WO2023276770A1 - Planetary roller screw type linear motion mechanism and electric brake device - Google Patents

Planetary roller screw type linear motion mechanism and electric brake device Download PDF

Info

Publication number
WO2023276770A1
WO2023276770A1 PCT/JP2022/024650 JP2022024650W WO2023276770A1 WO 2023276770 A1 WO2023276770 A1 WO 2023276770A1 JP 2022024650 W JP2022024650 W JP 2022024650W WO 2023276770 A1 WO2023276770 A1 WO 2023276770A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller shaft
roller
rotation
linear motion
planetary
Prior art date
Application number
PCT/JP2022/024650
Other languages
French (fr)
Japanese (ja)
Inventor
雅章 江口
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2023276770A1 publication Critical patent/WO2023276770A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/50Rotating members in mutual engagement with parallel non-stationary axes, e.g. planetary gearing

Definitions

  • the present invention relates to a planetary roller screw type linear motion mechanism used in an electric linear motion actuator, and an electric brake device using the planetary roller screw type linear motion mechanism.
  • the planetary roller screw type linear motion mechanism of Patent Document 1 includes a rotating shaft to which rotation is input from the outside, a hollow cylindrical outer ring member surrounding the rotating shaft, and an inner circumference of the outer ring member and an outer circumference of the rotating shaft.
  • a plurality of planetary rollers arranged at intervals in the circumferential direction therebetween, a plurality of roller shafts rotatably supporting the plurality of planetary rollers, and a carrier holding both ends of the plurality of roller shafts.
  • a helical ridge is provided on the inner circumference of the outer ring member, and a helical groove or a circumferential groove that engages with the helical ridge is provided on the outer circumference of each planetary roller.
  • the carrier has a first disk and a second disk that face each other in the axial direction with a plurality of planetary rollers interposed therebetween, and a connecting portion that passes between the plurality of planetary rollers and connects the first disk and the second disk.
  • the first disk has a plurality of first elongated holes for radially movably holding the first ends of the roller shafts
  • the second disk has a plurality of roller shafts.
  • a plurality of circumferentially spaced second slots are formed to movably retain the second end of the shaft in the radial direction.
  • a first C-shaped ring spring and a second C-shaped ring spring are stretched over the first end and the second end of the roller shaft, respectively, in a state in which the diameter is elastically expanded and deformed.
  • the elastic restoring forces of the C-shaped ring springs urge the first end and the second end of each roller shaft radially inward, and as a result, the planetary rollers are pressed against the outer circumference of the rotating shaft.
  • this planetary roller screw type linear motion mechanism when rotation is input to the rotating shaft from the outside, the rotation of the rotating shaft is transmitted to the planetary rollers that are in rolling contact with the outer circumference of the rotating shaft. It revolves around its axis of rotation. At this time, the engagement between the spiral groove or the circumferential groove on the outer circumference of the planetary roller and the spiral ridge on the inner circumference of the outer ring member causes the outer ring member, which is prevented from rotating from the outside, to move in the axial direction.
  • the planetary roller screw type linear motion mechanism converts rotation of the rotating shaft into linear motion of the outer ring member.
  • this planetary roller screw type linear motion mechanism is compact and can generate a large axial load. There is an advantage that it is suitable for an electric brake device that is used.
  • Patent Document 1 a pair of flat surfaces (hereinafter referred to as "width across flats") are provided on the outer circumference of the first end and the outer circumference of the second end of each roller shaft. ) so that the width across flats of the first end is engaged with the longitudinal surface of the first elongated hole of the first disc, and the width across flats of the second end is also the longitudinal direction of the second elongated hole of the second disc. By engaging the surfaces, the roller shaft is prevented from rotating by the first disk and the second disk.
  • a carrier composed of a first disc, a second disc, and a connecting portion connecting the two discs is assembled, and then the roller shaft is connected to the first long hole of the first disc and the second disc of the second disc. If the roller shaft can be inserted into the two elongated holes, it is possible to automate the assembling work of the roller shaft. can't This is because the width dimension of the first slot and the width dimension of the second slot correspond to the width across flats of the end portion of the roller shaft, and are narrower than the outer diameter dimension of the roller shaft.
  • the second end of the roller shaft does not form the width across flats.
  • the second long hole should not have a dimension corresponding to the width across flats formed at the first end of the roller shaft, but should have a wider width dimension corresponding to the outer diameter dimension of the roller shaft. to form.
  • the first end of the roller shaft Since the shape and size of the portion and the shape and size of the second end are different from each other, it becomes necessary to distinguish between the front and rear directions of the roller shaft when inserting the roller shaft into the first long hole and the second long hole. .
  • the shape of the end of the roller shaft is detected, and based on the detected shape of the end of the roller shaft, the correct orientation of the roller shaft (roller shaft
  • the first end of the roller shaft should be the front side of the insertion direction, and the second end of the roller shaft should be the rear side of the insertion direction), but it is costly to provide such facilities.
  • FIG. 25A A method of extension is conceivable. That is, as shown in FIG. 25A, the roller shaft is extended to a position where the width across flats 72 of the first end 71 of the roller shaft 70 engages the longitudinal surface 75 of the first elongated hole 74 of the first disc 73 .
  • a possible method is to extend the roller shaft 70 so that the width across flats 77 of the second end 76 of the roller shaft 70 does not reach the position of the second long hole 79 of the second disk 78 when the roller shaft 70 is inserted. .
  • FIG. 25A A possible method is to extend the roller shaft 70 so that the width across flats 77 of the second end 76 of the roller shaft 70 does not reach the position of the second long hole 79 of the second disk 78 when the roller shaft 70 is inserted.
  • a width across flats 72 is formed at the first end 71 of the roller shaft 70, and as shown in FIG. is formed. Further, as shown in FIG. 25C, the width dimension of the second elongated hole 79 is set not to the dimension corresponding to the width across flats 77 but to the dimension corresponding to the outer diameter dimension of the roller shaft 70 .
  • the shape and dimensions of the first end portion 71 of the roller shaft 70 and the shape and dimensions of the second end portion 76 of the roller shaft 70 are the same, so the roller shaft 70 can be positioned between the second long hole 79 and the first end portion 79 . There is no need to distinguish between the front and rear directions of the roller shafts 70 when they are sequentially inserted into the long holes 74 .
  • the problem to be solved by the present invention is to provide a planetary roller screw type linear motion mechanism that facilitates automation of the work of assembling the roller shaft of the planetary roller to the carrier.
  • the present invention provides a planetary roller screw type linear motion mechanism having the following configuration. a rotating shaft; a hollow cylindrical outer ring member surrounding the rotating shaft; a plurality of planetary rollers arranged at intervals in the circumferential direction between the inner periphery of the outer ring member and the outer periphery of the rotating shaft; a spiral ridge provided on the inner periphery of the outer ring member; a spiral groove or a circumferential groove provided on the outer circumference of each planetary roller so as to engage with the spiral ridge; a plurality of roller shafts that rotatably support the plurality of planetary rollers; a first disk and a second disk axially opposed to each other with the plurality of planetary rollers interposed therebetween; and a connecting portion passing between the plurality of planetary rollers and connecting the first disk and the second disk.
  • a plurality of first elongated holes are formed in the first disk at intervals in a circumferential direction to hold the first ends of the plurality of roller shafts so as to be movable in a radial direction, Planetary roller screw type linear motion, wherein a plurality of second elongated holes are formed in the second disk at intervals in the circumferential direction to hold the second ends of the plurality of roller shafts so as to be movable in the radial direction.
  • the width dimension of the second long hole is wider than the width dimension of the first long hole
  • a first anti-rotation shape portion and a first partial cylindrical surface adjacent to the first anti-rotation shape portion around the axis of the roller shaft are formed on the outer circumference of the first end portion of the roller shaft.
  • the first anti-rotation shaped portion is engaged with the longitudinal surface of the first elongated hole to prevent rotation of the roller shaft
  • a second anti-rotation shape portion and a second partial cylindrical surface adjacent to the second anti-rotation shape portion around the axis of the roller shaft are formed on the outer circumference of the second end portion of the roller shaft.
  • the shape and dimensions of the second end are the same as the shape and dimensions of the first end, but the angular position of the second detent shape about the axis of the roller shaft and the first detent Different from the angular position of the shaped portion about the axis of the roller shaft, only the second partial cylindrical surface out of the second anti-rotation shaped portion and the second partial cylindrical surface is aligned with the longitudinal surface of the second long hole.
  • a planetary roller screw type linear motion mechanism characterized by being supported in contact.
  • the second elongated hole is formed to have a wide width
  • first the carrier composed of the first disk, the second disk, and the connecting portion connecting the two disks is assembled, and then the roller shaft is assembled.
  • the roller shaft is assembled.
  • the roller shaft is assembled.
  • the shape and dimensions of the first end of the roller shaft and the shape and dimensions of the second end of the roller shaft are the same, when the roller shaft is inserted into the second elongated hole and the first elongated hole in this order, There is no need to distinguish between the front and rear orientations of the roller shafts. Therefore, it is easy to automate the work of assembling the roller shaft of the planetary roller to the carrier.
  • first anti-rotation shape portion and the second anti-rotation shape portion adopt a flat surface having a shape obtained by cutting the outer periphery of the roller shaft along a plane parallel to the axial center of the roller shaft.
  • the first detent shape is a flat surface, it comes into surface contact with the longitudinal surface of the first elongated hole, and it is possible to effectively detent the roller shaft so that it does not rotate. Further, the reduction in the cross-sectional area of the first end and the second end of the roller shaft due to the formation of the first anti-rotation shape portion and the second anti-rotation shape portion is minimized, and the first end of the roller shaft is The strength of the portion and the second end can be easily ensured, and the first anti-rotation shape portion and the second anti-rotation shape portion can be processed with high accuracy at a low processing cost.
  • the difference between the angular position of the first anti-rotation shape portion about the axis of the roller shaft and the angular position of the second anti-rotation shape portion about the axis of the roller shaft is in the range of 40° or more and 140° or less. preferably set to .
  • a first C-shaped ring spring for biasing the first end of the roller shaft radially inward; and a second C-shaped ring spring for biasing the second end of the roller shaft radially inward.
  • a ring spring A first ring groove with which the first C-shaped ring spring engages is formed on the outer periphery of the first end of the roller shaft, When a second ring groove with which the second C-shaped ring spring engages is formed on the outer circumference of the second end of the roller shaft,
  • the difference between the angular position of the first anti-rotation shape portion about the axis of the roller shaft and the angular position of the second anti-rotation shape portion about the axis of the roller shaft is 40° or more and 50° or less, or 130°. It is preferable to set the angle between 140° and 140°.
  • the first anti-rotation shaped portion is a pair of flat surfaces formed parallel to each other on the outer circumference of the first end of the roller shaft with the axis of the roller shaft interposed therebetween
  • the second anti-rotation shaped portion may be a pair of parallel flat surfaces formed on the outer periphery of the second end portion of the roller shaft with the axis of the roller shaft interposed therebetween.
  • the first anti-rotation shaped portion is formed only at one location on the outer periphery of the first end of the roller shaft, A configuration may be adopted in which the second anti-rotation shaped portion is formed only at one location on the outer periphery of the second end portion of the roller shaft.
  • the present invention also provides an electric brake device having the following configuration as an electric brake device using the planetary roller screw type linear motion mechanism.
  • the above-mentioned planetary roller screw type linear motion mechanism an electric motor that rotationally drives the rotary shaft of the planetary roller screw type linear motion mechanism; and a brake pad axially pressed by the outer ring member of the planetary roller screw type linear motion mechanism.
  • the carrier is first formed of the first disc, the second disc, and the connecting portion connecting the two discs. is assembled, and then the roller shafts can be sequentially inserted into the second slot and the first slot from the side of the second disk.
  • the shape and dimensions of the first end of the roller shaft and the shape and dimensions of the second end of the roller shaft are the same, when the roller shaft is inserted into the second elongated hole and the first elongated hole in this order, There is no need to distinguish between the front and rear orientations of the roller shafts. Therefore, it is easy to automate the work of assembling the roller shaft of the planetary roller to the carrier.
  • FIG. 1 is a sectional view showing an electric linear motion actuator incorporating a planetary roller screw type linear motion mechanism according to a first embodiment of the present invention
  • FIG. Enlarged cross-sectional view of the vicinity of the planetary roller screw type linear motion mechanism in FIG. Cross-sectional view along the III-III line in Fig. 2
  • Cross-sectional view along the IV-IV line in Fig. 2 Enlarged view of the vicinity of the roller shaft in FIG.
  • Cross-sectional view along the VI-VI line in Fig. 2 Enlarged view of the vicinity of the roller shaft in FIG. Cross-sectional view along line VIII-VIII in Fig. 2
  • FIG. 3 is an enlarged view of the roller shaft shown in FIG.
  • FIG. 5 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the second embodiment of the present invention;
  • Cross-sectional view along line BB in FIG. 15A Cross-sectional view along CC line of FIG. 15A
  • FIG. 15B is an enlarged view of the roller shaft shown in FIG. 15A;
  • FIG. 8 Sectional view along line XVIII-XVIII in FIG.
  • FIG. 8 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the third embodiment of the present invention;
  • Cross-sectional view along line BB in FIG. 19A Cross-sectional view along CC line of FIG. 19A
  • FIG. 19B is an enlarged view of the roller shaft shown in FIG. 19A;
  • FIG. 8 Sectional view along line XVIII-XVIII in FIG.
  • FIG. 8 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the third embodiment of the present invention.
  • Cross-sectional view along line BB in FIG. 19A Cross-sectional view along CC line of FIG. 19A
  • FIG. 19B is an enlarged view
  • FIG. 11 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the fourth embodiment of the present invention; Cross-sectional view along line BB of FIG. 23A Cross-sectional view along CC line of FIG. 23A
  • FIG. 11 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the fifth embodiment of the present invention; Cross-sectional view along line BB of FIG. 24A Cross-sectional view along CC line of FIG. 24A Cross-sectional view of the vicinity of the planetary roller of the planetary roller screw type linear motion mechanism of the reference example Cross-sectional view along line BB of FIG. 25A Cross-sectional view along CC line of FIG. 25A
  • FIG. 1 shows an electric linear motion actuator 2 using the planetary roller screw type linear motion mechanism 1 of the first embodiment of the present invention.
  • This electric linear motion actuator 2 includes an electric motor 3 , a reduction gear mechanism 4 that decelerates and transmits the rotation of the electric motor 3 , and an outer ring member 5 that transmits the rotation input from the electric motor 3 via the reduction gear mechanism 4 . and a planetary roller screw type linear motion mechanism 1 that converts and outputs the linear motion.
  • the reduction gear mechanism 4 includes an input gear 7 fixed to the motor shaft 6 of the electric motor 3, an output gear 9 fixed to the rotary shaft 10 of the planetary roller screw type linear motion mechanism 1, an input gear 7 and an output gear 9. and a gear case 11 for housing these gears 7, 8 and 9.
  • the gear case 11 consists of a base plate 12 and a cover 13 .
  • the reduction gear mechanism 4 reduces the speed of the rotation input from the motor shaft 6 of the electric motor 3 to the input gear 7 by sequentially transmitting the rotation through the input gear 7, the intermediate gear 8, and the output gear 9, which have different numbers of teeth. The reduced rotation is output from the output gear 9 to the rotary shaft 10 .
  • the planetary roller screw type linear motion mechanism 1 includes a rotary shaft 10 that is rotationally driven by an electric motor 3 (see FIG. 1) and a hollow cylindrical outer ring member 5 that surrounds the rotary shaft 10. , a plurality of planetary rollers 14 arranged at intervals in the circumferential direction between the inner circumference of the outer ring member 5 and the outer circumference of the rotating shaft 10, and a plurality of rollers supporting the plurality of planetary rollers 14 so as to be rotatable.
  • Shaft 15 , carrier 18 holding both ends (first end 16 and second end 17 ) of the plurality of roller shafts 15 in the axial direction, and outer ring member 5 are moved in parallel with the axial direction of rotating shaft 10 . and a housing 19 (see FIG. 2) that accommodates it. As shown in FIG. 1, the housing 19 is fixed to the axial front side surface of the base plate 12 .
  • the direction parallel to the rotating shaft 10 is the axial direction
  • the direction of movement of the outer ring member 5 when the outer ring member 5 moves toward the side where the projection length of the outer ring member 5 from the housing 19 is increased is the axial forward direction.
  • the moving direction of the outer ring member 5 when the outer ring member 5 moves to the side where the projection length of the member 5 from the housing 19 becomes smaller is the axial rearward direction
  • the direction of rotation around the rotating shaft 10 is the circumferential direction
  • the direction in which the distance changes is called the radial direction.
  • the plurality of planetary rollers 14 are in rolling contact with the outer circumference of the rotating shaft 10 .
  • a contact portion of the rotating shaft 10 with the planetary roller 14 is a cylindrical surface.
  • each planetary roller 14 revolves around the rotating shaft 10 while rotating about the roller shaft 15 due to friction between the outer periphery of the rotating shaft 10 and the outer periphery of the planetary rollers 14 .
  • a spiral ridge 20 is provided on the inner circumference of the outer ring member 5.
  • the spiral ridge 20 is a ridge obliquely extending with a predetermined lead angle with respect to the circumferential direction.
  • a plurality of circumferential grooves 21 that engage with the spiral ridges 20 are formed on the outer periphery of each planetary roller 14 at intervals in the axial direction. The interval between adjacent circumferential grooves 21 on the outer periphery of each planetary roller 14 in the axial direction is the same size as the pitch of the spiral ridges 20 .
  • the circumferential groove 21 having a lead angle of 0 degrees is provided on the outer periphery of the planetary roller 14, but instead of the circumferential groove 21, a spiral groove having a lead angle different from that of the spiral ridge 20 may be provided. .
  • the carrier 18 connects the first disk 22 and the second disk 23 by passing between the plurality of planetary rollers 14 and the first disk 22 and the second disk 23 that face each other in the axial direction with the plurality of planetary rollers 14 interposed therebetween. It has a plurality of connecting portions 24 that connect to each other.
  • the connecting portion 24 is a columnar member extending in the axial direction between the planetary rollers 14 adjacent in the circumferential direction.
  • the axial front end of the connecting portion 24 is press-fitted into a press-fitting hole 25 formed in the first disk 22 and fixed, and the axial rear end of the connecting portion 24 is press-fitted into a press-fitting hole 26 formed in the second disk 23 . has been fixed.
  • the connecting portion 24 fixes the first disk 22 and the second disk 23 to each other so that the first disk 22 and the second disk 23 do not move relative to each other in either the axial direction or the circumferential direction.
  • a first end portion 16 of the roller shaft 15 (an end portion on the front side in the axial direction in the figure) is held by a first elongated hole 31 formed in the first disc 22 so as to be movable in the radial direction.
  • the second end 17 of the roller shaft 15 (the end on the rear side in the axial direction in the figure) is also held by a second elongated hole 32 formed in the second disc 23 so as to be radially movable.
  • a second C-shaped ring spring 34 is stretched over the second end portion 17 of the roller shaft 15 in a state of being elastically expanded in diameter.
  • the second end 17 of each roller shaft 15 is urged radially inward by the elastic restoring force of .
  • a first C-shaped ring spring 33 is stretched over the first end portions 16 of the plurality of roller shafts 15 in a state of being elastically deformed to expand its diameter.
  • the elastic restoring force of the C-shaped ring spring 33 urges the first end 16 of each roller shaft 15 radially inward.
  • the outer circumference of each planetary roller 14 is pressed against the outer circumference of the rotating shaft 10 by the elastic restoring forces of the first C-shaped ring spring 33 and the second C-shaped ring spring 34 .
  • the first disk 22 and the second disk 23 are formed in an annular shape through which the rotating shaft 10 is passed.
  • Slide bearings 35 are mounted on the inner circumferences of the first disk 22 and the second disk 23 so as to be in sliding contact with the outer circumference of the rotating shaft 10 .
  • the slide bearing 35 supports the carrier 18 rotatably around the rotary shaft 10 .
  • a radial bearing 36 is provided between the inner circumference of each planetary roller 14 and the outer circumference of the roller shaft 15 to support the planetary roller 14 so that it can rotate.
  • the radial bearing 36 supports the outer circumference of the central portion of each roller shaft 15 (the portion between the first end portion 16 and the second end portion 17).
  • the outer circumference of the central portion of each roller shaft 15 is a constant cylindrical surface whose outer diameter does not change along the axial direction. Needle rollers with retainers can be used as the radial bearings 36 .
  • a thrust bearing 37 is incorporated between each planetary roller 14 and the second disk 23 to axially support the planetary roller 14 in a rotatable state.
  • the outer ring member 5 is axially slidably supported on the inner surface of a housing hole 38 formed in the housing 19 .
  • a shaft support member 39 is fixedly provided inside the housing 19 at a position spaced rearward in the axial direction from the outer ring member 5 .
  • the shaft support member 39 is formed in an annular shape through which the rotating shaft 10 passes.
  • a radial bearing 40 that rotatably supports the rotating shaft 10 is incorporated in the inner periphery of the shaft support member 39 .
  • a thrust bearing 41 is incorporated between the carrier 18 and the shaft support member 39 to axially support the carrier 18 so that it can revolve.
  • a spacer 42 that revolves integrally with the carrier 18 is incorporated between the carrier 18 and the thrust bearing 41 .
  • the axially rearward movement of the shaft support member 39 is restricted by a snap ring 43 mounted on the inner circumference of the housing hole 38, and the carrier 18 is also restricted from axially rearward movement. . Further, the carrier 18 is restricted from moving forward in the axial direction by a retaining ring 44 provided at the axial front end of the rotary shaft 10 . As a result, the carrier 18 is restricted from moving forward and backward in the axial direction, and the planetary rollers 14 held by the carrier 18 are also restricted from moving in the axial direction.
  • a plurality of first elongated holes 31 are provided at intervals in the circumferential direction.
  • Each first slot 31 axially penetrates the first disc 22 , and the first end 16 of the roller shaft 15 is inserted into each first slot 31 .
  • the first elongated hole 31 is elongated in the radial direction (vertical direction in the figure) and has a pair of longitudinal surfaces 45 that extend linearly in the radial direction.
  • the pair of longitudinal surfaces 45 are flat surfaces arranged to face each other in the circumferential direction.
  • a pair of first partial cylindrical surfaces 47 are formed.
  • the first anti-rotation shape portion 46 is a portion formed by cutting out a part of the outer circumference of the circular cross section by processing the outer circumference of the end portion of the roller shaft 15 .
  • 15 is a portion having a shape capable of restricting its rotation.
  • the first anti-rotation portion 46 is a flat surface obtained by cutting the outer periphery of the roller shaft 15 along a plane parallel to the axial center of the roller shaft 15 .
  • the pair of first anti-rotation shaped portions 46 are formed in parallel with the axis of the roller shaft 15 interposed therebetween (so-called width across flats).
  • the width dimension of the first long hole 31 corresponds to the width dimension of the pair of first detent shaped portions 46 on the outer periphery of the first end portion 16. Also, the width dimension of the first long hole 31 is smaller than the outer diameter dimension of the roller shaft 15 . The roller shaft 15 is prevented from rotating by engaging the first anti-rotation shape portion 46 with the longitudinal surface 45 of the first elongated hole 31 (surface contact in this embodiment).
  • a plurality of second elongated holes 32 are also provided at intervals in the circumferential direction.
  • Each second slot 32 axially penetrates the second disc 23 , and the second end 17 of the roller shaft 15 is inserted into each second slot 32 .
  • the second elongated hole 32 is elongated in the radial direction (vertical direction in the figure) and has a pair of longitudinal surfaces 48 that extend linearly in the radial direction.
  • the pair of longitudinal surfaces 48 are flat surfaces that face each other in the circumferential direction.
  • the outer circumference of the second end portion 17 of the roller shaft 15 is provided with a pair of second detent shaped portions 49 and adjacent to the pair of second detent shaped portions 49 around the axis of the roller shaft 15 .
  • a pair of second partial cylindrical surfaces 50 are formed.
  • the second anti-rotation shape portion 49 is a flat surface formed by cutting the outer periphery of the roller shaft 15 along a plane parallel to the axis of the roller shaft 15 .
  • the pair of second detent shaped portions 49 are formed in parallel with the axis of the roller shaft 15 interposed therebetween.
  • the shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 9 are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG.
  • the angular position of the second detent shape portion 49 shown in FIG. 9 around the axis of the roller shaft 15 is different from the angular position of the first detent shape portion 46 shown in FIG. different. That is, as shown in FIGS. 10 to 12 , the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 are aligned in the normal direction of the first anti-rotation shape portion 46 and the normal direction of the second anti-rotation shape portion 49 . They are formed such that their line directions are different from each other.
  • the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is 40° or more. It is set within a range of 50° or less (45° in the drawing).
  • the four flat surfaces of the roller shaft 15 (the two first anti-rotation shaped portions 46 and the two second anti-rotation shaped portions 49) all face different directions.
  • the width dimension of the second elongated hole 32 (the spacing dimension between the pair of longitudinal surfaces 48 ) is a dimension corresponding to the outer diameter dimension of the roller shaft 15 .
  • the width dimension of the second long hole 32 is wider than the width dimension of the first long hole 31 (see FIG. 7). ing.
  • the second detent shape portion 49 and the second partial cylindrical surface 50 are on the outer periphery of the second end portion 17 of the roller shaft 15 .
  • only the second partial cylindrical surface 50 is in contact with the longitudinal surface 48 of the second elongated hole 32 . It is supported, and the second anti-rotation shape portion 49 is out of contact with the longitudinal surface 48 .
  • a second ring groove 52 with which the second C-shaped ring spring 34 engages is formed on the outer circumference of the second end 17 of the roller shaft 15 .
  • the outer circumference of the first end 16 of the roller shaft 15 is formed with a first ring groove 51 with which the first C-shaped ring spring 33 (see FIG. 2) engages.
  • the first anti-rotation shaped portion 46 is formed so as to cross the forming region of the first ring groove 51 in the axial direction and reach the end surface of the roller shaft 15 on the first end portion 16 side.
  • the second anti-rotation shape portion 49 is also formed so as to extend axially across the forming region of the second ring groove 52 and reach the end surface of the roller shaft 15 on the second end portion 17 side.
  • the shape and dimensions of the second end 17 after the reversal are as follows. Symmetry such that the shape and dimensions of the first end 16 before inversion are identical to the shape and dimensions of the first end 16 after inversion, and the shape and dimensions of the first end 16 after inversion are the same as the shape and dimensions of the second end 17 before inversion have sex.
  • the planetary roller screw type linear motion mechanism 1 converts the rotation input from the electric motor 3 to the rotary shaft 10 into linear motion of the outer ring member 5 .
  • This electric brake device includes a brake disc 60 that rotates together with a wheel (not shown), a mounting bracket 61 that is fixed to the vehicle body so as not to move in the axial direction with respect to the brake disc 60, and a A caliper body 62 slidably supported in parallel with the axial direction of the brake disc 60, an inner side brake pad 63 and an outer side brake pad 64 axially opposed to each other with the brake disc 60 interposed therebetween, and an inner side brake pad. and an electric linear motion actuator 2 that moves 63 in the axial direction.
  • the inner side brake pad 63 and the outer side brake pad 64 are each held by a mounting bracket 61 so as to be axially movable and circumferentially immovable.
  • the caliper body 62 has a claw portion 65 that axially faces the rear surface of the outer brake pad 64 and an outer shell portion 66 that faces the outer diameter side of the brake disc 60 .
  • the outer shell portion 66 is formed integrally with the housing 19 of the electric linear motion actuator 2 .
  • the outer shell portion 66 of the caliper body 62 and the housing 19 of the electric linear motion actuator 2 may be formed separately and then integrated with bolts or the like.
  • the outer ring member 5 is arranged behind the inner side brake pad 63 so that the inner side brake pad 63 moves integrally with the outer ring member 5 when the outer ring member 5 moves.
  • An end portion of the outer ring member 5 on the brake disc 60 side is formed with a detent groove 68 that engages with a detent projection 67 formed on the back surface of the inner side brake pad 63 .
  • the engagement of the groove 68 prevents rotation of the outer ring member 5 .
  • the outer ring member 5 of the electric linear motion actuator 2 axially presses the back surface of the inner side brake pad 63 to press the inner side brake pad 63 against the side surface of the brake disc 60 .
  • the caliper body 62 slides relative to the mounting bracket 61 due to the axial reaction force that the outer ring member 5 receives from the inner side brake pad 63 , and the claw portion 65 of the caliper body 62 slides along the back surface of the outer side brake pad 64 .
  • the outer side brake pad 64 is pressed against the side surface of the brake disc 60 .
  • the inner side brake pad 63 and the outer side brake pad 64 are pressed against the brake disc 60 , and braking force is generated in the brake disc 60 by friction between the contact surfaces of the brake pads and the brake disc 60 .
  • the roller shaft 15 is rotated together with the planetary roller 14 (so-called ) can be prevented. Therefore, it is possible to prevent wear of the contact portions of the roller shaft 15 with the C-shaped ring springs 33 and 34, and to prevent idle rotation of the rotating shaft 10 caused by the wear.
  • the planetary roller screw type linear motion mechanism 1 is formed with a wide second elongated hole 32. Therefore, when the planetary roller screw type linear motion mechanism 1 is produced, First, the carrier 18 composed of the first disk 22, the second disk 23, and the connecting portion 24 shown in FIG. It can be inserted into the first long hole 31 in order. Moreover, as shown in FIGS. 10 to 12, since the shape and dimensions of the first end 16 of the roller shaft 15 and the shape and dimensions of the second end 17 of the roller shaft 15 are the same, the roller shaft 15 can be When the roller shaft 15 is inserted into the second long hole 32 and the first long hole 31 in order, it is not necessary to distinguish between the front and rear directions of the roller shaft 15 . Therefore, the work of assembling the roller shaft 15 of the planetary roller 14 to the carrier 18 can be easily automated.
  • the planetary roller screw type linear motion mechanism 1 has a plane parallel to the axis of the roller shaft 15 as a first anti-rotation shape portion 46 and a second anti-rotation shape portion 49. Since the flat surface of the shape obtained by cutting the outer periphery of the roller shaft 15 along the .theta. In addition, it is possible to prevent the roller shaft 15 from rotating. In addition, the reduction in the cross-sectional area of the first end 16 and the second end 17 of the roller shaft 15 due to the formation of the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 is minimized, The strength of the first end portion 16 and the second end portion 17 of the shaft 15 can be easily ensured. Further, the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 can be processed with high accuracy at low processing cost.
  • the planetary roller screw type linear motion mechanism 1 has a difference between the angular position of the first anti-rotation shaped portion 46 and the angular position of the second anti-rotation shaped portion 49 (in the figure, 45°) is set large, so when the first anti-rotation shape portion 46 is engaged with the longitudinal surface 45 of the first elongated hole 31 of the first disk 22 as shown in FIG. 2, it is possible to reliably arrange the second partial cylindrical surface 50 at the position of the longitudinal surface 48 of the second elongated hole 32 of the second disk 23. As shown in FIG.
  • the planetary roller screw type linear motion mechanism 1 has a difference between the angular position of the first anti-rotation shape portion 46 and the angular position of the second anti-rotation shape portion 49 of 40°. Since it is set to 50° or less (45° in the figure), as shown in FIG. It is possible to stabilize the engagement between the ring spring 34 and the second ring groove 52 .
  • the difference between the angular position of the first detent shape portion 46 and the angular position of the second detent shape portion 49 is 40° or more and 50° or less (45° in the drawings). ), as shown in FIG. can be stabilized.
  • 15A to 15C show a second embodiment of the invention.
  • the second embodiment differs from the first embodiment only in the partial configuration of the roller shaft 15, and the rest of the configuration is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a first anti-rotation shape portion is formed by cutting the outer periphery of the roller shaft 15 along a plane parallel to the axial center of the roller shaft 15 .
  • 46 and a first partial cylindrical surface 47 adjacent to the first detent shape portion 46 around the axis of the roller shaft 15 are formed.
  • the first detent shape portion 46 is formed only at one location on the outer circumference of the first end portion 16 of the roller shaft 15 (so-called D-cut).
  • the width dimension of the first long hole 31 corresponds to the width dimension in the direction perpendicular to the first detent shape portion 46 (flat surface) of the first end portion 16. ing. Also, the width dimension of the first long hole 31 is smaller than the outer diameter dimension of the roller shaft 15 . The roller shaft 15 is prevented from rotating by engaging the first anti-rotation shape portion 46 with the longitudinal surface 45 of the first elongated hole 31 .
  • a second anti-rotation shaped portion is formed by cutting the outer circumference of the roller shaft 15 along a plane parallel to the axial center of the roller shaft 15 .
  • 49 and a second partial cylindrical surface 50 adjacent to the second detent shape portion 49 around the axis of the roller shaft 15 are formed.
  • the second detent shape portion 49 is formed only at one location on the outer circumference of the second end portion 17 of the roller shaft 15 .
  • the shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 15C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 15B.
  • the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 15C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 15B. different. That is, as shown in FIGS. 16 to 18 , the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 are aligned in the normal direction of the first anti-rotation shape portion 46 and the normal direction of the second anti-rotation shape portion 49 . They are formed such that their line directions are different from each other.
  • the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is 40° or more. It is set within a range of 50° or less (45° in the figure).
  • the width dimension of the second elongated hole 32 (the spacing dimension between the pair of longitudinal surfaces 48 ) is a dimension corresponding to the outer diameter dimension of the roller shaft 15 .
  • the width dimension of the second long hole 32 is wider than the width dimension of the first long hole 31 shown in FIG. 15B.
  • the second detent shape portion 49 and the second partial cylindrical surface 50 on the outer periphery of the second end portion 17 of the roller shaft 15 only the second partial cylindrical surface 50 is located in the second elongated hole 32 . It is supported in contact with the longitudinal surface 48 , and the second detent shape portion 49 is out of contact with the longitudinal surface 48 .
  • This second embodiment has the same effects as the first embodiment.
  • 19A to 19C show a third embodiment of the invention.
  • the third embodiment differs from the second embodiment only in the difference between the angular position of the first anti-rotation shape portion 46 and the angular position of the second anti-rotation shape portion 49, and the rest of the configuration is the same. Therefore, portions corresponding to those in the second embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 19C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 19B.
  • the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 19C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 19B. different. That is, as shown in FIGS.
  • the angular position of the first anti-rotation shape portion 46 about the axis of the roller shaft 15 and the angular position of the second anti-rotation shape portion 49 about the axis of the roller shaft 15 is set in the range of 130° or more and 140° or less (135° in the drawing).
  • the third embodiment has the same effects as the first embodiment.
  • the fourth embodiment differs from the first embodiment only in the difference between the angular position of the first anti-rotation shape portion 46 and the angular position of the second anti-rotation shape portion 49, and the rest of the configuration is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 23C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 23B.
  • the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 23C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 23B. different. That is, the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is set to 90°.
  • the carrier 18 shown in FIG. 23A is first assembled, and then the roller shaft 15 is inserted into the second elongated hole 32 and the first elongated hole from the second disc 23 side. 31 can be inserted in sequence. Moreover, since the shape and dimensions of the first end portion 16 of the roller shaft 15 and the shape and dimensions of the second end portion 17 of the roller shaft 15 are the same, the roller shaft 15 can be divided into the second elongated hole 32 and the first elongated hole 31 . There is no need to distinguish between the front and rear directions of the roller shafts 15 when inserting them in order. Therefore, the work of assembling the roller shaft 15 of the planetary roller 14 to the carrier 18 can be easily automated.
  • the difference between the angular position of the first detent shape portion 46 and the angular position of the second detent shape portion 49 is large.
  • Figures 24A to 24C show a fifth embodiment of the present invention.
  • the fifth embodiment differs from the first embodiment only in the shapes of the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49, and the rest of the configuration is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • first anti-rotation shaped portions 46 As shown in FIG. 24B, on the outer periphery of the first end portion 16 of the roller shaft 15, there are a pair of first anti-rotation shaped portions 46, and the roller shaft 15 for each of the pair of first anti-rotation shaped portions 46.
  • a pair of first partial cylindrical surfaces 47 are formed adjacent to each other around the axis.
  • the first anti-rotation shape portion 46 is a portion formed by cutting out a part of the outer circumference of the circular cross section by processing the outer circumference of the end portion of the roller shaft 15.
  • FIG. 31 has a shape capable of restricting the rotation of the roller shaft 15 when pressed against the longitudinal surface 45 of the roller shaft 31 .
  • the first anti-rotation shape portion 46 is a groove that extends parallel to the axis of the roller shaft 15 on the outer periphery of the roller shaft 15 .
  • the second anti-rotation shape portion 49 has a shape obtained by partially cutting the outer circumference of the circular end section of the roller shaft 15 (the rotation of the roller shaft 15 when pressed against an imaginary plane). It is a shape that can regulate the
  • the shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 24C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 24B. However, the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 24C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 24B. different.
  • the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 are positioned at the angular positions (first ) and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 (the second detent shape).
  • the normal direction of the plane when the shape portion 49 is engaged with the virtual plane) is formed so as to be different from each other.
  • the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is 40° or more. It is set within a range of 50° or less (45° in the drawing).
  • the fifth embodiment has the same effects as the first embodiment.
  • the axially front disc is the first disc 22 (the disc in which the first elongated hole 31 is formed), and the axially rear disc is the second disk 23 (the disk in which the second elongated hole 32 is formed), but the front and rear in the axial direction may be reversed. That is, of the pair of discs 22 and 23, the disc on the rear side in the axial direction is the first disc 22 (the disc in which the first long hole 31 is formed), and the disc on the front side in the axial direction is the second disc 23 (the second long hole). It is also possible to use a disk with holes 32 formed therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Transmission Devices (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

The width dimension of a second long hole (32) is set to be larger than the width dimension of a first long hole (31). A rotation-inhibition-shape portion (46) and a first partial cylindrical surface (47) are formed on an outer periphery of a first end portion (16) of a roller shaft (15), and t first rotation-inhibition-shape portion (46) engages with a longitudinal surface (45) of the first long hole (31) so as to inhibit the roller shaft (15) from rotating. A second rotation-inhibition-shape portion (49) and a second partial cylindrical surface (50) are formed on an outer periphery of a second end portion (17) of the roller shaft (15), and only the second partial cylindrical surface (50) is brought into contact with and supported by a longitudinal surface (48) of the second long hole (32).

Description

遊星ローラねじ式直動機構および電動ブレーキ装置Planetary roller screw type linear motion mechanism and electric brake device
 この発明は、電動式直動アクチュエータに用いられる遊星ローラねじ式直動機構、およびその遊星ローラねじ式直動機構を用いた電動ブレーキ装置に関する。 The present invention relates to a planetary roller screw type linear motion mechanism used in an electric linear motion actuator, and an electric brake device using the planetary roller screw type linear motion mechanism.
 外部から入力される回転運動を直線運動に変換して出力する直動機構として、例えば、特許文献1のような遊星ローラねじ式直動機構が知られている。 As a linear motion mechanism that converts rotational motion input from the outside into linear motion and outputs it, for example, a planetary roller screw type linear motion mechanism as disclosed in Patent Document 1 is known.
 特許文献1の遊星ローラねじ式直動機構は、外部から回転が入力される回転軸と、その回転軸を囲む中空筒状の外輪部材と、その外輪部材の内周と回転軸の外周との間に周方向に間隔をおいて配置された複数の遊星ローラと、その複数の遊星ローラをそれぞれ自転可能に支持する複数のローラ軸と、その複数のローラ軸の両端部を保持するキャリヤを有する。外輪部材の内周には、螺旋凸条が設けられ、その螺旋凸条と係合する螺旋溝または円周溝が各遊星ローラの外周に設けられている。 The planetary roller screw type linear motion mechanism of Patent Document 1 includes a rotating shaft to which rotation is input from the outside, a hollow cylindrical outer ring member surrounding the rotating shaft, and an inner circumference of the outer ring member and an outer circumference of the rotating shaft. A plurality of planetary rollers arranged at intervals in the circumferential direction therebetween, a plurality of roller shafts rotatably supporting the plurality of planetary rollers, and a carrier holding both ends of the plurality of roller shafts. . A helical ridge is provided on the inner circumference of the outer ring member, and a helical groove or a circumferential groove that engages with the helical ridge is provided on the outer circumference of each planetary roller.
 キャリヤは、複数の遊星ローラを間にして軸方向に対向する第1ディスクおよび第2ディスクと、複数の遊星ローラの間を通って第1ディスクと第2ディスクを連結する連結部とを有する。第1ディスクには、複数のローラ軸の第1端部を径方向に移動可能に保持する複数の第1長孔が周方向に間隔をおいて形成され、第2ディスクには、複数のローラ軸の第2端部を径方向に移動可能に保持する複数の第2長孔が周方向に間隔をおいて形成されている。 The carrier has a first disk and a second disk that face each other in the axial direction with a plurality of planetary rollers interposed therebetween, and a connecting portion that passes between the plurality of planetary rollers and connects the first disk and the second disk. The first disk has a plurality of first elongated holes for radially movably holding the first ends of the roller shafts, and the second disk has a plurality of roller shafts. A plurality of circumferentially spaced second slots are formed to movably retain the second end of the shaft in the radial direction.
 さらに、ローラ軸の第1端部と第2端部には、それぞれ、第1のC形リングばねと第2のC形リングばねとが弾性的に拡径変形した状態で掛け渡されており、それらC形リングばねの弾性復元力によって、各ローラ軸の第1端部と第2端部がそれぞれ径方向内方に付勢され、その結果、遊星ローラが回転軸の外周に押し付けられている。 Furthermore, a first C-shaped ring spring and a second C-shaped ring spring are stretched over the first end and the second end of the roller shaft, respectively, in a state in which the diameter is elastically expanded and deformed. , the elastic restoring forces of the C-shaped ring springs urge the first end and the second end of each roller shaft radially inward, and as a result, the planetary rollers are pressed against the outer circumference of the rotating shaft. there is
 この遊星ローラねじ式直動機構は、外部から回転軸に回転が入力されると、その回転軸の回転が、回転軸の外周に転がり接触する遊星ローラに伝達し、各遊星ローラが自転しながら回転軸のまわりを公転する。このとき、遊星ローラの外周の螺旋溝または円周溝と外輪部材の内周の螺旋凸条との係合によって、外部から回り止めされた外輪部材が軸方向に移動する。このようにして、遊星ローラねじ式直動機構は、回転軸の回転を外輪部材の直線運動に変換する。 In this planetary roller screw type linear motion mechanism, when rotation is input to the rotating shaft from the outside, the rotation of the rotating shaft is transmitted to the planetary rollers that are in rolling contact with the outer circumference of the rotating shaft. It revolves around its axis of rotation. At this time, the engagement between the spiral groove or the circumferential groove on the outer circumference of the planetary roller and the spiral ridge on the inner circumference of the outer ring member causes the outer ring member, which is prevented from rotating from the outside, to move in the axial direction. Thus, the planetary roller screw type linear motion mechanism converts rotation of the rotating shaft into linear motion of the outer ring member.
 この遊星ローラねじ式直動機構は、送りねじ機構などの他の方式の直動機構と比較して、小型で大きい軸方向荷重を発生することが可能なので、省スペースで大きな軸方向荷重が要求される電動ブレーキ装置に好適であるという利点がある。 Compared to other types of linear motion mechanisms such as feed screw mechanisms, this planetary roller screw type linear motion mechanism is compact and can generate a large axial load. There is an advantage that it is suitable for an electric brake device that is used.
 このような遊星ローラねじ式直動機構において、遊星ローラが自転するとき、その遊星ローラと一緒に、遊星ローラを支持するローラ軸が連れ回りし、ローラ軸が自転する可能性がある。ローラ軸が自転すると、ローラ軸のC形リングばねとの接触部分が摩耗し、その摩耗に応じてC形リングばねの拡径変形量が小さくなるので、遊星ローラを回転軸の外周に押し付けるC形リングばねの弾性復元力が不足し、その結果、回転軸が空転するなどの問題が生じる可能性がある。 In such a planetary roller screw-type linear motion mechanism, when the planetary roller rotates, the roller shaft supporting the planetary roller rotates together with the planetary roller, possibly causing the roller shaft to rotate. When the roller shaft rotates, the contact portion of the roller shaft with the C-shaped ring spring wears, and the amount of diameter expansion deformation of the C-shaped ring spring decreases according to the wear. The elastic restoring force of the ring spring is insufficient, and as a result, problems such as idling of the rotating shaft may occur.
 そこで、このローラ軸の連れ回りを防止するため、特許文献1においては、各ローラ軸の第1端部の外周と第2端部の外周にそれぞれ一対の平坦面(以下「二面幅」という)を形成し、第1端部の二面幅を第1ディスクの第1長孔の長手面に係合させるとともに、第2端部の二面幅も第2ディスクの第2長孔の長手面に係合させることで、ローラ軸が自転しないようにローラ軸を第1ディスクおよび第2ディスクに回り止めするようにしている。 Therefore, in order to prevent the roller shafts from rotating together, in Patent Document 1, a pair of flat surfaces (hereinafter referred to as "width across flats") are provided on the outer circumference of the first end and the outer circumference of the second end of each roller shaft. ) so that the width across flats of the first end is engaged with the longitudinal surface of the first elongated hole of the first disc, and the width across flats of the second end is also the longitudinal direction of the second elongated hole of the second disc. By engaging the surfaces, the roller shaft is prevented from rotating by the first disk and the second disk.
特開2016-217420号公報JP 2016-217420 A
 ところで、本願の発明者は、特許文献1の遊星ローラねじ式直動機構を生産するにあたり、その生産を自動化することを検討したところ、遊星ローラのローラ軸をキャリヤに組み付ける作業の自動化が難しいという問題に直面した。 By the way, when the inventor of the present application considered automating the production of the planetary roller screw type linear motion mechanism of Patent Document 1, it was found that it would be difficult to automate the work of assembling the roller shaft of the planetary roller to the carrier. faced a problem.
 すなわち、先に、第1ディスクと第2ディスクとその両ディスクを連結する連結部とで構成されるキャリヤを組み立て、その後、ローラ軸を、第1ディスクの第1長孔と第2ディスクの第2長孔とに挿入することができれば、ローラ軸の組み付け作業の自動化を図ることが可能となるが、特許文献1の構成を採用したのでは、そのような方法でローラ軸の組み付けを行なうことができない。なぜなら、第1長孔の幅寸法と第2長孔の幅寸法は、ローラ軸の端部の二面幅に対応する寸法とされ、ローラ軸の外径寸法よりも狭幅だからである。 That is, first, a carrier composed of a first disc, a second disc, and a connecting portion connecting the two discs is assembled, and then the roller shaft is connected to the first long hole of the first disc and the second disc of the second disc. If the roller shaft can be inserted into the two elongated holes, it is possible to automate the assembling work of the roller shaft. can't This is because the width dimension of the first slot and the width dimension of the second slot correspond to the width across flats of the end portion of the roller shaft, and are narrower than the outer diameter dimension of the roller shaft.
 そこで、先にキャリヤを組み立てた後に、ローラ軸を第1長孔と第2長孔とに挿入することを可能とする方法として、ローラ軸の第1端部にのみ二面幅を形成し、ローラ軸の第2端部は二面幅を形成しないという方法が考えられる。この場合、第2長孔は、ローラ軸の第1端部に形成された二面幅に対応する寸法ではなく、それよりも広幅の、ローラ軸の外径寸法に対応する幅寸法をもつように形成する。このようにすると、先に、第1ディスクと第2ディスクとその両ディスクを連結する連結部とで構成されるキャリヤを組み立て、その後、ローラ軸を、第2ディスクの側から第2長孔と第1長孔に順に挿入することが可能となる。 Therefore, as a method of making it possible to insert the roller shaft into the first long hole and the second long hole after assembling the carrier, a width across flats is formed only at the first end of the roller shaft, A method is conceivable in which the second end of the roller shaft does not form the width across flats. In this case, the second long hole should not have a dimension corresponding to the width across flats formed at the first end of the roller shaft, but should have a wider width dimension corresponding to the outer diameter dimension of the roller shaft. to form. By doing so, first, the carrier composed of the first disk, the second disk, and the connecting portion connecting the two disks is assembled, and then the roller shaft is connected to the second elongated hole from the second disk side. It is possible to sequentially insert them into the first elongated holes.
 しかしながら、上記のように、ローラ軸の第1端部にのみ二面幅を形成し、ローラ軸の第2端部は二面幅を形成しないという方法を採用した場合、ローラ軸の第1端部の形状および寸法と第2端部の形状および寸法とが互いに異なるため、ローラ軸を第1長孔と第2長孔に挿入するときに、ローラ軸の前後の向きを区別する必要が生じる。そのため、ローラ軸をキャリヤに組み付ける作業を自動化するには、まずローラ軸の端部の形状を検知し、その検知したローラ軸の端部の形状に基づいて、ローラ軸を正しい向き(ローラ軸の第1端部が挿入方向の前側、ローラ軸の第2端部が挿入方向の後側となる向き)で挿入する必要があるが、そのような設備を設けるのはコスト高である。 However, when adopting the method of forming the width across flats only at the first end of the roller shaft and not forming the width across flats at the second end of the roller shaft as described above, the first end of the roller shaft Since the shape and size of the portion and the shape and size of the second end are different from each other, it becomes necessary to distinguish between the front and rear directions of the roller shaft when inserting the roller shaft into the first long hole and the second long hole. . Therefore, in order to automate the work of assembling the roller shaft to the carrier, first, the shape of the end of the roller shaft is detected, and based on the detected shape of the end of the roller shaft, the correct orientation of the roller shaft (roller shaft The first end of the roller shaft should be the front side of the insertion direction, and the second end of the roller shaft should be the rear side of the insertion direction), but it is costly to provide such facilities.
 そこで、ローラ軸を第1長孔と第2長孔に挿入するときに、ローラ軸の前後の向きを区別する必要がない方法として、例えば、図25Aに示すように、ローラ軸70の全長を延長する方法が考えられる。すなわち、図25Aに示すように、ローラ軸70の第1端部71の二面幅72が、第1ディスク73の第1長孔74の長手面75に係合した状態となる位置までローラ軸70を挿入したときに、ローラ軸70の第2端部76の二面幅77が、第2ディスク78の第2長孔79の位置まで到達しないようにローラ軸70を延長する方法が考えられる。ここで、図25Bに示すように、ローラ軸70の第1端部71に二面幅72が形成され、図25Cに示すように、ローラ軸70の第2端部76にも二面幅77が形成されている。また、図25Cに示すように、第2長孔79の幅寸法は、二面幅77に対応する寸法ではなく、ローラ軸70の外径寸法に対応する寸法に設定されている。このようにすると、ローラ軸70の第1端部71の形状および寸法とローラ軸70の第2端部76の形状および寸法とが互いに同一なので、ローラ軸70を第2長孔79と第1長孔74に順に挿入するときに、ローラ軸70の前後の向きを区別する必要がなくなる。 Therefore, when inserting the roller shaft into the first elongated hole and the second elongated hole, there is no need to distinguish between the front and rear directions of the roller shaft. For example, as shown in FIG. A method of extension is conceivable. That is, as shown in FIG. 25A, the roller shaft is extended to a position where the width across flats 72 of the first end 71 of the roller shaft 70 engages the longitudinal surface 75 of the first elongated hole 74 of the first disc 73 . A possible method is to extend the roller shaft 70 so that the width across flats 77 of the second end 76 of the roller shaft 70 does not reach the position of the second long hole 79 of the second disk 78 when the roller shaft 70 is inserted. . Here, as shown in FIG. 25B, a width across flats 72 is formed at the first end 71 of the roller shaft 70, and as shown in FIG. is formed. Further, as shown in FIG. 25C, the width dimension of the second elongated hole 79 is set not to the dimension corresponding to the width across flats 77 but to the dimension corresponding to the outer diameter dimension of the roller shaft 70 . With this configuration, the shape and dimensions of the first end portion 71 of the roller shaft 70 and the shape and dimensions of the second end portion 76 of the roller shaft 70 are the same, so the roller shaft 70 can be positioned between the second long hole 79 and the first end portion 79 . There is no need to distinguish between the front and rear directions of the roller shafts 70 when they are sequentially inserted into the long holes 74 .
 しかしながら、図25Aのように、ローラ軸70の全長を延長する方法を採用した場合、ローラ軸70の全長を延長した分、遊星ローラねじ式直動機構の全体の軸方向長さが長くなり、また遊星ローラねじ式直動機構の質量も増加するので好ましくない。 However, when the method of extending the total length of the roller shaft 70 is adopted as shown in FIG. Moreover, the mass of the planetary roller screw type linear motion mechanism is also increased, which is not preferable.
 この発明が解決しようとする課題は、遊星ローラのローラ軸をキャリヤに組み付ける作業の自動化が容易な遊星ローラねじ式直動機構を提供することである。 The problem to be solved by the present invention is to provide a planetary roller screw type linear motion mechanism that facilitates automation of the work of assembling the roller shaft of the planetary roller to the carrier.
 上記課題を解決するため、この発明では、以下の構成の遊星ローラねじ式直動機構を提供する。
 回転軸と、
 前記回転軸を囲む中空筒状の外輪部材と、
 前記外輪部材の内周と前記回転軸の外周との間に周方向に間隔をおいて配置された複数の遊星ローラと、
 前記外輪部材の内周に設けられた螺旋凸条と、
 前記螺旋凸条と係合するように前記各遊星ローラの外周に設けられた螺旋溝または円周溝と、
 前記複数の遊星ローラをそれぞれ自転可能に支持する複数のローラ軸と、
 前記複数の遊星ローラを間にして軸方向に対向する第1ディスクおよび第2ディスクと、前記複数の遊星ローラの間を通って前記第1ディスクと前記第2ディスクを連結する連結部とをもつキャリヤとを有し、
 前記第1ディスクには、前記複数のローラ軸の第1端部を径方向に移動可能に保持する複数の第1長孔が周方向に間隔をおいて形成され、
 前記第2ディスクには、前記複数のローラ軸の第2端部を径方向に移動可能に保持する複数の第2長孔が周方向に間隔をおいて形成されている遊星ローラねじ式直動機構において、
 前記第1長孔の幅寸法よりも、前記第2長孔の幅寸法の方が広幅とされ、
 前記ローラ軸の前記第1端部の外周には、第1回り止め形状部と、前記第1回り止め形状部に対してローラ軸の軸心まわりに隣接する第1部分円筒面とが形成され、前記第1回り止め形状部が前記第1長孔の長手面に係合することで前記ローラ軸が自転しないように回り止めされ、
 前記ローラ軸の前記第2端部の外周には、第2回り止め形状部と、前記第2回り止め形状部に対してローラ軸の軸心まわりに隣接する第2部分円筒面とが形成され、前記第2端部の形状および寸法は、前記第1端部の形状および寸法と同一であるが、前記第2回り止め形状部のローラ軸の軸心まわりの角度位置と前記第1回り止め形状部のローラ軸の軸心まわりの角度位置とが異なり、前記第2回り止め形状部と前記第2部分円筒面のうちの前記第2部分円筒面のみが前記第2長孔の長手面に接触して支持されることを特徴とする遊星ローラねじ式直動機構。
In order to solve the above problems, the present invention provides a planetary roller screw type linear motion mechanism having the following configuration.
a rotating shaft;
a hollow cylindrical outer ring member surrounding the rotating shaft;
a plurality of planetary rollers arranged at intervals in the circumferential direction between the inner periphery of the outer ring member and the outer periphery of the rotating shaft;
a spiral ridge provided on the inner periphery of the outer ring member;
a spiral groove or a circumferential groove provided on the outer circumference of each planetary roller so as to engage with the spiral ridge;
a plurality of roller shafts that rotatably support the plurality of planetary rollers;
a first disk and a second disk axially opposed to each other with the plurality of planetary rollers interposed therebetween; and a connecting portion passing between the plurality of planetary rollers and connecting the first disk and the second disk. a carrier;
A plurality of first elongated holes are formed in the first disk at intervals in a circumferential direction to hold the first ends of the plurality of roller shafts so as to be movable in a radial direction,
Planetary roller screw type linear motion, wherein a plurality of second elongated holes are formed in the second disk at intervals in the circumferential direction to hold the second ends of the plurality of roller shafts so as to be movable in the radial direction. In the mechanism
The width dimension of the second long hole is wider than the width dimension of the first long hole,
A first anti-rotation shape portion and a first partial cylindrical surface adjacent to the first anti-rotation shape portion around the axis of the roller shaft are formed on the outer circumference of the first end portion of the roller shaft. , the first anti-rotation shaped portion is engaged with the longitudinal surface of the first elongated hole to prevent rotation of the roller shaft,
A second anti-rotation shape portion and a second partial cylindrical surface adjacent to the second anti-rotation shape portion around the axis of the roller shaft are formed on the outer circumference of the second end portion of the roller shaft. , the shape and dimensions of the second end are the same as the shape and dimensions of the first end, but the angular position of the second detent shape about the axis of the roller shaft and the first detent Different from the angular position of the shaped portion about the axis of the roller shaft, only the second partial cylindrical surface out of the second anti-rotation shaped portion and the second partial cylindrical surface is aligned with the longitudinal surface of the second long hole. A planetary roller screw type linear motion mechanism characterized by being supported in contact.
 このようにすると、第2長孔が広幅に形成されているので、先に、第1ディスクと第2ディスクとその両ディスクを連結する連結部とで構成されるキャリヤを組み立て、その後、ローラ軸を、第2ディスクの側から第2長孔と第1長孔に順に挿入することが可能となる。しかも、ローラ軸の第1端部の形状および寸法と、ローラ軸の第2端部の形状および寸法とが同一なので、ローラ軸を第2長孔と第1長孔に順に挿入するときに、ローラ軸の前後の向きを区別する必要がない。そのため、遊星ローラのローラ軸をキャリヤに組み付ける作業の自動化が容易である。 In this way, since the second elongated hole is formed to have a wide width, first the carrier composed of the first disk, the second disk, and the connecting portion connecting the two disks is assembled, and then the roller shaft is assembled. can be inserted into the second long hole and the first long hole in order from the second disk side. Moreover, since the shape and dimensions of the first end of the roller shaft and the shape and dimensions of the second end of the roller shaft are the same, when the roller shaft is inserted into the second elongated hole and the first elongated hole in this order, There is no need to distinguish between the front and rear orientations of the roller shafts. Therefore, it is easy to automate the work of assembling the roller shaft of the planetary roller to the carrier.
 前記第1回り止め形状部と前記第2回り止め形状部は、ローラ軸の軸心と平行な平面に沿って前記ローラ軸の外周を切り取った形状の平坦面を採用すると好ましい。 It is preferable that the first anti-rotation shape portion and the second anti-rotation shape portion adopt a flat surface having a shape obtained by cutting the outer periphery of the roller shaft along a plane parallel to the axial center of the roller shaft.
 このようにすると、第1回り止め形状は平坦面なので、第1長孔の長手面に面接触することになり、効果的にローラ軸を自転しないように回り止めすることが可能である。また、第1回り止め形状部および第2回り止め形状部を形成することによるローラ軸の第1端部および第2端部の断面積の減少が最小限に抑えられ、ローラ軸の第1端部および第2端部の強度が確保しやすくなるとともに、第1回り止め形状部および第2回り止め形状部を低い加工コストで精度よく加工することが可能となる。 With this configuration, since the first detent shape is a flat surface, it comes into surface contact with the longitudinal surface of the first elongated hole, and it is possible to effectively detent the roller shaft so that it does not rotate. Further, the reduction in the cross-sectional area of the first end and the second end of the roller shaft due to the formation of the first anti-rotation shape portion and the second anti-rotation shape portion is minimized, and the first end of the roller shaft is The strength of the portion and the second end can be easily ensured, and the first anti-rotation shape portion and the second anti-rotation shape portion can be processed with high accuracy at a low processing cost.
 前記第1回り止め形状部の前記ローラ軸の軸心まわりの角度位置と、前記第2回り止め形状部の前記ローラ軸の軸心まわりの角度位置の差を、40°以上140°以下の範囲に設定すると好ましい。 The difference between the angular position of the first anti-rotation shape portion about the axis of the roller shaft and the angular position of the second anti-rotation shape portion about the axis of the roller shaft is in the range of 40° or more and 140° or less. preferably set to .
 このようにすると、第1回り止め形状部の角度位置と第2回り止め形状部の角度位置との差が大きいので、第1ディスクの第1長孔の長手面に第1回り止め形状部を係合させたときに、第2ディスクの第2長孔の長手面の位置に、確実に第2部分円筒面を配置することが可能となる。 With this configuration, the difference between the angular position of the first detent shape portion and the angular position of the second detent shape portion is large. When engaged, it is possible to reliably locate the second partial cylindrical surface at the position of the longitudinal surface of the second elongated hole of the second disc.
 前記ローラ軸の前記第1端部を径方向内方に付勢する第1のC形リングばねと、前記ローラ軸の前記第2端部を径方向内方に付勢する第2のC形リングばねとを更に有し、
 前記ローラ軸の前記第1端部の外周には、前記第1のC形リングばねが係合する第1リング溝が形成され、
 前記ローラ軸の前記第2端部の外周には、前記第2のC形リングばねが係合する第2リング溝が形成されている場合、
 前記第1回り止め形状部の前記ローラ軸の軸心まわりの角度位置と、前記第2回り止め形状部の前記ローラ軸の軸心まわりの角度位置の差を、40°以上50°以下または130°以上140°以下に設定すると好ましい。
a first C-shaped ring spring for biasing the first end of the roller shaft radially inward; and a second C-shaped ring spring for biasing the second end of the roller shaft radially inward. a ring spring;
A first ring groove with which the first C-shaped ring spring engages is formed on the outer periphery of the first end of the roller shaft,
When a second ring groove with which the second C-shaped ring spring engages is formed on the outer circumference of the second end of the roller shaft,
The difference between the angular position of the first anti-rotation shape portion about the axis of the roller shaft and the angular position of the second anti-rotation shape portion about the axis of the roller shaft is 40° or more and 50° or less, or 130°. It is preferable to set the angle between 140° and 140°.
 このようにすると、第2のC形リングばねの第2リング溝に対する掛かり代を確保し、第2のC形リングばねと第2リング溝の係合を安定させることができる。 By doing so, it is possible to ensure the engagement allowance of the second C-shaped ring spring with respect to the second ring groove, and to stabilize the engagement between the second C-shaped ring spring and the second ring groove.
 前記第1回り止め形状部は、前記ローラ軸の前記第1端部の外周にローラ軸の軸心を間に挟んで平行に一対形成された平坦面であり、
 前記第2回り止め形状部は、前記ローラ軸の前記第2端部の外周にローラ軸の軸心を間に挟んで平行に一対形成された平坦面である構成を採用することができる。
The first anti-rotation shaped portion is a pair of flat surfaces formed parallel to each other on the outer circumference of the first end of the roller shaft with the axis of the roller shaft interposed therebetween,
The second anti-rotation shaped portion may be a pair of parallel flat surfaces formed on the outer periphery of the second end portion of the roller shaft with the axis of the roller shaft interposed therebetween.
 前記第1回り止め形状部は、前記ローラ軸の前記第1端部の外周の1箇所にのみ形成され、
 前記第2回り止め形状部は、前記ローラ軸の前記第2端部の外周の1箇所にのみ形成されている構成を採用してもよい。
The first anti-rotation shaped portion is formed only at one location on the outer periphery of the first end of the roller shaft,
A configuration may be adopted in which the second anti-rotation shaped portion is formed only at one location on the outer periphery of the second end portion of the roller shaft.
 また、この発明では、上記の遊星ローラねじ式直動機構を用いた電動ブレーキ装置として、以下の構成のものを併せて提供する。
 上記の遊星ローラねじ式直動機構と、
 前記遊星ローラねじ式直動機構の前記回転軸を回転駆動する電動モータと、
 前記遊星ローラねじ式直動機構の前記外輪部材で軸方向に押圧されるブレーキパッドと、を有する電動ブレーキ装置。
In addition, the present invention also provides an electric brake device having the following configuration as an electric brake device using the planetary roller screw type linear motion mechanism.
the above-mentioned planetary roller screw type linear motion mechanism;
an electric motor that rotationally drives the rotary shaft of the planetary roller screw type linear motion mechanism;
and a brake pad axially pressed by the outer ring member of the planetary roller screw type linear motion mechanism.
 この発明の遊星ローラねじ式直動機構は、第2長孔が広幅に形成されているので、先に、第1ディスクと第2ディスクとその両ディスクを連結する連結部とで構成されるキャリヤを組み立て、その後、ローラ軸を、第2ディスクの側から第2長孔と第1長孔に順に挿入することが可能である。しかも、ローラ軸の第1端部の形状および寸法と、ローラ軸の第2端部の形状および寸法とが同一なので、ローラ軸を第2長孔と第1長孔に順に挿入するときに、ローラ軸の前後の向きを区別する必要がない。そのため、遊星ローラのローラ軸をキャリヤに組み付ける作業の自動化が容易である。 In the planetary roller screw type linear motion mechanism of the present invention, since the second elongated hole is formed with a wide width, the carrier is first formed of the first disc, the second disc, and the connecting portion connecting the two discs. is assembled, and then the roller shafts can be sequentially inserted into the second slot and the first slot from the side of the second disk. Moreover, since the shape and dimensions of the first end of the roller shaft and the shape and dimensions of the second end of the roller shaft are the same, when the roller shaft is inserted into the second elongated hole and the first elongated hole in this order, There is no need to distinguish between the front and rear orientations of the roller shafts. Therefore, it is easy to automate the work of assembling the roller shaft of the planetary roller to the carrier.
この発明の第1実施形態の遊星ローラねじ式直動機構を組み込んだ電動式直動アクチュエータを示す断面図1 is a sectional view showing an electric linear motion actuator incorporating a planetary roller screw type linear motion mechanism according to a first embodiment of the present invention; FIG. 図1の遊星ローラねじ式直動機構の近傍の拡大断面図Enlarged cross-sectional view of the vicinity of the planetary roller screw type linear motion mechanism in FIG. 図2のIII-III線に沿った断面図Cross-sectional view along the III-III line in Fig. 2 図2のIV-IV線に沿った断面図Cross-sectional view along the IV-IV line in Fig. 2 図4のローラ軸の近傍の拡大図Enlarged view of the vicinity of the roller shaft in FIG. 図2のVI-VI線に沿った断面図Cross-sectional view along the VI-VI line in Fig. 2 図6のローラ軸の近傍の拡大図Enlarged view of the vicinity of the roller shaft in FIG. 図2のVIII-VIII線に沿った断面図Cross-sectional view along line VIII-VIII in Fig. 2 図8のローラ軸の近傍の拡大図Enlarged view of the vicinity of the roller shaft in FIG. 図2に示すローラ軸を拡大して示す図FIG. 3 is an enlarged view of the roller shaft shown in FIG. 2; 図10のXI-XI線に沿った断面図Sectional view along line XI-XI in FIG. 図10のXII-XII線に沿った断面図Cross-sectional view along line XII-XII in FIG. 図1に示す電動式直動アクチュエータを用いた電動ブレーキ装置の一例を示す断面図Sectional view showing an example of an electric brake device using the electric linear motion actuator shown in FIG. 図13に示す電動ブレーキ装置をインナ側から見た部分断面図Partial cross-sectional view of the electric brake device shown in FIG. 13 as seen from the inner side この発明の第2実施形態の遊星ローラねじ式直動機構の遊星ローラの近傍の断面図FIG. 5 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the second embodiment of the present invention; 図15AのB-B線に沿った断面図Cross-sectional view along line BB in FIG. 15A 図15AのC-C線に沿った断面図Cross-sectional view along CC line of FIG. 15A 図15Aに示すローラ軸を拡大して示す図FIG. 15B is an enlarged view of the roller shaft shown in FIG. 15A; 図16のXVII-XVII線に沿った断面図Cross-sectional view along the XVII-XVII line in Fig. 16 図16のXVIII-XVIII線に沿った断面図Sectional view along line XVIII-XVIII in FIG. この発明の第3実施形態の遊星ローラねじ式直動機構の遊星ローラの近傍の断面図FIG. 8 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the third embodiment of the present invention; 図19AのB-B線に沿った断面図Cross-sectional view along line BB in FIG. 19A 図19AのC-C線に沿った断面図Cross-sectional view along CC line of FIG. 19A 図19Aに示すローラ軸を拡大して示す図FIG. 19B is an enlarged view of the roller shaft shown in FIG. 19A; 図20のXXI-XXI線に沿った断面図Cross-sectional view along line XXI-XXI in FIG. 図20のXXII-XXII線に沿った断面図Sectional view along line XXII-XXII in FIG. この発明の第4実施形態の遊星ローラねじ式直動機構の遊星ローラの近傍の断面図FIG. 11 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the fourth embodiment of the present invention; 図23AのB-B線に沿った断面図Cross-sectional view along line BB of FIG. 23A 図23AのC-C線に沿った断面図Cross-sectional view along CC line of FIG. 23A この発明の第5実施形態の遊星ローラねじ式直動機構の遊星ローラの近傍の断面図FIG. 11 is a cross-sectional view of the vicinity of the planetary rollers of the planetary roller screw type linear motion mechanism according to the fifth embodiment of the present invention; 図24AのB-B線に沿った断面図Cross-sectional view along line BB of FIG. 24A 図24AのC-C線に沿った断面図Cross-sectional view along CC line of FIG. 24A 参考例の遊星ローラねじ式直動機構の遊星ローラの近傍の断面図Cross-sectional view of the vicinity of the planetary roller of the planetary roller screw type linear motion mechanism of the reference example 図25AのB-B線に沿った断面図Cross-sectional view along line BB of FIG. 25A 図25AのC-C線に沿った断面図Cross-sectional view along CC line of FIG. 25A
 図1に、この発明の第1実施形態の遊星ローラねじ式直動機構1を用いた電動式直動アクチュエータ2を示す。この電動式直動アクチュエータ2は、電動モータ3と、電動モータ3の回転を減速して伝達する減速歯車機構4と、減速歯車機構4を介して電動モータ3から入力される回転を外輪部材5の直線運動に変換して出力する遊星ローラねじ式直動機構1とを有する。 FIG. 1 shows an electric linear motion actuator 2 using the planetary roller screw type linear motion mechanism 1 of the first embodiment of the present invention. This electric linear motion actuator 2 includes an electric motor 3 , a reduction gear mechanism 4 that decelerates and transmits the rotation of the electric motor 3 , and an outer ring member 5 that transmits the rotation input from the electric motor 3 via the reduction gear mechanism 4 . and a planetary roller screw type linear motion mechanism 1 that converts and outputs the linear motion.
 減速歯車機構4は、電動モータ3のモータ軸6に固定された入力歯車7と、遊星ローラねじ式直動機構1の回転軸10に固定された出力歯車9と、入力歯車7と出力歯車9の間で回転を伝達する中間歯車8と、これらの歯車7,8,9を収容するギヤケース11とを有する。ギヤケース11は、ベースプレート12とカバー13とからなる。減速歯車機構4は、電動モータ3のモータ軸6から入力歯車7に入力された回転を、互いに歯数の異なる入力歯車7、中間歯車8、出力歯車9を順に伝達することで減速し、その減速された回転を出力歯車9から回転軸10に出力する。 The reduction gear mechanism 4 includes an input gear 7 fixed to the motor shaft 6 of the electric motor 3, an output gear 9 fixed to the rotary shaft 10 of the planetary roller screw type linear motion mechanism 1, an input gear 7 and an output gear 9. and a gear case 11 for housing these gears 7, 8 and 9. The gear case 11 consists of a base plate 12 and a cover 13 . The reduction gear mechanism 4 reduces the speed of the rotation input from the motor shaft 6 of the electric motor 3 to the input gear 7 by sequentially transmitting the rotation through the input gear 7, the intermediate gear 8, and the output gear 9, which have different numbers of teeth. The reduced rotation is output from the output gear 9 to the rotary shaft 10 .
 図2、図3に示すように、遊星ローラねじ式直動機構1は、電動モータ3(図1参照)で回転駆動される回転軸10と、回転軸10を囲む中空筒状の外輪部材5と、外輪部材5の内周と回転軸10の外周との間に周方向に間隔をおいて配置された複数の遊星ローラ14と、複数の遊星ローラ14をそれぞれ自転可能に支持する複数のローラ軸15と、その複数のローラ軸15の軸方向の両端部(第1端部16および第2端部17)を保持するキャリヤ18と、外輪部材5を回転軸10の軸方向と平行に移動可能に収容するハウジング19(図2参照)とを有する。図1に示すように、ハウジング19は、ベースプレート12の軸方向前側の側面に固定されている。 As shown in FIGS. 2 and 3, the planetary roller screw type linear motion mechanism 1 includes a rotary shaft 10 that is rotationally driven by an electric motor 3 (see FIG. 1) and a hollow cylindrical outer ring member 5 that surrounds the rotary shaft 10. , a plurality of planetary rollers 14 arranged at intervals in the circumferential direction between the inner circumference of the outer ring member 5 and the outer circumference of the rotating shaft 10, and a plurality of rollers supporting the plurality of planetary rollers 14 so as to be rotatable. Shaft 15 , carrier 18 holding both ends (first end 16 and second end 17 ) of the plurality of roller shafts 15 in the axial direction, and outer ring member 5 are moved in parallel with the axial direction of rotating shaft 10 . and a housing 19 (see FIG. 2) that accommodates it. As shown in FIG. 1, the housing 19 is fixed to the axial front side surface of the base plate 12 .
 ここで、回転軸10と平行な方向を軸方向、外輪部材5のハウジング19からの突出長さが大きくなる側に外輪部材5が移動するときの外輪部材5の移動方向を軸方向前方、外輪部材5のハウジング19からの突出長さが小さくなる側に外輪部材5が移動するときの外輪部材5の移動方向を軸方向後方、回転軸10まわりに周回する方向を周方向、回転軸10に対する距離が変化する方向を径方向という。 Here, the direction parallel to the rotating shaft 10 is the axial direction, and the direction of movement of the outer ring member 5 when the outer ring member 5 moves toward the side where the projection length of the outer ring member 5 from the housing 19 is increased is the axial forward direction. The moving direction of the outer ring member 5 when the outer ring member 5 moves to the side where the projection length of the member 5 from the housing 19 becomes smaller is the axial rearward direction, the direction of rotation around the rotating shaft 10 is the circumferential direction, and The direction in which the distance changes is called the radial direction.
 図3に示すように、複数の遊星ローラ14は、回転軸10の外周に転がり接触している。回転軸10の遊星ローラ14に対する接触部分は円筒面とされている。回転軸10が回転したとき、回転軸10の外周と遊星ローラ14の外周の間の摩擦によって、各遊星ローラ14は、ローラ軸15を中心に自転しながら回転軸10のまわりを公転する。 As shown in FIG. 3 , the plurality of planetary rollers 14 are in rolling contact with the outer circumference of the rotating shaft 10 . A contact portion of the rotating shaft 10 with the planetary roller 14 is a cylindrical surface. When the rotating shaft 10 rotates, each planetary roller 14 revolves around the rotating shaft 10 while rotating about the roller shaft 15 due to friction between the outer periphery of the rotating shaft 10 and the outer periphery of the planetary rollers 14 .
 図2に示すように、外輪部材5の内周には、螺旋凸条20が設けられている。螺旋凸条20は、周方向に対して所定のリード角をもって斜めに延びる凸条である。各遊星ローラ14の外周には、螺旋凸条20に係合する複数の円周溝21が軸方向に間隔をおいて形成されている。各遊星ローラ14の外周の軸方向に隣り合う円周溝21の間隔は、螺旋凸条20のピッチと同一の大きさとされている。ここでは、遊星ローラ14の外周にリード角が0度の円周溝21を設けているが、円周溝21のかわりに、螺旋凸条20と異なるリード角をもつ螺旋溝を設けてもよい。 As shown in FIG. 2, a spiral ridge 20 is provided on the inner circumference of the outer ring member 5. As shown in FIG. The spiral ridge 20 is a ridge obliquely extending with a predetermined lead angle with respect to the circumferential direction. A plurality of circumferential grooves 21 that engage with the spiral ridges 20 are formed on the outer periphery of each planetary roller 14 at intervals in the axial direction. The interval between adjacent circumferential grooves 21 on the outer periphery of each planetary roller 14 in the axial direction is the same size as the pitch of the spiral ridges 20 . Here, the circumferential groove 21 having a lead angle of 0 degrees is provided on the outer periphery of the planetary roller 14, but instead of the circumferential groove 21, a spiral groove having a lead angle different from that of the spiral ridge 20 may be provided. .
 キャリヤ18は、複数の遊星ローラ14を間にして軸方向に対向する第1ディスク22および第2ディスク23と、複数の遊星ローラ14の間を通って第1ディスク22と第2ディスク23を連結する複数の連結部24とを有する。連結部24は、周方向に隣り合う遊星ローラ14の間を軸方向に延びる柱状の部材である。 The carrier 18 connects the first disk 22 and the second disk 23 by passing between the plurality of planetary rollers 14 and the first disk 22 and the second disk 23 that face each other in the axial direction with the plurality of planetary rollers 14 interposed therebetween. It has a plurality of connecting portions 24 that connect to each other. The connecting portion 24 is a columnar member extending in the axial direction between the planetary rollers 14 adjacent in the circumferential direction.
 連結部24の軸方向前端は、第1ディスク22に形成された圧入孔25に圧入して固定され、連結部24の軸方向後端は、第2ディスク23に形成された圧入孔26に圧入して固定されている。連結部24は、第1ディスク22と第2ディスク23が軸方向と周方向のいずれの方向にも相対移動しないように第1ディスク22と第2ディスク23を互いに固定している。 The axial front end of the connecting portion 24 is press-fitted into a press-fitting hole 25 formed in the first disk 22 and fixed, and the axial rear end of the connecting portion 24 is press-fitted into a press-fitting hole 26 formed in the second disk 23 . has been fixed. The connecting portion 24 fixes the first disk 22 and the second disk 23 to each other so that the first disk 22 and the second disk 23 do not move relative to each other in either the axial direction or the circumferential direction.
 ローラ軸15の第1端部16(図では軸方向前側の端部)は、第1ディスク22に形成された第1長孔31で径方向に移動可能に保持されている。また、ローラ軸15の第2端部17(図では軸方向後側の端部)も、第2ディスク23に形成された第2長孔32で径方向に移動可能に保持されている。 A first end portion 16 of the roller shaft 15 (an end portion on the front side in the axial direction in the figure) is held by a first elongated hole 31 formed in the first disc 22 so as to be movable in the radial direction. The second end 17 of the roller shaft 15 (the end on the rear side in the axial direction in the figure) is also held by a second elongated hole 32 formed in the second disc 23 so as to be radially movable.
 図4に示すように、ローラ軸15の第2端部17には、第2のC形リングばね34が弾性的に拡径変形した状態で掛け渡され、その第2のC形リングばね34の弾性復元力によって、各ローラ軸15の第2端部17が径方向内方に付勢されている。同様に、図2に示すように、複数のローラ軸15の第1端部16にも、第1のC形リングばね33が弾性的に拡径変形した状態で掛け渡され、その第1のC形リングばね33の弾性復元力によって、各ローラ軸15の第1端部16が径方向内方に付勢されている。各遊星ローラ14の外周は、この第1のC形リングばね33と第2のC形リングばね34の弾性復元力によって、回転軸10の外周に押し付けられている。 As shown in FIG. 4, a second C-shaped ring spring 34 is stretched over the second end portion 17 of the roller shaft 15 in a state of being elastically expanded in diameter. The second end 17 of each roller shaft 15 is urged radially inward by the elastic restoring force of . Similarly, as shown in FIG. 2, a first C-shaped ring spring 33 is stretched over the first end portions 16 of the plurality of roller shafts 15 in a state of being elastically deformed to expand its diameter. The elastic restoring force of the C-shaped ring spring 33 urges the first end 16 of each roller shaft 15 radially inward. The outer circumference of each planetary roller 14 is pressed against the outer circumference of the rotating shaft 10 by the elastic restoring forces of the first C-shaped ring spring 33 and the second C-shaped ring spring 34 .
 図2に示すように、第1ディスク22および第2ディスク23は、それぞれ回転軸10を貫通させる環状に形成されている。また、第1ディスク22および第2ディスク23の内周には、回転軸10の外周に摺接する滑り軸受35がそれぞれ装着されている。滑り軸受35は、キャリヤ18を回転軸10まわりに回転可能に支持している。 As shown in FIG. 2, the first disk 22 and the second disk 23 are formed in an annular shape through which the rotating shaft 10 is passed. Slide bearings 35 are mounted on the inner circumferences of the first disk 22 and the second disk 23 so as to be in sliding contact with the outer circumference of the rotating shaft 10 . The slide bearing 35 supports the carrier 18 rotatably around the rotary shaft 10 .
 各遊星ローラ14の内周とローラ軸15の外周との間には、遊星ローラ14を自転可能に支持するラジアル軸受36が設けられている。ラジアル軸受36は、各ローラ軸15の中央部分(第1端部16と第2端部17の間の部分)の外周を支持している。各ローラ軸15の中央部分の外周は、軸方向に沿って外径が変化せず一定の円筒面である。ラジアル軸受36としては、保持器付き針状ころを使用することができる。各遊星ローラ14と第2ディスク23との間には、遊星ローラ14を自転可能な状態で軸方向に支持するスラスト軸受37が組み込まれている。 A radial bearing 36 is provided between the inner circumference of each planetary roller 14 and the outer circumference of the roller shaft 15 to support the planetary roller 14 so that it can rotate. The radial bearing 36 supports the outer circumference of the central portion of each roller shaft 15 (the portion between the first end portion 16 and the second end portion 17). The outer circumference of the central portion of each roller shaft 15 is a constant cylindrical surface whose outer diameter does not change along the axial direction. Needle rollers with retainers can be used as the radial bearings 36 . A thrust bearing 37 is incorporated between each planetary roller 14 and the second disk 23 to axially support the planetary roller 14 in a rotatable state.
 図1に示すように、外輪部材5は、ハウジング19に形成された収容穴38の内面で軸方向にスライド可能に支持されている。ハウジング19の内部には、外輪部材5に対して軸方向後方に離れた位置に軸支持部材39が固定して設けられている。軸支持部材39は、回転軸10を貫通させる円環状に形成されている。軸支持部材39の内周には、回転軸10を回転可能に支持するラジアル軸受40が組み込まれている。 As shown in FIG. 1, the outer ring member 5 is axially slidably supported on the inner surface of a housing hole 38 formed in the housing 19 . A shaft support member 39 is fixedly provided inside the housing 19 at a position spaced rearward in the axial direction from the outer ring member 5 . The shaft support member 39 is formed in an annular shape through which the rotating shaft 10 passes. A radial bearing 40 that rotatably supports the rotating shaft 10 is incorporated in the inner periphery of the shaft support member 39 .
 キャリヤ18と軸支持部材39の間には、キャリヤ18を公転可能な状態で軸方向に支持するスラスト軸受41が組み込まれている。また、キャリヤ18とスラスト軸受41の間には、キャリヤ18と一体に公転する間座42が組み込まれている。 A thrust bearing 41 is incorporated between the carrier 18 and the shaft support member 39 to axially support the carrier 18 so that it can revolve. A spacer 42 that revolves integrally with the carrier 18 is incorporated between the carrier 18 and the thrust bearing 41 .
 軸支持部材39は、収容穴38の内周に装着した止め輪43で軸方向後方への移動が規制され、これにより、キャリヤ18も軸方向後方への移動が規制された状態となっている。また、キャリヤ18は、回転軸10の軸方向前端部に設けられた止め輪44で軸方向前方への移動も規制されている。これにより、キャリヤ18は、軸方向前方および後方のいずれの移動も規制され、キャリヤ18に保持された遊星ローラ14も軸方向移動が規制された状態となっている。 The axially rearward movement of the shaft support member 39 is restricted by a snap ring 43 mounted on the inner circumference of the housing hole 38, and the carrier 18 is also restricted from axially rearward movement. . Further, the carrier 18 is restricted from moving forward in the axial direction by a retaining ring 44 provided at the axial front end of the rotary shaft 10 . As a result, the carrier 18 is restricted from moving forward and backward in the axial direction, and the planetary rollers 14 held by the carrier 18 are also restricted from moving in the axial direction.
 図6に示すように、第1長孔31は、周方向に間隔をおいて複数設けられている。各第1長孔31は、第1ディスク22を軸方向に貫通し、その各第1長孔31に、ローラ軸15の第1端部16が挿入されている。 As shown in FIG. 6, a plurality of first elongated holes 31 are provided at intervals in the circumferential direction. Each first slot 31 axially penetrates the first disc 22 , and the first end 16 of the roller shaft 15 is inserted into each first slot 31 .
 図7に示すように、第1長孔31は、径方向(図の上下方向)に長い長孔であり、径方向に直線状に延びる一対の長手面45を有する。一対の長手面45は、周方向に対向して配置された平面である。ローラ軸15の第1端部16の外周には、一対の第1回り止め形状部46と、その一対の第1回り止め形状部46のそれぞれに対してローラ軸15の軸心まわりに隣接する一対の第1部分円筒面47とが形成されている。第1回り止め形状部46は、ローラ軸15の端部外周を加工することで、断面円形の外周の一部を切り取った形状とした部分であり、長手面45に押し付けられたときにローラ軸15の自転を規制することが可能な形状をもつ部分である。この実施形態では、第1回り止め形状部46は、ローラ軸15の軸心と平行な平面に沿ってローラ軸15の外周を切り取った形状の平坦面である。一対の第1回り止め形状部46は、ローラ軸15の軸心を間に挟んで平行に形成されている(いわゆる二面幅)。 As shown in FIG. 7, the first elongated hole 31 is elongated in the radial direction (vertical direction in the figure) and has a pair of longitudinal surfaces 45 that extend linearly in the radial direction. The pair of longitudinal surfaces 45 are flat surfaces arranged to face each other in the circumferential direction. On the outer periphery of the first end 16 of the roller shaft 15, there are a pair of first anti-rotation shaped portions 46, and the pair of first anti-rotation shaped portions 46 are adjacent to each other around the axis of the roller shaft 15. A pair of first partial cylindrical surfaces 47 are formed. The first anti-rotation shape portion 46 is a portion formed by cutting out a part of the outer circumference of the circular cross section by processing the outer circumference of the end portion of the roller shaft 15 . 15 is a portion having a shape capable of restricting its rotation. In this embodiment, the first anti-rotation portion 46 is a flat surface obtained by cutting the outer periphery of the roller shaft 15 along a plane parallel to the axial center of the roller shaft 15 . The pair of first anti-rotation shaped portions 46 are formed in parallel with the axis of the roller shaft 15 interposed therebetween (so-called width across flats).
 第1長孔31の幅寸法(一対の長手面45の間隔寸法)は、第1端部16の外周の一対の第1回り止め形状部46の幅寸法に対応する寸法とされている。また、第1長孔31の幅寸法は、ローラ軸15の外径寸法よりも小さい。ローラ軸15は、第1回り止め形状部46が第1長孔31の長手面45に係合(この実施形態では面接触)することで自転しないように回り止めされている。 The width dimension of the first long hole 31 (the spacing dimension between the pair of longitudinal surfaces 45) corresponds to the width dimension of the pair of first detent shaped portions 46 on the outer periphery of the first end portion 16. Also, the width dimension of the first long hole 31 is smaller than the outer diameter dimension of the roller shaft 15 . The roller shaft 15 is prevented from rotating by engaging the first anti-rotation shape portion 46 with the longitudinal surface 45 of the first elongated hole 31 (surface contact in this embodiment).
 図8に示すように、第2長孔32も、周方向に間隔をおいて複数設けられている。各第2長孔32は、第2ディスク23を軸方向に貫通し、その各第2長孔32に、ローラ軸15の第2端部17が挿入されている。 As shown in FIG. 8, a plurality of second elongated holes 32 are also provided at intervals in the circumferential direction. Each second slot 32 axially penetrates the second disc 23 , and the second end 17 of the roller shaft 15 is inserted into each second slot 32 .
 図9に示すように、第2長孔32は、径方向(図の上下方向)に長い長孔であり、径方向に直線状に延びる一対の長手面48を有する。一対の長手面48は、周方向に対向して配置された平面である。ローラ軸15の第2端部17の外周には、一対の第2回り止め形状部49と、その一対の第2回り止め形状部49のそれぞれに対してローラ軸15の軸心まわりに隣接する一対の第2部分円筒面50とが形成されている。第2回り止め形状部49は、第1回り止め形状部46と同様、ローラ軸15の軸心と平行な平面に沿ってローラ軸15の外周を切り取った形状の平坦面である。一対の第2回り止め形状部49は、ローラ軸15の軸心を間に挟んで平行に形成されている。 As shown in FIG. 9, the second elongated hole 32 is elongated in the radial direction (vertical direction in the figure) and has a pair of longitudinal surfaces 48 that extend linearly in the radial direction. The pair of longitudinal surfaces 48 are flat surfaces that face each other in the circumferential direction. The outer circumference of the second end portion 17 of the roller shaft 15 is provided with a pair of second detent shaped portions 49 and adjacent to the pair of second detent shaped portions 49 around the axis of the roller shaft 15 . A pair of second partial cylindrical surfaces 50 are formed. Like the first anti-rotation shape portion 46 , the second anti-rotation shape portion 49 is a flat surface formed by cutting the outer periphery of the roller shaft 15 along a plane parallel to the axis of the roller shaft 15 . The pair of second detent shaped portions 49 are formed in parallel with the axis of the roller shaft 15 interposed therebetween.
 図9に示すローラ軸15の第2端部17の形状および寸法は、図7に示すローラ軸15の第1端部16の形状および寸法と同一である。ただし、図9に示す第2回り止め形状部49のローラ軸15の軸心まわりの角度位置は、図7に示す第1回り止め形状部46のローラ軸15の軸心まわりの角度位置とは異なっている。すなわち、図10~図12に示すように、第1回り止め形状部46と第2回り止め形状部49は、第1回り止め形状部46の法線方向と第2回り止め形状部49の法線方向が互いに異なる方向となるように形成されている。この実施形態では、第1回り止め形状部46のローラ軸15の軸心まわりの角度位置と、第2回り止め形状部49のローラ軸15の軸心まわりの角度位置の差は、40°以上50°以下の範囲(図では45°)に設定されている。ローラ軸15の4つの平坦面(2つの第1回り止め形状部46と2つの第2回り止め形状部49)は、すべて異なる方向を向いている。 The shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 9 are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. However, the angular position of the second detent shape portion 49 shown in FIG. 9 around the axis of the roller shaft 15 is different from the angular position of the first detent shape portion 46 shown in FIG. different. That is, as shown in FIGS. 10 to 12 , the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 are aligned in the normal direction of the first anti-rotation shape portion 46 and the normal direction of the second anti-rotation shape portion 49 . They are formed such that their line directions are different from each other. In this embodiment, the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is 40° or more. It is set within a range of 50° or less (45° in the drawing). The four flat surfaces of the roller shaft 15 (the two first anti-rotation shaped portions 46 and the two second anti-rotation shaped portions 49) all face different directions.
 図9に示すように、第2長孔32の幅寸法(一対の長手面48の間隔寸法)は、ローラ軸15の外径寸法に対応する寸法とされている。第2長孔32の幅寸法は、第1長孔31(図7参照)の幅寸法よりも広幅であり、これにより、第2長孔32は、ローラ軸15が通り抜けることができる大きさとなっている。ローラ軸15の第2端部17の外周の第2回り止め形状部49と第2部分円筒面50のうち、第2部分円筒面50のみが第2長孔32の長手面48に接触して支持され、第2回り止め形状部49は長手面48に非接触となっている。 As shown in FIG. 9 , the width dimension of the second elongated hole 32 (the spacing dimension between the pair of longitudinal surfaces 48 ) is a dimension corresponding to the outer diameter dimension of the roller shaft 15 . The width dimension of the second long hole 32 is wider than the width dimension of the first long hole 31 (see FIG. 7). ing. Of the second detent shape portion 49 and the second partial cylindrical surface 50 on the outer periphery of the second end portion 17 of the roller shaft 15 , only the second partial cylindrical surface 50 is in contact with the longitudinal surface 48 of the second elongated hole 32 . It is supported, and the second anti-rotation shape portion 49 is out of contact with the longitudinal surface 48 .
 図5、図10に示すように、ローラ軸15の第2端部17の外周には、第2のC形リングばね34が係合する第2リング溝52が形成されている。同様に、図10に示すように、ローラ軸15の第1端部16の外周には、第1のC形リングばね33(図2参照)が係合する第1リング溝51が形成されている。第1回り止め形状部46は、第1リング溝51の形成領域を軸方向に横断してローラ軸15の第1端部16の側の端面に至るように形成されている。第2回り止め形状部49も、第2リング溝52の形成領域を軸方向に横断してローラ軸15の第2端部17の側の端面に至るように形成されている。 As shown in FIGS. 5 and 10, a second ring groove 52 with which the second C-shaped ring spring 34 engages is formed on the outer circumference of the second end 17 of the roller shaft 15 . Similarly, as shown in FIG. 10, the outer circumference of the first end 16 of the roller shaft 15 is formed with a first ring groove 51 with which the first C-shaped ring spring 33 (see FIG. 2) engages. there is The first anti-rotation shaped portion 46 is formed so as to cross the forming region of the first ring groove 51 in the axial direction and reach the end surface of the roller shaft 15 on the first end portion 16 side. The second anti-rotation shape portion 49 is also formed so as to extend axially across the forming region of the second ring groove 52 and reach the end surface of the roller shaft 15 on the second end portion 17 side.
 図10に示すローラ軸15は、第1端部16と第2端部17の位置を入れ替えるようにローラ軸15の向きを反転したときに、反転後の第2端部17の形状および寸法が反転前の第1端部16の形状および寸法と同一となり、かつ、反転後の第1端部16の形状および寸法が反転前の第2端部17の形状および寸法と同一となるような対称性を有する。 In the roller shaft 15 shown in FIG. 10, when the direction of the roller shaft 15 is reversed so that the positions of the first end 16 and the second end 17 are exchanged, the shape and dimensions of the second end 17 after the reversal are as follows. Symmetry such that the shape and dimensions of the first end 16 before inversion are identical to the shape and dimensions of the first end 16 after inversion, and the shape and dimensions of the first end 16 after inversion are the same as the shape and dimensions of the second end 17 before inversion have sex.
 上記の電動式直動アクチュエータ2の動作例を説明する。 An operation example of the electric linear motion actuator 2 will be described.
 図1に示す電動モータ3のモータ軸6が回転すると、その回転が減速歯車機構4によって減速して伝達され、遊星ローラねじ式直動機構1の回転軸10に入力される。回転軸10が回転すると、その回転が回転軸10の外周に転がり接触する遊星ローラ14に伝達し、各遊星ローラ14がローラ軸15を中心に自転しながら回転軸10のまわりを公転する。このとき、遊星ローラ14の外周の円周溝21と外輪部材5の内周の螺旋凸条20との係合によって、遊星ローラ14と外輪部材5が軸方向に相対移動するが、遊星ローラ14はキャリヤ18と共に軸方向の移動が規制されているので、遊星ローラ14はハウジング19に対して軸方向に移動せず、外輪部材5がハウジング19に対して軸方向に移動する。このようにして、遊星ローラねじ式直動機構1は、電動モータ3から回転軸10に入力された回転を外輪部材5の直線運動に変換する。 When the motor shaft 6 of the electric motor 3 shown in FIG. When the rotating shaft 10 rotates, the rotation is transmitted to the planetary rollers 14 that are in rolling contact with the outer periphery of the rotating shaft 10 , and each planetary roller 14 revolves around the rotating shaft 10 while rotating about the roller shaft 15 . At this time, the engagement between the circumferential groove 21 on the outer circumference of the planetary roller 14 and the spiral ridge 20 on the inner circumference of the outer ring member 5 causes the planetary roller 14 and the outer ring member 5 to move relative to each other in the axial direction. is restricted from moving in the axial direction together with the carrier 18 , the planetary rollers 14 do not move axially with respect to the housing 19 and the outer ring member 5 moves axially with respect to the housing 19 . In this manner, the planetary roller screw type linear motion mechanism 1 converts the rotation input from the electric motor 3 to the rotary shaft 10 into linear motion of the outer ring member 5 .
 図13、図14に、上記構成の電動式直動アクチュエータ2を用いた電動ブレーキ装置を示す。この電動ブレーキ装置は、車輪(図示せず)と一体に回転するブレーキディスク60と、ブレーキディスク60に対して軸方向に移動不能に車体に固定されたマウンティングブラケット61と、マウンティングブラケット61に対してブレーキディスク60の軸方向と平行にスライド可能に支持されたキャリパボディ62と、ブレーキディスク60を間に挟んで軸方向に対向するインナ側ブレーキパッド63およびアウタ側ブレーキパッド64と、インナ側ブレーキパッド63を軸方向に移動させる電動式直動アクチュエータ2とを有する。インナ側ブレーキパッド63とアウタ側ブレーキパッド64は、それぞれマウンティングブラケット61によって、軸方向に移動可能かつ周方向に移動不能に保持されている。 13 and 14 show an electric brake device using the electric linear motion actuator 2 having the above configuration. This electric brake device includes a brake disc 60 that rotates together with a wheel (not shown), a mounting bracket 61 that is fixed to the vehicle body so as not to move in the axial direction with respect to the brake disc 60, and a A caliper body 62 slidably supported in parallel with the axial direction of the brake disc 60, an inner side brake pad 63 and an outer side brake pad 64 axially opposed to each other with the brake disc 60 interposed therebetween, and an inner side brake pad. and an electric linear motion actuator 2 that moves 63 in the axial direction. The inner side brake pad 63 and the outer side brake pad 64 are each held by a mounting bracket 61 so as to be axially movable and circumferentially immovable.
 キャリパボディ62は、アウタ側ブレーキパッド64の背面に軸方向に対向する爪部65と、ブレーキディスク60の外径側に対向する外殻部66とを有する。外殻部66は、電動式直動アクチュエータ2のハウジング19に一体に形成されている。キャリパボディ62の外殻部66と電動式直動アクチュエータ2のハウジング19とを別体に形成し、その両者をボルト等で一体化してもよい。外輪部材5は、外輪部材5が移動したときに外輪部材5と一体にインナ側ブレーキパッド63も移動するように、インナ側ブレーキパッド63の背面に配置されている。 The caliper body 62 has a claw portion 65 that axially faces the rear surface of the outer brake pad 64 and an outer shell portion 66 that faces the outer diameter side of the brake disc 60 . The outer shell portion 66 is formed integrally with the housing 19 of the electric linear motion actuator 2 . The outer shell portion 66 of the caliper body 62 and the housing 19 of the electric linear motion actuator 2 may be formed separately and then integrated with bolts or the like. The outer ring member 5 is arranged behind the inner side brake pad 63 so that the inner side brake pad 63 moves integrally with the outer ring member 5 when the outer ring member 5 moves.
 外輪部材5のブレーキディスク60の側の端部には、インナ側ブレーキパッド63の背面に形成された回り止め突起67に係合する回り止め溝68が形成され、この回り止め突起67と回り止め溝68の係合によって、外輪部材5は回り止めされている。 An end portion of the outer ring member 5 on the brake disc 60 side is formed with a detent groove 68 that engages with a detent projection 67 formed on the back surface of the inner side brake pad 63 . The engagement of the groove 68 prevents rotation of the outer ring member 5 .
 この電動ブレーキ装置の動作例を説明する。電動式直動アクチュエータ2の外輪部材5がインナ側ブレーキパッド63の背面を軸方向に押圧し、インナ側ブレーキパッド63をブレーキディスク60の側面に押し付ける。このとき、外輪部材5がインナ側ブレーキパッド63から受ける軸方向反力によって、キャリパボディ62がマウンティングブラケット61に対してスライド移動し、キャリパボディ62の爪部65がアウタ側ブレーキパッド64の背面を押圧し、アウタ側ブレーキパッド64をブレーキディスク60の側面に押し付ける。このようにして、インナ側ブレーキパッド63およびアウタ側ブレーキパッド64がブレーキディスク60に押し付けられ、そのブレーキパッドとブレーキディスク60の接触面間の摩擦によって、ブレーキディスク60に制動力が発生する。 An operation example of this electric brake device will be explained. The outer ring member 5 of the electric linear motion actuator 2 axially presses the back surface of the inner side brake pad 63 to press the inner side brake pad 63 against the side surface of the brake disc 60 . At this time, the caliper body 62 slides relative to the mounting bracket 61 due to the axial reaction force that the outer ring member 5 receives from the inner side brake pad 63 , and the claw portion 65 of the caliper body 62 slides along the back surface of the outer side brake pad 64 . By pressing, the outer side brake pad 64 is pressed against the side surface of the brake disc 60 . In this way, the inner side brake pad 63 and the outer side brake pad 64 are pressed against the brake disc 60 , and braking force is generated in the brake disc 60 by friction between the contact surfaces of the brake pads and the brake disc 60 .
 上記の遊星ローラねじ式直動機構1は、図6、図7に示すように、ローラ軸15の第1端部16の第1回り止め形状部46が、第1長孔31の長手面45に係合することで、ローラ軸15が自転しないように回り止めされているので、図2に示す遊星ローラ14が自転するときに、その遊星ローラ14と一緒にローラ軸15が自転する(いわゆる連れ回り)のを防止することができる。そのため、ローラ軸15のC形リングばね33,34との接触部分の摩耗が防止され、その摩耗に起因する回転軸10の空転を防止することが可能である。 In the planetary roller screw type linear motion mechanism 1 described above, as shown in FIGS. 2, the roller shaft 15 is rotated together with the planetary roller 14 (so-called ) can be prevented. Therefore, it is possible to prevent wear of the contact portions of the roller shaft 15 with the C-shaped ring springs 33 and 34, and to prevent idle rotation of the rotating shaft 10 caused by the wear.
 また、この遊星ローラねじ式直動機構1は、図8、図9に示すように、第2長孔32が広幅に形成されているので、遊星ローラねじ式直動機構1を生産するに際し、先に、図2に示す第1ディスク22と第2ディスク23と連結部24とで構成されるキャリヤ18を組み立て、その後、ローラ軸15を、第2ディスク23の側から第2長孔32と第1長孔31に順に挿入することができる。しかも、図10~図12に示すように、ローラ軸15の第1端部16の形状および寸法と、ローラ軸15の第2端部17の形状および寸法とが同一なので、ローラ軸15を第2長孔32と第1長孔31に順に挿入するときに、ローラ軸15の前後の向きを区別する必要がない。そのため、遊星ローラ14のローラ軸15をキャリヤ18に組み付ける作業の自動化が容易である。 In addition, as shown in FIGS. 8 and 9, the planetary roller screw type linear motion mechanism 1 is formed with a wide second elongated hole 32. Therefore, when the planetary roller screw type linear motion mechanism 1 is produced, First, the carrier 18 composed of the first disk 22, the second disk 23, and the connecting portion 24 shown in FIG. It can be inserted into the first long hole 31 in order. Moreover, as shown in FIGS. 10 to 12, since the shape and dimensions of the first end 16 of the roller shaft 15 and the shape and dimensions of the second end 17 of the roller shaft 15 are the same, the roller shaft 15 can be When the roller shaft 15 is inserted into the second long hole 32 and the first long hole 31 in order, it is not necessary to distinguish between the front and rear directions of the roller shaft 15 . Therefore, the work of assembling the roller shaft 15 of the planetary roller 14 to the carrier 18 can be easily automated.
 また、この遊星ローラねじ式直動機構1は、図10~図12に示すように、第1回り止め形状部46と第2回り止め形状部49として、ローラ軸15の軸心と平行な平面に沿ってローラ軸15の外周を切り取った形状の平坦面を採用しているので、第1回り止め形状部46が、第1長孔31の長手面45に面接触することになり、効果的にローラ軸15を自転しないように回り止めすることが可能である。また、第1回り止め形状部46および第2回り止め形状部49を形成することによるローラ軸15の第1端部16および第2端部17の断面積の減少が最小限に抑えられ、ローラ軸15の第1端部16および第2端部17の強度が確保しやすくなっている。また、第1回り止め形状部46および第2回り止め形状部49を低い加工コストで精度よく加工することが可能である。 Moreover, as shown in FIGS. 10 to 12, the planetary roller screw type linear motion mechanism 1 has a plane parallel to the axis of the roller shaft 15 as a first anti-rotation shape portion 46 and a second anti-rotation shape portion 49. Since the flat surface of the shape obtained by cutting the outer periphery of the roller shaft 15 along the .theta. In addition, it is possible to prevent the roller shaft 15 from rotating. In addition, the reduction in the cross-sectional area of the first end 16 and the second end 17 of the roller shaft 15 due to the formation of the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 is minimized, The strength of the first end portion 16 and the second end portion 17 of the shaft 15 can be easily ensured. Further, the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 can be processed with high accuracy at low processing cost.
 また、この遊星ローラねじ式直動機構1は、図10~図12に示すように、第1回り止め形状部46の角度位置と第2回り止め形状部49の角度位置との差(図では45°)が大きく設定されているので、図7に示すように、第1ディスク22の第1長孔31の長手面45に第1回り止め形状部46を係合させたときに、図9に示すように、第2ディスク23の第2長孔32の長手面48の位置に、確実に第2部分円筒面50を配置することが可能となっている。 10 to 12, the planetary roller screw type linear motion mechanism 1 has a difference between the angular position of the first anti-rotation shaped portion 46 and the angular position of the second anti-rotation shaped portion 49 (in the figure, 45°) is set large, so when the first anti-rotation shape portion 46 is engaged with the longitudinal surface 45 of the first elongated hole 31 of the first disk 22 as shown in FIG. 2, it is possible to reliably arrange the second partial cylindrical surface 50 at the position of the longitudinal surface 48 of the second elongated hole 32 of the second disk 23. As shown in FIG.
 また、この遊星ローラねじ式直動機構1は、図10~図12に示すように、第1回り止め形状部46の角度位置と第2回り止め形状部49の角度位置の差を、40°以上50°以下(図では45°)に設定しているので、図5に示すように、第2のC形リングばね34の第2リング溝52に対する掛かり代を確保し、第2のC形リングばね34と第2リング溝52の係合を安定させることが可能となっている。 10 to 12, the planetary roller screw type linear motion mechanism 1 has a difference between the angular position of the first anti-rotation shape portion 46 and the angular position of the second anti-rotation shape portion 49 of 40°. Since it is set to 50° or less (45° in the figure), as shown in FIG. It is possible to stabilize the engagement between the ring spring 34 and the second ring groove 52 .
 すなわち、例えば、図23A~図23Cに示すように、第1回り止め形状部46の角度位置と第2回り止め形状部49の角度位置の差を、90°に設定することも可能であるが、このようにした場合、図23Aに示すように、第2端部17における第2回り止め形状部49の位置と、第2リング溝52における第2のC形リングばね34の係合位置とが同じ位置(図では第2端部17の上側位置)になるため、第2リング溝52に対する第2のC形リングばね34の掛かり代が極めて小さくなるか、あるいは消失し、第2のC形リングばね34と第2リング溝52の係合が不安定となる可能性がある。これに対し、図10~図12に示すように、第1回り止め形状部46の角度位置と第2回り止め形状部49の角度位置の差を、40°以上50°以下(図では45°)に設定すると、図5に示すように、第2のC形リングばね34の第2リング溝52に対する掛かり代を確保し、第2のC形リングばね34と第2リング溝52の係合を安定させることが可能となる。 That is, for example, as shown in FIGS. 23A to 23C, it is possible to set the difference between the angular position of the first detent shape portion 46 and the angular position of the second detent shape portion 49 to 90°. In this case, as shown in FIG. 23A, the position of the second detent shape portion 49 at the second end portion 17 and the engagement position of the second C-shaped ring spring 34 at the second ring groove 52 is at the same position (upper position of the second end portion 17 in the figure), the engagement allowance of the second C-shaped ring spring 34 with respect to the second ring groove 52 becomes extremely small or disappears, and the second C-shaped ring spring 34 The engagement between the ring spring 34 and the second ring groove 52 may become unstable. On the other hand, as shown in FIGS. 10 to 12, the difference between the angular position of the first detent shape portion 46 and the angular position of the second detent shape portion 49 is 40° or more and 50° or less (45° in the drawings). ), as shown in FIG. can be stabilized.
 図15A~図15Cに、この発明の第2実施形態を示す。第2実施形態は、第1実施形態と比べてローラ軸15の一部構成のみが異なり、それ以外の構成は同一である。そのため、第1実施形態に対応する部分は同一の符号を付して説明を省略する。 15A to 15C show a second embodiment of the invention. The second embodiment differs from the first embodiment only in the partial configuration of the roller shaft 15, and the rest of the configuration is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図15Bに示すように、ローラ軸15の第1端部16の外周には、ローラ軸15の軸心と平行な平面に沿ってローラ軸15の外周を切り取った形状の第1回り止め形状部46と、その第1回り止め形状部46に対してローラ軸15の軸心まわりに隣接する第1部分円筒面47とが形成されている。第1回り止め形状部46は、ローラ軸15の第1端部16の外周の1箇所にのみ形成されている(いわゆるDカット)。 As shown in FIG. 15B , on the outer periphery of the first end portion 16 of the roller shaft 15 , a first anti-rotation shape portion is formed by cutting the outer periphery of the roller shaft 15 along a plane parallel to the axial center of the roller shaft 15 . 46 and a first partial cylindrical surface 47 adjacent to the first detent shape portion 46 around the axis of the roller shaft 15 are formed. The first detent shape portion 46 is formed only at one location on the outer circumference of the first end portion 16 of the roller shaft 15 (so-called D-cut).
 第1長孔31の幅寸法(一対の長手面45の間隔寸法)は、第1端部16の第1回り止め形状部46(平坦面)に直交する方向の幅寸法に対応する寸法とされている。また、第1長孔31の幅寸法は、ローラ軸15の外径寸法よりも小さい。ローラ軸15は、第1回り止め形状部46が第1長孔31の長手面45に係合することで自転しないように回り止めされている。 The width dimension of the first long hole 31 (the spacing dimension between the pair of longitudinal surfaces 45) corresponds to the width dimension in the direction perpendicular to the first detent shape portion 46 (flat surface) of the first end portion 16. ing. Also, the width dimension of the first long hole 31 is smaller than the outer diameter dimension of the roller shaft 15 . The roller shaft 15 is prevented from rotating by engaging the first anti-rotation shape portion 46 with the longitudinal surface 45 of the first elongated hole 31 .
 図15Cに示すように、ローラ軸15の第2端部17の外周には、ローラ軸15の軸心と平行な平面に沿ってローラ軸15の外周を切り取った形状の第2回り止め形状部49と、その第2回り止め形状部49に対してローラ軸15の軸心まわりに隣接する第2部分円筒面50とが形成されている。第2回り止め形状部49は、ローラ軸15の第2端部17の外周の1箇所にのみ形成されている。 As shown in FIG. 15C , on the outer circumference of the second end 17 of the roller shaft 15 , a second anti-rotation shaped portion is formed by cutting the outer circumference of the roller shaft 15 along a plane parallel to the axial center of the roller shaft 15 . 49 and a second partial cylindrical surface 50 adjacent to the second detent shape portion 49 around the axis of the roller shaft 15 are formed. The second detent shape portion 49 is formed only at one location on the outer circumference of the second end portion 17 of the roller shaft 15 .
 図15Cに示すローラ軸15の第2端部17の形状および寸法は、図15Bに示すローラ軸15の第1端部16の形状および寸法と同一である。ただし、図15Cに示す第2回り止め形状部49のローラ軸15の軸心まわりの角度位置は、図15Bに示す第1回り止め形状部46のローラ軸15の軸心まわりの角度位置とは異なっている。すなわち、図16~図18に示すように、第1回り止め形状部46と第2回り止め形状部49は、第1回り止め形状部46の法線方向と第2回り止め形状部49の法線方向が互いに異なる方向となるように形成されている。この実施形態では、第1回り止め形状部46のローラ軸15の軸心まわりの角度位置と、第2回り止め形状部49のローラ軸15の軸心まわりの角度位置の差は、40°以上50°以下の範囲(図では45°)に設定されている。 The shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 15C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 15B. However, the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 15C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 15B. different. That is, as shown in FIGS. 16 to 18 , the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 are aligned in the normal direction of the first anti-rotation shape portion 46 and the normal direction of the second anti-rotation shape portion 49 . They are formed such that their line directions are different from each other. In this embodiment, the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is 40° or more. It is set within a range of 50° or less (45° in the figure).
 図15Cに示すように、第2長孔32の幅寸法(一対の長手面48の間隔寸法)は、ローラ軸15の外径寸法に対応する寸法とされている。第2長孔32の幅寸法は、図15Bに示す第1長孔31の幅寸法よりも広幅である。図15Cに示すように、ローラ軸15の第2端部17の外周の第2回り止め形状部49と第2部分円筒面50のうち、第2部分円筒面50のみが第2長孔32の長手面48に接触して支持され、第2回り止め形状部49は長手面48に非接触となっている。 As shown in FIG. 15C , the width dimension of the second elongated hole 32 (the spacing dimension between the pair of longitudinal surfaces 48 ) is a dimension corresponding to the outer diameter dimension of the roller shaft 15 . The width dimension of the second long hole 32 is wider than the width dimension of the first long hole 31 shown in FIG. 15B. As shown in FIG. 15C , of the second detent shape portion 49 and the second partial cylindrical surface 50 on the outer periphery of the second end portion 17 of the roller shaft 15 , only the second partial cylindrical surface 50 is located in the second elongated hole 32 . It is supported in contact with the longitudinal surface 48 , and the second detent shape portion 49 is out of contact with the longitudinal surface 48 .
 この第2実施形態は、第1実施形態と同様の作用効果を奏する。 This second embodiment has the same effects as the first embodiment.
 図19A~図19Cに、この発明の第3実施形態を示す。第3実施形態は、第2実施形態と比べて、第1回り止め形状部46の角度位置と第2回り止め形状部49の角度位置の差のみが異なり、それ以外の構成は同一である。そのため、第2実施形態に対応する部分は同一の符号を付して説明を省略する。 19A to 19C show a third embodiment of the invention. The third embodiment differs from the second embodiment only in the difference between the angular position of the first anti-rotation shape portion 46 and the angular position of the second anti-rotation shape portion 49, and the rest of the configuration is the same. Therefore, portions corresponding to those in the second embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図19Cに示すローラ軸15の第2端部17の形状および寸法は、図19Bに示すローラ軸15の第1端部16の形状および寸法と同一である。ただし、図19Cに示す第2回り止め形状部49のローラ軸15の軸心まわりの角度位置は、図19Bに示す第1回り止め形状部46のローラ軸15の軸心まわりの角度位置とは異なっている。すなわち、図20~図22に示すように、第1回り止め形状部46のローラ軸15の軸心まわりの角度位置と、第2回り止め形状部49のローラ軸15の軸心まわりの角度位置の差は、130°以上140°以下の範囲(図では135°)に設定されている。 The shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 19C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 19B. However, the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 19C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 19B. different. That is, as shown in FIGS. 20 to 22, the angular position of the first anti-rotation shape portion 46 about the axis of the roller shaft 15 and the angular position of the second anti-rotation shape portion 49 about the axis of the roller shaft 15 is set in the range of 130° or more and 140° or less (135° in the drawing).
 この第3実施形態は、第1実施形態と同様の作用効果を奏する。 The third embodiment has the same effects as the first embodiment.
 図23A~図23Cに、この発明の第4実施形態を示す。第4実施形態は、第1実施形態と比べて、第1回り止め形状部46の角度位置と第2回り止め形状部49の角度位置の差のみが異なり、それ以外の構成は同一である。そのため、第1実施形態に対応する部分は同一の符号を付して説明を省略する。 23A to 23C show a fourth embodiment of the invention. The fourth embodiment differs from the first embodiment only in the difference between the angular position of the first anti-rotation shape portion 46 and the angular position of the second anti-rotation shape portion 49, and the rest of the configuration is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図23Cに示すローラ軸15の第2端部17の形状および寸法は、図23Bに示すローラ軸15の第1端部16の形状および寸法と同一である。ただし、図23Cに示す第2回り止め形状部49のローラ軸15の軸心まわりの角度位置は、図23Bに示す第1回り止め形状部46のローラ軸15の軸心まわりの角度位置とは異なっている。すなわち、第1回り止め形状部46のローラ軸15の軸心まわりの角度位置と、第2回り止め形状部49のローラ軸15の軸心まわりの角度位置の差は、90°に設定されている。 The shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 23C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 23B. However, the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 23C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 23B. different. That is, the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is set to 90°. there is
 この第4実施形態は、第1実施形態と同様、先に、図23Aに示すキャリヤ18を組み立て、その後、ローラ軸15を、第2ディスク23の側から第2長孔32と第1長孔31に順に挿入することができる。しかも、ローラ軸15の第1端部16の形状および寸法と、ローラ軸15の第2端部17の形状および寸法とが同一なので、ローラ軸15を第2長孔32と第1長孔31に順に挿入するときに、ローラ軸15の前後の向きを区別する必要がない。そのため、遊星ローラ14のローラ軸15をキャリヤ18に組み付ける作業の自動化が容易である。 In this fourth embodiment, as in the first embodiment, the carrier 18 shown in FIG. 23A is first assembled, and then the roller shaft 15 is inserted into the second elongated hole 32 and the first elongated hole from the second disc 23 side. 31 can be inserted in sequence. Moreover, since the shape and dimensions of the first end portion 16 of the roller shaft 15 and the shape and dimensions of the second end portion 17 of the roller shaft 15 are the same, the roller shaft 15 can be divided into the second elongated hole 32 and the first elongated hole 31 . There is no need to distinguish between the front and rear directions of the roller shafts 15 when inserting them in order. Therefore, the work of assembling the roller shaft 15 of the planetary roller 14 to the carrier 18 can be easily automated.
 また、第1実施形態と同様、第1回り止め形状部46の角度位置と第2回り止め形状部49の角度位置との差が大きいので、図23Bに示すように、第1ディスク22の第1長孔31の長手面45に第1回り止め形状部46を係合させたときに、図23Cに示すように、第2ディスク23の第2長孔32の長手面48の位置に、確実に第2部分円筒面50を配置することが可能となっている。 Also, as in the first embodiment, the difference between the angular position of the first detent shape portion 46 and the angular position of the second detent shape portion 49 is large. When the first anti-rotation shape portion 46 is engaged with the longitudinal surface 45 of the first elongated hole 31, as shown in FIG. It is possible to dispose the second partial cylindrical surface 50 on the .
 図24A~図24Cに、この発明の第5実施形態を示す。第5実施形態は、第1実施形態と比べて、第1回り止め形状部46および第2回り止め形状部49の形状のみが異なり、それ以外の構成は同一である。そのため、第1実施形態に対応する部分は同一の符号を付して説明を省略する。  Figures 24A to 24C show a fifth embodiment of the present invention. The fifth embodiment differs from the first embodiment only in the shapes of the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49, and the rest of the configuration is the same. Therefore, parts corresponding to those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図24Bに示すように、ローラ軸15の第1端部16の外周には、一対の第1回り止め形状部46と、その一対の第1回り止め形状部46のそれぞれに対してローラ軸15の軸心まわりに隣接する一対の第1部分円筒面47とが形成されている。第1回り止め形状部46は、ローラ軸15の端部外周を加工することで、断面円形の外周の一部を切り取った形状とした部分であり、図24Bに示すように、第1長孔31の長手面45に押し付けられたときにローラ軸15の自転を規制することが可能な形状をもつ部分である。この実施形態では、第1回り止め形状部46は、ローラ軸15の外周をローラ軸15の軸心と平行に延びる溝である。 As shown in FIG. 24B, on the outer periphery of the first end portion 16 of the roller shaft 15, there are a pair of first anti-rotation shaped portions 46, and the roller shaft 15 for each of the pair of first anti-rotation shaped portions 46. A pair of first partial cylindrical surfaces 47 are formed adjacent to each other around the axis. The first anti-rotation shape portion 46 is a portion formed by cutting out a part of the outer circumference of the circular cross section by processing the outer circumference of the end portion of the roller shaft 15. As shown in FIG. 31 has a shape capable of restricting the rotation of the roller shaft 15 when pressed against the longitudinal surface 45 of the roller shaft 31 . In this embodiment, the first anti-rotation shape portion 46 is a groove that extends parallel to the axis of the roller shaft 15 on the outer periphery of the roller shaft 15 .
 図24Cに示すように、ローラ軸15の第2端部17の外周には、一対の第2回り止め形状部49と、その一対の第2回り止め形状部49のそれぞれに対してローラ軸15の軸心まわりに隣接する一対の第2部分円筒面50とが形成されている。第2回り止め形状部49は、第1回り止め形状部46と同様、ローラ軸15の端部断面円形の外周を一部切り取った形状(仮想の平面へ押し付けられたときにローラ軸15の自転を規制することが可能な形状)である。 As shown in FIG. 24C, on the outer periphery of the second end 17 of the roller shaft 15, there are a pair of second anti-rotation shaped portions 49 and roller shaft 15 with respect to each of the pair of second anti-rotation shaped portions 49. As shown in FIG. A pair of second partial cylindrical surfaces 50 are formed adjacent to each other around the axis. As with the first anti-rotation shape portion 46, the second anti-rotation shape portion 49 has a shape obtained by partially cutting the outer circumference of the circular end section of the roller shaft 15 (the rotation of the roller shaft 15 when pressed against an imaginary plane). It is a shape that can regulate the
 図24Cに示すローラ軸15の第2端部17の形状および寸法は、図24Bに示すローラ軸15の第1端部16の形状および寸法と同一である。ただし、図24Cに示す第2回り止め形状部49のローラ軸15の軸心まわりの角度位置は、図24Bに示す第1回り止め形状部46のローラ軸15の軸心まわりの角度位置とは異なっている。 The shape and dimensions of the second end 17 of the roller shaft 15 shown in FIG. 24C are the same as the shape and dimensions of the first end 16 of the roller shaft 15 shown in FIG. 24B. However, the angular position around the axis of the roller shaft 15 of the second detent shape portion 49 shown in FIG. 24C is different from the angular position around the axis of the roller shaft 15 of the first detent shape portion 46 shown in FIG. 24B. different.
 すなわち、図24A~図24Cに示すように、第1回り止め形状部46と第2回り止め形状部49は、第1回り止め形状部46のローラ軸15の軸心まわりの角度位置(第1回り止め形状部46が仮想の平面に係合した状態を想定したときの平面の法線方向)と、第2回り止め形状部49のローラ軸15の軸心まわりの角度位置(第2回り止め形状部49が仮想の平面に係合した状態を想定したときの平面の法線方向)とが互いに異なる方向となるように形成されている。この実施形態では、第1回り止め形状部46のローラ軸15の軸心まわりの角度位置と、第2回り止め形状部49のローラ軸15の軸心まわりの角度位置の差は、40°以上50°以下の範囲(図では45°)に設定されている。 That is, as shown in FIGS. 24A to 24C, the first anti-rotation shape portion 46 and the second anti-rotation shape portion 49 are positioned at the angular positions (first ) and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 (the second detent shape). The normal direction of the plane when the shape portion 49 is engaged with the virtual plane) is formed so as to be different from each other. In this embodiment, the difference between the angular position of the first detent shape portion 46 about the axis of the roller shaft 15 and the angular position of the second detent shape portion 49 about the axis of the roller shaft 15 is 40° or more. It is set within a range of 50° or less (45° in the drawing).
 この第5実施形態は、第1実施形態と同様の作用効果を奏する。 The fifth embodiment has the same effects as the first embodiment.
 上記各実施形態では、キャリヤ18を構成する一対のディスク22、23のうち、軸方向前側のディスクを第1ディスク22(第1長孔31が形成されたディスク)とし、軸方向後側のディスクを第2ディスク23(第2長孔32が形成されたディスク)としたが、軸方向の前後を逆にしてもよい。すなわち、一対のディスク22、23のうち、軸方向後側のディスクを第1ディスク22(第1長孔31が形成されたディスク)とし、軸方向前側のディスクを第2ディスク23(第2長孔32が形成されたディスク)とするとも可能である。 In each of the above embodiments, of the pair of discs 22 and 23 that constitute the carrier 18, the axially front disc is the first disc 22 (the disc in which the first elongated hole 31 is formed), and the axially rear disc is the second disk 23 (the disk in which the second elongated hole 32 is formed), but the front and rear in the axial direction may be reversed. That is, of the pair of discs 22 and 23, the disc on the rear side in the axial direction is the first disc 22 (the disc in which the first long hole 31 is formed), and the disc on the front side in the axial direction is the second disc 23 (the second long hole). It is also possible to use a disk with holes 32 formed therein.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and range of equivalents of the scope of the claims.
1    遊星ローラねじ式直動機構
3    電動モータ
5    外輪部材
10   回転軸
14   遊星ローラ
15   ローラ軸
16   第1端部
17   第2端部
20   螺旋凸条
21   円周溝
22   第1ディスク
23   第2ディスク
24   連結部
31   第1長孔
32   第2長孔
33   第1のC形リングばね
34   第2のC形リングばね
45   長手面
46   第1回り止め形状部
47   第1部分円筒面
48   長手面
49   第2回り止め形状部
50   第2部分円筒面
51   第1リング溝
52   第2リング溝
63   インナ側ブレーキパッド
1 Planetary roller screw type linear motion mechanism 3 Electric motor 5 Outer ring member 10 Rotating shaft 14 Planetary roller 15 Roller shaft 16 First end 17 Second end 20 Spiral ridge 21 Circumferential groove 22 First disk 23 Second disk 24 Connecting portion 31 First elongated hole 32 Second elongated hole 33 First C-shaped ring spring 34 Second C-shaped ring spring 45 Longitudinal surface 46 First detent shape portion 47 First partial cylindrical surface 48 Longitudinal surface 49 Second Whirl-stop portion 50 Second partial cylindrical surface 51 First ring groove 52 Second ring groove 63 Inner side brake pad

Claims (7)

  1.  回転軸(10)と、
     前記回転軸(10)を囲む中空筒状の外輪部材(5)と、
     前記外輪部材(5)の内周と前記回転軸(10)の外周との間に周方向に間隔をおいて配置された複数の遊星ローラ(14)と、
     前記外輪部材(5)の内周に設けられた螺旋凸条(20)と、
     前記螺旋凸条(20)と係合するように前記各遊星ローラ(14)の外周に設けられた螺旋溝または円周溝(21)と、
     前記複数の遊星ローラ(14)をそれぞれ自転可能に支持する複数のローラ軸(15)と、
     前記複数の遊星ローラ(14)を間にして軸方向に対向する第1ディスク(22)および第2ディスク(23)と、前記複数の遊星ローラ(14)の間を通って前記第1ディスク(22)と前記第2ディスク(23)を連結する連結部(24)とをもつキャリヤ(18)とを有し、
     前記第1ディスク(22)には、前記複数のローラ軸(15)の第1端部(16)を径方向に移動可能に保持する複数の第1長孔(31)が周方向に間隔をおいて形成され、
     前記第2ディスク(23)には、前記複数のローラ軸(15)の第2端部(17)を径方向に移動可能に保持する複数の第2長孔(32)が周方向に間隔をおいて形成されている遊星ローラねじ式直動機構において、
     前記第1長孔(31)の幅寸法よりも、前記第2長孔(32)の幅寸法の方が広幅とされ、
     前記ローラ軸(15)の前記第1端部(16)の外周には、第1回り止め形状部(46)と、前記第1回り止め形状部(46)に対してローラ軸(15)の軸心まわりに隣接する第1部分円筒面(47)とが形成され、前記第1回り止め形状部(46)が前記第1長孔(31)の長手面(45)に係合することで前記ローラ軸(15)が自転しないように回り止めされ、
     前記ローラ軸(15)の前記第2端部(17)の外周には、第2回り止め形状部(49)と、前記第2回り止め形状部(49)に対してローラ軸(15)の軸心まわりに隣接する第2部分円筒面(50)とが形成され、前記第2端部(17)の形状および寸法は、前記第1端部(16)の形状および寸法と同一であるが、前記第2回り止め形状部(49)のローラ軸(15)の軸心まわりの角度位置と前記第1回り止め形状部(46)のローラ軸(15)の軸心まわりの角度位置とが異なり、前記第2回り止め形状部(49)と前記第2部分円筒面(50)のうちの前記第2部分円筒面(50)のみが前記第2長孔(32)の長手面(48)に接触して支持されることを特徴とする遊星ローラねじ式直動機構。
    a rotating shaft (10);
    a hollow cylindrical outer ring member (5) surrounding the rotating shaft (10);
    a plurality of planetary rollers (14) arranged at intervals in the circumferential direction between the inner circumference of the outer ring member (5) and the outer circumference of the rotating shaft (10);
    a spiral ridge (20) provided on the inner periphery of the outer ring member (5);
    a spiral or circumferential groove (21) provided on the outer circumference of each planetary roller (14) to engage with the spiral ridge (20);
    a plurality of roller shafts (15) rotatably supporting the plurality of planetary rollers (14);
    A first disk (22) and a second disk (23) axially opposed to each other with the plurality of planetary rollers (14) therebetween, and the first disk (22) and the second disk (23) passing between the plurality of planetary rollers (14). 22) and a carrier (18) with a connection (24) connecting said second disc (23);
    The first disk (22) has a plurality of first elongated holes (31) circumferentially spaced apart for holding the first ends (16) of the plurality of roller shafts (15) movably in the radial direction. formed in
    The second disk (23) has a plurality of second elongated holes (32) circumferentially spaced apart from each other for radially movably holding the second ends (17) of the plurality of roller shafts (15). In the planetary roller screw type linear motion mechanism formed in
    The width dimension of the second long hole (32) is wider than the width dimension of the first long hole (31),
    On the outer periphery of the first end (16) of the roller shaft (15), there is provided a first anti-rotation shape portion (46), and the roller shaft (15) is positioned against the first anti-rotation shape portion (46). A first partial cylindrical surface (47) adjacent around the axis is formed, and the first anti-rotation shaped portion (46) engages the longitudinal surface (45) of the first elongated hole (31). The roller shaft (15) is detented so as not to rotate;
    On the outer periphery of the second end (17) of the roller shaft (15), there is provided a second anti-rotation shape portion (49), and the roller shaft (15) is positioned against the second anti-rotation shape portion (49). A second partial cylindrical surface (50) is formed adjacent about the axis, said second end (17) having the same shape and dimensions as said first end (16), but , the angular position of the second anti-rotation shape portion (49) around the axis of the roller shaft (15) and the angular position of the first anti-rotation shape portion (46) around the axis of the roller shaft (15) Differently, only the second partial cylindrical surface (50) out of the second anti-rotation shape portion (49) and the second partial cylindrical surface (50) is the longitudinal surface (48) of the second long hole (32). A planetary roller screw type linear motion mechanism characterized in that it is supported in contact with the .
  2.  前記第1回り止め形状部(46)と前記第2回り止め形状部(49)は、ローラ軸(15)の軸心と平行な平面に沿って前記ローラ軸(15)の外周を切り取った形状の平坦面である請求項1に記載の遊星ローラねじ式直動機構。 The first anti-rotation shape part (46) and the second anti-rotation shape part (49) are formed by cutting the outer periphery of the roller shaft (15) along a plane parallel to the axis of the roller shaft (15). 2. The planetary roller screw type linear motion mechanism according to claim 1, wherein the flat surface is
  3.  前記第1回り止め形状部(46)の前記ローラ軸(15)の軸心まわりの角度位置と、前記第2回り止め形状部(49)の前記ローラ軸(15)の軸心まわりの角度位置の差が、40°以上140°以下の範囲に設定されている請求項1または2に記載の遊星ローラねじ式直動機構。 The angular position of the first detent shape portion (46) around the axis of the roller shaft (15) and the angular position of the second detent shape portion (49) around the axis of the roller shaft (15). 3. The planetary roller screw type linear motion mechanism according to claim 1 or 2, wherein the difference between is set in the range of 40° or more and 140° or less.
  4.  前記ローラ軸(15)の前記第1端部(16)を径方向内方に付勢する第1のC形リングばね(33)と、前記ローラ軸(15)の前記第2端部(17)を径方向内方に付勢する第2のC形リングばね(34)とを更に有し、
     前記ローラ軸(15)の前記第1端部(16)の外周には、前記第1のC形リングばね(33)が係合する第1リング溝(51)が形成され、
     前記ローラ軸(15)の前記第2端部(17)の外周には、前記第2のC形リングばね(34)が係合する第2リング溝(52)が形成され、
     前記第1回り止め形状部(46)の前記ローラ軸(15)の軸心まわりの角度位置と、前記第2回り止め形状部(49)の前記ローラ軸(15)の軸心まわりの角度位置の差が、40°以上50°以下または130°以上140°以下に設定されている請求項1から3のいずれかに記載の遊星ローラねじ式直動機構。
    a first C-shaped ring spring (33) biasing said first end (16) of said roller shaft (15) radially inward; and said second end (17) of said roller shaft (15) ) radially inwardly biasing the second C-shaped ring spring (34);
    A first ring groove (51) with which the first C-shaped ring spring (33) engages is formed on the outer periphery of the first end (16) of the roller shaft (15),
    A second ring groove (52) with which the second C-shaped ring spring (34) engages is formed on the outer periphery of the second end (17) of the roller shaft (15),
    The angular position of the first detent shape portion (46) around the axis of the roller shaft (15) and the angular position of the second detent shape portion (49) around the axis of the roller shaft (15). 4. The planetary roller screw type linear motion mechanism according to any one of claims 1 to 3, wherein the difference between is set to 40° or more and 50° or less or 130° or more and 140° or less.
  5.  前記第1回り止め形状部(46)は、前記ローラ軸(15)の前記第1端部(16)の外周にローラ軸(15)の軸心を間に挟んで平行に一対形成された平坦面であり、
     前記第2回り止め形状部(49)は、前記ローラ軸(15)の前記第2端部(17)の外周にローラ軸(15)の軸心を間に挟んで平行に一対形成された平坦面である請求項1から4のいずれかに記載の遊星ローラねじ式直動機構。
    The first anti-rotation shape part (46) is a flat pair formed on the outer periphery of the first end (16) of the roller shaft (15) in parallel with the center of the roller shaft (15) interposed therebetween. is a surface,
    The second anti-rotation shaped part (49) is a pair of flat flat parts formed on the outer periphery of the second end (17) of the roller shaft (15) in parallel with the center of the roller shaft (15) interposed therebetween. The planetary roller screw type linear motion mechanism according to any one of claims 1 to 4, which is a surface.
  6.  前記第1回り止め形状部(46)は、前記ローラ軸(15)の前記第1端部(16)の外周の1箇所にのみ形成され、
     前記第2回り止め形状部(49)は、前記ローラ軸(15)の前記第2端部(17)の外周の1箇所にのみ形成されている請求項1から4のいずれかに記載の遊星ローラねじ式直動機構。
    The first anti-rotation shaped portion (46) is formed only at one location on the outer periphery of the first end (16) of the roller shaft (15),
    5. The planet according to any one of claims 1 to 4, wherein the second anti-rotation shaped portion (49) is formed only at one location on the outer periphery of the second end (17) of the roller shaft (15). Roller screw type linear motion mechanism.
  7.  請求項1から6のいずれかに記載の遊星ローラねじ式直動機構(1)と、
     前記遊星ローラねじ式直動機構(1)の前記回転軸(10)を回転駆動する電動モータ(3)と、
     前記遊星ローラねじ式直動機構(1)の前記外輪部材(5)で軸方向に押圧されるブレーキパッド(63)と、を有する電動ブレーキ装置。
    A planetary roller screw type linear motion mechanism (1) according to any one of claims 1 to 6;
    an electric motor (3) that rotationally drives the rotary shaft (10) of the planetary roller screw type linear motion mechanism (1);
    and a brake pad (63) axially pressed by the outer ring member (5) of the planetary roller screw type linear motion mechanism (1).
PCT/JP2022/024650 2021-06-28 2022-06-21 Planetary roller screw type linear motion mechanism and electric brake device WO2023276770A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021106568A JP2023004701A (en) 2021-06-28 2021-06-28 Planetary roller screw-type linear motion mechanism and electric brake device
JP2021-106568 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023276770A1 true WO2023276770A1 (en) 2023-01-05

Family

ID=84691763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024650 WO2023276770A1 (en) 2021-06-28 2022-06-21 Planetary roller screw type linear motion mechanism and electric brake device

Country Status (2)

Country Link
JP (1) JP2023004701A (en)
WO (1) WO2023276770A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098873A (en) * 2014-11-19 2016-05-30 Ntn株式会社 Electrically-driven direct acting actuator and electrically-driven brake device
JP2016217420A (en) * 2015-05-19 2016-12-22 Ntn株式会社 Electrically-driven linear motion actuator and electrically-driven brake device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098873A (en) * 2014-11-19 2016-05-30 Ntn株式会社 Electrically-driven direct acting actuator and electrically-driven brake device
JP2016217420A (en) * 2015-05-19 2016-12-22 Ntn株式会社 Electrically-driven linear motion actuator and electrically-driven brake device

Also Published As

Publication number Publication date
JP2023004701A (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP7452097B2 (en) clutch device
JP5076780B2 (en) Vehicle seat reclining device
JP5596575B2 (en) Electric linear actuator and electric disc brake device
CN104343919A (en) Electric linear motion actuator and electric brake system
CN107002840B (en) Electric linear actuator and electric brake device
WO2016194965A1 (en) Electric linear actuator and electric brake device
JP2008174024A (en) Electric power steering device
WO2023276770A1 (en) Planetary roller screw type linear motion mechanism and electric brake device
WO2016186001A1 (en) Electric linear actuator and electric braking device
JP2007057012A (en) Rolling bearing device
JP6265061B2 (en) Planetary roller traction drive device
JP5797929B2 (en) Electric linear actuator and electric disc brake device
JP2012241825A (en) Electric linear actuator and electric disk brake device
JP7152913B2 (en) Electric linear motion actuator and electric brake device
JP4513158B2 (en) Friction roller type transmission
JP2017180506A (en) Planetary roller screw type linear motion mechanism and electric brake device
EP3677813B1 (en) Worm reducer
JP6223754B2 (en) Electric linear actuator and electric brake device
JP4284992B2 (en) Toroidal continuously variable transmission
JP2017180760A (en) Planetary roller screw type linear motion mechanism and electric brake device
JP2003301906A (en) Friction roller type transmission
JP7306953B2 (en) clutch device
JP4486835B2 (en) Planetary friction transmission speed reducer
JP6407704B2 (en) Electric linear actuator and electric brake device
JP2009202799A (en) Seat reclining device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE