JP2020165286A - Structural material - Google Patents

Structural material Download PDF

Info

Publication number
JP2020165286A
JP2020165286A JP2019238117A JP2019238117A JP2020165286A JP 2020165286 A JP2020165286 A JP 2020165286A JP 2019238117 A JP2019238117 A JP 2019238117A JP 2019238117 A JP2019238117 A JP 2019238117A JP 2020165286 A JP2020165286 A JP 2020165286A
Authority
JP
Japan
Prior art keywords
structural material
reinforced resin
fiber reinforced
carbon fiber
resin sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019238117A
Other languages
Japanese (ja)
Inventor
伊崎 健晴
Takeharu Isaki
健晴 伊崎
畠山 潤
Jun Hatakeyama
畠山  潤
俊範 松田
Toshinori Matsuda
俊範 松田
和也 水本
Kazuya Mizumoto
和也 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JP2020165286A publication Critical patent/JP2020165286A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a structural material having both rigidity and lightness.SOLUTION: The structural material 1 in resin has at least an upper surface configuration part 11 and a lower surface configuration part 12. The structural material 1 comprises unidirectional carbon fiber reinforcement resin sheets 11b and 12b in which the upper surface configuration part 11 and the lower surface configuration part 12 are at 0° ± 20° of orientation direction of a reinforced fiber relative to a longitudinal direction of the structural material. In addition, the structural material 1 may comprise support parts 13 and 14 for connecting the upper surface configuration part 11 and the lower surface configuration part 12 and this support part 13 and 14 may comprise a unidirectional carbon fiber reinforcement resin sheet 13b, 13c, 14b and 14c.SELECTED DRAWING: Figure 1

Description

本発明は、例えば建造物又は土木構造物の用途、輸送機器の用途、及びその他の様々な用途に有用な構造材であって、剛性と軽さを両立した構造材に関する。 The present invention relates to a structural material useful for, for example, applications of buildings or civil engineering structures, applications of transportation equipment, and various other applications, and has both rigidity and lightness.

建造物を構成する為の建築材としては、一般に、剛性に優れる鋼製の建築材が使用されている。しかし鋼製の建築材は重いので、その運搬や設置に過大な労力を要する。そこで、鋼よりも軽量なアルミニウム材を建築材として使用することが提案されている。例えば特許文献1には、アルミ押出し形材の一面に炭素繊維を接着積層した炭素繊維強化アルミ製梁構造材が記載されている。そして、そのような炭素繊維を接着積層することにより、アルミ製梁構造材の耐撓み性が改善することが説明されている。 As a building material for constructing a building, a steel building material having excellent rigidity is generally used. However, steel building materials are heavy and require excessive labor to transport and install them. Therefore, it has been proposed to use an aluminum material, which is lighter than steel, as a building material. For example, Patent Document 1 describes a carbon fiber reinforced aluminum beam structural material in which carbon fibers are adhered and laminated on one surface of an extruded aluminum profile. Then, it is explained that the bending resistance of the aluminum beam structural material is improved by adhering and laminating such carbon fibers.

一方、建造物が破損や老朽化した場合に、その部分を繊維シートを用いて補強する方法も提案されている。例えば特許文献2には、特定の織編物からなる繊維シートを建造物の補強に用いることが提案されている。そして、この特定の織編物からなる繊維シートを建造物の補強に用いることにより、補強施工時の作業性や作業効率が向上することが説明されている。 On the other hand, when a building is damaged or deteriorated, a method of reinforcing the part with a fiber sheet has also been proposed. For example, Patent Document 2 proposes to use a fiber sheet made of a specific woven or knitted material for reinforcing a building. Then, it is explained that the workability and work efficiency at the time of reinforcement construction are improved by using the fiber sheet made of this specific woven or knitted material for reinforcing the building.

特開平10−54107号公報JP-A-10-54107 特開2018−172823号公報JP-A-2018-172823

本発明者らの検討によれば、特許文献1に記載のようなアルミニウム材と炭素繊維を組み合わせた建築材は、水滴が付着すると電気が発生して電蝕が生じ、剛性が低下する場合があることが分かった。また、単にアルミニウム材と炭素繊維を組み合わせただけの建築材では、たとえ電蝕があまり生じない場合であっても、建築材の剛性と軽さを十分に両立しているとは言えない場合があることも分かった。 According to the study by the present inventors, a building material in which an aluminum material and carbon fiber are combined as described in Patent Document 1 may generate electricity when water droplets adhere to it, causing electrolytic corrosion and reducing its rigidity. It turned out that there was. In addition, a building material that is simply a combination of aluminum material and carbon fiber may not be able to sufficiently balance the rigidity and lightness of the building material even if electrolytic corrosion does not occur so much. I also found that there was.

一方、特許文献2に記載のような補強方法は、建造物が破損や老朽化した場合にその部分を補強方法する方法であり、補強する対象としてコンクリートが挙げられている。したがって特許文献2では、建築材自体の剛性と軽さを両立するという点は何ら検討されていない。 On the other hand, the reinforcing method as described in Patent Document 2 is a method of reinforcing the portion when the building is damaged or deteriorated, and concrete is mentioned as a target for reinforcement. Therefore, in Patent Document 2, the point of achieving both rigidity and lightness of the building material itself is not examined at all.

先に述べた通り、建築材には十分な剛性が要求されるが、鋼製の建築材は重いので運搬や設置に過大な労力を要する。例えば、組み立て式の建造物は、少人数の作業員で組み立てる場合が多い。この場合、重い建築材を一人だけで運搬及び設置すると、その際にあやまって組み立て中の建造物に傷を付けてしまう恐れがある。したがって、重い建築材を運搬及び設置する場合は、安全に運搬及び設置する為に二人以上の作業員が必要になることもある。 As mentioned earlier, building materials are required to have sufficient rigidity, but steel building materials are heavy and require excessive labor for transportation and installation. For example, prefabricated buildings are often assembled by a small number of workers. In this case, if a heavy building material is transported and installed by one person, there is a risk that the building being assembled may be damaged at that time. Therefore, when transporting and installing heavy building materials, two or more workers may be required for safe transport and installation.

そこで本発明者らは、建築材等の構造材の剛性はあまり低下させることなくその軽量化を図れば、一人でも安全に運搬及び設置可能になり、作業効率が格段に向上すると考えた。 Therefore, the present inventors considered that if the rigidity of structural materials such as building materials is reduced without significantly reducing the rigidity, even one person can safely transport and install the material, and the work efficiency will be significantly improved.

さらに本発明者らは、建築材以外の様々な構造材においても同様に、剛性と軽さを両立することが重要であると考えた。例えば、近年の車両用部材の軽量化の要請に伴い、従来の鋼製の車両用部材に代わる様々な樹脂製の車両用部材が提案されて来ている。このような樹脂製の車両用部材は軽量化の点で優れているが、さらにその部材自体が十分な剛性を有することも要求される。 Furthermore, the present inventors have considered that it is also important to achieve both rigidity and lightness in various structural materials other than building materials. For example, with the recent demand for weight reduction of vehicle members, various resin vehicle members have been proposed in place of the conventional steel vehicle members. Such a resin-made vehicle member is excellent in terms of weight reduction, but it is also required that the member itself has sufficient rigidity.

すなわち、本発明の目的は、剛性と軽さを両立した構造材を提供することにある。 That is, an object of the present invention is to provide a structural material having both rigidity and lightness.

本発明者らは、上記目的を達成すべく鋭意検討した結果、少なくとも上下両面に強化繊維の配向方向が構造材の長手方向に対して0°±20°以内である一方向性炭素繊維強化樹脂シートを用いた樹脂製の構造材が非常に有用であることを見出し、本発明を完成するに至った。すなわち本発明は以下の事項により特定される。 As a result of diligent studies to achieve the above object, the present inventors have conducted a unidirectional carbon fiber reinforced resin in which the orientation direction of the reinforcing fibers is within 0 ° ± 20 ° with respect to the longitudinal direction of the structural material at least on both the upper and lower surfaces. We have found that a resin-made structural material using a sheet is very useful, and have completed the present invention. That is, the present invention is specified by the following matters.

[1]少なくとも上面構成部及び下面構成部を有する樹脂製の構造材であって、
前記上面構成部及び前記下面構成部が、強化繊維の配向方向が構造材の長手方向に対して0°±20°以内である一方向性炭素繊維強化樹脂シートを含み、
前記上面構成部全体の厚さに対する前記一方向性炭素繊維強化樹脂シートの厚さ、及び/又は、前記下面構成部全体の厚さに対する一方向性炭素繊維強化樹脂シートの厚さが、35%以上であることを特徴とする構造材。
[1] A structural material made of resin having at least a top surface component and a bottom surface component.
The upper surface component and the lower surface component include a unidirectional carbon fiber reinforced resin sheet in which the orientation direction of the reinforcing fibers is within 0 ° ± 20 ° with respect to the longitudinal direction of the structural material.
The thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire upper surface component and / or the thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire lower surface component is 35%. A structural material characterized by the above.

[2]前記上面構成部全体の厚さに対する前記一方向性炭素繊維強化樹脂シートの厚さ、及び/又は、前記下面構成部全体の厚さに対する一方向性炭素繊維強化樹脂シートの厚さが、50%以上である[1]に記載の構造材。 [2] The thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire upper surface component and / or the thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire lower surface component. , 50% or more of the structural material according to [1].

[3]前記上面構成部と前記下面構成部とを繋ぐ為の支持部を有する[1]又は[2]に記載の構造材。 [3] The structural material according to [1] or [2], which has a support portion for connecting the upper surface constituent portion and the lower surface constituent portion.

[4]前記支持部が、一方向性繊維強化樹脂シートを含む[3]に記載の構造材。 [4] The structural material according to [3], wherein the support portion includes a unidirectional fiber reinforced resin sheet.

[5]前記支持部全体の厚さに対する一方向性繊維強化樹脂シートの厚さが、50%以上である[4]に記載の構造材。 [5] The structural material according to [4], wherein the thickness of the unidirectional fiber reinforced resin sheet with respect to the thickness of the entire support portion is 50% or more.

[6]構造材の断面が、中空箱型形状、中実箱型形状及びH型形状のうちの何れかである[1]〜[5]の何れかに記載の構造材。 [6] The structural material according to any one of [1] to [5], wherein the cross section of the structural material is any one of a hollow box shape, a solid box shape, and an H shape.

[7]建築材である[1]〜[6]の何れかに記載の構造材。 [7] The structural material according to any one of [1] to [6], which is a building material.

[8]浴室用建築材である[7]に記載の構造材。 [8] The structural material according to [7], which is a building material for a bathroom.

[9]車両用部材である[1]〜[6]の何れかに記載の構造材。 [9] The structural material according to any one of [1] to [6], which is a vehicle member.

本発明の構造材は樹脂製なので、従来の鋼製の構造材に比べて非常に軽量であり、しかも錆の発生や腐食が生じ難く、湿度の高い場所での使用にも好適である。また、少なくとも上面構成部及び下面構成部が、強化繊維の配向方向が構造材の長手方向に対して0°±20°以内である一方向性炭素繊維強化樹脂シートを全体厚に対し35%以上の厚さで含むので、剛性に優れている。その結果、本発明によれば剛性と軽さを両立した構造材を提供できる。 Since the structural material of the present invention is made of resin, it is much lighter than the conventional structural material made of steel, and is less likely to cause rust or corrosion, and is suitable for use in a place with high humidity. Further, at least the upper surface component and the lower surface component are 35% or more of the unidirectional carbon fiber reinforced resin sheet in which the orientation direction of the reinforcing fibers is within 0 ° ± 20 ° with respect to the longitudinal direction of the structural material. Since it is included in the thickness of, it has excellent rigidity. As a result, according to the present invention, it is possible to provide a structural material having both rigidity and lightness.

なお本発明において「樹脂製の構造材」とは、繊維強化樹脂材によって構成された構造材も含む意味である。すなわち、本発明の構造材は、樹脂、強化繊維、及び必要に応じてその他の任意成分や任意の構造材料を含んでいても良い。 In the present invention, the "resin-made structural material" means that the structural material composed of the fiber-reinforced resin material is also included. That is, the structural material of the present invention may contain a resin, reinforcing fibers, and, if necessary, other optional components or arbitrary structural materials.

(A)は本発明の構造材の一実施形態を示す模式的斜視図であり、(B)はその模式的拡大断面図である。(A) is a schematic perspective view showing one embodiment of the structural material of the present invention, and (B) is a schematic enlarged sectional view thereof. (A)は本発明の構造材の他の一実施形態を示す模式的斜視図であり、(B)はその模式的拡大断面図である。(A) is a schematic perspective view showing another embodiment of the structural material of the present invention, and (B) is a schematic enlarged sectional view thereof. (A)は本発明の構造材の他の一実施形態を示す模式的斜視図であり、(B)はその模式的拡大断面図である。(A) is a schematic perspective view showing another embodiment of the structural material of the present invention, and (B) is a schematic enlarged sectional view thereof.

<構造材>
図1(A)は本発明の構造材の一実施形態を示す模式的斜視図であり、(B)はその模式的拡大断面図である。本発明の構造材は、図1に示すように、少なくとも上面構成部11及び下面構成部12を有する樹脂製の構造材1である。そして、上面構成部11は、その外側に一方向性炭素繊維強化樹脂シート11bを含み、下面構成部12は、その外側に一方向性炭素繊維強化樹脂シート12bを含む。これら一方向性炭素繊維強化樹脂シート11b及び12bにおいて、その強化繊維の配向方向は構造材1の長手方向に対して0°±20°以内である。構造材1は、この一方向性炭素繊維強化樹脂シート11b及び12bによってその剛性が向上する。なお、構造材1の上面構成部11は構造材1の上側の表面である平面を構成する部分であり、下面構成部12は構造材1の下側の表面である平面を構成する部分である。
<Structural material>
FIG. 1A is a schematic perspective view showing an embodiment of the structural material of the present invention, and FIG. 1B is a schematic enlarged sectional view thereof. As shown in FIG. 1, the structural material of the present invention is a resin structural material 1 having at least an upper surface constituent portion 11 and a lower surface constituent portion 12. The upper surface constituent portion 11 includes a unidirectional carbon fiber reinforced resin sheet 11b on the outside thereof, and the lower surface constituent portion 12 includes a unidirectional carbon fiber reinforced resin sheet 12b on the outer side thereof. In these unidirectional carbon fiber reinforced resin sheets 11b and 12b, the orientation direction of the reinforcing fibers is within 0 ° ± 20 ° with respect to the longitudinal direction of the structural material 1. The rigidity of the structural material 1 is improved by the unidirectional carbon fiber reinforced resin sheets 11b and 12b. The upper surface constituent portion 11 of the structural material 1 is a portion forming a flat surface which is the upper surface of the structural material 1, and the lower surface constituent portion 12 is a portion which constitutes a flat surface which is the lower surface of the structural material 1. ..

図1に示す構造材1は、その断面が中空箱型形状(中空の四角柱形状)である長尺の構造材(以下「中空箱型タイプの構造材」と称す)である。そして、中空箱型タイプの構造材1において、上面構成部11は中空箱型形状の上辺部を構成し、下面構成部12は中空箱型形状の下辺部を構成する。なお、図1に示す中空箱型タイプの構造材1は、その断面の中空箱型形状(中空四角形状)がほぼ正方形であるが、例えば横長又は縦長の長方形であっても構わない。 The structural material 1 shown in FIG. 1 is a long structural material (hereinafter referred to as “hollow box type structural material”) having a hollow box-shaped cross section (hollow square pillar shape). Then, in the hollow box type structural material 1, the upper surface constituent portion 11 constitutes the upper side portion of the hollow box shape, and the lower surface constituent portion 12 constitutes the lower side portion of the hollow box shape. The hollow box-shaped structural member 1 shown in FIG. 1 has a substantially square hollow box-shaped cross section (hollow square shape), but may be, for example, a horizontally long or vertically long rectangle.

図1において、上面構成部11は、上面構成基材部11aの上側に一方向性炭素繊維強化樹脂シート11bが積層された構成を有し、下面構成部12は、下面構成基材部12aの下側に一方向性炭素繊維強化樹脂シート12bが積層された構成を有する。図1に示すこのように中空箱型タイプ構造材1においては、一方向性炭素繊維強化樹脂シートが上面構成部11及び下面構成部12の外側に配置された例を示しているが、本発明はこれに限定されない。本発明の構造材において、一方向性炭素繊維強化樹脂シートは上面構成部11及び下面構成部12の内側に配置されていても良い。剛性をより向上させる観点からは、一方向性炭素繊維強化樹脂シートは上面構成部11及び下面構成部12の少なくとも一方の外側に配置されることが好ましく、図1に示したとおり、上面構成部11及び下面構成部12の両方の外側に配置されることがより好ましく、上面構成部11及び下面構成部12の両方の外側及び内側に配置されることが特に好ましい。 In FIG. 1, the upper surface constituent portion 11 has a structure in which a unidirectional carbon fiber reinforced resin sheet 11b is laminated on the upper side of the upper surface constituent base material portion 11a, and the lower surface constituent portion 12 is a lower surface constituent base material portion 12a. It has a structure in which a unidirectional carbon fiber reinforced resin sheet 12b is laminated on the lower side. As shown in FIG. 1, in the hollow box type structural material 1, an example in which the unidirectional carbon fiber reinforced resin sheet is arranged outside the upper surface constituent portion 11 and the lower surface constituent portion 12 is shown. Is not limited to this. In the structural material of the present invention, the unidirectional carbon fiber reinforced resin sheet may be arranged inside the upper surface constituent portion 11 and the lower surface constituent portion 12. From the viewpoint of further improving the rigidity, the unidirectional carbon fiber reinforced resin sheet is preferably arranged on the outside of at least one of the upper surface constituent portion 11 and the lower surface constituent portion 12, and as shown in FIG. 1, the upper surface constituent portion It is more preferable that the components 11 and the lower surface component 12 are arranged outside, and it is particularly preferable that the surface component 11 and the lower surface component 12 are arranged outside and inside both of the lower surface component 12.

図1に示す中空箱型タイプの構造材1は、さらに上面構成部11と下面構成部12とを繋ぐ為の支持部13及び14を有する。右側の支持部13は中空箱型形状の右辺部を構成し、左側の支持部14は中空箱型形状の左辺部を構成する。そして右側支持部13は支持基材部13aの外側に一方向性炭素繊維強化樹脂シート13bを含み、内側に一方向性炭素繊維強化樹脂シート13cを含む。左側支持部14は、支持基材部14aの外側に一方向性炭素繊維強化樹脂シート14bを含み、内側に一方向性炭素繊維強化樹脂シート14cを含む。中空箱型タイプの構造材1は、この一方向性炭素繊維強化樹脂シート13b、13c、14b及び14cによって座屈変形を防止できる傾向にある。 The hollow box type structural member 1 shown in FIG. 1 further has support portions 13 and 14 for connecting the upper surface constituent portion 11 and the lower surface constituent portion 12. The right support portion 13 constitutes a hollow box-shaped right side portion, and the left support portion 14 constitutes a hollow box-shaped left side portion. The right side support portion 13 includes a unidirectional carbon fiber reinforced resin sheet 13b on the outside of the support base material portion 13a and a unidirectional carbon fiber reinforced resin sheet 13c on the inside. The left side support portion 14 includes a unidirectional carbon fiber reinforced resin sheet 14b on the outside of the support base material portion 14a and a unidirectional carbon fiber reinforced resin sheet 14c on the inside. The hollow box type structural material 1 tends to be able to prevent buckling deformation by the unidirectional carbon fiber reinforced resin sheets 13b, 13c, 14b and 14c.

図1に示す中空箱型タイプの構造材1は、支持基材部13a及び14aの外側及び内側に、一方向性炭素繊維強化樹脂シート13b、13c、14b、14cを含んでいるが、本発明はこれに限定されない。本発明の構造材においては、例えば、支持基材部13a及び14aの外側及び内側の一方のみに一方向性炭素繊維強化樹脂シートを含んでいても良く、支持基材部13a及び14aの両側に一方向性炭素繊維強化樹脂シートを含んでいなくても良い。 The hollow box type structural material 1 shown in FIG. 1 contains unidirectional carbon fiber reinforced resin sheets 13b, 13c, 14b, 14c on the outside and inside of the supporting base material portions 13a and 14a. Is not limited to this. In the structural material of the present invention, for example, a unidirectional carbon fiber reinforced resin sheet may be contained only on one of the outer side and the inner side of the support base material portions 13a and 14a, and on both sides of the support base material portions 13a and 14a. It does not have to contain a unidirectional carbon fiber reinforced resin sheet.

図1に示す中空箱型タイプの構造材1は、その断面が中空箱型形状(中空の四角柱形状)であるが、本発明はこれに限定されない。本発明の構造材は、例えば、中実箱型形状(内部に空間が存在しない四角柱形状)であっても良い。その場合も上面構成部及び上面構成部が一方向性炭素繊維強化樹脂シートを含んでいれば良く、また所望に応じて右側面構成部及び左側面構成部が一方向性炭素繊維強化樹脂シートを含んでいても良い。 The hollow box-type structural material 1 shown in FIG. 1 has a hollow box-shaped cross section (hollow square pillar shape), but the present invention is not limited thereto. The structural material of the present invention may have, for example, a solid box shape (a square pillar shape having no space inside). In that case as well, the upper surface constituent portion and the upper surface constituent portion may contain the unidirectional carbon fiber reinforced resin sheet, and the right side surface constituent portion and the left side surface constituent portion may include the unidirectional carbon fiber reinforced resin sheet as desired. It may be included.

図2(A)は本発明の構造材の他の一実施形態を示す模式的斜視図であり、(B)はその模式的拡大断面図である。この実施形態の構造材2も、少なくとも上面構成部21及び下面構成部22を有する樹脂製の構造材である。そして、上面構成部21は一方向性炭素繊維強化樹脂シート21bを含み、下面構成部22は一方向性炭素繊維強化樹脂シート22bを含む。これら一方向性炭素繊維強化樹脂シート21b及び22bにおいて、その強化繊維の配向方向は構造材2の長手方向に対して0°±20°以内である。構造材2は、この一方向性炭素繊維強化樹脂シート21a及び21bによってその剛性が向上する。 FIG. 2A is a schematic perspective view showing another embodiment of the structural material of the present invention, and FIG. 2B is a schematic enlarged sectional view thereof. The structural material 2 of this embodiment is also a resin structural material having at least an upper surface constituent portion 21 and a lower surface constituent portion 22. The upper surface component 21 includes a unidirectional carbon fiber reinforced resin sheet 21b, and the lower surface component 22 includes a unidirectional carbon fiber reinforced resin sheet 22b. In these unidirectional carbon fiber reinforced resin sheets 21b and 22b, the orientation direction of the reinforcing fibers is within 0 ° ± 20 ° with respect to the longitudinal direction of the structural material 2. The rigidity of the structural material 2 is improved by the unidirectional carbon fiber reinforced resin sheets 21a and 21b.

図2に示す構造材2は、その断面がH型形状(H型鋼の形状に相当)である長尺の構造材(以下「H型タイプの構造材」と称す)である。そして、H型タイプの構造材2においては、上面構成部21はH型形状の上辺部を構成し、下面構成部22はH型形状の下辺部を構成する。 The structural material 2 shown in FIG. 2 is a long structural material (hereinafter referred to as “H-type structural material”) having an H-shaped cross section (corresponding to the shape of H-shaped steel). In the H-shaped structural material 2, the upper surface constituent portion 21 constitutes the upper side portion of the H-shaped shape, and the lower surface constituent portion 22 constitutes the lower side portion of the H-shaped shape.

図2において、上面構成部21は、上面構成基材部21aの上側に一方向性炭素繊維強化樹脂シート21bが積層された構成を有し、下面構成部22は、下面構成基材部22aの下側に一方向性炭素繊維強化樹脂シート22bが積層された構成を有する。 In FIG. 2, the upper surface constituent portion 21 has a configuration in which a unidirectional carbon fiber reinforced resin sheet 21b is laminated on the upper side of the upper surface constituent base material portion 21a, and the lower surface constituent portion 22 is a lower surface constituent base material portion 22a. It has a structure in which a unidirectional carbon fiber reinforced resin sheet 22b is laminated on the lower side.

図2に示すH型タイプの構造材2は、さらに上面構成部21と下面構成部22とを繋ぐ為の支持部23を有する。この支持部23は上面構成部21及び下面構成部22の中央に繋がる部分である。そして支持部23は、支持基材部23aの右側に一方向性炭素繊維強化樹脂シート23bを含み、その左側にも一方向性炭素繊維強化樹脂シート23cを含む。H型タイプの構造材2は、この一方向性炭素繊維強化樹脂シート23b及び23cによって、座屈変形を防止できる傾向にある。 The H-type structural member 2 shown in FIG. 2 further has a support portion 23 for connecting the upper surface constituent portion 21 and the lower surface constituent portion 22. The support portion 23 is a portion connected to the center of the upper surface constituent portion 21 and the lower surface constituent portion 22. The support portion 23 includes a unidirectional carbon fiber reinforced resin sheet 23b on the right side of the support base material portion 23a, and also includes a unidirectional carbon fiber reinforced resin sheet 23c on the left side thereof. The H-type structural material 2 tends to be able to prevent buckling deformation by the unidirectional carbon fiber reinforced resin sheets 23b and 23c.

図2に示すH型タイプの構造材2は、支持基材部22aの両側に、一方向性炭素繊維強化樹脂シート23b及び23cを含んでいるが、本発明はこれに限定されない。本発明の構造材は、例えば、支持基材部22aの片側のみに、一方向性炭素繊維強化樹脂シートを含んでいても良く、支持基材部22aの両側共に一方向性炭素繊維強化樹脂シートを含んでいなくても良い。 The H-type structural material 2 shown in FIG. 2 includes unidirectional carbon fiber reinforced resin sheets 23b and 23c on both sides of the supporting base material portion 22a, but the present invention is not limited thereto. For example, the structural material of the present invention may contain a unidirectional carbon fiber reinforced resin sheet only on one side of the supporting base material portion 22a, and both sides of the supporting base material portion 22a may contain a unidirectional carbon fiber reinforced resin sheet. Does not have to be included.

図3(A)は本発明の構造材の他の一実施形態を示す模式的斜視図であり、(B)はその模式的拡大断面図である。この実施形態の構造材3も、少なくとも上面構成部31及び下面構成部32を有する樹脂製の構造材である。そして、上面構成部31は一方向性炭素繊維強化樹脂シート31aを含み、下面構成部32は一方向性炭素繊維強化樹脂シート32aを含む。これら一方向性炭素繊維強化樹脂シート31a及び32aにおいて、その強化繊維の配向方向は構造材3の長手方向に対して0°±20°以内である。構造材3は、この一方向性炭素繊維強化樹脂シート31a及び32aによってその剛性が向上する。 FIG. 3A is a schematic perspective view showing another embodiment of the structural material of the present invention, and FIG. 3B is a schematic enlarged sectional view thereof. The structural material 3 of this embodiment is also a resin structural material having at least an upper surface constituent portion 31 and a lower surface constituent portion 32. The upper surface constituent portion 31 includes a unidirectional carbon fiber reinforced resin sheet 31a, and the lower surface constituent portion 32 includes a unidirectional carbon fiber reinforced resin sheet 32a. In these unidirectional carbon fiber reinforced resin sheets 31a and 32a, the orientation direction of the reinforcing fibers is within 0 ° ± 20 ° with respect to the longitudinal direction of the structural material 3. The rigidity of the structural material 3 is improved by the unidirectional carbon fiber reinforced resin sheets 31a and 32a.

図3に示す構造材3は、図2に示した構造材2と同様にH型タイプの構造材であり、上面構成部31はH型形状の上辺部を構成し、下面構成部32はH型形状の下辺部を構成する。また図2に示した構造材2と同様に、上面構成部31と下面構成部32とを繋ぐ為の支持部33を有する。この支持部33は上面構成部31及び下面構成部32の中央に繋がる部分である。 The structural material 3 shown in FIG. 3 is an H-type structural material similar to the structural material 2 shown in FIG. 2, the upper surface constituent portion 31 constitutes an H-shaped upper side portion, and the lower surface constituent portion 32 is H. It constitutes the lower side of the mold shape. Further, similarly to the structural member 2 shown in FIG. 2, it has a support portion 33 for connecting the upper surface constituent portion 31 and the lower surface constituent portion 32. The support portion 33 is a portion connected to the center of the upper surface constituent portion 31 and the lower surface constituent portion 32.

図3に示す構造材3は、上面構成部31、下面構成部32及び支持部33が全て繊維強化樹脂シートからなる点が図2に示した構造材2と異なる。具体的には、上面構成部31は一方向性炭素繊維強化樹脂シート31aと繊維強化樹脂シート31b及び31cとから構成され、下面構成部32は一方向性炭素繊維強化樹脂シート32aと繊維強化樹脂シート32b及び32cとから構成され、支持部33は繊維強化樹脂シート33b及び33cから構成されている。一方向性炭素繊維強化樹脂シート31a及び32aは、その上下面に平面状に積層されたシートであり、上面構成部31及び下面構成部32の一部を構成し、上下表面に面するシートである。一方、繊維強化樹脂シート31b、32b及び33b、並びに、繊維強化樹脂シート31c、32c及び33cは、各々、コの字形状に屈曲した1つのシートであり、各々のシートの両端部(31b及び31c、32b及び32c)が上面構成部31及び下面構成部32の一部を構成し、各々のシートの中央部(33b及び33c)が支持部33を構成する。このようなH型タイプの構造材3は、剛性に優れ、座屈変形を防止できる傾向にあり、好ましい。なお、図3における繊維強化樹脂シート31b、32b及び33b、並びに、繊維強化樹脂シート31c、32c及び33cは、一方向性繊維強化樹脂シートであっても良いし、短繊維がランダム方向に配合された繊維強化樹脂シートであっても良いし、織物状の繊維に樹脂が含浸された繊維強化樹脂シートであっても良い。 The structural material 3 shown in FIG. 3 is different from the structural material 2 shown in FIG. 2 in that the upper surface constituent portion 31, the lower surface constituent portion 32, and the support portion 33 are all made of a fiber reinforced resin sheet. Specifically, the upper surface constituent portion 31 is composed of a unidirectional carbon fiber reinforced resin sheet 31a and fiber reinforced resin sheets 31b and 31c, and the lower surface constituent portion 32 is composed of a unidirectional carbon fiber reinforced resin sheet 32a and a fiber reinforced resin. It is composed of sheets 32b and 32c, and the support portion 33 is composed of fiber reinforced resin sheets 33b and 33c. The unidirectional carbon fiber reinforced resin sheets 31a and 32a are sheets laminated in a plane on the upper and lower surfaces thereof, and are sheets that form a part of the upper surface constituent portion 31 and the lower surface constituent portion 32 and face the upper and lower surfaces. is there. On the other hand, the fiber reinforced resin sheets 31b, 32b and 33b, and the fiber reinforced resin sheets 31c, 32c and 33c are one sheet bent in a U shape, respectively, and both ends (31b and 31c) of the respective sheets. , 32b and 32c) form a part of the upper surface constituent portion 31 and the lower surface constituent portion 32, and the central portion (33b and 33c) of each sheet constitutes the support portion 33. Such an H-type structural material 3 is preferable because it has excellent rigidity and tends to prevent buckling deformation. The fiber-reinforced resin sheets 31b, 32b and 33b in FIG. 3 and the fiber-reinforced resin sheets 31c, 32c and 33c may be unidirectional fiber-reinforced resin sheets, or short fibers are blended in a random direction. It may be a fiber-reinforced resin sheet or a fiber-reinforced resin sheet in which a woven fiber is impregnated with a resin.

以上、構造材の断面が、中空箱型形状、中実箱型形状及びH型形状のうちの何れかである構造材の実施形態について説明したが、本発明はこれらに限定されない。本発明の構造材の形状は、所望に応じて適宜変更可能である。その他の形状としては、例えば、ハット型形状がある。なお、ハット型形状とは、構造材の断面がハット型形状であり、ハット型鋼の形状に相当する形状である。 Although the embodiment of the structural material in which the cross section of the structural material is any one of a hollow box shape, a solid box shape, and an H shape has been described above, the present invention is not limited thereto. The shape of the structural material of the present invention can be appropriately changed as desired. Other shapes include, for example, a hat-shaped shape. The hat-shaped shape is a shape in which the cross section of the structural material is a hat-shaped shape and corresponds to the shape of the hat-shaped steel.

図1〜3に示した上面構成部11、21及び31の一方向性炭素繊維強化樹脂シート11b、21b及び31a、並びに、下面構成部12、22及び32の一方向性炭素繊維強化樹脂シート12b、22b及び32a(すなわち上下表面に位置する一方向性炭素繊維強化樹脂シート)において、その強化繊維の配向方向は構造材1〜3の長手方向に対して0°±20°以内、好ましくは0°±15°以内である。そして、このような配向を有する一方向性炭素繊維強化樹脂シートの厚さは、上面構成部全体の厚さに対して、及び/又は、下面構成部全体の厚さに対して35%以上であり、好ましくは50%以上である。本発明においては、上面構成部及び下面構成部がこのような構成を有することにより、剛性が著しく向上する。 The unidirectional carbon fiber reinforced resin sheets 11b, 21b and 31a of the upper surface components 11, 21 and 31 shown in FIGS. 1 to 3 and the unidirectional carbon fiber reinforced resin sheets 12b of the lower surface components 12, 22 and 32. , 22b and 32a (that is, unidirectional carbon fiber reinforced resin sheets located on the upper and lower surfaces), the orientation direction of the reinforcing fibers is within 0 ° ± 20 °, preferably 0, with respect to the longitudinal direction of the structural members 1 to 3. It is within ° ± 15 °. The thickness of the unidirectional carbon fiber reinforced resin sheet having such an orientation is 35% or more with respect to the thickness of the entire upper surface component and / or the thickness of the entire lower surface component. Yes, preferably 50% or more. In the present invention, the rigidity is remarkably improved by having the upper surface constituent portion and the lower surface constituent portion having such a configuration.

図1〜3に示した構造材1〜3は、上面構成部と下面構成部とを繋ぐ為の支持部13、14、23及び33を有しており、このような実施形態は好ましいものである。そして、この支持部13、14、23及び33の一方向性炭素繊維強化樹脂シート13b、13c、14b、14c、23b及び23c(並びに繊維強化樹脂シート31b33b及び33cが一方向性炭素繊維強化樹脂シートである場合)において、その強化繊維の配向方向は特に限定されず、所望に応じて適宜変更可能である。ただし、支持部の強化繊維の配向方向は構造材1〜3の長手方向に対して、好ましくは90°±55°以内、より好ましくは90°±45°以内である。このような構成は、例えば、支持部の座屈変形を防止する点で好ましい。 The structural materials 1 to 3 shown in FIGS. 1 to 3 have support portions 13, 14, 23, and 33 for connecting the upper surface constituent portion and the lower surface constituent portion, and such an embodiment is preferable. is there. Then, the unidirectional carbon fiber reinforced resin sheets 13b, 13c, 14b, 14c, 23b and 23c of the support portions 13, 14, 23 and 33 (and the fiber reinforced resin sheets 31b 33b and 33c are unidirectional carbon fiber reinforced resin sheets. In the case of), the orientation direction of the reinforcing fibers is not particularly limited and can be appropriately changed as desired. However, the orientation direction of the reinforcing fibers of the support portion is preferably within 90 ° ± 55 °, more preferably within 90 ° ± 45 ° with respect to the longitudinal direction of the structural members 1 to 3. Such a configuration is preferable from the viewpoint of preventing buckling deformation of the support portion, for example.

図1〜3に示した構造材1〜3においては、各箇所に一方向性炭素繊維強化樹脂シート等の繊維強化樹脂シートを各々1枚ずつ積層したが、本発明はこれに限定されない。例えば一つの箇所に2枚以上の繊維強化樹脂シートを重ねて積層しても良い。その場合、この2枚以上の繊維強化樹脂シートの繊維の配向方向を互いに揃えることが好ましい。また、全ての繊維強化樹脂シートの繊維の配向方向を互いに揃える場合だけでなく、全ての繊維強化樹脂シートのうちの一部(2枚以上)の繊維強化樹脂シートの繊維の配向方向を互いに揃えることも好ましい。 In the structural materials 1 to 3 shown in FIGS. 1 to 3, one fiber reinforced resin sheet such as a unidirectional carbon fiber reinforced resin sheet is laminated at each location, but the present invention is not limited thereto. For example, two or more fiber-reinforced resin sheets may be laminated in one place. In that case, it is preferable that the fiber orientation directions of the two or more fiber-reinforced resin sheets are aligned with each other. Further, not only when the fiber orientation directions of all the fiber reinforced resin sheets are aligned with each other, but also when the fiber orientation directions of some (two or more) fiber reinforced resin sheets of all the fiber reinforced resin sheets are aligned with each other. It is also preferable.

本発明において、上面構成部及び下面構成部の全体の厚さは特に限定されず、所望に応じ適宜決定すれば良い。ただし先に述べた通り、上面構成部全体の厚さ及び/又は下面構成部全体の厚さに対して、0°±20°以内の配向を有する一方向性炭素繊維強化樹脂シートの厚さは35%以上であり、好ましくは50%である。また、本発明において、支持部の全体の厚さは特に限定されず、所望に応じ適宜決定すれば良い。支持部が一方向性繊維強化樹脂シートを含む場合、支持部全体の厚さに対する一方向性繊維強化樹脂シートの厚さは50%以上であることが好ましい。 In the present invention, the total thickness of the upper surface constituent portion and the lower surface constituent portion is not particularly limited, and may be appropriately determined as desired. However, as described above, the thickness of the unidirectional carbon fiber reinforced resin sheet having an orientation within 0 ° ± 20 ° with respect to the thickness of the entire upper surface component and / or the thickness of the entire lower surface component is It is 35% or more, preferably 50%. Further, in the present invention, the overall thickness of the support portion is not particularly limited, and may be appropriately determined as desired. When the support portion includes the unidirectional fiber reinforced resin sheet, the thickness of the unidirectional fiber reinforced resin sheet is preferably 50% or more with respect to the thickness of the entire support portion.

本発明において、例えば図1及び2に示した構造材1及び2のように、一方向性炭素繊維強化樹脂シート以外の部分(例えば図1における基材部11a、12a、13a、14a、図2における基材部21a、22a及び23a、以下単に「基材部」と称す)に対して、一方向性炭素繊維強化樹脂シートを貼着する方法としては、例えば、接着剤で貼着する方法、接着の表面をサンドブラストなどで処理した後に接着剤で貼着する方法、また、熱可塑性樹脂ならば熱融着で貼着する方法がある。 In the present invention, for example, like the structural materials 1 and 2 shown in FIGS. 1 and 2, parts other than the unidirectional carbon fiber reinforced resin sheet (for example, the base material portions 11a, 12a, 13a, 14a in FIG. 1, FIG. As a method of attaching the unidirectional carbon fiber reinforced resin sheet to the base material portions 21a, 22a and 23a, hereinafter simply referred to as “base material portion”), for example, a method of attaching with an adhesive, There is a method of adhering with an adhesive after treating the surface of the adhesive with sandblasting or the like, and a method of adhering with a thermoplastic resin by heat fusion.

本発明において、上記の基材部を構成する材料の種類は、特に限定されない。例えば、樹脂のみからなる部分であっても良いし、樹脂及び強化繊維を含む繊維強化樹脂組成物からなる部分であっても良いし、さらに必要に応じてその他の任意成分や任意の構造材料を含む部材であっても良い。中でも、強度をより向上させる観点から、繊維強化樹脂組成物からなる部分であることが好ましい。基材部に用いる繊維強化樹脂組成物は、短繊維がランダム方向に配合された樹脂組成物であっても良いし、織物状の繊維に樹脂が含浸された樹脂組成物であっても良いし、一方向性繊維強化樹脂シートと同様に長繊維が一方向に配向した樹脂組成物であっても良いが、強度をより向上させる観点から、長繊維が一方向に配向した樹脂組成物と短繊維がランダム方向に配合された樹脂組成物とを併用することが好ましい。また、織物状の繊維(例えば炭素繊維又はガラス繊維)に樹脂が含浸された複数の繊維強化樹脂シートの積層体、又は、長繊維(例えば炭素繊維又はガラス繊維)が一方向に配向した複数の一方向性繊維強化樹脂シートを各々所望の方向(繊維の配向方向)で積層した積層体を用いて、基材部及び/又は支持部を構成することも好ましい。 In the present invention, the type of material constituting the above-mentioned base material portion is not particularly limited. For example, it may be a portion composed of only a resin, a portion composed of a fiber-reinforced resin composition containing a resin and reinforcing fibers, and further, if necessary, other optional components or arbitrary structural materials. It may be a member including. Above all, from the viewpoint of further improving the strength, the portion made of the fiber reinforced resin composition is preferable. The fiber-reinforced resin composition used for the base material portion may be a resin composition in which short fibers are blended in a random direction, or may be a resin composition in which a woven fiber is impregnated with a resin. , The resin composition in which the long fibers are oriented in one direction may be used as in the case of the unidirectional fiber reinforced resin sheet, but from the viewpoint of further improving the strength, the resin composition in which the long fibers are oriented in one direction and the short It is preferable to use it in combination with a resin composition in which fibers are blended in a random direction. Further, a laminate of a plurality of fiber-reinforced resin sheets in which woven fibers (for example, carbon fibers or glass fibers) are impregnated with a resin, or a plurality of long fibers (for example, carbon fibers or glass fibers) oriented in one direction. It is also preferable to form a base material portion and / or a support portion by using a laminate in which unidirectional fiber-reinforced resin sheets are laminated in a desired direction (fiber orientation direction).

本発明において、一方向性炭素繊維強化樹脂シートにおける樹脂の種類、並びに、上記の基材部の繊維強化樹脂組成物における樹脂の種類は特に限定されない。樹脂は熱可塑性樹脂であっても良いし、熱硬化性樹脂であっても良い。特にクリープ特性の点からは熱硬化性樹脂が好ましいが、リサイクル性の点からは熱可塑性樹脂が好ましい。 In the present invention, the type of resin in the unidirectional carbon fiber reinforced resin sheet and the type of resin in the fiber reinforced resin composition of the base material portion are not particularly limited. The resin may be a thermoplastic resin or a thermosetting resin. In particular, a thermosetting resin is preferable from the viewpoint of creep characteristics, but a thermoplastic resin is preferable from the viewpoint of recyclability.

<繊維強化樹脂組成物>
本発明に用いる一方向性炭素繊維強化樹脂シートを構成する炭素繊維強化樹脂組成物の種類、並びに、基材部が繊維強化樹脂組成物からなる部分である場合の繊維強化樹脂組成物の種類は、特に限定されないが、その具体例を以下に説明する。
<Fiber reinforced resin composition>
The types of the carbon fiber reinforced resin composition constituting the unidirectional carbon fiber reinforced resin sheet used in the present invention and the types of the fiber reinforced resin composition when the base material portion is a portion made of the fiber reinforced resin composition Although not particularly limited, specific examples thereof will be described below.

繊維強化樹脂組成物は、通常、強化繊維(好ましくは強化繊維束)とマトリックス樹脂を含む組成物である。強化繊維束は、例えば、強化繊維をサイジング剤で処理することにより得られる。この強化繊維束を引き揃えて、例えば溶融したマトリックス樹脂と接触させることにより繊維強化樹脂組成物からなる一方向性繊維強化樹脂シートが得られる。 The fiber-reinforced resin composition is usually a composition containing reinforcing fibers (preferably a reinforcing fiber bundle) and a matrix resin. Reinforcing fiber bundles are obtained, for example, by treating the reinforcing fibers with a sizing agent. By aligning the reinforcing fiber bundles and bringing them into contact with, for example, a molten matrix resin, a unidirectional fiber reinforced resin sheet made of the fiber reinforced resin composition can be obtained.

繊維強化樹脂組成物が含む強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、金属繊維等の高強度、高弾性率繊維を使用できる。これらは2種以上を併用しても良い。中でも、炭素繊維及びガラス繊維からなる群より選択される少なくとも一種の繊維を含むことが好ましい。特に弾性率の点からは、炭素繊維が好ましい。一方、コストの点からは、ガラス繊維が好ましい。 As the reinforcing fibers contained in the fiber-reinforced resin composition, for example, high-strength, high-elasticity fibers such as carbon fibers, glass fibers, aramid fibers, alumina fibers, silicon carbide fibers, boron fibers, and metal fibers can be used. Two or more of these may be used in combination. Above all, it is preferable to contain at least one kind of fiber selected from the group consisting of carbon fiber and glass fiber. In particular, carbon fiber is preferable from the viewpoint of elastic modulus. On the other hand, from the viewpoint of cost, glass fiber is preferable.

単糸の平均直径は特に限定されないが、機械特性及び表面外観の点から、好ましくは1〜20μm、より好ましくは4〜10μmである。炭素繊維束の単糸数も特に限定されないが、生産性及び特性の点から、好ましくは100〜100,000本、より好ましくは1,000〜50,000本である。 The average diameter of the single yarn is not particularly limited, but is preferably 1 to 20 μm, more preferably 4 to 10 μm from the viewpoint of mechanical properties and surface appearance. The number of single yarns of the carbon fiber bundle is also not particularly limited, but is preferably 100 to 100,000, more preferably 1,000 to 50,000, from the viewpoint of productivity and characteristics.

強化繊維束に用いるサイジング剤としては、例えば変性ポリオレフィンが挙げられる。この変性ポリオレフィンは、重合体鎖に結合するカルボン酸金属塩を少なくとも含む変性ポリオレフィンであることが好ましい。変性ポリオレフィンの原料(未変性ポリオレフィン)としては、例えば、エチレン起因の骨格含量が50モル%を超えるエチレン系重合体、プロピレン起因の骨格含量が50モル%を超えるプロピレン系重合体が挙げられる。エチレン系重合体の具体例としては、エチレン単独重合体、エチレンと炭素原子数3〜10のα−オレフィンの共重合体が挙げられる。プロピレン系重合体の具体例としては、プロピレン単独重合体、プロピレンとエチレン及び/又は炭素数4〜10のα−オレフィンの共重合体が挙げられる。より具体的には、ホモポリプロピレン、ホモポリエチレン、エチレン・プロピレン共重合体、プロピレン・1−ブテン共重合体、エチレン・プロピレン・1−ブテン共重合体が挙げられる。 Examples of the sizing agent used for the reinforcing fiber bundle include modified polyolefin. The modified polyolefin is preferably a modified polyolefin containing at least a carboxylic acid metal salt bonded to the polymer chain. Examples of the raw material (unmodified polyolefin) of the modified polyolefin include ethylene-based polymers having an ethylene-derived skeleton content of more than 50 mol% and propylene-based polymers having a propylene-derived skeleton content of more than 50 mol%. Specific examples of the ethylene-based polymer include an ethylene homopolymer and a copolymer of ethylene and an α-olefin having 3 to 10 carbon atoms. Specific examples of the propylene-based polymer include a propylene homopolymer and a copolymer of propylene and ethylene and / or an α-olefin having 4 to 10 carbon atoms. More specifically, homopolypropylene, homopolyethylene, ethylene / propylene copolymer, propylene / 1-butene copolymer, ethylene / propylene / 1-butene copolymer can be mentioned.

変性ポリオレフィンは、例えば、以上のような未変性ポリオレフィンの重合体鎖に、カルボン酸基、カルボン酸無水物基又はカルボン酸エステル基をグラフト導入し、且つその基をカチオンとの塩の状態に変換することにより得られる。 For the modified polyolefin, for example, a carboxylic acid group, a carboxylic acid anhydride group or a carboxylic acid ester group is graft-introduced into the polymer chain of the unmodified polyolefin as described above, and the group is converted into a salt state with a cation. Obtained by doing.

強化繊維を、例えば以上説明したサイジング剤(及び必要に応じてアミン化合物等の添加剤)を含むエマルションに浸漬し、その後乾燥することにより、サイジング剤で処理された強化繊維束が得られる。エマルション中のサイジング剤の含有量は、好ましくは0.001質量%以上10質量%以下である。また、強化繊維束に対するサイジング剤の付着量は、好ましくは0.1質量%以上5.0質量%以下である。 By immersing the reinforcing fibers in an emulsion containing, for example, the sizing agent described above (and, if necessary, an additive such as an amine compound) and then drying, a reinforcing fiber bundle treated with the sizing agent can be obtained. The content of the sizing agent in the emulsion is preferably 0.001% by mass or more and 10% by mass or less. The amount of the sizing agent attached to the reinforcing fiber bundle is preferably 0.1% by mass or more and 5.0% by mass or less.

以上説明した強化繊維束を引き揃えて、例えば溶融したマトリックス樹脂と接触させることにより繊維強化樹脂組成物が得られる。マトリックス樹脂の種類は限定されないが、熱可塑性樹脂が好ましい。熱可塑性樹脂の具体例としては、ポリオレフィン系樹脂(ポリプロピレン系樹脂、ポリエチレン系樹脂等)、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリスルホン樹脂等の熱可塑性樹脂が挙げられる。中でも、ポリプロピレン系樹脂及びポリアミド系樹脂からなる群より選択される少なくとも一種の熱可塑性樹脂を含むことがより好ましい。また、マトリックス樹脂が変性ポリオレフィンを含んでいても良い。 A fiber-reinforced resin composition can be obtained by aligning the reinforcing fiber bundles described above and bringing them into contact with, for example, a molten matrix resin. The type of matrix resin is not limited, but a thermoplastic resin is preferable. Specific examples of the thermoplastic resin include polyolefin resins (polypropylene resins, polyethylene resins, etc.), polyamide resins, polyester resins, polycarbonate resins, polyacetal resins, polyetherketone resins, polyetheretherketone resins, polysulfone resins, and the like. Thermoplastic resin can be mentioned. Above all, it is more preferable to contain at least one thermoplastic resin selected from the group consisting of polypropylene-based resins and polyamide-based resins. Further, the matrix resin may contain a modified polyolefin.

<構造材の用途>
以上説明した本発明の構造材の用途は特に限定されず、剛性と軽さを両立することが要求される様々な用途に利用可能である。本発明において「構造材」とは、ある製造物の構造を構成する為の部材を意味する、したがって、本発明の構造材は、建造物又は土木構造物の用途に用いる構造材(すなわち建築材)だけでなく、例えば、車両、船舶、航空機などの人又は物資を運ぶ為の輸送機器に用いる構造材も包含し、さらにそれ以外の用途の構造材も包含する意味である。
<Use of structural materials>
The application of the structural material of the present invention described above is not particularly limited, and it can be used in various applications in which both rigidity and lightness are required. In the present invention, the "structural material" means a member for constituting the structure of a certain product, and therefore, the structural material of the present invention is a structural material (that is, a building material) used for the use of a building or a civil engineering structure. ), For example, structural materials used for transportation equipment for carrying people or goods such as vehicles, ships, and aircraft, and also includes structural materials for other purposes.

建造物又は土木構造物の用途に用いる構造材(すなわち建築材)としては、例えば、柱、梁、やぐら、吊り床などの屋内又は屋外建造物の各種構造を構成する為の部材、その他、風車の柱や羽などの屋外建造物の各種構造を構成する為の部材が挙げられる。特に、本発明の構造材は剛性と軽さを両立できるので、少人数の作業員で組み立てる組み立て式の建造物を構成する建築材として有用であり、例えば浴室用建築材(ユニットバスの土台など)として非常に有用である。また、耐腐食性の特徴を活かし、化学実験などで使用されるドラフトチャンバーの構造材としても非常に有用である。 Structural materials (that is, building materials) used for the use of buildings or civil engineering structures include, for example, members for forming various structures of indoor or outdoor structures such as columns, beams, yagura, and suspended floors, and windmills. Members for forming various structures of outdoor buildings such as pillars and wings of the building can be mentioned. In particular, since the structural material of the present invention can achieve both rigidity and lightness, it is useful as a building material for constructing an assembly-type building assembled by a small number of workers. For example, a building material for a bathroom (such as a base of a unit bath). ) Is very useful. In addition, taking advantage of its corrosion resistance, it is also very useful as a structural material for draft chambers used in chemical experiments.

輸送機器の用途に用いる構造材としては、例えば、車両用部材(自動車用部材、電車用部材など)、船舶用部材、航空機用部材がある。 Structural materials used for transport equipment include, for example, vehicle members (automobile members, train members, etc.), ship members, and aircraft members.

車両用部材の具体例としては、サイドドア又はバックドア等のドアに用いるインパクトビームや筋交いが挙げられる。ただし、車両用部材の種類はこれらに限定されない。一般に車両用部材は軽量化の要請が強く、また本発明の構造材は剛性と軽さを両立できるので、本発明の構造材は上記以外の様々な車両用部材としても有用である。なお、インパクトビームは、一般に、外部からの衝撃に対して乗客の安全を確保する為にドアの中空内部に配置される部材であり、金属製ドア及び樹脂製ドアの何れにおいても使用でき、金属製ドアに比べて強度が低い樹脂製ドアにおいては特に重要な部材である。また、筋交いは、一般に、ドアの組立作業の際の薄肉のドア部材(例えば外郭のみが鉄製で本体が樹脂製のドア部材)の変形(例えば水平に持ち上げた際の凹み変形)を防止する為の部材であり、組立完了後もドアに内包される部材である。 Specific examples of vehicle members include impact beams and braces used for doors such as side doors and back doors. However, the types of vehicle members are not limited to these. In general, there is a strong demand for weight reduction of vehicle members, and the structural material of the present invention can achieve both rigidity and lightness. Therefore, the structural material of the present invention is also useful as various vehicle members other than the above. The impact beam is generally a member arranged inside the hollow of the door in order to ensure the safety of passengers against an external impact, and can be used for both metal doors and resin doors, and is made of metal. It is a particularly important member for resin doors, which have lower strength than doors made of resin. In addition, the brace is generally used to prevent deformation of a thin-walled door member (for example, a door member whose outer shell is made of iron and whose main body is made of resin) during door assembly work (for example, dent deformation when lifted horizontally). It is a member of the above, and is a member contained in the door even after the assembly is completed.

船舶用部材の具体例としては、キール部材(背骨部材)などがある。航空機用部材としては、大型航空機、小型航空機、ドローンの何れの部材にも利用可能である。 Specific examples of marine members include keel members (spine members). As the aircraft member, it can be used for any member of a large aircraft, a small aircraft, and a drone.

構造材の用途としては、本発明の構造材の剛性と軽さを活用する観点から、上述の中でも建築材及び車両用部材が好ましい。 Among the above, building materials and vehicle members are preferable as the use of the structural material from the viewpoint of utilizing the rigidity and lightness of the structural material of the present invention.

以下、実施例により本発明をさらに詳しく説明する。実施例において用いた評価方法は以下の通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples. The evaluation method used in the examples is as follows.

<3点曲げの弾性率、たわみ量>
油圧疲労試験機(装置名INSTRON 8804型、最大試験力500kN)を使用して、支点間距離1600mmの条件で6mm/minの速度で荷重を印加した。圧子の先端の曲率はφ100mm、支点先端の曲率はφ50mmである。圧子と支点への片当りを避けるために、接触部分にはGFRP製タブを貼着した。また、装置の中央の圧子部分の試料の下面にレーザー変位計(株式会社キーエンス製、商品名LK−H027)を設置し、応力2940N、5194N、6860Nの応力を印加した場合のたわみ量を測定した。各応力におけるたわみ量から、下記式1に従って3点曲げの弾性率を算出し、平均値を弾性率とした。
E=WL/48δI (式1)
ここでEは弾性率、Wは荷重、Lは3点曲げ試験の支点間距離、δはたわみ量、Iは断面2次モーメントである。
角パイプ(中空箱型タイプ)の場合は、I=(H−h)/12であり、
H型タイプの場合は、I=(BH−bh)/12である。
<Elastic modulus of 3-point bending, amount of deflection>
A load was applied at a speed of 6 mm / min under the condition of a distance between fulcrums of 1600 mm using a hydraulic fatigue tester (device name INSTRON 8804 type, maximum test force 500 kN). The curvature of the tip of the indenter is φ100 mm, and the curvature of the tip of the fulcrum is φ50 mm. A GFRP tab was attached to the contact area to avoid one-sided contact with the indenter and the fulcrum. In addition, a laser displacement meter (manufactured by KEYENCE CORPORATION, trade name LK-H027) was installed on the lower surface of the sample in the indenter portion in the center of the device, and the amount of deflection when stresses of 2940N, 5194N, and 6860N were applied was measured. .. From the amount of deflection at each stress, the elastic modulus of 3-point bending was calculated according to the following formula 1, and the average value was taken as the elastic modulus.
E = WL 3 / 48δI (Equation 1)
Here, E is the elastic modulus, W is the load, L is the distance between the fulcrums of the three-point bending test, δ is the amount of deflection, and I is the moment of inertia of area.
In the case of a square pipe (hollow box type), I = (H 4- h 4 ) / 12,
In the case of the H type, I = (BH 3- bh 3 ) / 12.

ここでHは外径、hは内径である。なお(H−h)が肉厚に相当する。Bは上面又は下面構成部の長さ、bは支持部以外の構成部の内面の長さである。なお(B−b)が支持部の厚さに相当する。 Here, H is the outer diameter and h is the inner diameter. Note that (Hh) corresponds to the wall thickness. B is the length of the upper surface or lower surface constituent portion, and b is the length of the inner surface of the constituent portion other than the support portion. Note that (Bb) corresponds to the thickness of the support portion.

<実施例1>
図3に示したようなH型タイプの構造材を以下のような手順で作製した。
<Example 1>
An H-type structural material as shown in FIG. 3 was produced by the following procedure.

(各構成部材の作製)
エポキシ樹脂が含浸されている炭素繊維の一方向性プリプレグ(三菱ケミカル株式会社製、商品名TR380G125S)を、長手方向を0°として28層(一方向性繊維の配向方向:0°/0°/0°/0°/0°/15°/0°/0°/0°/−15°/0°/0°/0°/15°/0°/0°/0°/−15°/0°/0°/0°/15°/0°/0°/0°/−15°/0°/0°)積層して一方向性炭素繊維強化樹脂シートの積層体とすることにより、上面構成部31の上側部分(31aの部分)を構成する為の上側用構成部材A1を作製した。また、同様の方法により、下面構成部32の下側部分(32aの部分)を構成する為の下側用構成部材A2も作製した。
(Manufacturing of each component)
28 layers of carbon fiber unidirectional prepreg (manufactured by Mitsubishi Chemical Corporation, trade name TR380G125S) impregnated with epoxy resin with the longitudinal direction as 0 ° (unidirectional fiber orientation direction: 0 ° / 0 ° / 0 ° / 0 ° / 0 ° / 15 ° / 0 ° / 0 ° / 0 ° / -15 ° / 0 ° / 0 ° / 0 ° / 15 ° / 0 ° / 0 ° / 0 ° / -15 ° / By laminating 0 ° / 0 ° / 0 ° / 15 ° / 0 ° / 0 ° / 0 ° / -15 ° / 0 ° / 0 °) to form a laminated body of unidirectional carbon fiber reinforced resin sheets. An upper component A1 for forming the upper portion (the portion of 31a) of the upper surface component 31 was produced. Further, by the same method, a lower component A2 for forming the lower portion (the portion of 32a) of the lower surface component 32 was also manufactured.

これとは別に、エポキシ樹脂が含浸されている炭素繊維の3K綾織プリプレグ(三菱ケミカル株式会社製、商品名TR3523−318GMX)を、長手方向を0°として7層(綾織の経糸方向:45°/0°/45°/0°/45°/0°/45°)積層し、断面が88mm角、長さ1820mmの型にC形に巻き付け一体に成形することにより、上面構成部31の左下側部分(31bの部分)、下面構成部32の左上側部分(32bの部分)及び支持部33の左側部分(33bの部分)を構成する為の左側用構成部材B1を作製した。また、同様の方法により、上面構成部31の右下側部分(31cの部分)、下面構成部32の右上側部分(32cの部分)及び支持部33の右側部分(33cの部分)を構成する為の右側用構成部材B2を作製した。 Separately, 7 layers of carbon fiber 3K twill prepreg (manufactured by Mitsubishi Chemical Corporation, trade name TR3523-318GMX) impregnated with epoxy resin are used with the longitudinal direction as 0 ° (twill warp direction: 45 ° /). 0 ° / 45 ° / 0 ° / 45 ° / 0 ° / 45 °) Laminated, wrapped around a mold with a cross section of 88 mm square and a length of 1820 mm in a C shape, and integrally molded to form the lower left side of the upper surface component 31. A left-side component B1 for forming a portion (31b portion), an upper left side portion (32b portion) of the lower surface constituent portion 32, and a left side portion (33b portion) of the support portion 33 was produced. Further, by the same method, the lower right side portion (31c portion) of the upper surface constituent portion 31, the upper right side portion (32c portion) of the lower surface constituent portion 32, and the right side portion (33c portion) of the support portion 33 are configured. A right-side component B2 for this purpose was produced.

(H型タイプの構造材の作製)
左側用構成部材B1の33bの部分と右側用構成部材B2の33cの部分を接することによりH型形状を形成し、これを下側用構成部材A2の上に乗せ、さらにその左側用構成部材B1及び右側用構成部材B2の上に上側用構成部材A1を乗せ、バッグに入れた後、負圧にして空気を抜き、オートクレーブにて硬化させ、上面構成部31及び下面構成部32の厚さ6.16mm、支持部33の厚さ3.15mmのH型タイプの構造材を得た。このH型タイプの構造材の長さ1m当たりの質量は2304g/m、密度は1.4g/cmであった。
(Manufacturing of H-type structural material)
An H-shaped shape is formed by contacting the 33b part of the left side component B1 and the 33c part of the right side component B2, and this is placed on the lower component A2, and further, the left side component B1 And, after placing the upper component A1 on the right component B2 and putting it in the bag, the air is evacuated under negative pressure and cured by an autoclave, and the thickness 6 of the upper surface component 31 and the lower surface component 32. An H-type structural material having a thickness of .16 mm and a thickness of the support portion 33 of 3.15 mm was obtained. The mass per 1 m of the length of this H-type structural material was 2304 g / m, and the density was 1.4 g / cm 3 .

このH型タイプの構造材の3点曲げの弾性率及びたわみ量を、先に述べた方法により測定した。結果を表1に示す。 The elastic modulus and the amount of deflection of this H-type structural material at three-point bending were measured by the method described above. The results are shown in Table 1.

<実施例2>
図1に示したような中空箱型タイプの構造材を以下のような手順で作製した。
(一方向性炭素繊維強化樹脂シートの作製)
国際公開第2018/135562号の実施例A1に記載された方法で一方向性炭素繊維強化樹脂シート(厚さ0.166mm、マトリックス樹脂=ポリプロピレン系樹脂、繊維体積分率Vf=0.5)を作製した。さらに長手方向を0°として15層(一方向性繊維の配向方向:0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°)積層し、180℃の温度でプレスを行い、厚さ2.5mmの一方向性炭素繊維強化樹脂シートの積層体を得た。
<Example 2>
A hollow box type structural material as shown in FIG. 1 was produced by the following procedure.
(Making a unidirectional carbon fiber reinforced resin sheet)
A unidirectional carbon fiber reinforced resin sheet (thickness 0.166 mm, matrix resin = polypropylene resin, fiber volume fraction Vf = 0.5) was prepared by the method described in Example A1 of International Publication No. 2018/135562. Made. Further, 15 layers with the longitudinal direction as 0 ° (unidirectional fiber orientation direction: 0 ° / 0 ° / 0 ° / 0 ° / 0 ° / 0 ° / 0 ° / 0 ° / 0 ° / 0 ° / 0 ° Laminated (/ 0 ° / 0 ° / 0 ° / 0 °) and pressed at a temperature of 180 ° C. to obtain a laminate of unidirectional carbon fiber reinforced resin sheets having a thickness of 2.5 mm.

(中空箱型炭素繊維強化樹脂部材の作製)
エポキシ樹脂が含浸されている炭素繊維の一方向性プリプレグ(三菱ケミカル株式会社製、商品名TR380G125S、)を、断面が95mm角、長さ1820mmの型に、(一方向性繊維の配向方向:45°/0°/−45°/90°/90°/−45°/0°/45°/45°/0°/−45°/90°/90°/−45°/0°/45°)の積層構成で16層積層した。これをバッグに入れた後、負圧にして空気を抜き、オートクレーブにて硬化させ、縦100mm、横100mm、肉厚2.46mmの中空箱型炭素繊維強化樹脂部材を得た。この中空箱型炭素繊維強化樹脂部材の長さ1m当たりの質量は1391g/m、密度は1.4g/cmであった。
(Manufacturing of hollow box type carbon fiber reinforced resin member)
A unidirectional prepreg of carbon fiber impregnated with epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name TR380G125S) is molded into a mold having a cross section of 95 mm square and a length of 1820 mm (unidirectional fiber orientation direction: 45). ° / 0 ° / -45 ° / 90 ° / 90 ° / -45 ° / 0 ° / 45 ° / 45 ° / 0 ° / -45 ° / 90 ° / 90 ° / -45 ° / 0 ° / 45 ° ), 16 layers were laminated. After putting this in a bag, air was evacuated under a negative pressure and cured by an autoclave to obtain a hollow box-shaped carbon fiber reinforced resin member having a length of 100 mm, a width of 100 mm and a wall thickness of 2.46 mm. The mass per 1 m of the length of this hollow box-shaped carbon fiber reinforced resin member was 1391 g / m, and the density was 1.4 g / cm 3 .

(中空箱型タイプの構造材の作製)
この中空箱型炭素繊維強化樹脂部材の上面と下面に、先に作製した一方向性炭素繊維強化樹脂シートの積層体を、プライマー処理後にエポキシ系接着剤で貼着して、中空箱型タイプの構造材を得た。一方向性炭素繊維強化樹脂シートの強化繊維の配向方向は、中空箱型形状の炭素繊維強化樹脂製部材の長手方向に対して0°にした。この中空箱型タイプの部材の長さ1m当たりの質量は2246g/m、全体の密度は1.38g/cmであった。
(Manufacturing of hollow box type structural material)
A laminated body of the unidirectional carbon fiber reinforced resin sheet prepared above is attached to the upper surface and the lower surface of the hollow box type carbon fiber reinforced resin member with an epoxy adhesive after primer treatment to form a hollow box type. Obtained structural material. The orientation direction of the reinforcing fibers of the unidirectional carbon fiber reinforced resin sheet was set to 0 ° with respect to the longitudinal direction of the hollow box-shaped carbon fiber reinforced resin member. The mass of this hollow box type member per 1 m in length was 2246 g / m, and the overall density was 1.38 g / cm 3 .

この中空箱型タイプの構造材の3点曲げの弾性率及びたわみ量を、先に述べた方法により測定した。結果を表1に示す。 The elastic modulus and the amount of deflection of the three-point bending of this hollow box type structural material were measured by the method described above. The results are shown in Table 1.

<比較例1>
実施例2で作製した中空箱型炭素繊維強化樹脂部材に対して何も積層せずに、3点曲げの弾性率及びたわみ量を実施例1と同様にして測定した。結果を表1に示す。
<Comparative example 1>
The elastic modulus and the amount of deflection at the three-point bending were measured in the same manner as in Example 1 without laminating anything on the hollow box-shaped carbon fiber reinforced resin member produced in Example 2. The results are shown in Table 1.

<比較例2>
従来の中空箱型タイプの建築材として、市販の一般構造用角形鋼管STKR400(縦100mm、横100mm、肉厚2.2mm)を用意した。この一般構造用角形鋼管STKR400の長さ1mm当たりの質量、密度、3点曲げの弾性率及びたわみ量を実施例1と同様にして測定した。結果を表1に示す。
<Comparative example 2>
As a conventional hollow box type building material, a commercially available square steel pipe STKR400 for general structure (length 100 mm, width 100 mm, wall thickness 2.2 mm) was prepared. The mass, density, elastic modulus and deflection amount of the three-point bending per 1 mm of length of this square steel pipe for general structure STKR400 were measured in the same manner as in Example 1. The results are shown in Table 1.

<比較例3>
市販のH型形状のガラス繊維強化樹脂製部材(福井ファイバーテック株式会社製、商品名プルコムH125mm、縦125mm、横125mm、肉厚10mm、強化繊維=ガラス繊維、マトリックス樹脂=ポリエステル系樹脂)を用意した。このH型タイプの建築材の長さ1m当たりの質量は6450g/m、密度は1.9g/cmであった。3点曲げの弾性率及びたわみ量を実施例1と同様にして測定した。結果を表1に示す。
<Comparative example 3>
Commercially available H-shaped glass fiber reinforced resin members (Fukui Fibertech Co., Ltd., trade name: Pullcom H125 mm, length 125 mm, width 125 mm, wall thickness 10 mm, reinforced fiber = glass fiber, matrix resin = polyester resin) are available. did. The mass per 1 m of the length of this H-type building material was 6450 g / m, and the density was 1.9 g / cm 3 . The elastic modulus and the amount of deflection of the three-point bending were measured in the same manner as in Example 1. The results are shown in Table 1.

Figure 2020165286
Figure 2020165286

表1に示す結果から明らかなように、実施例1及び2の構造材は、比較例2の鋼製の建築材に比べて非常に軽量であり、また比較例3のガラス繊維強化樹脂製の建築材や一方向性炭素繊維強化樹脂シートを積層しなかった比較例1の構造材に比べて剛性に優れていた。 As is clear from the results shown in Table 1, the structural materials of Examples 1 and 2 are much lighter than the steel building materials of Comparative Example 2, and are made of glass fiber reinforced resin of Comparative Example 3. It was superior in rigidity to the structural material of Comparative Example 1 in which the building material and the unidirectional carbon fiber reinforced resin sheet were not laminated.

本発明の構造材は、例えば、建造物又は土木構造物の用途に用いる構造材(すなわち建築材)車両、船舶、航空機などの人又は物資を運ぶ為の輸送機器に用いる構造材、さらにそれ以外の用途の構造材として非常に有用である。具体的には、土台、柱、梁、やぐら、吊り床、風車の柱や羽、浴室用建築材(ユニットバスの土台など)、ドラフトチャンバーの構造材、ドアに用いるインパクトビームや筋交い、船舶に用いるキール部材などが挙げられる。 The structural material of the present invention is, for example, a structural material used for the use of a building or a civil engineering structure (that is, a building material), a structural material used for transportation equipment for carrying people or goods such as vehicles, ships, and aircraft, and other structural materials. It is very useful as a structural material for the purpose of. Specifically, for bases, pillars, beams, yagura, suspended floors, windmill pillars and wings, bathroom building materials (unit bath bases, etc.), draft chamber structural materials, impact beams and braces used for doors, and ships. Examples include the keel member used.

1 中空箱型タイプの構造材
11 上面構成部
11a 上面構成基材部
11b 一方向性炭素繊維強化樹脂シート
12 下面構成部
12a 下面構成基材部
12b 一方向性炭素繊維強化樹脂シート
13 支持部
13a 支持基材部
13b、13c 一方向性炭素繊維強化樹脂シート
14 支持部
14a 支持基材部
14b、14c 一方向性炭素繊維強化樹脂シート
2 H型タイプの構造材
21 上面構成部
21a 上面構成基材部
21b 一方向性炭素繊維強化樹脂シート
22 下面構成部
22a 下面構成基材部
22b 一方向性炭素繊維強化樹脂シート
23 支持部
23a 支持基材部
23b、23c 一方向性炭素繊維強化樹脂シート
3 H型タイプの構造材
31 上面構成部
31a 一方向性炭素繊維強化樹脂シート
31b、31c 繊維強化樹脂シート
32 下面構成部
32a 一方向性炭素繊維強化樹脂シート
32b、32c 繊維強化樹脂シート
33 支持部
33b、33c 繊維強化樹脂シート
1 Hollow box type structural material 11 Upper surface constituent part 11a Upper surface constituent base material 11b Unidirectional carbon fiber reinforced resin sheet 12 Lower surface constituent 12a Lower surface constituent base material 12b Unidirectional carbon fiber reinforced resin sheet 13 Support 13a Support base material 13b, 13c Unidirectional carbon fiber reinforced resin sheet 14 Support base 14a Support base material 14b, 14c Unidirectional carbon fiber reinforced resin sheet 2 H-type structural material 21 Top surface component 21a Top surface component Part 21b Unidirectional carbon fiber reinforced resin sheet 22 Bottom surface constituent part 22a Bottom surface constituent base material part 22b Unidirectional carbon fiber reinforced resin sheet 23 Support part 23a Support base material part 23b, 23c Unidirectional carbon fiber reinforced resin sheet 3 H Mold type structural material 31 Top surface component 31a Unidirectional carbon fiber reinforced resin sheet 31b, 31c Fiber reinforced resin sheet 32 Bottom surface component 32a Unidirectional carbon fiber reinforced resin sheet 32b, 32c Fiber reinforced resin sheet 33 Support part 33b, 33c fiber reinforced resin sheet

Claims (9)

少なくとも上面構成部及び下面構成部を有する樹脂製の構造材であって、
前記上面構成部及び前記下面構成部が、強化繊維の配向方向が構造材の長手方向に対して0°±20°以内である一方向性炭素繊維強化樹脂シートを含み、
前記上面構成部全体の厚さに対する前記一方向性炭素繊維強化樹脂シートの厚さ、及び/又は、前記下面構成部全体の厚さに対する一方向性炭素繊維強化樹脂シートの厚さが、35%以上であることを特徴とする構造材。
A structural material made of resin having at least a top surface component and a bottom surface component.
The upper surface component and the lower surface component include a unidirectional carbon fiber reinforced resin sheet in which the orientation direction of the reinforcing fibers is within 0 ° ± 20 ° with respect to the longitudinal direction of the structural material.
The thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire upper surface component and / or the thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire lower surface component is 35%. A structural material characterized by the above.
前記上面構成部全体の厚さに対する前記一方向性炭素繊維強化樹脂シートの厚さ、及び/又は、前記下面構成部全体の厚さに対する一方向性炭素繊維強化樹脂シートの厚さが、50%以上である請求項1に記載の構造材。 The thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire upper surface component and / or the thickness of the unidirectional carbon fiber reinforced resin sheet with respect to the thickness of the entire lower surface component is 50%. The structural material according to claim 1 as described above. 前記上面構成部と前記下面構成部とを繋ぐ為の支持部を有する請求項1又は2に記載の構造材。 The structural material according to claim 1 or 2, which has a support portion for connecting the upper surface constituent portion and the lower surface constituent portion. 前記支持部が、一方向性繊維強化樹脂シートを含む請求項3に記載の構造材。 The structural material according to claim 3, wherein the support portion includes a unidirectional fiber reinforced resin sheet. 前記支持部全体の厚さに対する前記一方向性繊維強化樹脂シートの厚さが、50%以上である請求項4に記載の構造材。 The structural material according to claim 4, wherein the thickness of the unidirectional fiber reinforced resin sheet with respect to the thickness of the entire support portion is 50% or more. 構造材の断面が、中空箱型形状、中実箱型形状及びH型形状のうちの何れかである請求項1〜5の何れかに記載の構造材。 The structural material according to any one of claims 1 to 5, wherein the cross section of the structural material is any one of a hollow box shape, a solid box shape, and an H shape. 建築材である請求項1〜6の何れかに記載の構造材。 The structural material according to any one of claims 1 to 6, which is a building material. 浴室用建築材である請求項7に記載の構造材。 The structural material according to claim 7, which is a building material for a bathroom. 車両用部材である請求項1〜6の何れかに記載の構造材。 The structural material according to any one of claims 1 to 6, which is a member for a vehicle.
JP2019238117A 2019-03-29 2019-12-27 Structural material Pending JP2020165286A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067013 2019-03-29
JP2019067013 2019-03-29

Publications (1)

Publication Number Publication Date
JP2020165286A true JP2020165286A (en) 2020-10-08

Family

ID=72717257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019238117A Pending JP2020165286A (en) 2019-03-29 2019-12-27 Structural material

Country Status (1)

Country Link
JP (1) JP2020165286A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176021A (en) * 1976-05-19 1984-10-05 メツセルシユミツト・ベルコウ・ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Manufacture of beam consisting of fiber reinforced material
JP2004060406A (en) * 2002-07-31 2004-02-26 Nippon Oil Corp Structural member made of fiber reinforced plastics (frp)
WO2017170801A1 (en) * 2016-03-30 2017-10-05 株式会社栗本鐵工所 Fiber-reinforced resin hollow body and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176021A (en) * 1976-05-19 1984-10-05 メツセルシユミツト・ベルコウ・ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Manufacture of beam consisting of fiber reinforced material
JP2004060406A (en) * 2002-07-31 2004-02-26 Nippon Oil Corp Structural member made of fiber reinforced plastics (frp)
WO2017170801A1 (en) * 2016-03-30 2017-10-05 株式会社栗本鐵工所 Fiber-reinforced resin hollow body and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6468613B1 (en) Light metal/CFRP structural member
JP6189285B2 (en) Automotive composites and structural components
US9290212B2 (en) Carbon fiber prepreg-wrapped beam structures
JP7148132B2 (en) Composite sandwich structure
FI78333C (en) SANDWICH ELEMENT.
US20030175455A1 (en) Structural element made from fibre-reinforced plastic
US20140251988A1 (en) Freight container
US9598111B2 (en) Microtruss replacing structural foam in body structural application
JP6801825B2 (en) Structural members for vehicles
JP2944967B2 (en) High-speed vehicle outer wall structure and high-speed vehicle outer wall manufacturing method
US11370463B2 (en) Roof segments for the roof of a carriage body
JP2020165286A (en) Structural material
CN111989257B (en) Automobile structural member
JP6969673B2 (en) T-shaped joint structure
Ekşi et al. Three point bending behavior of woven glass, aramid and carbon fiber reinforced hybrid composite tube
Arbintarso et al. The bending stress on gfrp honeycomb sandwich panel structure for a chassis lightweight vehicle
JP6683293B2 (en) Automotive T-joint structure
WO2023276878A1 (en) Method for reinforcing base material and composite body obtained by same
WO2022176661A1 (en) Impact-absorbing member
JP2006188141A (en) Shock absorbing member
JP2014088652A (en) Fiber sheet for reinforcement
JPH06123112A (en) Structural material for platform for submarine oil field
JP2020011687A (en) Vehicle structural member
KR20160033531A (en) A hybrid bumper beam unnit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230926