリート等を利用した構造物であっても、それらは腐食や塩害、荷重等の様々な原因で年数の経過と共に強度が低下し、亀裂や歪みを生じてしまう。場合によっては破壊や崩壊を招いてしまうことがある。 Not only structures made of wooden construction materials, but also structures using steel, concrete, etc., their strength decreases over time due to various causes such as corrosion, salt damage, and loads, and cracks occur. and distortion. In some cases, it may lead to destruction or collapse.
 これらを防ぐために、高力ボルトや添接板等を用いて建設材を拘束する方法や溶接により補修する方法等を採用することができるが、近年、繊維強化複合材料等からなる補強材を接着剤で接着して補強する方法が注目されている(例えば特許文献1、2参照)。 In order to prevent these problems, it is possible to adopt a method of constraining construction materials using high-strength bolts or splicing plates, or a method of repairing by welding. A method of bonding and reinforcing with an agent is attracting attention (see Patent Documents 1 and 2, for example).
 構造物を構成する母材の表面に補強材を接着剤にて接着する補強方法では、添接板として重量のある補強鋼板を使用する必要がなく、また、ボルト孔を設けるなどの特殊な加工も不要であることから、比較的短時間で作業を進めることができる。また、溶接のように鋼材からなる構造物にその対象が制限されるといったこともない。 In the reinforcement method, which uses an adhesive to attach the reinforcing material to the surface of the base material that makes up the structure, there is no need to use a heavy reinforcing steel plate as the splice plate, and special processing such as providing bolt holes is required. Also, the work can be carried out in a relatively short period of time. Moreover, unlike welding, the object is not limited to structures made of steel.
 このような補強材を接着する補強方法では、接着剤として、熱に強く耐水性にも優れるエポキシ樹脂が主に使用される。しかも、エポキシ樹脂接着剤は、一般に高強度、高剛性であるため、補強材による補剛効果を十分に発現せしめることができる。  In the reinforcing method of adhering such reinforcing materials, epoxy resin, which is highly resistant to heat and has excellent water resistance, is mainly used as the adhesive. Moreover, since the epoxy resin adhesive generally has high strength and high rigidity, the stiffening effect of the reinforcing material can be sufficiently exhibited.
 ところが、このようなエポキシ樹脂を用いたり、接着剤による接着層の厚みを薄くしたような、いわゆる「剛」の接着では、剛性変化部で剥離が生じやすい。それを防ぐために、エポキシ樹脂よりも柔らかい接着剤を用いたり、接着層の厚みを大きくして、いわゆる「柔」の接着により耐剥離性を向上させることも考えられるが、それでは補強材による補剛効率が十分に得られなくなってしまう。 However, in the so-called "rigid" adhesion, such as using such an epoxy resin or thinning the thickness of the adhesive layer, detachment is likely to occur at the rigidity change part. In order to prevent this, it is conceivable to use an adhesive that is softer than epoxy resin or increase the thickness of the adhesive layer to improve peel resistance by so-called "soft" adhesion, but stiffening with reinforcing materials Efficiency will not be obtained sufficiently.
再公表2006-088184号公報Republished publication 2006-088184 特開2009-119607号公報JP 2009-119607 A
 繊維強化複合材料等の補強材を母材の表面に接着剤で接着する補強方法は、ボルトや添接板等を用いずに構造物を補強することができる。そのため、補強材による補剛効率が高ければ、補強のために使用する材料を必要最小限に抑えることができて、コストや作業性の点で有利である。また、補強材による補剛効率は、構造物を補強するにあたって、その軽量化を図る上でも極めて重要になる。 A reinforcement method in which a reinforcing material such as a fiber-reinforced composite material is adhered to the surface of a base material with an adhesive can reinforce a structure without using bolts or splicing plates. Therefore, if the stiffening efficiency of the reinforcing material is high, the material used for reinforcement can be minimized, which is advantageous in terms of cost and workability. In addition, the stiffening efficiency of the reinforcing material is extremely important in reinforcing the structure and reducing its weight.
 ところが、上述したように、補強材による補剛効率を高めるために、いわゆる「剛」の接着を用いると、補強材と母材との接着端部での応力集中により剥離が生じやすくなってしまう。これを解消するために、いわゆる「柔」の接着を用いると、今度は補剛効率が下がってしまい、これらはトレードオフの関係にある。 However, as described above, if a so-called "rigid" bond is used to increase the stiffening efficiency of the reinforcing material, stress concentration at the bonding edge between the reinforcing material and the base material will easily cause separation. . If a so-called "soft" adhesive is used to solve this problem, the stiffening efficiency is lowered, and these are in a trade-off relationship.
 そこで、本発明者らは、母材の表面に接着剤にて補強材を接着する母材の補強方法において、母材と補強材との耐剥離性能や剛性発現に寄与する要因についての詳細な検討を行った。その結果、母材の表面に補強材を接着して複合体を得るにあたり、所定の式で表されるパラメータに基づくことで、耐剥離性と剛性とが両立された補強構造が実現されることを見出し、本発明を完成させた。 Therefore, the present inventors have investigated in detail the factors that contribute to the detachment resistance and rigidity development between the base material and the reinforcing material in the method of reinforcing the base material in which the reinforcing material is adhered to the surface of the base material with an adhesive. Study was carried out. As a result, when a composite is obtained by adhering a reinforcing material to the surface of a base material, a reinforced structure that achieves both peel resistance and rigidity can be realized based on parameters expressed by a predetermined formula. and completed the present invention.
 したがって、本発明の目的は、母材の表面に補強材を接着剤にて接着して複合体にする母材の補強方法において、耐剥離性と剛性とが両立されて、コストや作業性の点でも有利であり、しかも、軽量化を実現することができる母材の補強方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method of reinforcing a base material to form a composite by bonding a reinforcing material to the surface of the base material with an adhesive, in which separation resistance and rigidity are compatible, and cost and workability are improved. Another object of the present invention is to provide a method of reinforcing a base material which is advantageous in terms of points and which can achieve weight reduction.
 また、本発明の別の目的は、耐剥離性と剛性とが両立されて、しかも軽量化が実現できる母材に補強材が接着されてなる複合体を提供することにある。 Another object of the present invention is to provide a composite body in which a reinforcing material is adhered to a base material that has both peel resistance and rigidity and that can achieve weight reduction.
 すなわち、本発明の要旨は次のとおりである。
〔1〕母材の表面に補強材を接着剤にて接着して複合体にする母材の補強方法であって、
 得られる複合体の長手方向の断面で見た場合に、複合体の厚み中心線を挟んで両側に補強材が接着され、かつ、下記式(1)及び(2)を満足することを特徴とする、母材の補強方法。
Figure JPOXMLDOC01-appb-M000003
 Eとtは、補強材の弾性係数と厚みを表す。
 Eと2tは、母材の弾性係数と厚みを表す。
 Gとhは、接着剤からなる接着層のせん断弾性係数と厚みを表す。
 lは、母材と補強材との接着半長を表す。
〔2〕前記複合体は、板状母材の表裏両面に補強材が接着されたものであり、該板状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、〔1〕に記載の母材の補強方法。
〔3〕前記複合体は、中空部を有する断面箱型形状の中空柱状母材の内壁面又は外壁面に補強材が接着されたものであり、該中空柱状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、〔1〕に記載の母材の補強方法。
〔4〕前記補強材が繊維強化複合材料からなる、〔1〕~〔3〕のいずれかに記載の母材の補強方法。
〔5〕前記母材が鋼材からなる、〔1〕~〔4〕のいずれかに記載の母材の補強方法。
〔6〕母材の表面に補強材が接着剤にて接着された複合体であって、
 該複合体の長手方向の断面で見た場合に、複合体の厚み中心線を挟んで両側に補強材が接着されており、かつ、下記式(1)及び(2)を満足することを特徴とする、母材に補強材が接着されてなる複合体。
Figure JPOXMLDOC01-appb-M000004
 Eとtは、補強材の弾性係数と厚みを表す。
 Eと2tは、母材の弾性係数と厚みを表す。
 Gとhは、接着剤からなる接着層のせん断弾性係数と厚みを表す。
 lは、母材と補強材との接着半長を表す。
〔7〕前記複合体は、板状母材の表裏両面に補強材が接着されたものであり、該板状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、〔6〕に記載の母材に補強材が接着されてなる複合体。
〔8〕前記複合体は、中空部を有する断面箱型形状の中空柱状母材の内壁面又は外壁面に補強材が接着されたものであり、該中空柱状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、〔6〕に記載の母材に補強材が接着されてなる複合体。
〔9〕前記補強材が繊維強化複合材料からなる、〔6〕~〔8〕のいずれかに記載の母材に補強材が接着されてなる複合体。
〔10〕前記母材が鋼材からなる、〔6〕~〔9〕のいずれかに記載の母材に補強材が接着されてなる複合体。
That is, the gist of the present invention is as follows.
[1] A method of reinforcing a base material by bonding a reinforcing material to the surface of the base material with an adhesive to form a composite,
Reinforcing materials are adhered to both sides of the thickness center line of the composite when viewed in a cross section in the longitudinal direction of the resulting composite, and the following formulas (1) and (2) are satisfied. A method of reinforcing the base material.
Figure JPOXMLDOC01-appb-M000003
E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
G and h represent the shear elastic modulus and thickness of the adhesive layer.
l represents the bonding half length between the base material and the reinforcing material.
[2] The composite has a reinforcing material adhered to both the front and back surfaces of a plate-shaped base material, and the reinforcing materials are adhered to both sides of the thickness center line in the cross section of the plate-shaped base material in the longitudinal direction. The method for reinforcing a base material according to [1], wherein the base material is reinforced.
[3] The composite has a hollow columnar base member having a box-shaped cross section and a hollow portion, and a reinforcing member is adhered to the inner wall surface or the outer wall surface of the columnar base member. The method for reinforcing a base material according to [1], wherein the reinforcing material is adhered to both sides of the center line.
[4] The method for reinforcing a base material according to any one of [1] to [3], wherein the reinforcing material is made of a fiber-reinforced composite material.
[5] The method for reinforcing a base material according to any one of [1] to [4], wherein the base material is made of steel.
[6] A composite in which a reinforcing material is adhered to the surface of a base material with an adhesive,
Reinforcement members are adhered to both sides of the composite thickness center line when viewed in a cross section in the longitudinal direction of the composite, and the following formulas (1) and (2) are satisfied. A composite in which a reinforcing material is adhered to a base material.
Figure JPOXMLDOC01-appb-M000004
E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
G and h represent the shear elastic modulus and thickness of the adhesive layer.
l represents the bonding half length between the base material and the reinforcing material.
[7] The composite has a reinforcing material adhered to both the front and back surfaces of a plate-like base material, and the reinforcing material is adhered to both sides of the thickness center line in the cross section of the plate-like base material in the longitudinal direction. A composite formed by bonding a reinforcing material to the base material according to [6].
[8] The composite has a hollow columnar base material having a box-shaped cross section and a hollow portion, and a reinforcing material is adhered to the inner wall surface or the outer wall surface of the base material. A composite comprising a reinforcing material adhered to the base material according to [6], wherein the reinforcing material is adhered to both sides of the center line.
[9] A composite in which a reinforcing material is adhered to the base material according to any one of [6] to [8], wherein the reinforcing material is made of a fiber-reinforced composite material.
[10] A composite in which a reinforcing material is adhered to the base material according to any one of [6] to [9], wherein the base material is made of steel.
 本発明の補強方法を用いて母材を補強することで、耐剥離性と剛性とが両立された補強構造を実現することができる。そのため、補剛効率を高めながら、補強のために使用する材料を必要最小限に抑えることができて、コストや作業性の点で有利であり、しかも、それにより得られる複合体の軽量化を図ることができる。 By reinforcing the base material using the reinforcing method of the present invention, it is possible to realize a reinforced structure that is both peel-resistant and rigid. Therefore, it is possible to minimize the material used for reinforcement while increasing the stiffening efficiency, which is advantageous in terms of cost and workability. can be planned.
図1は、本発明の補強方法により、板状母材に補強材を接着した複合体の一例を示すものであり、(a)はその長手方向を断面で示した断面(縦断面)説明図であり、(b)は切断線A-Aに沿った断面(横断面)説明図である。FIG. 1 shows an example of a composite in which a reinforcing material is adhered to a plate-like base material by the reinforcing method of the present invention. , and (b) is a cross-sectional (cross-sectional) explanatory view along the cutting line AA. 図2は、図1の複合体が長手方向に引張荷重2Pを受けた場合のせん断応力τについて、接着長2lにおける位置xとの関係で示したものである。FIG. 2 shows the shear stress τ when the composite of FIG. 1 receives a tensile load 2P in the longitudinal direction in relation to the position x in the bond length 2l. 図3は、剛性発現率ξを求めるにあたっての考え方を示した模式説明図である。FIG. 3 is a schematic explanatory diagram showing a concept for obtaining the stiffness expression rate ξ. 図4は、clと応力集中係数αとの関係、及び、clと剛性発現率ξとの関係をそれぞれグラフにしたものである。FIG. 4 is a graph showing the relationship between cl and the stress concentration factor α, and the relationship between cl and the stiffness expression rate ξ. 図5は、本発明の補強方法により、角パイプ形状をした中空柱状母材に補強材を接着した複合体の一例を示すものであって、(a)は中空柱状母材の斜視説明図であり、(b)は得られた複合体の横断面(中空柱状母材の切断線B-Bに沿った場合の断面)説明図である。FIG. 5 shows an example of a composite in which a reinforcing material is adhered to a square pipe-shaped hollow columnar base material by the reinforcing method of the present invention, and (a) is a perspective explanatory view of the hollow columnar base material. (b) is a cross-sectional view of the obtained composite (a cross section taken along the cutting line BB of the hollow columnar base material). 図6は、本発明の補強方法により、ハット型形状をした母材に板状母材を接着してなる中空柱状母材に補強材を接着した複合体の一例を示すものであって、(a)は中空柱状母材の斜視説明図であり、(b)は得られた複合体の横断面(中空柱状母材の切断線C-Cに沿った場合の断面)説明図である。FIG. 6 shows an example of a composite in which a reinforcing material is adhered to a hollow columnar base material obtained by bonding a plate-shaped base material to a hat-shaped base material by the reinforcing method of the present invention. (a) is an explanatory perspective view of a hollow columnar base material, and (b) is an explanatory view of a cross section of the obtained composite (a cross section taken along the cutting line CC of the hollow columnar base material). 図7は、複合体の厚み中心線Hと複合体の剛性中心線H’との関係を示す説明図である。FIG. 7 is an explanatory diagram showing the relationship between the thickness center line H of the composite and the rigidity center line H' of the composite. 図8は、本発明の実施例で作製した試験複合体を説明するための模式図であって、(a)は斜視説明図であり、(b)は縦断面説明図である。FIG. 8 is a schematic diagram for explaining a test composite prepared in an example of the present invention, where (a) is an explanatory perspective view and (b) is an explanatory vertical cross-sectional view. 図9は、本発明により理想的な補強方法を実現するための関係式〔式(1)及び(2)〕からなる領域と、実験例での各試験複合体の結果をプロットしたグラフである。FIG. 9 is a graph plotting the area defined by the relational expressions [formulas (1) and (2)] for realizing the ideal reinforcement method according to the present invention and the results of each test composite in the experimental example. . 図10は、Shear lag理論を説明するための従来例であって、2つの被着体を接着剤で接着して接着層を有した継手部を示す断面(縦断面)説明図である。FIG. 10 is a conventional example for explaining the shear lag theory, and is a cross-sectional (longitudinal cross-sectional) explanatory view showing a joint portion having an adhesive layer formed by bonding two adherends with an adhesive.
 以下、本発明について詳しく説明する。
 本発明は、母材の表面に補強材を接着剤にて接着して複合体にする母材の補強方法であって、得られる複合体の長手方向の断面で見た場合に、複合体の厚み中心線を挟んで両側に補強材が接着され、かつ、下記式(1)及び(2)を満足することを特徴とする。
Figure JPOXMLDOC01-appb-M000005
 Eとtは、補強材の弾性係数と厚みを表す。
 Eと2tは、母材の弾性係数と厚みを表す。
 Gとhは、接着剤からなる接着層のせん断弾性係数と厚みを表す。
 lは、母材と補強材との接着半長を表す。
The present invention will be described in detail below.
The present invention relates to a method of reinforcing a base material to form a composite by bonding a reinforcing material to the surface of the base material with an adhesive. Reinforcing members are adhered on both sides of the thickness center line, and the following formulas (1) and (2) are satisfied.
Figure JPOXMLDOC01-appb-M000005
E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
G and h represent the shear elastic modulus and thickness of the adhesive layer.
l represents the bonding half length between the base material and the reinforcing material.
 本発明の補強方法では、上記の式(1)及び(2)に基づくことで、耐剥離性と剛性とが両立した補強構造が実現可能になる。このうち、式(2)におけるcはShear lag理論に登場する微分方程式でも用いられるものであり、例えば、下記の式で言えばωで表されるものである。
Figure JPOXMLDOC01-appb-M000006
(式中のE’とt’は、ダブルラップ構造における上部の被着体と下部の被着体のいずれか一方の弾性係数と厚みを表し、E’とt’は、残りの被着体の弾性係数と厚みを表す。また、G’とh’は、ダブルラップ構造において接着剤からなる接着層のせん断弾性係数と厚みを表す。)
In the reinforcing method of the present invention, based on the above formulas (1) and (2), it is possible to realize a reinforcing structure having both peel resistance and rigidity. Of these, c in Equation (2) is also used in differential equations appearing in Shear lag theory, and is represented by ω in the following equation, for example.
Figure JPOXMLDOC01-appb-M000006
(E' 1 and t' 1 in the formula represent the elastic modulus and thickness of either the upper adherend or the lower adherend in the double wrap structure, and E' 2 and t' 2 are the remaining represents the elastic modulus and thickness of the adherend.In addition, G' and h' represent the shear elastic modulus and thickness of the adhesive layer made of adhesive in the double wrap structure.)
 すなわち、Shear lag理論は、例えば、図10に示した重ね合わせ継手のように、伸び変形のみ生じることを仮定した2つの被着体31を接着剤で接着して接着層12を有する継手部を形成した場合に、上下の被着体31と接着層12とをいずれも弾性体として見なして、これらの被着体31のx軸方向に引張荷重Pを掛けて互いに引っ張ると、接着層12中に均一なせん断応力の生じない、いわゆる“せん断遅れ”が発生するというものである。そして、この“せん断遅れ”が起こると、接着層12の端部にせん断応力が集中して剥離が生じると考えられる。 That is, the shear lag theory is, for example, the lap joint shown in FIG. When formed, both the upper and lower adherends 31 and the adhesive layer 12 are regarded as elastic bodies, and when a tensile load P is applied to these adherends 31 in the x-axis direction and they are pulled together, the adhesive layer 12 In other words, a so-called "shear delay" occurs in which a uniform shear stress does not occur. When this "shear delay" occurs, it is considered that the shear stress concentrates on the end portion of the adhesive layer 12 and peeling occurs.
 Shear lag理論は、接着剤で異種材料を接着した際のせん断応力分布を扱った理論である。そのため、本発明では、上述した式(2)中のcのように、母材や補強材、接着剤からなる接着層の厚みや弾性係数等を材料パラメータとして利用するが、図10に示したような被着体の継手とは違い、本発明の補強方法は、母材の表面に補強材を接着して複合体にする、母材と補強材の連続構造に係るものである。 The shear lag theory is a theory that deals with the shear stress distribution when bonding dissimilar materials with an adhesive. Therefore, in the present invention, the thickness, elastic modulus, etc. of the base material, reinforcing material, and adhesive layer made of the adhesive are used as material parameters, as in c in the above equation (2). Unlike such adherend joints, the reinforcing method of the present invention relates to a continuous structure of a base material and a reinforcing material, in which the reinforcing material is adhered to the surface of the base material to form a composite.
 図1には、本発明における母材の補強方法によって得られた複合体の一例が示されている。この複合体は、板状の母材である板状母材1の表裏両面に接着剤からなる接着層2により補強材3が接着されたものである。そして、図2には、図1の複合体がその長手方向(x軸方向)に引張荷重2Pを受けた場合のせん断応力τが、母材と補強材との接着長2lにおける位置xとの関係で示されている。この図2では、先に述べたShear lag理論のせん断応力分布をもとにするが、複合体の長手方向での接着中央部(x=0)でせん断応力τが最小値となり、この接着中央部を中心にせん断応力分布は左右対称となって、接着両端でせん断応力τ(接着端部応力τx=±l)が最も高くなると考えられる。なお、図2中に示す平均せん断応力は、位置x=-l~lでの応力の平均値を表す。また、図1(a)に示したように、この複合体では、母材の厚み中心線Mを挟んで両側に対称となるように補強材が接着されていることから、引張荷重は2Pとしている。 FIG. 1 shows an example of a composite obtained by the base material reinforcement method of the present invention. In this composite, a reinforcing material 3 is adhered to both front and back surfaces of a plate-like base material 1 with an adhesive layer 2 made of an adhesive. 2 shows the shear stress τ when the composite of FIG. shown in relationship. In FIG. 2, based on the shear stress distribution of the shear lag theory described above, the shear stress τ becomes the minimum value at the bonding center (x = 0) in the longitudinal direction of the composite, and this bonding center It is considered that the shear stress distribution becomes bilaterally symmetrical with respect to the part, and the shear stress τ (adhesion end stress τ x=±l ) is highest at both ends of the adhesion. The average shear stress shown in FIG. 2 represents the average value of stresses at positions x=-l to l. In addition, as shown in FIG. 1(a), in this composite, the reinforcing materials are adhered so as to be symmetrical on both sides of the thickness center line M of the base material, so the tensile load is 2P. there is
 そこで、本発明では、母材と補強材との剛性比rを上記式(4)で表すとして、上記式(3)で表される材料パラメータcに対して母材と補強材との接着半長lを乗じたclが十分に大きいと仮定して、先の図1に示したような連続構造の複合体での接着端部応力τx=±l(MPa)、接着層の端部応力の集中係数α、及び、剛性発現率ξについて、Shear lag理論に基づいて導き出すと、下記の表1で示した式で表すことができる。なお、表1中には先述の材料パラメータc、剛性比rも併せて示している。
Figure JPOXMLDOC01-appb-T000007
Therefore, in the present invention, assuming that the rigidity ratio r between the base material and the reinforcing material is expressed by the above formula (4), the adhesion half between the base material and the reinforcing material is obtained with respect to the material parameter c expressed by the above formula (3). Assuming that cl multiplied by the length l is sufficiently large, the bond edge stress τ x = ±l (MPa) in the continuous structure composite as shown in Fig. 1 above, the bond layer edge stress and the stiffness expression rate ξ can be expressed by the formulas shown in Table 1 below when derived based on the Shear lag theory. Table 1 also shows the aforementioned material parameter c and rigidity ratio r.
Figure JPOXMLDOC01-appb-T000007
 これらの式を求めるにあたり、図1に示したような両面接着構造では、その引張における0≦x≦lの範囲での接着層に働くせん断応力の分布は、下記(8)のように表されることが知られている。
Figure JPOXMLDOC01-appb-M000008
 ここで、双曲線関数においては、clが十分に大きくなるとsinh(cl)とcosh(cl)の値はほとんど等しくなる。言い換えればtanh(cl)≒1とみなすことができる。
In obtaining these formulas, in the double-sided adhesive structure shown in FIG. It is known that
Figure JPOXMLDOC01-appb-M000008
Here, in a hyperbolic function, the values of sinh(cl) and cosh(cl) are nearly equal when cl is sufficiently large. In other words, it can be considered that tanh(cl)≈1.
 そこで、表1に示した接着端部応力の式はx=lであることから、上記の式(8)にこれを代入し、また、clが十分に大きくなるとすれば、接着端部応力τx=lは下記のように表すことができる。なお、先の図2に示したように、接着端部応力は両端で等しくなる(τx=-l=τx=+l)。
Figure JPOXMLDOC01-appb-M000009
Therefore, since the equation for the bonding edge stress shown in Table 1 is x = l, this is substituted into the above equation (8), and if cl becomes sufficiently large, the bonding edge stress τ x=l can be expressed as follows. Incidentally, as shown in FIG. 2, the bonding end stress is equal at both ends (τ x=−lx=+l ).
Figure JPOXMLDOC01-appb-M000009
 また、接着層端部の応力集中係数α(以下、単に応力集中係数αという)とは、先の図2で示したような接着長での平均せん断応力に対する接着端部応力τx=-l,+lの割合(接着端部応力/平均せん断応力)を表すものである。つまり、先のτ(l)を平均せん断応力τaveで割ったものが応力集中係数αであり、平均せん断応力τaveは引張力Pを接着面積で割ったP/lで求まることから、この応力集中係数αは下記のように表すことができる。
Figure JPOXMLDOC01-appb-M000010
In addition, the stress concentration factor α at the edge of the adhesive layer (hereinafter simply referred to as stress concentration factor α) is the adhesive edge stress τ x=-l with respect to the average shear stress at the adhesive length as shown in FIG. , +l (adhesive edge stress/average shear stress). In other words, the above τ(l) divided by the average shear stress τ ave is the stress concentration factor α, and the average shear stress τ ave is obtained by dividing the tensile force P by the adhesion area P/l. The stress concentration factor α can be expressed as follows.
Figure JPOXMLDOC01-appb-M000010
 更に、剛性発現率ξとは、図3に模式図を示したように、母材に補強材を接着した複合体に対して引張荷重を掛けたときの接着層端部の変位について、接着層が無い状態で母材と補強材の完全合成断面を仮定した場合での変位を比較したものである。つまり、複数材料からなる部材のすべての断面が引張や曲げの力に対して有効であるとして、母材と補強材との間でのずれ変形が無く、完全に一体化している状態(概念上の理想状態)が完全合成断面である。そして、剛性発現率ξは、「複合体の剛性(i)/完全合成断面を仮定した場合の複合体の剛性(ii)」から求められる。 Furthermore, as shown in the schematic diagram of FIG. The figure compares the displacement in the case of assuming a completely composite cross-section of the base material and the reinforcing material in the absence of the reinforcement. In other words, assuming that all cross sections of a member made of multiple materials are effective against tensile and bending forces, there is no shear deformation between the base material and the reinforcing material, and the state is completely integrated (conceptually) ) is the fully synthetic cross section. Then, the stiffness expression rate ξ is obtained from "rigidity (i) of the composite/rigidity (ii) of the composite assuming a completely composite cross section".
 ここで、剛性発現率ξ%を表1に記した式(7)で表すにあたり、上記「複合体の剛性(i)」に関して、母材の接着長に生じる引張応力は、下記のとおりになる。
Figure JPOXMLDOC01-appb-M000011
 これを母材の弾性率で除することで母材のxの位置でのひずみが計算でき、更にそのひずみを長さ方向の全接着範囲について積分すると、母材の接着長での平均ひずみや伸び量が計算できる。その際、clが十分に大きくなるとすれば、複合体の平均ひずみは母材の接着長での平均ひずみと同じ意味となり、複合体の見かけの弾性率は「引張力2P/複合体の断面積2t+2t/複合体の平均ひずみ」として計算でき、これに複合体の断面積を乗じれば複合体の剛性(i)となる。また、「完全合成断面を仮定した場合の複合体の剛性(ii)」については、「補強材の剛性+母材の剛性」から求めることができる。
Here, in expressing the stiffness expression rate ξ% by the formula (7) described in Table 1, the tensile stress generated in the bonding length of the base material with respect to the above "composite stiffness (i)" is as follows. .
Figure JPOXMLDOC01-appb-M000011
By dividing this by the elastic modulus of the base material, the strain at the x position of the base material can be calculated. Further, by integrating the strain over the entire bond range in the length direction, the average strain over the bond length of the base material, Elongation can be calculated. At that time, if cl is sufficiently large, the average strain of the composite has the same meaning as the average strain in the bond length of the base material, and the apparent elastic modulus of the composite is "tensile force 2P/composite cross-sectional area 2t 1 +2t 2 /composite average strain", and multiplied by the cross-sectional area of the composite, the stiffness (i) of the composite is obtained. The "rigidity of the composite assuming a completely synthetic cross section (ii)" can be obtained from "rigidity of the reinforcing material + rigidity of the base material".
 そして、このclと耐剥離性能の指標になる応力集中係数αとの関係、及び、clと剛性の指標になる剛性発現率ξとの関係をグラフにしたものが図4である。図4中、近似曲線で表されるものがclと剛性発現率ξとの関係を示すグラフである。また、近似直線で表されるものがclと応力集中係数αとの関係を示すグラフである。いずれも横軸にclをとり、左縦軸は剛性発現率ξの値を示し、右縦軸は応力集中係数αである。また、これらのグラフでは、それぞれ母材と補強材との剛性比をr=0.25、0.5、1、2、4としている。 FIG. 4 is a graph showing the relationship between cl and the stress concentration factor α, which is an index of peel resistance performance, and the relationship between cl and the stiffness expression rate ξ, which is an index of stiffness. In FIG. 4, what is represented by an approximate curve is a graph showing the relationship between cl and the stiffness expression rate ξ. Moreover, what is represented by an approximate straight line is a graph showing the relationship between cl and the stress concentration factor α. In both cases, the horizontal axis is cl, the left vertical axis shows the value of the stiffness expression rate ξ, and the right vertical axis shows the stress concentration factor α. Moreover, in these graphs, the rigidity ratios of the base material and the reinforcing material are set to r=0.25, 0.5, 1, 2, and 4, respectively.
 本発明では、接着層端部での剥離を防ぎつつ、複合体としての剛性をできるだけ高くしたいことから、耐剥離性能の指標になる応力集中係数αと剛性の指標になる剛性発現率ξについて、以下のとおりに条件設定した。すなわち、剛性発現率ξについては、一般に、接着構造において、接着剤の剛性が母材に対して低いため、補強材の剛性が完全に発現することはなく、剛性発現率ξが50%以上であれば十分な剛性が担保されると言うことができる。また、応力集中係数αについては10以下であれば耐剥離性能を満たすと言える。ちなみに、エポキシ樹脂を接着剤として用いた、いわゆる「剛」の接着をなすような場合、応力集中係数αが10以下を達成するのは一般に困難である。 In the present invention, since it is desired to increase the rigidity of the composite as much as possible while preventing detachment at the end of the adhesive layer, the stress concentration factor α, which is an index of peel resistance performance, and the stiffness expression rate ξ, which is an index of rigidity, are: Conditions were set as follows. That is, with respect to the stiffness expression rate ξ, generally, in a bonded structure, since the stiffness of the adhesive is lower than that of the base material, the rigidity of the reinforcing material does not fully appear, and when the stiffness expression rate ξ is 50% or more, It can be said that sufficient rigidity is ensured if there is. Further, it can be said that if the stress concentration factor α is 10 or less, the anti-peeling performance is satisfied. Incidentally, in the case of so-called "rigid" adhesion using an epoxy resin as an adhesive, it is generally difficult to achieve a stress concentration factor α of 10 or less.
 そこで、本発明における母材の補強方法での理想的な状態を剛性発現率ξが50%以上であり、かつ、応力集中係数αが10以下であるとして、図4に示した各グラフの式を解くと(rとclは共に0以上である)、下記i)及びii)のとおりになる。つまり、上記のような理想的な状態を得るためにはiii)の条件を満たす必要がある。
Figure JPOXMLDOC01-appb-M000012
Therefore, assuming that the ideal state in the base material reinforcement method of the present invention is a stiffness expression rate ξ of 50% or more and a stress concentration factor α of 10 or less, the equations of the graphs shown in FIG. (both r and cl are greater than or equal to 0) yields i) and ii) below. In other words, in order to obtain the above ideal state, it is necessary to satisfy the condition iii).
Figure JPOXMLDOC01-appb-M000012
 ここで、本発明における母材の補強方法において使用される母材と補強材の種類やそれらの厚み等を考慮すれば、剛性比rは9以下であるのが現実的である。そのため、接着層端部での剥離を防ぎつつ、複合体としての剛性をできるだけ高くできるような理想的な補強方法を実現するにはr≦9であり、かつ、r≦cl≦(10/r)+10、すなわち本発明における式(1)及び(2)を満たすようにすればよい。なお、後述する実施例では、この式(1)及び(2)からなる領域をグラフで図示している(図8)。 Considering the types and thicknesses of the base material and reinforcing material used in the base material reinforcing method of the present invention, it is realistic that the rigidity ratio r is 9 or less. Therefore, in order to realize an ideal reinforcement method that can increase the rigidity of the composite as much as possible while preventing peeling at the end of the adhesive layer, r ≤ 9 and r ≤ cl ≤ (10/r )+10, that is, to satisfy the formulas (1) and (2) in the present invention. In addition, in the embodiment described later, the area defined by the formulas (1) and (2) is shown graphically (FIG. 8).
 本発明において、補強対象となる母材については特に制限されず、補強を必要とするあらゆる構造物に使用されるものであって、例えば、鋼材、アルミ材(アルミ合金材を含む、以下同様)、チタン材(チタン合金)、マグネシウム(マグネシウム合金)等が挙げられるが、なかでも好適には鋼材である。 In the present invention, the base material to be reinforced is not particularly limited, and can be used for any structure that requires reinforcement, such as steel materials, aluminum materials (including aluminum alloy materials, hereinafter the same). , titanium materials (titanium alloys), magnesium (magnesium alloys), etc., and among them, steel materials are preferable.
 鋼材の材質としては、鉄と、ステンレス鋼を含む鉄系合金等が挙げられるが、鉄鋼材料、及び、鉄系合金であることが好ましく、他の金属種に比べて弾性率が高い鉄鋼材料であることがより好ましい。そのような鉄鋼材料としては、例えば、自動車に用いられる薄板状の鋼板として日本産業規格(JIS)等で規格された一般用、絞り用あるいは超深絞り用の冷間圧延鋼板、自動車用加工性冷間圧延高張力鋼板、一般用や加工用の熱間圧延鋼板、自動車構造用熱間圧延鋼板、自動車用加工性熱間圧延高張力鋼板をはじめとする鉄鋼材料があり、一般構造用や機械構造用として使用される炭素鋼、合金鋼、高張力鋼等も挙げることができる。このような鉄鋼材料の成分は特に限定されないが、Fe、Cに加え、Si、Mn、S、P、Al、N、Cr、Mo、Ni、Cu、Ca、Mg、Ce、Hf、La、Zr、Sbのうち1種又は2種以上を含有してもよい。これら添加元素は、求める材料強度及び成形性を得るために適宜1種又は2種以上を選定し、含有量も適宜調整することができる。 Examples of the steel material include iron and iron-based alloys including stainless steel, but iron and steel materials and iron-based alloys are preferable, and iron and steel materials having a higher elastic modulus than other metals are used. It is more preferable to have Examples of such steel materials include cold-rolled steel sheets for general use, drawing or ultra-deep drawing, which are standardized by Japanese Industrial Standards (JIS) as thin steel sheets used in automobiles, and workability for automobiles. There are steel materials such as cold-rolled high-strength steel sheets, hot-rolled steel sheets for general use and processing, hot-rolled steel sheets for automobile structures, and hot-rolled high-strength steel sheets for automobiles with workability. Carbon steel, alloy steel, high-strength steel and the like used for structures can also be mentioned. The components of such steel materials are not particularly limited, but in addition to Fe and C, Si, Mn, S, P, Al, N, Cr, Mo, Ni, Cu, Ca, Mg, Ce, Hf, La, Zr , and Sb. One or more of these additive elements can be appropriately selected to obtain the desired material strength and formability, and the content thereof can be adjusted as appropriate.
 なお、上記のような各種の鉄鋼材料は、590MPa以上の引張強度を有することが好ましく、980MPa以上の引張強度を有することがより好ましい。 The various steel materials described above preferably have a tensile strength of 590 MPa or more, and more preferably have a tensile strength of 980 MPa or more.
 また、鉄鋼材料には、任意の表面処理が施されていてもよい。ここで、表面処理とは、例えば、亜鉛めっき及びアルミニウムめっきなどの各種めっき処理、クロメート処理及びノンクロメート処理などの化成処理、並びに、サンドブラストのような物理的もしくはケミカルエッチングのような化学的な表面粗化処理が挙げられるが、これらに限られるものではない。また、めっきの合金化や複数種の表面処理が施されていてもよい。表面処理としては、少なくとも防錆性の付与を目的とした処理が行われていることが好ましい。 In addition, any surface treatment may be applied to the steel material. Here, the surface treatment includes, for example, various plating treatments such as zinc plating and aluminum plating, chemical conversion treatments such as chromate treatment and non-chromate treatment, and physical or chemical etching such as sandblasting. Examples include, but are not limited to, roughening treatments. In addition, alloying of plating or multiple types of surface treatments may be applied. As the surface treatment, it is preferable that a treatment for the purpose of imparting at least rust resistance is performed.
 鉄鋼材料に施すめっきの種類は特に限定されず、例えば亜鉛系めっき等のような公知の各種のめっきを用いることができる。例えば、めっき鋼板(鋼材)として、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、Zn-Al-Mg系合金めっき鋼板、アルミニウムめっき鋼板、電気亜鉛めっき鋼板、電気Zn-Ni系合金めっき鋼板等が用いられ得る。 The type of plating applied to the steel material is not particularly limited, and various known plating such as zinc-based plating can be used. Examples of plated steel sheets (steel materials) include hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, Zn-Al-Mg alloy-plated steel sheets, aluminum-plated steel sheets, electro-galvanized steel sheets, and electro-Zn-Ni alloy-plated steel sheets. can be used.
 また、補強を必要とする構造物としても特に制限はなく、自動車や電車、船舶、飛行機等の運輸・輸送機器のほか、ドローン等の無人航空機、液晶ディスプレイ等の製造工場における産業用ロボット部材等を始めとする一般産業分野の構造物、河川、道路、鉄道等の橋梁をはじめ、ビル、家屋、畜舎等の建築物や、標識等の建設物といった建設構造物、その他の各種構造物及び構造体を例示することができる。なお、母材の厚みについては特に制限されるものではないが、例えば、これらの構造物を構成する鋼材の例で言えば、一般には0.8~9mmの範囲内である。 In addition, there are no particular restrictions on structures that require reinforcement, and in addition to transportation and transportation equipment such as automobiles, trains, ships, and airplanes, unmanned aircraft such as drones, industrial robot components in manufacturing factories such as liquid crystal displays, etc. Structures in the general industrial field, including bridges for rivers, roads, railways, buildings, houses, livestock barns, construction structures such as signs, and other various structures and structures The body can be exemplified. Although the thickness of the base material is not particularly limited, it is generally within the range of 0.8 to 9 mm in the case of the steel material constituting these structures.
 また、補強材についても特に制限されないが、ガラス繊維や炭素繊維などの強化繊維を使用した織物、編物又は不織布、繊維を一方向に引き揃えた一方向材料(UD材)に樹脂を含浸硬化させたものや、前記強化繊維の短繊維を樹脂中に分散させて得た、繊維強化複合材料(Fiber Reinforced Plastics:FRP)であることが好ましい。 In addition, the reinforcing material is not particularly limited, but woven fabrics, knitted fabrics or non-woven fabrics using reinforcing fibers such as glass fibers and carbon fibers, and unidirectional materials (UD materials) in which fibers are aligned in one direction are impregnated with resin and cured. It is preferably a fiber reinforced composite material (Fiber Reinforced Plastics: FRP) obtained by dispersing short fibers of the reinforcing fibers in a resin.
 FRPに用いられる繊維材料(強化繊維材料)は、ガラス繊維や炭素繊維、アラミド繊維、バサルト繊維、セラミック繊維などが挙げられるが、本発明においてはガラス繊維や炭素繊維が好ましく、炭素繊維が特に好ましく使用される。 Fiber materials (reinforcing fiber materials) used for FRP include glass fiber, carbon fiber, aramid fiber, basalt fiber, ceramic fiber, etc. In the present invention, glass fiber and carbon fiber are preferable, and carbon fiber is particularly preferable. used.
 また、FRP補強材は板状であることが好ましく、製造に際しては積層したFRP成形用プリプレグを加熱加圧成形する方法(オートクレーブ法、熱プレス法)や、金型内に配置した強化繊維基材に液状樹脂を注入し、含浸・効果する方法(RTM法)、連続繊維に樹脂を含浸させて金型に引き込んで加熱硬化する方法(引抜成形法)、強化繊維の短繊維を含む樹脂材料を溶融して金型に射出して成型する方法(射出成型法)などの一般公知の方法を特に制限なく利用することができる。なお、補強材の幅については、補強材の種類や得られる複合体の用途、補強の目的等に応じて変わるため一概に特定するのは難しいが、一般的には、複合体の長手方向に垂直の断面で見た場合の幅が10~300mm程度である。また、補強材の厚みについても同様に、その種類や補強の目的等によって変わるが、例えば、上記のような繊維強化複合材料からなる場合、一般的には1~20mmの範囲内である。 In addition, the FRP reinforcing material is preferably plate-shaped, and when manufacturing, the method of heating and pressurizing the laminated FRP molding prepreg (autoclave method, hot press method), or the reinforcing fiber base material placed in the mold A method of injecting liquid resin into and impregnating and effecting (RTM method), a method of impregnating continuous fibers with resin and drawing them into a mold and heating and curing (pultrusion method), resin materials containing short fibers of reinforcing fibers Generally known methods such as a method of melting and injecting into a mold (injection molding method) can be used without particular limitation. It should be noted that the width of the reinforcing material varies depending on the type of reinforcing material, the use of the resulting composite, the purpose of the reinforcement, etc., so it is difficult to specify indiscriminately. It has a width of about 10 to 300 mm when viewed in a vertical section. Similarly, the thickness of the reinforcing material varies depending on the type and the purpose of the reinforcement, but in the case of the fiber-reinforced composite material as described above, it is generally within the range of 1 to 20 mm.
 また、補強材を形成する樹脂(マトリックス樹脂)としては特に限定はなく、エポキシ樹脂やビニルエステル樹脂などの熱硬化性樹脂や、ナイロンやポリフェニレンサルファイド(PPS)樹脂、フェノキシ樹脂などの熱可塑性樹脂のいずれもであってもよい。 The resin (matrix resin) that forms the reinforcing material is not particularly limited, and may be thermosetting resin such as epoxy resin or vinyl ester resin, or thermoplastic resin such as nylon, polyphenylene sulfide (PPS) resin, or phenoxy resin. Either of them may be used.
 更に、本発明で用いる接着剤についても特に制限はなく、一般に採用されるような熱硬化性樹脂又は熱可塑性樹脂を用いることができる。例えば、熱硬化性樹脂としては、常温硬化型或は熱硬化型のエポキシ樹脂、ビニルエステル樹脂、MMA樹脂、アクリル樹脂、不飽和ポリエステル樹脂、又はフェノール樹脂等が好適に使用され、一方、熱可塑性樹脂としては、熱可塑性ポリエステル、ポリオレフィン、ポリアミド、エチレン酢酸ビニル等が好適に使用可能である。なお、接着剤として用いる樹脂は、補強材として使用する繊維強化複合材料に用いられる樹脂と同じにしてもよく、互いに異なる樹脂を用いるようにしてもよい。また、これらの接着剤により形成される接着層の厚みについては、一般に0.1~5mmの範囲内である。 Furthermore, the adhesive used in the present invention is also not particularly limited, and generally employed thermosetting resins or thermoplastic resins can be used. For example, as thermosetting resins, room temperature or thermosetting epoxy resins, vinyl ester resins, MMA resins, acrylic resins, unsaturated polyester resins, phenolic resins, etc. are preferably used. As resins, thermoplastic polyesters, polyolefins, polyamides, ethylene vinyl acetate and the like can be suitably used. The resin used as the adhesive may be the same as the resin used for the fiber-reinforced composite material used as the reinforcing material, or different resins may be used. Further, the thickness of the adhesive layer formed by these adhesives is generally within the range of 0.1 to 5 mm.
 本発明における母材の補強方法では、得られる複合体の長手方向の断面で見た場合に、複合体の厚み中心線を挟んで両側に補強材が接着されるようにする。これは、片側だけに補強材が接着された場合には、引張荷重を掛けた場合に複合体における曲げの影響を無視することができなくなるためである。母材と補強材とが同程度の弾性係数を有して、かつ、互いに厚みも同程度の場合には、母材の片側に補強材が接着された複合体にしても本発明の考え方を適用することができるが、母材とは異なる材料の補強材を用いて軽量化を図りつつ、母材を補強するといった考え方においてこれは現実的ではない。そのため、本発明では、母材に引張を加えた際に発生する偏心曲げの影響を考慮して、複合体の長手方向に対して垂直な断面(横断面)で見た場合の複合体の厚み中心線を挟んで、その両側に補強材が接着されるようにして母材を補強する場合に特定している。 In the method of reinforcing the base material of the present invention, the reinforcing material is adhered to both sides of the thickness center line of the composite when viewed in cross section in the longitudinal direction of the composite. This is because if the reinforcing material is adhered to only one side, the effect of bending in the composite cannot be ignored when a tensile load is applied. In the case where the base material and the reinforcing material have approximately the same modulus of elasticity and are also approximately the same in thickness, the concept of the present invention can be applied to a composite in which the reinforcing material is adhered to one side of the base material. Although it can be applied, this is not realistic in terms of the idea of reinforcing the base material while reducing weight by using a reinforcing member made of a material different from that of the base material. Therefore, in the present invention, considering the effect of eccentric bending that occurs when tension is applied to the base material, the thickness of the composite when viewed in a cross section (cross section) perpendicular to the longitudinal direction of the composite is It is specified to reinforce the base material by adhering reinforcing materials to both sides of the center line.
 このような補強の形態として、先ず、先の図1に示したような、板状母材の表裏両面に補強材が接着される場合が挙げられる。つまり、この例では、図1(b)のとおり、板状母材1の長手方向の断面における厚み中心線Mを挟んで、その両側に補強材3が接着層2を介して接着される。 As a form of such reinforcement, first, as shown in FIG. That is, in this example, as shown in FIG. 1B, reinforcing members 3 are bonded to both sides of the thickness center line M in the cross section of the plate-like base material 1 in the longitudinal direction via the adhesive layer 2 .
 これ以外にも、中空部を有する断面箱型形状の中空柱状母材に対して、その内壁面又は外壁面に補強材を接着するような形態も挙げられる。例えば、図5では、図5(a)に示したように、角パイプの形状をして中空部4を有する断面箱型形状の中空柱状母材11に対して、図5(b)で示した断面(横断面)のように、対向する内壁面にそれぞれ接着層2を介して補強材3が接着される。つまり、角パイプの形状をした中空柱状母材11の横断面における厚み中心線Mを挟んでその両側に補強材3が接着される。その際、内壁面ではなく、中空柱状母材11の外壁面に接着層2を介して補強材3を接着するようにしてもよい。 In addition to this, there is also a form in which a reinforcing material is adhered to the inner wall surface or the outer wall surface of a hollow columnar base material having a box-shaped cross section having a hollow portion. For example, in FIG. 5, as shown in FIG. Reinforcing members 3 are adhered to opposing inner wall surfaces via adhesive layers 2, respectively, as shown in cross section (cross section). That is, the reinforcing members 3 are adhered to both sides of the hollow columnar base material 11 in the shape of a square pipe with the thickness center line M in the cross section interposed therebetween. At that time, the reinforcement member 3 may be adhered to the outer wall surface of the hollow columnar base material 11 via the adhesive layer 2 instead of the inner wall surface.
 また、図6の例では、図6(a)に示したように、ハット型形状をした母材21aに板状母材21bを接着して中空部4を有する中空柱状母材21に対して、図6(b)で示した断面(横断面)のように、対向する内壁面にそれぞれ接着層2を介して補強材3が接着される。つまり、ハット型形状母材21aに板状母材21bが貼り合わされてなる中空柱状母材21の横断面における厚み中心線Mを挟んでその両側に補強材3が接着される。この場合においても、補強材3はハット型形状母材21aと板状母材21bの外壁面にそれぞれ接着されるようにしてもよい。 In the example of FIG. 6, as shown in FIG. 6(a), a plate-like base material 21b is adhered to a hat-shaped base material 21a to form a hollow columnar base material 21 having a hollow portion 4. As shown in the cross section (cross section) of FIG. In other words, the reinforcement member 3 is adhered to both sides of the hollow columnar base material 21 formed by bonding the plate-like base material 21b to the hat-shaped base material 21a with the thickness center line M in the cross section interposed therebetween. Also in this case, the reinforcing member 3 may be adhered to the outer wall surfaces of the hat-shaped base material 21a and the plate-shaped base material 21b, respectively.
 なお、本発明では、先の図5やこの図6の例のように、補強材の幅が母材の幅と一致しない場合も含まれるが、すなわち、図5(b)で示される補強材3の幅と母材1の幅とが一致せず、或いは、図6(b)で示される補強材3の幅と母材21a又は21bの幅とが一致しないような場合での補強方法もその対象として含まれるが、このような場合には、母材に補強材が接着された接着領域において本発明が作用する。 The present invention also includes the case where the width of the reinforcing material does not match the width of the base material, as in the examples of FIG. 5 and FIG. 3 does not match the width of the base material 1, or the width of the reinforcing member 3 shown in FIG. 6(b) does not match the width of the base material 21a or 21b. Although included as a subject, in such a case the present invention operates in the bonded area where the reinforcing material is bonded to the base material.
 本発明においては、上述したように、母材に引張を加えた際に発生する偏心曲げの影響を考慮して、複合体の長手方向の断面で見た場合の厚み中心線を挟んで、その両側に補強材が接着されるようにして母材を補強するが、複合体に曲げモーメントが加わったとしても応力分布への影響を実質的に無視することができるようにする観点から、好ましくは、比H’/Hの百分率が2%以内になるようにするのがよい。ここで、H’は母材の重心高さ(重心位置)と複合体の剛性の中心線との距離を表す偏心距離であり、Hは複合体全体の厚みを表す。 In the present invention, as described above, considering the effect of eccentric bending that occurs when tension is applied to the base material, the thickness center line of the composite when viewed in cross section in the longitudinal direction is The base material is reinforced by adhering reinforcing materials on both sides, but from the viewpoint of being able to substantially ignore the effect on stress distribution even if a bending moment is applied to the composite, preferably , the percentage of the ratio H'/H should be within 2%. Here, H' is an eccentric distance representing the distance between the height of the center of gravity (center of gravity position) of the base material and the center line of rigidity of the composite, and H represents the thickness of the entire composite.
 先の図1の例において、板状母材1の表裏両面における接着層2の厚みと補強材3の厚みとがいずれも同じであり、かつその材質も同じであってせん断弾性係数や弾性係数が同一であれば、板状母材1の重心高さと複合体の剛性中心線とは一致して、比H’/Hの百分率は0%である。一方で、例えば、図7に示したように、先の図6に示した中空柱状母材21を用いる例において、図6(b)とは違い、ハット型形状母材21aの外壁面側に接着層2を介して補強材3を接着する場合には、図6における中空柱状母材21の重心高さと複合体の剛性中心線との距離である偏心距離H’と、複合体の高さHとの比H’/Hの百分率〔(H’/H)×100〕が2%以内であれば、複合体に曲げモーメントが加わったとしても応力分布への影響を実質的に無視することができて、本発明を確実に適用することができる。同様に、先の図1の例において、板状母材1の表裏両面における補強材3の材質や厚みが異なる場合でも、この比H’/Hの百分率が2%以内であれば、本発明を確実に適用することができる。 In the example of FIG. 1, the thickness of the adhesive layer 2 and the thickness of the reinforcing material 3 on both the front and back surfaces of the plate-shaped base material 1 are the same, and the material is also the same. is the same, the height of the center of gravity of the plate-like base material 1 and the center line of rigidity of the composite are the same, and the percentage of the ratio H'/H is 0%. On the other hand, for example, as shown in FIG. 7, in the example using the hollow columnar base material 21 shown in FIG. 6, unlike FIG. When the reinforcing material 3 is adhered via the adhesive layer 2, the eccentric distance H′, which is the distance between the height of the center of gravity of the hollow columnar base material 21 in FIG. If the percentage of the ratio H'/H to H [(H'/H) x 100] is within 2%, even if a bending moment is applied to the composite, the effect on the stress distribution should be substantially ignored. and the present invention can be reliably applied. Similarly, in the example of FIG. 1, even if the material and thickness of the reinforcing material 3 on both sides of the plate-shaped base material 1 are different, as long as the percentage of the ratio H'/H is within 2%, the present invention can be used. can be applied with certainty.
 本発明における母材の補強方法は、上述したように、自動車や電車、航空機などの運輸・輸送機器の補強や、産業用ロボットやドローン等のような一般産業分野構造物における構造部材の補強をはじめ、橋梁、建築物、建設物等のような建設構造物の補強のように、各種構造物に使用される鉄鋼やアルミなどの軽金属等の母材を補強する場合に適用することができるほか、母材に補強材を接着して、軽量化を図りながら剛性を担保して複合体を得るような場合にも適用することができる。すなわち、例えば、鋼材に補強材を接着して、電車や自動車等の車両製造等に利用可能な複合体を得ることや、産業用ロボットのアームやドローンの構造部材に利用可能な複合体を得るような場合にも好適に利用することができる。 As described above, the base material reinforcement method of the present invention is used for reinforcement of transportation equipment such as automobiles, trains, and aircraft, and reinforcement of structural members in general industrial field structures such as industrial robots and drones. First, it can be applied to reinforce base materials such as light metals such as steel and aluminum used in various structures, such as reinforcement of construction structures such as bridges, buildings, constructions, etc. It can also be applied to a case where a reinforcing material is adhered to a base material to obtain a composite body by ensuring rigidity while reducing weight. That is, for example, by bonding a reinforcing material to a steel material, a composite that can be used for manufacturing vehicles such as electric trains and automobiles, and a composite that can be used for the arms of industrial robots and structural members of drones are obtained. It can be suitably used even in such a case.
 本発明に係る母材の補強方法の作用効果を実証するために、以下の実験例を行った。なお、本発明はこれらの内容に制限されるものではない。 In order to demonstrate the effects of the base material reinforcement method according to the present invention, the following experimental examples were conducted. In addition, this invention is not restricted to these contents.
(実施例1)
 母材、補強材、及び接着剤を用いて、試験複合体を作製した。この試験複合体は、図1に示したように、厚さ2t=1.6mm、幅w=25mm、長さL=250mmの板状母材1の表裏面(上下面)に対して、それぞれ厚さt=0.4mm、幅w=25mm、長さ2l=160mmの補強材3が厚みh=0.2mmの接着層2を介して接着されたものである。なお、図8(a)には、実施例1に係る試験複合体の斜視図が示されており、図8(b-2)はその縦断面図を示す。
(Example 1)
Test composites were made using the matrix, reinforcement, and adhesive. This test composite, as shown in FIG . Reinforcing members 3 each having a thickness t 1 =0.4 mm, a width w=25 mm, and a length 21=160 mm are adhered via an adhesive layer 2 having a thickness h=0.2 mm. 8(a) shows a perspective view of the test composite according to Example 1, and FIG. 8(b-2) shows its vertical sectional view.
 この試験複合体を形成する部材のうち、板状母材1としては、弾性係数E=206000MPaの高張力鋼板を使用した。また、補強材3としては、エポキシ樹脂をマトリックスとする弾性係数E=411000MPaのピッチ系一方向強化CFRP(ピッチ系CFRP-1)を使用した。このCFRPの炭素繊維はピッチ系炭素繊維(日本グラファイトファイバー社製XN-80)である。更に、接着剤としては、せん断弾性係数G=20MPaのポリウレア系接着剤(日鉄ケミカル&マテリアル社製ポリウレア系接着剤FU-Z)を使用した(表2では単にポリウレア系と表記する)。 Among the members forming this test composite, a high-strength steel plate having an elastic modulus E 2 of 206000 MPa was used as the plate-shaped base material 1 . As the reinforcing member 3, a pitch-based unidirectionally reinforced CFRP (pitch-based CFRP-1) having an elastic modulus E 1 of 411000 MPa and having an epoxy resin matrix was used. The carbon fiber of this CFRP is a pitch-based carbon fiber (XN-80 manufactured by Nippon Graphite Fiber Co., Ltd.). Furthermore, as the adhesive, a polyurea-based adhesive (Polyurea-based adhesive FU-Z manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a shear modulus G of 20 MPa was used (simply referred to as polyurea-based in Table 2).
 試験複合体を得るにあたっては、板状母材1及び補強材3の各接着面を#120のサンドペーパーで研磨し、脱脂してから、板状母材1の表裏両面にそれぞれ接着剤にて補強材3を接着して、室温20℃の恒温状態で硬化を確実に進めるために7日養生した。先に記した試験複合体の各寸法と弾性係数、せん断弾性係数は、いずれも養生後のものである。これらの値について表2にまとめて示している。 In obtaining the test composite, each bonding surface of the plate-like base material 1 and the reinforcing material 3 was polished with #120 sandpaper and degreased, and then the front and back surfaces of the plate-like base material 1 were each coated with an adhesive. The reinforcing material 3 was adhered and cured for 7 days in a constant temperature state of room temperature of 20° C. in order to ensure that curing proceeded. Each dimension, elastic modulus, and shear elastic modulus of the test composite described above are all after curing. These values are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記のようにして得られた試験複合体について、先に記した式(4)に基づき母材と補強材との剛性比rを求めると共に、式(3)の材料パラメータcを用いてclを求めた。また、以下に記した方法により試験複合体の評価を行った。これらについて表3にまとめて示す。また、図9には、前述した理想的な補強方法を実現するための関係式〔式(1)及び(2)〕からなる領域が破線で囲まれるようにして図示されており、本実施例に係る試験複合体が該当する箇所をプロット(実1の●)で示している。 For the test composite obtained as described above, the stiffness ratio r between the base material and the reinforcing material is obtained based on the above-described formula (4), and cl is calculated using the material parameter c of formula (3). asked. The test composites were also evaluated by the methods described below. These are summarized in Table 3. In addition, in FIG. 9, a region defined by the relational expressions [formulas (1) and (2)] for realizing the above-described ideal reinforcement method is shown surrounded by broken lines. Plots (● in Ex.
[鋼材弾性域での剥離評価]
 上記で得られた試験複合体に対する引張試験を万能試験機(インストロン社製5985型万能材料試験機)を用いて変位制御により試験速度2mm/minの条件にて行い、同様の方法にて行った板状母材1として用いた鋼材単体の引張試験での鋼材の降伏強度(299MPa)と比較することで評価を行った。
 すなわち、鋼材単独での降伏強度を基準として試験複合体の接着層2の剥離強度が高ければ「剥離あり」と判断し、接着層2の剥離強度が低ければ「剥離なし」と判断した。
[Peeling evaluation in steel elastic range]
A tensile test on the test composite obtained above was performed using a universal testing machine (Instron Model 5985 universal material testing machine) under conditions of a test speed of 2 mm/min under displacement control, and conducted in the same manner. The yield strength (299 MPa) of the steel material used as the plate-shaped base material 1 was compared with the yield strength (299 MPa) of the steel material alone in the tensile test.
That is, based on the yield strength of the steel material alone, if the peel strength of the adhesive layer 2 of the test composite was high, it was judged to be "peeled", and if the peel strength of the adhesive layer 2 was low, it was judged to be "no peeled".
[剛性発現率ξ]
 前述したように、剛性発現率ξ(%)は「複合体の剛性(i)/完全合成断面を仮定した場合の複合体の剛性(ii)」から求められるところ、本実施例ではFEM解析(シミュレーション)により評価した。
 すなわち、解析ソフトウェアとしてエムエスシーソフトウェア社Marcを使用し、本実施例に係る母材、補強材及び接着剤と同じ材料で、同じ形状からなる試験複合体をモデル化し、x軸方向(長手方向)に引張荷重を与えて、(ii)接着層無しで母材と補強材とを一体化した場合(完全合成)の複合体剛性と、(i)本実施例の試験複合体での複合体剛性とを求めて、(i)の数値を(ii)の数値で除することで剛性発現率ξ(%)を算出した。
[Rigidity expression ξ]
As described above, the stiffness expression rate ξ (%) can be obtained from "composite stiffness (i)/composite stiffness (ii) assuming a completely synthetic cross section". simulation).
That is, using MSC Software Marc as analysis software, a test composite made of the same material as the base material, reinforcing material and adhesive according to this example and having the same shape was modeled, and the x-axis direction (longitudinal direction) A tensile load is applied to (ii) the composite stiffness when the base material and the reinforcing material are integrated without an adhesive layer (complete synthesis), and (i) the composite stiffness in the test composite of this example was obtained, and the value of (i) was divided by the value of (ii) to calculate the stiffness expression rate ξ (%).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(実施例2~4、比較例1~3)
 使用する部材のうち補強材と接着剤を表2に示したものに変更し、また、各部材の寸法や厚みを表2に示したように変更した以外は実施例1と同様にして、実施例2~4及び比較例1~3に係る試験複合体を得た。ここで、表2で示した補強材におけるPAN系CFRPは、エポキシ樹脂をマトリックスとする弾性係数E=135000MPaのPAN系一方向強化CFRPであって、このCFRPの炭素繊維はPAN系炭素繊維(三菱ケミカル社製TR50S)である。また、ピッチ系CFRP-2は、エポキシ樹脂をマトリックスとする弾性係数E=137000MPaのピッチ系疑似等方強化CFRP([(0/45/90/-45)s]3)であって、このCFRPの炭素繊維はピッチ系炭素繊維(日本グラファイトファイバー社製XN-80)である。一方、接着剤については、実施例1で使用したポリウレア系接着剤の他に、せん断弾性係数G=1154MPaのビスフェノールA系エポキシ樹脂接着剤(ナガセケムテックス社製AW136N/HY994)を使用した(表2では単にエポキシ系と表記する)。なお、図8(a)は、実施例2~4、比較例1~3の試験複合体の斜視図である。図8(b-1)は、実施例2の試験複合体の縦断面図であり、図8(b-2)はその他の実施例、比較例の試験複合体の縦断面図に相当する。
(Examples 2-4, Comparative Examples 1-3)
In the same manner as in Example 1, except that the reinforcing material and adhesive among the members used were changed to those shown in Table 2, and the dimensions and thickness of each member were changed as shown in Table 2. Test composites according to Examples 2-4 and Comparative Examples 1-3 were obtained. Here, the PAN-based CFRP in the reinforcing material shown in Table 2 is a PAN-based unidirectionally reinforced CFRP having an elastic modulus E 1 of 135000 MPa with an epoxy resin matrix. TR50S manufactured by Mitsubishi Chemical Corporation). In addition, the pitch-based CFRP-2 is a pitch-based pseudo-isotropically strengthened CFRP ([(0/45/90/-45)s]3) having an elastic modulus E 1 = 137000 MPa with an epoxy resin matrix. Carbon fiber of CFRP is pitch-based carbon fiber (XN-80 manufactured by Nippon Graphite Fiber Co., Ltd.). On the other hand, as the adhesive, in addition to the polyurea-based adhesive used in Example 1, a bisphenol A-based epoxy resin adhesive (AW136N/HY994 manufactured by Nagase ChemteX Co., Ltd.) having a shear modulus of elasticity G = 1154 MPa was used (Table 1). 2, simply referred to as epoxy). FIG. 8(a) is a perspective view of the test composites of Examples 2-4 and Comparative Examples 1-3. FIG. 8(b-1) is a longitudinal sectional view of the test composite of Example 2, and FIG. 8(b-2) corresponds to a longitudinal sectional view of the test composites of other examples and comparative examples.
 得られた試験複合体について、実施例1と同様にして評価した。結果を表3及び図9に示す。なお、図9のプロットでは、各実施例、比較例ごとに該当する試験複合体の位置をプロットしているが、その際、上記剥離評価の結果が剥離なしの場合には●で示し、剥離ありの場合には×で示している。 The obtained test composite was evaluated in the same manner as in Example 1. The results are shown in Table 3 and FIG. In the plot of FIG. 9, the position of the test composite corresponding to each example and comparative example is plotted. If there is, it is indicated by x.
 上記結果から分かるように、比較例1~3に係る試験複合体は、少なくとも先の剥離評価で剥離が認められるか、又は剛性発現率ξが50%に達しないものであり、これらの試験複合体は図9に示されるとおり、本発明の式(1)及び(2)からなる領域から外れるものであった。それに対して、実施例1~4に係る試験複合体は、剥離評価で剥離は認められず、剛性発現率ξも50%以上を示す(60%以上を示す)ものであり、これらはいずれも本発明の式(1)及び(2)からなる領域に含まれていた。 As can be seen from the above results, in the test composites according to Comparative Examples 1 to 3, peeling was observed at least in the previous peeling evaluation, or the stiffness expression rate ξ did not reach 50%. The body was outside the region defined by formulas (1) and (2) of the present invention, as shown in FIG. On the other hand, in the test composites of Examples 1 to 4, no peeling was observed in the peeling evaluation, and the stiffness expression rate ξ was 50% or more (60% or more). It was included in the region consisting of formulas (1) and (2) of the present invention.
 したがって、本発明によれば、耐剥離性と剛性とが両立された補強構造を実現することができる。しかも、補剛効率を高めながら、補強のために使用する材料を必要最小限に抑えることができ、コストや作業性の点でも有利であり、それによって得られる複合体の軽量化も図られることになる。 Therefore, according to the present invention, it is possible to realize a reinforcing structure that achieves both peel resistance and rigidity. Moreover, it is possible to minimize the material used for reinforcement while increasing the stiffening efficiency, which is advantageous in terms of cost and workability, and thereby reduces the weight of the resulting composite. become.
 本発明における母材の補強方法は、自動車や電車、航空機などの運輸・輸送機器の補強や、産業用ロボットやドローン等のような一般産業分野構造物における構造部材の補強をはじめ、橋梁、建築物、建設物等のような建設構造物の補強であったり、各種構造物に使用される鉄鋼やアルミなどの軽金属等の母材を補強する場合などに適用することができる。加えて、母材に補強材を接着して、軽量化を図りながら剛性を担保して複合体を得るような場合にも適用することができる。すなわち、例えば、鋼材に補強材を接着して、電車や自動車等の車両製造等に利用可能な複合体を得ることや、産業用ロボットのアームやドローンの構造部材に利用可能な複合体を得るような場合にも好適に利用することができる。 The method of reinforcing the base material in the present invention includes reinforcement of transportation equipment such as automobiles, trains, and aircraft, and reinforcement of structural members in general industrial field structures such as industrial robots and drones. It can be applied to reinforcement of construction structures such as objects, constructions, etc., or reinforcement of base materials such as light metals such as steel and aluminum used in various structures. In addition, it can also be applied to a case where a reinforcing material is adhered to a base material to obtain a composite that is lightweight and secures rigidity. That is, for example, by bonding a reinforcing material to a steel material, a composite that can be used for manufacturing vehicles such as electric trains and automobiles, and a composite that can be used for the arms of industrial robots and structural members of drones are obtained. It can be suitably used even in such a case.
1:母材、2:接着層、3:補強材、4:中空部、11:母材、21a:ハット型形状母材、21b:板状母材、31:被着体。
 
1: base material, 2: adhesive layer, 3: reinforcing material, 4: hollow portion, 11: base material, 21a: hat-shaped base material, 21b: plate-like base material, 31: adherend.

Claims (10)

  1.  母材の表面に補強材を接着剤にて接着して複合体にする母材の補強方法であって、
     得られる複合体の長手方向の断面で見た場合に、複合体の厚み中心線を挟んで両側に補強材が接着され、かつ、下記式(1)及び(2)を満足することを特徴とする、母材の補強方法。
    Figure JPOXMLDOC01-appb-M000001
     Eとtは、補強材の弾性係数と厚みを表す。
     Eと2tは、母材の弾性係数と厚みを表す。
     Gとhは、接着剤からなる接着層のせん断弾性係数と厚みを表す。
     lは、母材と補強材との接着半長を表す。
    A method for reinforcing a base material to form a composite by bonding a reinforcing material to the surface of the base material with an adhesive,
    Reinforcing materials are adhered to both sides of the thickness center line of the composite when viewed in a cross section in the longitudinal direction of the resulting composite, and the following formulas (1) and (2) are satisfied. A method of reinforcing the base material.
    Figure JPOXMLDOC01-appb-M000001
    E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
    E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
    G and h represent the shear elastic modulus and thickness of the adhesive layer.
    l represents the bonding half length between the base material and the reinforcing material.
  2.  前記複合体は、板状母材の表裏両面に補強材が接着されたものであり、該板状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、請求項1に記載の母材の補強方法。 The composite has reinforcing materials bonded to both front and back surfaces of a plate-shaped base material, and the reinforcing materials are bonded to both sides of the thickness center line in a cross section in the longitudinal direction of the plate-shaped base material. The method for reinforcing a base material according to claim 1.
  3.  前記複合体は、中空部を有する断面箱型形状の中空柱状母材の内壁面又は外壁面に補強材が接着されたものであり、該中空柱状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、請求項1に記載の母材の補強方法。 The composite has a hollow columnar base material having a box-shaped cross section and a hollow portion, and a reinforcing material is adhered to the inner wall surface or the outer wall surface of the base material. 2. The method of reinforcing a base material according to claim 1, wherein the reinforcing material is adhered to both sides of the sandwiched material.
  4.  前記補強材が繊維強化複合材料からなる、請求項1~3のいずれかに記載の母材の補強方法。 The method for reinforcing a base material according to any one of claims 1 to 3, wherein the reinforcing material is made of a fiber-reinforced composite material.
  5.  前記母材が鋼材からなる、請求項1~3のいずれかに記載の母材の補強方法。 The method of reinforcing a base material according to any one of claims 1 to 3, wherein the base material is made of steel.
  6.    母材の表面に補強材が接着剤にて接着された複合体であって、
     該複合体の長手方向の断面で見た場合に、複合体の厚み中心線を挟んで両側に補強材が接着されており、かつ、下記式(1)及び(2)を満足することを特徴とする、母材に補強材が接着されてなる複合体。
    Figure JPOXMLDOC01-appb-M000002
     Eとtは、補強材の弾性係数と厚みを表す。
     Eと2tは、母材の弾性係数と厚みを表す。
     Gとhは、接着剤からなる接着層のせん断弾性係数と厚みを表す。
     lは、母材と補強材との接着半長を表す。
    A composite in which a reinforcing material is adhered to the surface of a base material with an adhesive,
    Reinforcement members are adhered to both sides of the composite thickness center line when viewed in a cross section in the longitudinal direction of the composite, and the following formulas (1) and (2) are satisfied. A composite in which a reinforcing material is adhered to a base material.
    Figure JPOXMLDOC01-appb-M000002
    E 1 and t 1 represent the elastic modulus and thickness of the stiffener.
    E 2 and 2t 2 represent the elastic modulus and thickness of the base material.
    G and h represent the shear elastic modulus and thickness of the adhesive layer.
    l represents the bonding half length between the base material and the reinforcing material.
  7.  前記複合体は、板状母材の表裏両面に補強材が接着されたものであり、該板状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、請求項6に記載の母材に補強材が接着されてなる複合体。 The composite has reinforcing materials bonded to both front and back surfaces of a plate-shaped base material, and the reinforcing materials are bonded to both sides of the thickness center line in a cross section in the longitudinal direction of the plate-shaped base material. A composite formed by bonding a reinforcing material to the base material according to claim 6 .
  8.  前記複合体は、中空部を有する断面箱型形状の中空柱状母材の内壁面又は外壁面に補強材が接着されたものであり、該中空柱状母材の長手方向の断面における厚み中心線を挟んでその両側に補強材が接着される、請求項6に記載の母材に補強材が接着されてなる複合体。 The composite has a hollow columnar base material having a box-shaped cross section and a hollow portion, and a reinforcing material is adhered to the inner wall surface or the outer wall surface of the base material. 7. The composite of claim 6, wherein the base material is sandwiched and the reinforcing material is adhered to both sides thereof.
  9.  前記補強材が繊維強化複合材料からなる、請求項6~8のいずれかに記載の母材に補強材が接着されてなる複合体。 A composite in which a reinforcing material is adhered to a base material according to any one of claims 6 to 8, wherein the reinforcing material is made of a fiber-reinforced composite material.
  10.  前記母材が鋼材からなる、請求項6~8のいずれかに記載の母材に補強材が接着されてなる複合体。
     
    9. The composite according to any one of claims 6 to 8, wherein the base material is made of steel, and a reinforcing material is adhered to the base material.
PCT/JP2022/025293 2021-06-30 2022-06-24 Method for reinforcing base material and composite body obtained by same WO2023276878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108641A JP2023006178A (en) 2021-06-30 2021-06-30 Reinforcing method of base material and composite obtained therefrom
JP2021-108641 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276878A1 true WO2023276878A1 (en) 2023-01-05

Family

ID=84691394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025293 WO2023276878A1 (en) 2021-06-30 2022-06-24 Method for reinforcing base material and composite body obtained by same

Country Status (2)

Country Link
JP (1) JP2023006178A (en)
WO (1) WO2023276878A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010168A1 (en) * 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member
JP2000064505A (en) * 1998-08-26 2000-02-29 Daiwa House Ind Co Ltd Carbon fiber reinforced plastic composite steel member
WO2006088184A1 (en) * 2005-02-21 2006-08-24 Osaka University Reinforcement for building structure, reinforced building structure, and method of reinforcing building structure
JP2009119607A (en) * 2007-11-09 2009-06-04 Osaka Univ Method for manufacturing stiffening insert and stiffening insert manufactured by the method
CN102729544A (en) * 2012-07-20 2012-10-17 武汉大学 FRP (Fiber Reinforced Polymer)-steel advanced composite material for structure reinforcement and preparation method thereof
JP2017025620A (en) * 2015-07-24 2017-02-02 国立大学法人京都大学 Reinforcing structure of steel material and reinforcing method of steel material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010168A1 (en) * 1997-08-21 1999-03-04 Toray Industries, Inc. Light metal/cfrp structural member
JP2000064505A (en) * 1998-08-26 2000-02-29 Daiwa House Ind Co Ltd Carbon fiber reinforced plastic composite steel member
WO2006088184A1 (en) * 2005-02-21 2006-08-24 Osaka University Reinforcement for building structure, reinforced building structure, and method of reinforcing building structure
JP2009119607A (en) * 2007-11-09 2009-06-04 Osaka Univ Method for manufacturing stiffening insert and stiffening insert manufactured by the method
CN102729544A (en) * 2012-07-20 2012-10-17 武汉大学 FRP (Fiber Reinforced Polymer)-steel advanced composite material for structure reinforcement and preparation method thereof
JP2017025620A (en) * 2015-07-24 2017-02-02 国立大学法人京都大学 Reinforcing structure of steel material and reinforcing method of steel material

Also Published As

Publication number Publication date
JP2023006178A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
EP2646242B1 (en) Metal sheet - fiber reinforced composite laminate
US11945205B2 (en) Curved panel part
WO2020017662A1 (en) Vehicle structural member
WO2023276878A1 (en) Method for reinforcing base material and composite body obtained by same
US11541933B2 (en) Automotive structural member
JP6969673B2 (en) T-shaped joint structure
JP7389378B2 (en) Automotive flat panel structure
JP7035743B2 (en) Center pillar inner and center pillar
EP1767343A4 (en) Laminated composite material and a product made thereof
US11731392B2 (en) Panel structure
JP6958761B2 (en) Reinforcing steel members for automobiles
CN111918781B (en) Component having top plate portion and side wall portion
JP7248936B2 (en) curved panel member
JP6683293B2 (en) Automotive T-joint structure
US11897544B2 (en) Center pillar inner and center pillar
JP7140211B2 (en) Exterior panels and automobiles with exterior panels
JP7107055B2 (en) Vehicle structural member
JP2020165286A (en) Structural material
JP2019209660A (en) Curved surface panel member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833025

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE