WO2023276765A1 - Optical output measurement device - Google Patents

Optical output measurement device Download PDF

Info

Publication number
WO2023276765A1
WO2023276765A1 PCT/JP2022/024600 JP2022024600W WO2023276765A1 WO 2023276765 A1 WO2023276765 A1 WO 2023276765A1 JP 2022024600 W JP2022024600 W JP 2022024600W WO 2023276765 A1 WO2023276765 A1 WO 2023276765A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
line
linear motion
line light
receiving unit
Prior art date
Application number
PCT/JP2022/024600
Other languages
French (fr)
Japanese (ja)
Inventor
亜希子 岡島
真秀 大前
拓三 戸川
Original Assignee
シーシーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーエス株式会社 filed Critical シーシーエス株式会社
Priority to JP2023531827A priority Critical patent/JPWO2023276765A1/ja
Publication of WO2023276765A1 publication Critical patent/WO2023276765A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details

Definitions

  • the present invention relates to an optical output measuring device for measuring optical output of line light.
  • a line light irradiator that emits line-shaped light is sometimes used, for example, when inspecting the appearance of a workpiece (Patent Document 1).
  • the illuminance profile of the line light may be measured, for example, in order to check the illuminance unevenness along the longitudinal direction. is moved along the line light.
  • a linear motion device that movably supports the optical sensor may be deformed or discolored by being exposed to the strong line light.
  • the present invention has been made to solve the above-mentioned problems, and the main object of the present invention is to protect the linear motion device from the line light in the light output measuring device for measuring the light output of the line light. is.
  • a light output measuring device is a light output measuring device for measuring the light output of line light emitted from a line light irradiator, wherein the line light irradiation region, which is the region irradiated with the line light, and a linear motion device for linearly moving the light receiving unit along the line light, wherein at least part of the linear motion device is provided at a position shifted from the optical axis of the line light. It is characterized by
  • the linear motion device since at least a part of the linear motion device is displaced from the optical axis of the line light, the linear motion device can be protected from the line light. It is possible to prevent deformation and discoloration of the moving device.
  • the linear motion device is arranged outside the line light irradiation area.
  • a shielding plate is provided between the linear motion device and the line light irradiation area along the longitudinal direction of the line light irradiation area.
  • the linear motion device is arranged along the line of light and has a linear motion mechanism that movably supports the light receiving unit. It is preferable that it is provided at a position shifted from the optical axis of the line light. With this, at least the linear motion mechanism can be protected from line light.
  • the light-receiving unit is irradiated with the line light, and there is concern that this will raise the temperature of the light-receiving unit, and this temperature rise may lead to a decrease in detection sensitivity.
  • As a method of suppressing the temperature rise it is conceivable to move the light-receiving unit faster, but in this case, there is a concern that the measurement accuracy will be lowered due to the increase in moving speed.
  • the light-receiving unit is formed with a light passage hole through which the line light passes through on the front surface.
  • the heat transmitted to the light receiving unit can be released by the heat radiation member while suppressing heat transfer to the light receiving unit by the low heat conductive member.
  • the heat radiation member is formed with a slit along the moving direction of the light receiving unit. In this case, air passes through the slit when the light receiving unit is moved, so that the heat dissipation effect of the heat dissipation member can be further improved.
  • a part of the wiring extending from the light receiver is preferably housed inside the heat dissipation member.
  • the wiring can be protected from the line light, and disconnection, crushing, dusting, etc. of the wiring can be prevented.
  • the linear motion device in the optical output measuring device for measuring the optical output of line light, the linear motion device can be protected from the line light.
  • FIG. 1 is a perspective view schematically showing a usage state of an optical output measuring device of one embodiment;
  • FIG. The side view which shows typically the usage condition of the optical output measuring apparatus of the same embodiment.
  • the top view which shows typically the usage condition of the optical output measuring apparatus of the same embodiment.
  • Sectional drawing which shows typically the structure of the light receiving unit of the same embodiment.
  • the perspective view which shows typically the structure of the linear motion apparatus of the same embodiment.
  • FIG. 4 is a schematic diagram for explaining positions shifted from the optical axis of line light according to the same embodiment.
  • the perspective view which shows typically the structure of the light receiving unit in other embodiment.
  • Sectional drawing which shows typically the structure of the light receiving unit in other embodiment.
  • the optical output measuring device 100 measures the illuminance along the longitudinal direction of linear or strip-shaped light (hereinafter also referred to as line light) emitted from the line light irradiator X, It measures light output such as irradiance, luminous flux, and radiant flux.
  • line light linear or strip-shaped light
  • the line light illuminator X is used, for example, for visual inspection of an object (work) such as a product in a factory by irradiating the line light to the object (work).
  • the line light irradiator X of the present embodiment emits line light of UV light, and specifically, is formed by arranging a plurality of LED light sources for emitting UV light in a row.
  • the line light irradiator X may be one used for UV curing of a work.
  • this optical output measuring device 100 includes a light receiving unit 10 for receiving line light, and a linear sensor for moving the light receiving unit 10 along the longitudinal direction of the line light (here, vertical direction). and at least a motion device 20 .
  • the light output measuring device 100 here further includes an irradiation side mounting member 30 to which the line light irradiator X is mounted, and a light receiving side mounting member 40 to which the light receiving unit 10 is mounted.
  • the direction in which the irradiation-side mounting member 30 and the light-receiving side mounting member 40 face each other here, the front-rear direction
  • the width of the line light perpendicular to this direction and the longitudinal direction of the line light It is configured to be relatively movable in a direction (here, left-right direction).
  • the light receiving unit 10 uses, for example, an irradiance meter that detects the irradiance of line light. As shown in FIG. 3, the light receiving unit 10 is arranged to face the line light irradiator X attached to the irradiation side mounting member 30. More specifically, in the area irradiated with the line light, It is arranged in a certain line light irradiation area Z.
  • the line light irradiation area Z is an area including the optical axis L of the line light, and is an area through which the line light passes without the light receiving unit 10 .
  • the light receiving unit 10 includes a light receiver 11 that accommodates the light receiving element of the irradiance meter.
  • a light passage hole 10h for passing line light is formed in the front surface of the light receiver 11, and a light receiving element (not shown) is provided at a position facing the light passage hole 10h.
  • a detection signal indicating the magnitude of the irradiance of the line of light is sent via wiring 12 (see FIG. 4) extending from the light receiver 11 to, for example, a dedicated or general-purpose sensor. Output to computer.
  • the light receiving unit 10 of this embodiment further includes a low thermal conductivity member 13 provided on the front side of the light receiver 11, and a heat dissipation member 14 provided on the rear side or around the light receiver 11. ing.
  • the low heat conductive member 13 is provided so as to be in contact with the front surface of the light receiver 11, and has a lower thermal conductivity than at least the heat radiating member 14, which will be described later.
  • the low thermal conductivity member 13 has a thermal conductivity lower than that of the member forming the outer surface of the photodetector 11 described above, and is made of, for example, a material having high heat resistance and/or UV resistance such as stainless steel or Teflon. Become.
  • the low thermal conductivity member 13 of this embodiment has, for example, a flat plate shape, overlaps with the light passage hole 10h described above, and has a viewing hole 13h larger than the light passage hole 10h.
  • the low heat conductive member 13 is not limited to a plate-like member, and may be a thin-film member coated on the front surface of the light receiver 11 .
  • the front surface exposed to the line light may be formed as a light reflecting surface or a light diffusing surface that reflects UV light, for example.
  • the heat dissipation member 14 is provided so as to be in contact with the back surface or the outer peripheral surface of the light receiver 11, and has a higher thermal conductivity than at least the low thermal conductivity member 13 described above.
  • the heat radiating member 14 has a higher thermal conductivity than the member forming the outer surface of the light receiver 11 described above, and is made of a highly heat conductive material such as aluminum.
  • the heat dissipation member 14 of this embodiment has a first heat dissipation element 141 that contacts the back surface of the light receiver 11 and a second heat dissipation element 142 that contacts the outer peripheral surface of the light receiver 11 .
  • first heat radiation element 141 and the second heat radiation element 142 are separate bodies made of the same material here, these heat radiation elements may be made of different materials, or may be integrated. It may be formed intentionally.
  • the first heat radiation element 141 is, for example, in contact with the entire back surface of the photodetector 11, and specifically can be of various shapes such as a columnar shape and a cylindrical shape.
  • the second heat radiation element 142 is in contact with the entire outer peripheral surface of the light receiver 11, and has a housing space 14a for housing the light receiver 11 formed therein.
  • the above-described first heat radiation element 141 is housed in this housing space 14a.
  • the front surface of the second heat dissipation element 142 is covered with the low heat conductive member 13 described above so that the line light is not directly irradiated.
  • the second heat dissipation element 142 here is configured so that part of the wiring 12 described above passes through the inside. That is, the second heat dissipation element 142 is formed with a storage space 14b for storing a part of the wiring 12, and a blindfold cover 15 is provided on the rear surface in order to hide the wiring 12 stored in the storage space 14b from the outside. is provided.
  • the linear motion device 20 moves the above-described light receiving unit 10 in a direction along the line light (vertical direction here). It has a drive source (not shown) and a linear motion mechanism 21 that movably supports the light receiving unit 10 . 5, for convenience of explanation, part of the irradiation-side mounting member 30 and the light-receiving-side mounting member 40 is omitted.
  • At least a part of the linear motion device 20 is provided at a position displaced from at least the optical axis L of the line light, and is arranged outside the above-described line light irradiation area Z here. It is
  • the “position shifted from the optical axis L of the line light” here means a position a predetermined distance away from the optical axis L in the width direction of the line light, and specifically, shown in FIG.
  • the intensity of the line light emitted from the line light irradiator X is at least 90% of the peak intensity (the intensity of the line light on the optical axis L)
  • the position is farther from the position a1. It is preferably a position away from the position a2 at which the peak intensity is 70%, and in this case, at a position further away from the position a3 at which the peak intensity is 50%.
  • the angle between the line light emitted from the line light irradiator X and the optical axis L, as shown in FIG. ⁇ may be at least 10°, more preferably 20°, here 30°.
  • the above-mentioned "outside of the line light irradiation region Z" is not limited to the region where the line light is not irradiated at all, and the irradiance value of the line light irradiated to the linear motion device 20 is at least less than 100 mW/cm 2 . preferably less than 50 mW/cm 2 , more preferably less than 30 mW/cm 2 , here less than 10 mW/cm 2 .
  • the linear motion mechanism 21 is for linearly moving the light receiving unit 10, and examples thereof include a linear rail, a linear guide, and a ball screw.
  • the linear motion mechanism 21 is arranged parallel to the longitudinal direction of the line light, and is provided at a position offset by a predetermined distance along the width direction of the line light from the optical axis L of the line light (a position away from the line light by a predetermined distance). ing. It should be noted that the specific mode of this "position separated by a predetermined distance" is as described above with reference to FIG.
  • the linear motion device 20 of this embodiment further includes a stage 22 that moves on the linear motion mechanism 21, and the stage 22 receives the light.
  • a unit 10 is attached.
  • the stage 22 includes a leg portion 221 having a base end attached to the direct-acting mechanism 21, and a leg portion 221 extending from the leg portion 221 toward the line light irradiation area Z, as shown in FIGS. and an arm 222 extending along the length thereof.
  • the tip of the arm 222 extends at least to the line light irradiation area Z, and the light receiving unit 10 is provided at, for example, the tip of the arm 222 .
  • the linear motion mechanism 21 is arranged facing forward, and the stage 22 is attached in front of the linear motion mechanism 21.
  • the specific embodiment is not limited to this, and the stage 22 faces forward.
  • the direct-acting mechanism 21 may be arranged facing right or left, for example.
  • the optical output measuring device 100 of the present embodiment further includes a shielding plate 23 interposed between the linear motion device 20 and the line light irradiation region Z. I have.
  • the shielding plate 23 is a flat plate provided along the longitudinal direction of the line light irradiation area Z, and is formed with an elongated through hole 23h along the moving direction of the stage 22 .
  • the above-described stage 22 is provided so as to pass through the through hole 23h, and the stage 22 is configured to slide within the through hole 23h.
  • the tip portion 23a which is the end portion of the shielding plate 23 on the side of the line light irradiator X, lies on a first imaginary plane passing through the light exit surface X1 of the line light irradiator X and the linear motion mechanism 21. It is preferably located on the front side (line light irradiator X side) of H1. Here, in consideration of the possibility that the line light may reach the linear motion mechanism 21 after being reflected by various members, It is positioned on the front side (line light irradiator X side).
  • the tip 23a of the shielding plate 23 The position may be located on the rear side of the first virtual plane H1 (the side opposite to the line light irradiator X).
  • the lower end of the through hole 23h is located above the lower side of the shielding plate 23.
  • part of the shielding plate 23 is located below the through hole 23h. 231 remain.
  • the remaining portion 231 is configured to function as a fall prevention portion that prevents the stage 22 from falling.
  • the linear motion device 20 since the linear motion device 20 is provided at a position deviated from the optical axis L of the line light, the linear motion device 20 can be protected from the line light. Deformation and discoloration of the linear motion device 20 can be prevented. More specifically, since the linear motion device 20 is arranged outside the line light irradiation area Z, the linear motion device 20 can be more reliably protected from the line light.
  • the shielding plate 23 along the longitudinal direction of the line light irradiation region Z is provided between the linear motion device 20 and the line light irradiation region Z, the line light hits the light receiving unit 10 and other members. Even if the light is reflected toward the linear motion device 20, the light can be blocked by the shielding plate 23, and the linear motion device 20 can be protected more reliably.
  • the low heat conductive member 13 is provided in front of the light receiver 11 and the heat dissipation member 14 is provided in contact with the light receiver 11, the heat transfer to the light receiving unit 10 is suppressed by the low heat conductive member 13, and the heat is dissipated. Heat transmitted to the light receiving unit 10 can be released by the member 14 . As a result, it is possible to prevent the temperature rise of the light receiving unit 10 while suppressing the moving speed of the light receiving unit 10 to the extent that the measurement accuracy is ensured.
  • the wiring 12 can be protected from the line light, and the wiring 12 can be broken, crushed, and dusted. etc. can also be prevented.
  • slits 10s may be formed along the moving direction of the light receiving unit 10, as shown in FIG.
  • a plurality of slits 10s are formed parallel to each other, and these slits 10s function as channels through which air flows when the light receiving unit 10 is moved.
  • the low thermal conductive member 13 having a large plate thickness.
  • the angle of light received by the light receiving unit 10 through the peep hole 13h of the low heat conductive member 13 becomes narrower, and the amount of light that is blocked increases. , the absolute value of the light output cannot be measured with high accuracy.
  • the light receiving angle can be secured by enlarging the peep hole 13h, but this increases the area of the light receiving unit 10 exposed to the line light, and eventually heat is transferred to the light receiving unit 10 to generate heat. For this reason, in order to secure the light-receiving angle, there is no choice but to use a thin material as the low heat-conducting member.
  • an air layer S may be formed between the low heat conductive member 13 and the light receiver 11, as shown in FIG.
  • the front surface of the low thermal conductivity member 13 is positioned forward (on the line light irradiator X side) of the front surface of the light receiver 11, and from the rear surface thereof to the rear side (light receiver 11 side).
  • An annular protrusion 131 is provided that protrudes and surrounds the peep hole 13h. The annular protrusion 131 is in contact with the front surface of the light receiver 11 , thereby forming an air layer S between the back surface of the low thermal conductive member 13 and the front surface of the light receiver 11 .
  • the front surface of the low thermal conductive member 13 is coated with a heat resistant member 16 such as resin having heat resistance.
  • the second heat radiation element 142 that constitutes the heat radiation member 14 is provided around the light receiver 11 with the air layer S interposed therebetween. That is, the accommodation space 14a of the second heat dissipation element 142 is formed to have a size larger than that of the light receiver 11, and the inner peripheral surface forming the accommodation space 14a and the outer peripheral surface of the light receiver 11 are separated.
  • the line light irradiator X is not necessarily limited to one that emits UV light, but may be one that emits infrared light or visible light, for example, as long as it emits light with a high output.
  • a light output measuring device for measuring the light output of line light emitted from a line light irradiator, comprising: a light receiving unit arranged in a line light irradiation region, which is a region irradiated with the line light; a linear motion device for linearly moving one of the light irradiator and the light receiving unit relative to the other along the line light; a light receiver, a low thermal conductivity member provided on the front side of the light receiver and formed with a viewing hole overlapping the light passage hole, and a heat dissipation member provided on the rear side or around the light receiver.
  • the heat transmitted to the light receiving unit can be released by the heat radiation member while suppressing heat transfer to the light receiving unit by the low heat conductive member.
  • the temperature of the light receiving unit is possible to prevent the temperature of the light receiving unit from rising while maintaining the moving speed of the light receiving unit to the extent that the measurement accuracy is ensured.
  • the linear motion device in an optical output measuring device that measures the optical output of line light, the linear motion device can be protected from line light.

Abstract

An optical output measurement device 100 measures the optical output of line light emitted from a line light irradiator X to protect a linear motion device 20 from the line light. The optical output measurement device 100 comprises a light reception unit 10 that is arranged in a line light irradiation region Z and a linear motion device 20 that moves the light reception unit 10 in a straight line along the line light. At least a portion of the linear motion device 20 is provided at a position that is offset from the optical axis of the line light.

Description

光出力測定装置Optical output measuring device
 本発明は、ライン光の光出力を測定するための光出力測定装置に関するものである。 The present invention relates to an optical output measuring device for measuring optical output of line light.
 従来、例えばワークの外観検査などの際に、ライン状の光を射出するライン光照射器が用いられることがある(特許文献1)。 Conventionally, a line light irradiator that emits line-shaped light is sometimes used, for example, when inspecting the appearance of a workpiece (Patent Document 1).
 かかるライン光照射器を用いるにあたり、例えば長手方向に沿った照度ムラ等を確認するべく、ライン光の照度プロファイルが測定されることがあり、具体的にはライン光の照射領域に配置した光センサを、ライン光に沿って移動させることにより行われる。 When using such a line light irradiator, the illuminance profile of the line light may be measured, for example, in order to check the illuminance unevenness along the longitudinal direction. is moved along the line light.
 ところが、ライン光が例えばUV光のように強い光であると、光センサを移動可能に支持する直動装置が、その強いライン光に晒されて変形したり変色したりするといった問題が生じる。 However, if the line light is strong light such as UV light, a linear motion device that movably supports the optical sensor may be deformed or discolored by being exposed to the strong line light.
特開2017-150875号公報JP 2017-150875 A
 そこで、本発明は、上記問題点を解決すべくなされたものであり、ライン光の光出力を測定する光出力測定装置において、直動装置をライン光から保護することをその主たる課題とするものである。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems, and the main object of the present invention is to protect the linear motion device from the line light in the light output measuring device for measuring the light output of the line light. is.
 すなわち本願発明にかかる光出力測定装置は、ライン光照射器から射出されるライン光の光出力を測定する光出力測定装置であって、前記ライン光が照射される領域であるライン光照射領域に配置される受光ユニットと、前記受光ユニットを前記ライン光に沿って直線移動させる直動装置とを備え、前記直動装置の少なくとも一部が、前記ライン光の光軸からずれた位置に設けられていることを特徴とするものである。 That is, a light output measuring device according to the present invention is a light output measuring device for measuring the light output of line light emitted from a line light irradiator, wherein the line light irradiation region, which is the region irradiated with the line light, and a linear motion device for linearly moving the light receiving unit along the line light, wherein at least part of the linear motion device is provided at a position shifted from the optical axis of the line light. It is characterized by
 このように構成された光出力測定装置であれば、直動装置の少なくとも一部がライン光の光軸からずれて配置されているので、直動装置をライン光から保護することができ、直動装置の変形や変色を防ぐことができる。 With the optical output measuring device configured as described above, since at least a part of the linear motion device is displaced from the optical axis of the line light, the linear motion device can be protected from the line light. It is possible to prevent deformation and discoloration of the moving device.
 直動装置をライン光からより確実に保護できるようにするためには、前記直動装置が、前記ライン光照射領域の外側に配置されていることが好ましい。 In order to more reliably protect the linear motion device from the line light, it is preferable that the linear motion device is arranged outside the line light irradiation area.
 直動装置をライン光の光軸やライン光照射領域から遠ざけるほど、直動装置をライン光から保護することはできるが、一方で装置全体の大型化を招く。
 そこで、前記直動装置と前記ライン光照射領域との間に、当該ライン光照射領域の長手方向に沿った遮蔽板が設けられていることが好ましい。
 このような構成であれば、直動装置をライン光の光軸やライン光照射領域に近づけて装置全体のコンパクト化を図った場合においても、直動装置に向かうライン光を遮断することができ、直動装置をライン光から保護することができる。
 さらに、ライン光が受光ユニットやその他の部材に当たって仮に直動装置に向かって反射したとしても、その光を遮蔽板で遮ることができ、直動装置をより確実に保護することができる。
The farther away the linear motion device is from the optical axis of the line light and the line light irradiation area, the more the linear motion device can be protected from the line light, but on the other hand, the size of the whole device is increased.
Therefore, it is preferable that a shielding plate is provided between the linear motion device and the line light irradiation area along the longitudinal direction of the line light irradiation area.
With such a configuration, even when the linear motion device is brought closer to the optical axis of the line light or the line light irradiation area to make the entire device compact, the line light directed to the linear motion device can be blocked. , the linear motion device can be protected from line light.
Furthermore, even if the line light strikes the light-receiving unit or other members and is reflected toward the linear motion device, the light can be blocked by the shielding plate, and the linear motion device can be protected more reliably.
 より具体的な実施態様としては、前記直動装置が、前記ライン光に沿って配置されるとともに、前記受光ユニットを移動可能に支持する直動機構を有し、少なくともこの直動機構が、前記ライン光の光軸からずれた位置に設けられていることが好ましい。
 これならば、少なくともこの直動機構をライン光から保護することができる。
In a more specific embodiment, the linear motion device is arranged along the line of light and has a linear motion mechanism that movably supports the light receiving unit. It is preferable that it is provided at a position shifted from the optical axis of the line light.
With this, at least the linear motion mechanism can be protected from line light.
 ところで、受光ユニットにライン光が照射されることは避けられず、これにより受光ユニットの温度が上がることが懸念され、この温度上昇が検出感度の低下を招来する恐れがある。温度上昇を抑える方法として、受光ユニットを速く移動させることが考えられるが、この場合は、移動速度の向上による測定精度の低下が懸念される。 By the way, it is unavoidable that the light-receiving unit is irradiated with the line light, and there is concern that this will raise the temperature of the light-receiving unit, and this temperature rise may lead to a decrease in detection sensitivity. As a method of suppressing the temperature rise, it is conceivable to move the light-receiving unit faster, but in this case, there is a concern that the measurement accuracy will be lowered due to the increase in moving speed.
 そこで、受光ユニットの移動速度を測定精度が担保される程度に抑えつつも、受光ユニットの温度上昇を防ぐためには、前記受光ユニットが、前記ライン光を通過させる光通過穴が前面に形成された受光器と、前記受光器の前側に設けられて、前記光通過穴に重なり合う覗き穴が形成された低熱伝導部材と、前記受光器の後側又は周囲に設けられた放熱部材とを有することが好ましい。
 このような構成であれば、低熱伝導部材により受光ユニットへの伝熱を抑えつつ、放熱部材により受光ユニットに伝わった熱を放出することができる。これにより、受光ユニットの移動速度を測定精度が担保される程度に抑えつつも、受光ユニットの温度上昇を防ぐことができる。
Therefore, in order to prevent the temperature rise of the light-receiving unit while suppressing the moving speed of the light-receiving unit to the extent that the measurement accuracy is ensured, the light-receiving unit is formed with a light passage hole through which the line light passes through on the front surface. A light receiver, a low thermal conductivity member provided on the front side of the light receiver and formed with a viewing hole overlapping the light passage hole, and a heat dissipation member provided on the rear side or around the light receiver. preferable.
With such a configuration, the heat transmitted to the light receiving unit can be released by the heat radiation member while suppressing heat transfer to the light receiving unit by the low heat conductive member. As a result, it is possible to prevent the temperature rise of the light receiving unit while suppressing the moving speed of the light receiving unit to the extent that the measurement accuracy is ensured.
 前記放熱部材が、前記受光ユニットの移動方向に沿ったスリットが形成されたものであることが好ましい。
 これならば、受光ユニットの移動時に空気がスリットを通り抜けるので、放熱部材による放熱効果のさらなる向上を図れる。
It is preferable that the heat radiation member is formed with a slit along the moving direction of the light receiving unit.
In this case, air passes through the slit when the light receiving unit is moved, so that the heat dissipation effect of the heat dissipation member can be further improved.
 ところで、上述した低熱伝導部材による受光ユニットへの伝熱抑制効果を向上させる態様として、板厚の大きい低熱伝導部材を用いることが考えられる。ところが、この場合は、低熱伝導部材を厚くする分、低熱伝導部材の覗き穴を通過して受光ユニットに受光される受光角度が狭くなってしまい、遮られる光量が多くなることで、光出力の絶対値を精度良く測定することができなくなる。
 覗き穴を大きくすれば受光角度を確保することができるが、そうすると受光ユニットのライン光に晒される面積が大きくなり、結局のところ、受光ユニットに熱が伝わって発熱してしまう。このことから、受光角度を確保するためには、低熱伝導部材として薄いものを用いざるを得ない。
 そこで、前記低熱伝導部材と前記受光器との間に空気層が介在していることが好ましい。
 このような構成であれば、薄い低熱伝導部材を用いて受光角度を確保しつつも、受光ユニットへの伝熱抑制効果を向上させることができる。
By the way, as a mode for improving the effect of suppressing heat transfer to the light receiving unit by the low heat conductive member described above, it is conceivable to use a low heat conductive member having a large plate thickness. However, in this case, since the thickness of the low heat conductive member is increased, the angle of light received by the light receiving unit through the peephole of the low heat conductive member becomes narrower, and the amount of light that is blocked increases, resulting in a decrease in light output. Absolute values cannot be measured accurately.
If the peephole is made larger, the light receiving angle can be secured, but this increases the area of the light receiving unit that is exposed to the line light, and ultimately heat is transferred to the light receiving unit to generate heat. For this reason, in order to secure the light-receiving angle, there is no choice but to use a thin material as the low heat-conducting member.
Therefore, it is preferable that an air layer is interposed between the low thermal conductive member and the light receiver.
With such a configuration, it is possible to improve the effect of suppressing heat transfer to the light-receiving unit while ensuring the light-receiving angle by using a thin, low heat-conducting member.
 前記受光器から延びる配線の一部が、前記放熱部材の内部に格納されていることが好ましい。
 これならば、配線をライン光から保護することができるうえ、配線の断線、潰れ、発塵などをも防ぐことができる。
A part of the wiring extending from the light receiver is preferably housed inside the heat dissipation member.
In this case, the wiring can be protected from the line light, and disconnection, crushing, dusting, etc. of the wiring can be prevented.
 このように構成した本願発明によれば、ライン光の光出力を測定する光出力測定装置において、直動装置をライン光から保護することができる。 According to the present invention configured as described above, in the optical output measuring device for measuring the optical output of line light, the linear motion device can be protected from the line light.
一実施形態の光出力測定装置の使用状態を模式的に示す斜視図。1 is a perspective view schematically showing a usage state of an optical output measuring device of one embodiment; FIG. 同実施形態の光出力測定装置の使用状態を模式的に示す側面図。The side view which shows typically the usage condition of the optical output measuring apparatus of the same embodiment. 同実施形態の光出力測定装置の使用状態を模式的に示す上面図。The top view which shows typically the usage condition of the optical output measuring apparatus of the same embodiment. 同実施形態の受光ユニットの構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the light receiving unit of the same embodiment. 同実施形態の直動装置の構成を模式的に示す斜視図。The perspective view which shows typically the structure of the linear motion apparatus of the same embodiment. 同実施形態の直動装置の構成を模式的に示す斜視図。The perspective view which shows typically the structure of the linear motion apparatus of the same embodiment. 同実施形態のライン光の光軸からずれた位置を説明する模式図。FIG. 4 is a schematic diagram for explaining positions shifted from the optical axis of line light according to the same embodiment. 同実施形態の遮蔽板の配置を説明する模式図。The schematic diagram explaining arrangement|positioning of the shielding board of the same embodiment. その他の実施形態における受光ユニットの構成を模式的に示す斜視図。The perspective view which shows typically the structure of the light receiving unit in other embodiment. その他の実施形態における受光ユニットの構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the light receiving unit in other embodiment.
100・・・光出力測定装置
X  ・・・ライン光照射器
10 ・・・受光ユニット
11 ・・・受光器
12 ・・・配線
13 ・・・低熱伝導部材
14 ・・・放熱部材
15 ・・・カバー
20 ・・・直動装置
21 ・・・直動機構
22 ・・・ステージ
23 ・・・遮蔽板
Z  ・・・光照射領域
DESCRIPTION OF SYMBOLS 100... Optical output measuring apparatus X... Line light irradiator 10... Light-receiving unit 11... Light receiver 12... Wiring 13... Low heat-conduction member 14... Heat dissipation member 15... Cover 20 ... linear motion device 21 ... linear motion mechanism 22 ... stage 23 ... shielding plate Z ... light irradiation area
 以下に本願発明に係る光出力測定装置の一実施形態について図面を参照して説明する。 An embodiment of the optical output measuring device according to the present invention will be described below with reference to the drawings.
<装置構成>
 本実施形態に係る光出力測定装置100は、図1に示すように、ライン光照射器Xから照射される線状又は帯状の光(以下、ライン光ともいう)の長手方向に沿った照度、放射照度、光束、放射束等の光出力を測定するものである。
<Device configuration>
As shown in FIG. 1, the optical output measuring device 100 according to the present embodiment measures the illuminance along the longitudinal direction of linear or strip-shaped light (hereinafter also referred to as line light) emitted from the line light irradiator X, It measures light output such as irradiance, luminous flux, and radiant flux.
 光出力測定装置100を説明する前に、ライン光照射器Xについて簡単に説明する。
 ライン光照射器Xは、例えば工場において製品等の対象物(ワーク)にライン光を照射することで、その外観検査などに用いられるものである。本実施形態のライン光照射器Xは、UV光のライン光を射出するものであり、具体的にはUV光を射出するLED光源が列状に複数配置されてなるものである。なお、ライン光照射器Xとしては、ワークのUV硬化に用いられるものであっても良い。
Before describing the optical output measuring device 100, the line light illuminator X will be briefly described.
The line light irradiator X is used, for example, for visual inspection of an object (work) such as a product in a factory by irradiating the line light to the object (work). The line light irradiator X of the present embodiment emits line light of UV light, and specifically, is formed by arranging a plurality of LED light sources for emitting UV light in a row. The line light irradiator X may be one used for UV curing of a work.
 次いで、本実施形態の光出力測定装置100について説明する。
 この光出力測定装置100は、図1及び図2に示すように、ライン光を受光する受光ユニット10と、受光ユニット10をライン光の長手方向(ここでは、上下方向)に沿って移動させる直動装置20とを少なくとも備えている。
Next, the optical output measuring device 100 of this embodiment will be described.
As shown in FIGS. 1 and 2, this optical output measuring device 100 includes a light receiving unit 10 for receiving line light, and a linear sensor for moving the light receiving unit 10 along the longitudinal direction of the line light (here, vertical direction). and at least a motion device 20 .
 ここでの光出力測定装置100は、ライン光照射器Xが取り付けられる照射側取付部材30と、受光ユニット10が取り付けられる受光側取付部材40とをさらに備えている。そして、これらの照射側取付部材30と受光側取付部材40とが、互いに対向する対向方向(ここでは、前後方向)、及び、この対向方向とライン光の長手方向とに直交するライン光の幅方向(ここでは、左右方向)に相対移動可能に構成されている。 The light output measuring device 100 here further includes an irradiation side mounting member 30 to which the line light irradiator X is mounted, and a light receiving side mounting member 40 to which the light receiving unit 10 is mounted. The direction in which the irradiation-side mounting member 30 and the light-receiving side mounting member 40 face each other (here, the front-rear direction), and the width of the line light perpendicular to this direction and the longitudinal direction of the line light It is configured to be relatively movable in a direction (here, left-right direction).
 受光ユニット10は、ライン光の放射照度を検出する例えば放射照度計を利用したものである。この受光ユニット10は、図3に示すように、照射側取付部材30に取り付けられたライン光照射器Xに対向配置されるものであり、より具体的には、ライン光が照射される領域であるライン光照射領域Zに配置される。なお、ライン光照射領域Zは、ライン光の光軸Lを含む領域であって、受光ユニット10がなければライン光が通過する領域である。 The light receiving unit 10 uses, for example, an irradiance meter that detects the irradiance of line light. As shown in FIG. 3, the light receiving unit 10 is arranged to face the line light irradiator X attached to the irradiation side mounting member 30. More specifically, in the area irradiated with the line light, It is arranged in a certain line light irradiation area Z. The line light irradiation area Z is an area including the optical axis L of the line light, and is an area through which the line light passes without the light receiving unit 10 .
 受光ユニット10は、図4に示すように、放射照度計の受光素子を収容する受光器11を備えている。受光器11の前面には、ライン光を通過させる光通過穴10hが形成されており、この光通過穴10hに臨む位置に受光素子(不図示)が設けられている。 The light receiving unit 10, as shown in FIG. 4, includes a light receiver 11 that accommodates the light receiving element of the irradiance meter. A light passage hole 10h for passing line light is formed in the front surface of the light receiver 11, and a light receiving element (not shown) is provided at a position facing the light passage hole 10h.
 上述した構成において、受光素子がライン光を受光すると、そのライン光の放射照度の大きさを示す検出信号が、受光器11から延びる配線12(図4参照)を介して、例えば専用乃至汎用のコンピュータに出力される。 In the above-described configuration, when the light receiving element receives a line of light, a detection signal indicating the magnitude of the irradiance of the line of light is sent via wiring 12 (see FIG. 4) extending from the light receiver 11 to, for example, a dedicated or general-purpose sensor. Output to computer.
 本実施形態の受光ユニット10は、図4に示すように、受光器11の前側に設けられた低熱伝導部材13と、受光器11の後側又は周囲に設けられた放熱部材14とをさらに備えている。 As shown in FIG. 4, the light receiving unit 10 of this embodiment further includes a low thermal conductivity member 13 provided on the front side of the light receiver 11, and a heat dissipation member 14 provided on the rear side or around the light receiver 11. ing.
 低熱伝導部材13は、図4に示すように、受光器11の前面に接触するように設けられており、少なくとも後述する放熱部材14より熱伝導率が低いものである。具体的に低熱伝導部材13は、上述した受光器11の外面を形成する部材よりも熱伝導率が低いものであり、例えばステンレス鋼やテフロン等の耐熱性及び/又は耐UV性に富む材料からなる。 As shown in FIG. 4, the low heat conductive member 13 is provided so as to be in contact with the front surface of the light receiver 11, and has a lower thermal conductivity than at least the heat radiating member 14, which will be described later. Specifically, the low thermal conductivity member 13 has a thermal conductivity lower than that of the member forming the outer surface of the photodetector 11 described above, and is made of, for example, a material having high heat resistance and/or UV resistance such as stainless steel or Teflon. Become.
 本実施形態の低熱伝導部材13は、例えば平板状をなし、上述した光通過穴10hに重なり合うとともに、この光通過穴10hよりも大きい覗き穴13hが形成されている。なお、低熱伝導部材13としては、平板状のものに限らず、受光器11の前面に塗装されてなる薄膜状のものであっても良い。また、低熱伝導部材13としては、ライン光に晒される前面が、例えばUV光を反射する光反射面又は光拡散面として形成されていても良い。 The low thermal conductivity member 13 of this embodiment has, for example, a flat plate shape, overlaps with the light passage hole 10h described above, and has a viewing hole 13h larger than the light passage hole 10h. The low heat conductive member 13 is not limited to a plate-like member, and may be a thin-film member coated on the front surface of the light receiver 11 . Moreover, as the low heat conductive member 13, the front surface exposed to the line light may be formed as a light reflecting surface or a light diffusing surface that reflects UV light, for example.
 放熱部材14は、図4に示すように、受光器11の背面又は外側周面に接触するように設けられており、少なくとも上述した低熱伝導部材13より熱伝導率が高いものである。具体的に放熱部材14は、上述した受光器11の外面を形成する部材よりも熱伝導率が高いものであり、例えばアルミニウム等の伝熱性に富む材料からなる。 As shown in FIG. 4, the heat dissipation member 14 is provided so as to be in contact with the back surface or the outer peripheral surface of the light receiver 11, and has a higher thermal conductivity than at least the low thermal conductivity member 13 described above. Specifically, the heat radiating member 14 has a higher thermal conductivity than the member forming the outer surface of the light receiver 11 described above, and is made of a highly heat conductive material such as aluminum.
 本実施形態の放熱部材14は、受光器11の背面に接触する第1放熱要素141と、受光器11の外周面に接触する第2放熱要素142とを有している。なお、第1放熱要素141及び第2放熱要素142が、ここでは同じ材質からなる別体のものであるが、これらの放熱要素は、互いに別の材質からなるものであっても良いし、一体的に形成されたものであっても良い。 The heat dissipation member 14 of this embodiment has a first heat dissipation element 141 that contacts the back surface of the light receiver 11 and a second heat dissipation element 142 that contacts the outer peripheral surface of the light receiver 11 . Although the first heat radiation element 141 and the second heat radiation element 142 are separate bodies made of the same material here, these heat radiation elements may be made of different materials, or may be integrated. It may be formed intentionally.
 第1放熱要素141は、例えば受光器11の背面の全面に接触するものであり、具体的には円柱状、円筒状など種々の形状のものを用いることができる。 The first heat radiation element 141 is, for example, in contact with the entire back surface of the photodetector 11, and specifically can be of various shapes such as a columnar shape and a cylindrical shape.
 第2放熱要素142は、受光器11の外周面の全周に亘って接触するものであり、受光器11を収容する収容空間14aが形成されている。なお、上述した第1放熱要素141は、この収容空間14aに収容されている。 The second heat radiation element 142 is in contact with the entire outer peripheral surface of the light receiver 11, and has a housing space 14a for housing the light receiver 11 formed therein. In addition, the above-described first heat radiation element 141 is housed in this housing space 14a.
 また、第2放熱要素142の前面は上述した低熱伝導部材13により覆われており、ライン光が直接照射されないようにしてある。 In addition, the front surface of the second heat dissipation element 142 is covered with the low heat conductive member 13 described above so that the line light is not directly irradiated.
 さらに、ここでの第2放熱要素142は、図4に示すように、上述した配線12の一部が内部を通過するように構成されている。すなわち、第2放熱要素142は、配線12の一部を格納する格納空間14bが形成されており、この格納空間14bに格納した配線12を外部から隠すべく、背面には目隠し用のカバー15が設けられている。 Furthermore, as shown in FIG. 4, the second heat dissipation element 142 here is configured so that part of the wiring 12 described above passes through the inside. That is, the second heat dissipation element 142 is formed with a storage space 14b for storing a part of the wiring 12, and a blindfold cover 15 is provided on the rear surface in order to hide the wiring 12 stored in the storage space 14b from the outside. is provided.
 続いて、直動装置20について述べる。
 直動装置20は、図5及び図6に示すように、上述した受光ユニット10をライン光に沿った方向(ここでは、上下方向)に移動させるものであり、具体的には、モータ等の駆動源(不図示)と、受光ユニット10を移動可能に支持する直動機構21とを有している。なお、図5においては、説明の便宜上、照射側取付部材30及び受光側取付部材40の一部の記載を省略してある。
Next, the linear motion device 20 will be described.
As shown in FIGS. 5 and 6, the linear motion device 20 moves the above-described light receiving unit 10 in a direction along the line light (vertical direction here). It has a drive source (not shown) and a linear motion mechanism 21 that movably supports the light receiving unit 10 . 5, for convenience of explanation, part of the irradiation-side mounting member 30 and the light-receiving-side mounting member 40 is omitted.
 然して、この直動装置20の少なくとも一部は、図3に示すように、少なくともライン光の光軸Lからずれた位置に設けられており、ここでは上述したライン光照射領域Zの外側に配置されている。 3, at least a part of the linear motion device 20 is provided at a position displaced from at least the optical axis L of the line light, and is arranged outside the above-described line light irradiation area Z here. It is
 なお、ここでいう「ライン光の光軸Lからずれた位置」とは、光軸Lからライン光の幅方向に所定距離離れた位置であり、具体的には、図7(A)に示すように、ライン光照射器Xから照射されるライン光の強度が、ピーク強度(ライン光の光軸L上の強度)の少なくとも90%となる位置a1よりも離れた位置であれば良く、より好ましくはピーク強度の70%となる位置a2よりも離れた位置であり、ここではピーク強度の50%となる位置a3よりも離れた位置である。 Note that the “position shifted from the optical axis L of the line light” here means a position a predetermined distance away from the optical axis L in the width direction of the line light, and specifically, shown in FIG. As long as the intensity of the line light emitted from the line light irradiator X is at least 90% of the peak intensity (the intensity of the line light on the optical axis L), the position is farther from the position a1. It is preferably a position away from the position a2 at which the peak intensity is 70%, and in this case, at a position further away from the position a3 at which the peak intensity is 50%.
 この「ライン光の光軸Lからずれた位置」について、別の定義をすると、図7(B)に示すように、ライン光照射器Xから照射されるライン光の光軸Lとのなす角度θが、少なくとも10°となる位置よりも離れた位置であれば良く、より好ましくは20°となる位置よりも離れた位置であり、ここでは30°となる位置よりも離れた位置である。 Another definition of this "position deviated from the optical axis L of the line light" is the angle between the line light emitted from the line light irradiator X and the optical axis L, as shown in FIG. θ may be at least 10°, more preferably 20°, here 30°.
 また、上述した「ライン光照射領域Zの外側」とは、ライン光が全く照射されない領域に限らず、直動装置20に照射されたライン光の放射照度値が、少なくとも100mW/cm未満となる領域であれば良く、好ましくは50mW/cm未満となる領域であり、より好ましくは30mW/cm未満となる領域であり、ここでは10mW/cm未満となる領域である。 Further, the above-mentioned "outside of the line light irradiation region Z" is not limited to the region where the line light is not irradiated at all, and the irradiance value of the line light irradiated to the linear motion device 20 is at least less than 100 mW/cm 2 . preferably less than 50 mW/cm 2 , more preferably less than 30 mW/cm 2 , here less than 10 mW/cm 2 .
 より具体的に説明すると、直動装置20を構成する構成要素の少なくとも一部がライン光照射領域Zの外側に配置されており、ここでは、上述した直動機構21が、ライン光照射領域Zの外側に配置されている。なお、直動機構21は、受光ユニット10を直線移動させるためのものであり、例えばリニアレール、リニアガイド、ボール螺子等を挙げることができる。 More specifically, at least a part of the components constituting the linear motion device 20 are arranged outside the line light irradiation region Z, and here, the linear motion mechanism 21 described above is arranged in the line light irradiation region Z is placed outside the The linear motion mechanism 21 is for linearly moving the light receiving unit 10, and examples thereof include a linear rail, a linear guide, and a ball screw.
 この直動機構21は、ライン光の長手方向と平行に配置されるとともに、ライン光の光軸Lからライン光の幅方向に沿って所定距離オフセットした位置(所定距離離れた位置)に設けられている。なお、この「所定距離離れた位置」の具体的な態様は、図7を参照して上述した通りである。 The linear motion mechanism 21 is arranged parallel to the longitudinal direction of the line light, and is provided at a position offset by a predetermined distance along the width direction of the line light from the optical axis L of the line light (a position away from the line light by a predetermined distance). ing. It should be noted that the specific mode of this "position separated by a predetermined distance" is as described above with reference to FIG.
 上述した構成において、本実施形態の直動装置20は、図3、図5、及び図6に示すように、直動機構21上を移動するステージ22をさらに備えており、このステージ22に受光ユニット10が取り付けられている。 In the above-described configuration, the linear motion device 20 of this embodiment further includes a stage 22 that moves on the linear motion mechanism 21, and the stage 22 receives the light. A unit 10 is attached.
 より具体的に説明すると、このステージ22は、図3及び図6に示すように、基端部が直動機構21に取り付けられた脚部221と、脚部221からライン光照射領域Zに向かって延びる腕部222とを有している。そして、腕部222の先端部が、少なくともライン光照射領域Zまで延びており、この腕部222の例えば先端部に受光ユニット10が設けられている。 More specifically, as shown in FIGS. 3 and 6, the stage 22 includes a leg portion 221 having a base end attached to the direct-acting mechanism 21, and a leg portion 221 extending from the leg portion 221 toward the line light irradiation area Z, as shown in FIGS. and an arm 222 extending along the length thereof. The tip of the arm 222 extends at least to the line light irradiation area Z, and the light receiving unit 10 is provided at, for example, the tip of the arm 222 .
 なお、ここでの直動機構21は前を向いて配置され、この直動機構21の前方にステージ22が取り付けられているが、具体的な実施態様はこれに限らず、ステージ22が前を向いて配置されていれば、直動機構21は例えば右又は左を向いて配置されていても良い。 Here, the linear motion mechanism 21 is arranged facing forward, and the stage 22 is attached in front of the linear motion mechanism 21. However, the specific embodiment is not limited to this, and the stage 22 faces forward. As long as it faces, the direct-acting mechanism 21 may be arranged facing right or left, for example.
 さらに、本実施形態の光出力測定装置100は、図3、図5、及び図6に示すように、上述した直動装置20とライン光照射領域Zとの間に介在する遮蔽板23をさらに備えている。 3, 5, and 6, the optical output measuring device 100 of the present embodiment further includes a shielding plate 23 interposed between the linear motion device 20 and the line light irradiation region Z. I have.
 この遮蔽板23は、ライン光照射領域Zの長手方向に沿って設けられた平板状のものであり、ステージ22の移動方向に沿った長尺状の貫通穴23hが形成されている。そして、この貫通穴23hを貫通するように上述したステージ22が設けられており、ステージ22が貫通穴23h内をスライド移動するように構成されている。 The shielding plate 23 is a flat plate provided along the longitudinal direction of the line light irradiation area Z, and is formed with an elongated through hole 23h along the moving direction of the stage 22 . The above-described stage 22 is provided so as to pass through the through hole 23h, and the stage 22 is configured to slide within the through hole 23h.
 遮蔽板23のライン光照射器X側の端部である先端部23aは、図8に示すように、ライン光照射器Xの光射出面X1と直動機構21とを通過する第1仮想平面H1よりも前側(ライン光照射器X側)に位置していることが好ましい。ここでは、ライン光が種々の部材で反射して直動機構21に到達してしまう可能性を考慮して、光射出面X1と平行で且つ光射出面X1を含む第2仮想平面H2よりも前側(ライン光照射器X側)に位置させている。
 ただし、直動機構21が上述したライン光照射領域Zの外側、すなわちライン光の放射照度値が、少なくとも100mW/cm未満となる領域に位置していれば、遮蔽板23の先端部23aの位置は、第1仮想平面H1よりも後側(ライン光照射器Xとは反対側)に位置していても構わない。
As shown in FIG. 8, the tip portion 23a, which is the end portion of the shielding plate 23 on the side of the line light irradiator X, lies on a first imaginary plane passing through the light exit surface X1 of the line light irradiator X and the linear motion mechanism 21. It is preferably located on the front side (line light irradiator X side) of H1. Here, in consideration of the possibility that the line light may reach the linear motion mechanism 21 after being reflected by various members, It is positioned on the front side (line light irradiator X side).
However, if the linear motion mechanism 21 is positioned outside the line light irradiation region Z described above, that is, in a region where the irradiance value of the line light is at least less than 100 mW/cm 2 , the tip 23a of the shielding plate 23 The position may be located on the rear side of the first virtual plane H1 (the side opposite to the line light irradiator X).
 また、図6に示すように、この貫通穴23hの下端部は、遮蔽板23の下辺部よりも上方に位置しており、言い換えれば、貫通穴23hの下側には遮蔽板23の一部231が残存している。本実施形態では、この残存部231が、ステージ22の落下を防止する落下防止部としての機能を発揮するように構成されている。 Further, as shown in FIG. 6, the lower end of the through hole 23h is located above the lower side of the shielding plate 23. In other words, part of the shielding plate 23 is located below the through hole 23h. 231 remain. In this embodiment, the remaining portion 231 is configured to function as a fall prevention portion that prevents the stage 22 from falling.
<作用効果>
 このように構成された光出力測定装置100によれば、直動装置20をライン光の光軸Lからずれた位置に設けているので、直動装置20をライン光から保護することができ、直動装置20の変形や変色を防ぐことができる。より具体的には、直動装置20をライン光照射領域Zの外側に配置しているので、直動装置20をライン光からより確実に保護することができる。
<Effect>
According to the optical output measuring device 100 configured as described above, since the linear motion device 20 is provided at a position deviated from the optical axis L of the line light, the linear motion device 20 can be protected from the line light. Deformation and discoloration of the linear motion device 20 can be prevented. More specifically, since the linear motion device 20 is arranged outside the line light irradiation area Z, the linear motion device 20 can be more reliably protected from the line light.
 また、直動装置20とライン光照射領域Zとの間に、当該ライン光照射領域Zの長手方向に沿った遮蔽板23が設けられているので、ライン光が受光ユニット10やその他の部材に当たって仮に直動装置20に向かって反射したとしても、その光を遮蔽板23で遮ることができ、直動装置20のより確実な保護を図れる。 In addition, since the shielding plate 23 along the longitudinal direction of the line light irradiation region Z is provided between the linear motion device 20 and the line light irradiation region Z, the line light hits the light receiving unit 10 and other members. Even if the light is reflected toward the linear motion device 20, the light can be blocked by the shielding plate 23, and the linear motion device 20 can be protected more reliably.
 さらに、受光器11の前側に低熱伝導部材13が設けられるとともに、受光器11と接触する放熱部材14が設けられているので、低熱伝導部材13により受光ユニット10への伝熱を抑えつつ、放熱部材14により受光ユニット10に伝わった熱を放出することができる。これにより、受光ユニット10の移動速度を測定精度が担保される程度に抑えつつも、受光ユニット10の温度上昇を防ぐことができる。 Furthermore, since the low heat conductive member 13 is provided in front of the light receiver 11 and the heat dissipation member 14 is provided in contact with the light receiver 11, the heat transfer to the light receiving unit 10 is suppressed by the low heat conductive member 13, and the heat is dissipated. Heat transmitted to the light receiving unit 10 can be released by the member 14 . As a result, it is possible to prevent the temperature rise of the light receiving unit 10 while suppressing the moving speed of the light receiving unit 10 to the extent that the measurement accuracy is ensured.
 さらに加えて、受光器11から延びる配線12の一部が、放熱部材14の内部に格納されているので、配線12をライン光から保護することができるうえ、配線12の断線、潰れ、発塵などをも防ぐことができる。 In addition, since a part of the wiring 12 extending from the light receiver 11 is housed inside the heat dissipation member 14, the wiring 12 can be protected from the line light, and the wiring 12 can be broken, crushed, and dusted. etc. can also be prevented.
<その他の実施形態>
 なお、本願発明は前記実施形態に限られるものではない。
<Other embodiments>
In addition, this invention is not restricted to the said embodiment.
 例えば、放熱部材14としては、図9に示すように、受光ユニット10の移動方向に沿ったスリット10sが形成されていても良い。ここでは、複数本のスリット10sが互いに平行に形成されており、これらのスリット10sが、受光ユニット10の移動時に空気が流れる流路として機能する。
 このような構成であれば、受光ユニット10の移動時に空気がスリット10sを通り抜けるので、放熱部材14による放熱効果の向上を図れる。
For example, as the heat dissipation member 14, slits 10s may be formed along the moving direction of the light receiving unit 10, as shown in FIG. Here, a plurality of slits 10s are formed parallel to each other, and these slits 10s function as channels through which air flows when the light receiving unit 10 is moved.
With such a configuration, air passes through the slit 10s when the light receiving unit 10 is moved, so that the heat dissipation effect of the heat dissipation member 14 can be improved.
 ところで、前記実施形態で述べた低熱伝導部材13による受光ユニット10への伝熱抑制効果を向上させる態様として、板厚の大きい低熱伝導部材13を用いることが考えられる。
 ところが、この場合は、低熱伝導部材13を厚くする分、低熱伝導部材13の覗き穴13hを通過して受光ユニット10に受光される受光角度が狭くなってしまい、遮られる光量が多くなることで、光出力の絶対値を精度良く測定することができなくなる。
 覗き穴13hを大きくすれば受光角度を確保することができるが、そうすると受光ユニット10のライン光に晒される面積が大きくなり、結局のところ、受光ユニット10に熱が伝わって発熱してしまう。
 このことから、受光角度を確保するためには、低熱伝導部材として薄いものを用いざるを得ない。
By the way, as a mode for improving the effect of suppressing heat transfer to the light receiving unit 10 by the low thermal conductive member 13 described in the above embodiment, it is conceivable to use the low thermal conductive member 13 having a large plate thickness.
However, in this case, since the thickness of the low heat conductive member 13 is increased, the angle of light received by the light receiving unit 10 through the peep hole 13h of the low heat conductive member 13 becomes narrower, and the amount of light that is blocked increases. , the absolute value of the light output cannot be measured with high accuracy.
The light receiving angle can be secured by enlarging the peep hole 13h, but this increases the area of the light receiving unit 10 exposed to the line light, and eventually heat is transferred to the light receiving unit 10 to generate heat.
For this reason, in order to secure the light-receiving angle, there is no choice but to use a thin material as the low heat-conducting member.
 そこで、受光ユニット10としては、図10に示すように、低熱伝導部材13と受光器11との間に空気層Sが形成されていても良い。 Therefore, in the light receiving unit 10, an air layer S may be formed between the low heat conductive member 13 and the light receiver 11, as shown in FIG.
 より具体的に説明すると、ここでは低熱伝導部材13の前面が受光器11の前面よりも前側(ライン光照射器X側)に位置しており、その裏面から後側(受光器11側)に突出するとともに、覗き穴13hを取り囲む環状突起131が設けられている。そして、この環状突起131は受光器11の前面に接触しており、これにより低熱伝導部材13裏面と受光器11の前面との間に空気層Sが形成されている。なお、必須ではないが、ここでは低熱伝導部材13の前面に耐熱性を有する樹脂等の耐熱部材16をコーティングしてある。 More specifically, here, the front surface of the low thermal conductivity member 13 is positioned forward (on the line light irradiator X side) of the front surface of the light receiver 11, and from the rear surface thereof to the rear side (light receiver 11 side). An annular protrusion 131 is provided that protrudes and surrounds the peep hole 13h. The annular protrusion 131 is in contact with the front surface of the light receiver 11 , thereby forming an air layer S between the back surface of the low thermal conductive member 13 and the front surface of the light receiver 11 . Although not essential, the front surface of the low thermal conductive member 13 is coated with a heat resistant member 16 such as resin having heat resistance.
 また、図10に示す構成においては、放熱部材14を構成する第2放熱要素142が、空気層Sを介して受光器11の周囲に設けられている。すなわち、第2放熱要素142の収容空間14aは、受光器11よりも大きいサイズに形成されており、収容空間14aを形成する内側周面と受光器11の外側周面とを離間させている。 In addition, in the configuration shown in FIG. 10, the second heat radiation element 142 that constitutes the heat radiation member 14 is provided around the light receiver 11 with the air layer S interposed therebetween. That is, the accommodation space 14a of the second heat dissipation element 142 is formed to have a size larger than that of the light receiver 11, and the inner peripheral surface forming the accommodation space 14a and the outer peripheral surface of the light receiver 11 are separated.
 このような構成であれば、低熱伝導部材13として薄いものを用いて受光角度を確保しつつも、受光ユニット10への伝熱抑制効果を向上させることができる。 With such a configuration, it is possible to improve the effect of suppressing heat transfer to the light receiving unit 10 while ensuring the light receiving angle by using a thin low thermal conductive member 13 .
 ライン光照射器Xとして、必ずしもUV光を射出するものに限らず、出力の強い光を射出するものであれば、例えば赤外光や可視光を射出するものなどであっても良い。 The line light irradiator X is not necessarily limited to one that emits UV light, but may be one that emits infrared light or visible light, for example, as long as it emits light with a high output.
 また、以下の光出力測定装置も本発明の1つである。
 すなわち、ライン光照射器から射出されるライン光の光出力を測定する光出力測定装置であって、前記ライン光が照射される領域であるライン光照射領域に配置される受光ユニットと、前記ライン光照射器又は前記受光ユニットの一方を他方に対して前記ライン光に沿って相対的に直線移動させる直動装置とを備え、前記受光ユニットが、前記ライン光を通過させる光通過穴が前面に形成された受光器と、前記受光器の前側に設けられて、前記光通過穴に重なり合う覗き穴が形成された低熱伝導部材と、前記受光器の後側又は周囲に設けられた放熱部材とを有することを特徴とするものである。
 このような構成であれば、低熱伝導部材により受光ユニットへの伝熱を抑えつつ、放熱部材により受光ユニットに伝わった熱を放出することができる。これにより、受光ユニットの移動速度を測定精度が担保される程度に保ちつつも、受光ユニットの温度上昇を防ぐことができる。
Moreover, the following optical output measuring device is also one of the present invention.
That is, a light output measuring device for measuring the light output of line light emitted from a line light irradiator, comprising: a light receiving unit arranged in a line light irradiation region, which is a region irradiated with the line light; a linear motion device for linearly moving one of the light irradiator and the light receiving unit relative to the other along the line light; a light receiver, a low thermal conductivity member provided on the front side of the light receiver and formed with a viewing hole overlapping the light passage hole, and a heat dissipation member provided on the rear side or around the light receiver. It is characterized by having
With such a configuration, the heat transmitted to the light receiving unit can be released by the heat radiation member while suppressing heat transfer to the light receiving unit by the low heat conductive member. As a result, it is possible to prevent the temperature of the light receiving unit from rising while maintaining the moving speed of the light receiving unit to the extent that the measurement accuracy is ensured.
 その他、本願発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能である。 In addition, the present invention is not limited to the above embodiments, and various modifications are possible without departing from the scope of the invention.
 本発明によれば、ライン光の光出力を測定する光出力測定装置において、直動装置をライン光から保護することができる。 According to the present invention, in an optical output measuring device that measures the optical output of line light, the linear motion device can be protected from line light.

Claims (8)

  1.  ライン光照射器から射出されるライン光の光出力を測定する光出力測定装置であって、
     前記ライン光が照射される領域であるライン光照射領域に配置される受光ユニットと、
     前記受光ユニットを前記ライン光に沿って直線移動させる直動装置とを備え、
     前記直動装置の少なくとも一部が、前記ライン光の光軸からずれた位置に設けられている、光出力測定装置。
    A light output measuring device for measuring the light output of line light emitted from a line light irradiator,
    a light-receiving unit arranged in a line light irradiation area, which is an area irradiated with the line light;
    a linear motion device for linearly moving the light receiving unit along the line light,
    The light output measuring device, wherein at least part of the linear motion device is provided at a position shifted from the optical axis of the line light.
  2.  前記直動装置の少なくとも一部が、前記ライン光照射領域の外側に配置されている、請求項1記載の光出力測定装置。 The optical output measuring device according to claim 1, wherein at least part of said linear motion device is arranged outside said line light irradiation area.
  3.  前記直動装置と前記ライン光照射領域との間に、当該ライン光照射領域の長手方向に沿った遮蔽板が設けられている、請求項1記載の光出力測定装置。 The light output measuring device according to claim 1, wherein a shielding plate is provided between the linear motion device and the line light irradiation area along the longitudinal direction of the line light irradiation area.
  4.  前記直動装置が、前記ライン光に沿って配置されるとともに、前記受光ユニットを移動可能に支持する直動機構を有し、少なくともこの直動機構が、前記ライン光の光軸からずれた位置に設けられている、請求項1記載の光出力測定装置。 The linear motion device is arranged along the line of light and has a linear motion mechanism that movably supports the light receiving unit, and at least the linear motion mechanism is at a position shifted from the optical axis of the line of light. 2. The optical output measuring device according to claim 1, provided in a.
  5.  前記受光ユニットが、
     前記ライン光を通過させる光通過穴が前面に形成された受光器と、
     前記受光器の前側に設けられて、前記光通過穴に重なり合う覗き穴が形成された低熱伝導部材と、
     前記受光器の後側又は周囲に設けられた放熱部材とを有する、請求項1記載の光出力測定装置。
    The light receiving unit
    a light receiver having a front surface formed with a light passage hole for passing the line light;
    a low heat conductive member provided on the front side of the light receiver and formed with a peephole overlapping the light passage hole;
    2. The optical output measuring device according to claim 1, further comprising a heat dissipating member provided behind or around said light receiver.
  6.  前記放熱部材が、前記受光ユニットの移動方向に沿ったスリットが形成されたものである、請求項5記載の光出力測定装置。 The optical output measuring device according to claim 5, wherein the heat radiation member has a slit formed along the moving direction of the light receiving unit.
  7.  前記低熱伝導部材と前記受光器との間に空気層が介在している、請求項5記載の光出力測定装置。 The optical output measuring device according to claim 5, wherein an air layer is interposed between said low thermal conductive member and said light receiver.
  8.  前記受光器から延びる配線の一部が、前記放熱部材の内部に格納されている、請求項5記載の光出力測定装置。 6. The optical output measuring device according to claim 5, wherein a part of the wiring extending from said light receiver is housed inside said heat radiation member.
PCT/JP2022/024600 2021-06-30 2022-06-20 Optical output measurement device WO2023276765A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531827A JPWO2023276765A1 (en) 2021-06-30 2022-06-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109255 2021-06-30
JP2021109255 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276765A1 true WO2023276765A1 (en) 2023-01-05

Family

ID=84691765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024600 WO2023276765A1 (en) 2021-06-30 2022-06-20 Optical output measurement device

Country Status (2)

Country Link
JP (1) JPWO2023276765A1 (en)
WO (1) WO2023276765A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298728A (en) * 1986-06-18 1987-12-25 Fujitsu Ltd Illuminance measuring instrument
JP2000332324A (en) * 1999-05-17 2000-11-30 Ushio Inc Illuminance measuring mechanism for excimer laser light irradiation equipment
JP2002022602A (en) * 2000-07-07 2002-01-23 Sony Corp Equipment and method for inspecting unevenness of quantity of light
JP2002340667A (en) * 2001-05-15 2002-11-27 Nikon Corp Instrument for measuring illuminance, and exposure device
JP2004163272A (en) * 2002-11-13 2004-06-10 Hamamatsu Photonics Kk Cooled photodetector
JP2005091271A (en) * 2003-09-19 2005-04-07 Matsushita Electric Ind Co Ltd Output monitor for laser
JP2012009642A (en) * 2010-06-25 2012-01-12 Lintec Corp Light irradiation device and light irradiation method
KR20160134359A (en) * 2015-05-15 2016-11-23 주식회사 파이맥스 High speed multichannel scanning photometer for measuring luminous intensity distribution of lamps
JP2016200425A (en) * 2015-04-07 2016-12-01 コニカミノルタ株式会社 Ultraviolet illuminance measuring device and ultraviolet radiation device
CN211553075U (en) * 2020-02-21 2020-09-22 河北申科磁性材料有限公司 Amorphous material melting infrared temperature measurement system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298728A (en) * 1986-06-18 1987-12-25 Fujitsu Ltd Illuminance measuring instrument
JP2000332324A (en) * 1999-05-17 2000-11-30 Ushio Inc Illuminance measuring mechanism for excimer laser light irradiation equipment
JP2002022602A (en) * 2000-07-07 2002-01-23 Sony Corp Equipment and method for inspecting unevenness of quantity of light
JP2002340667A (en) * 2001-05-15 2002-11-27 Nikon Corp Instrument for measuring illuminance, and exposure device
JP2004163272A (en) * 2002-11-13 2004-06-10 Hamamatsu Photonics Kk Cooled photodetector
JP2005091271A (en) * 2003-09-19 2005-04-07 Matsushita Electric Ind Co Ltd Output monitor for laser
JP2012009642A (en) * 2010-06-25 2012-01-12 Lintec Corp Light irradiation device and light irradiation method
JP2016200425A (en) * 2015-04-07 2016-12-01 コニカミノルタ株式会社 Ultraviolet illuminance measuring device and ultraviolet radiation device
KR20160134359A (en) * 2015-05-15 2016-11-23 주식회사 파이맥스 High speed multichannel scanning photometer for measuring luminous intensity distribution of lamps
CN211553075U (en) * 2020-02-21 2020-09-22 河北申科磁性材料有限公司 Amorphous material melting infrared temperature measurement system

Also Published As

Publication number Publication date
JPWO2023276765A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US9007568B2 (en) Distance detecting induction device
WO2012137579A1 (en) Laser machining device
JP4599181B2 (en) Dust concentration detector
WO2010022666A1 (en) Distance detecting induction device
WO2017090134A1 (en) Particle sensor
KR20160034792A (en) Light source device
WO2023276765A1 (en) Optical output measurement device
US20190120966A1 (en) Depth map measuring device and depth map measuring method
JP4205117B2 (en) Optical reflective information reading sensor and electronic device
TWI802626B (en) Ultraviolet curing apparatus
US20150085977A1 (en) Portable Analyzer with Radiation Safety Features
KR101055693B1 (en) Infrared detector inspection device
CN108937979B (en) X-ray detector with a light source on a carrier element
JP5234091B2 (en) Light irradiation device
JP5665324B2 (en) Total light measurement system, total light measurement device, and total light measurement method
JP6890699B2 (en) Distance measurement sensor
JP3139724U (en) Improved optical detection package module
US20200096651A1 (en) Methods and system for thermo-optic power monitoring
JP7102058B2 (en) Photoelectric encoder
JP6545476B2 (en) Line light irradiator
WO2018092551A1 (en) Radiation detector and radiation detecting device
JP2019191059A (en) Radiation detector and inspection device
JP7183876B2 (en) lighting equipment
JP7478084B2 (en) Optical Measuring Device
JP7015023B2 (en) Terahertz wave half mirror and irradiation device using the half mirror

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531827

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE