WO2023276573A1 - Wire cutting device and wire machining system - Google Patents

Wire cutting device and wire machining system Download PDF

Info

Publication number
WO2023276573A1
WO2023276573A1 PCT/JP2022/022881 JP2022022881W WO2023276573A1 WO 2023276573 A1 WO2023276573 A1 WO 2023276573A1 JP 2022022881 W JP2022022881 W JP 2022022881W WO 2023276573 A1 WO2023276573 A1 WO 2023276573A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
cutting
wire
ring
rotating
Prior art date
Application number
PCT/JP2022/022881
Other languages
French (fr)
Japanese (ja)
Inventor
赴仁 山口
勇 妙圓薗
Original Assignee
株式会社アマダ
株式会社アマダプレスシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ, 株式会社アマダプレスシステム filed Critical 株式会社アマダ
Priority to JP2023531738A priority Critical patent/JPWO2023276573A1/ja
Priority to CN202280046681.8A priority patent/CN117580665A/en
Publication of WO2023276573A1 publication Critical patent/WO2023276573A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B3/00General-purpose turning-machines or devices, e.g. centre lathes with feed rod and lead screw; Sets of turning-machines
    • B23B3/22Turning-machines or devices with rotary tool heads
    • B23B3/26Turning-machines or devices with rotary tool heads the tools of which perform a radial movement; Rotary tool heads thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • B23D21/14Machines or devices for shearing or cutting tubes cutting inside the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D23/00Machines or devices for shearing or cutting profiled stock

Definitions

  • the present disclosure relates to a wire rod cutting device and a wire rod processing system.
  • Patent Literature 1 describes a coating peeling device that cuts a coated portion of a coated cable in the thickness direction with a plurality of rotating blades and moves the cut coating in the longitudinal direction of the coated cable to expose the core material. .
  • the coating stripping device described in Patent Document 1 can strip the coating, but cannot reduce the diameter of the metal wire rod by cutting.
  • the structure of the coating stripping device described in Patent Document 1 even if cutting to reduce the diameter of the wire is possible, it is only for the end of the wire, and the diameter of the intermediate portion excluding the end is reduced. It cannot be made smaller. Therefore, there is a demand for a wire rod cutting device that can reduce the diameter of the intermediate portion of a metal wire by cutting, and a wire rod processing system that includes a wire rod cutting device and a wire rod processing device for processing the wire rod cut by the wire rod cutting device into a product.
  • a first aspect of one or more embodiments includes a rotating disk that rotates about a centerline and a ring-shaped ring portion that rotates about the centerline and is radially outward of the rotating disk.
  • a cutting body portion that includes a rotating ring and moves in a direction parallel to the center line, the rotating disc having cutting tips; a slider radially moving to move between a first position spaced apart from the wire and a second position to cut into the wire; and a direction changer for moving the slider so as to move toward the second position at a distance according to the phase angle of the ring from an initial phase position, which is a position in the rotational direction.
  • the cutting tip is cut into an intermediate position of the wire and rotated to move the cutting body in parallel with the direction in which the wire extends. can be done.
  • the diameter of the intermediate part of a wire can be made small by cutting.
  • a second aspect of one or more embodiments includes an uncoiler for uncoiling the wire from a coil of wire, a first wire gripper and a second wire gripper for positioning the wire uncoiled from the uncoiler for linear travel.
  • the wire rod cutting device is the wire rod cutting device described above, and the first wire rod gripping device and the second wire rod gripping device provide a wire rod processing system that positions the wire rod on the center line of the wire rod cutting device.
  • the wire processing system comprises a wire cutting device arranged in-line between the uncoiler and the wire processing device, the wire cutting device cutting the uncoiler according to the circumferential position of the rotating ring with respect to the rotating disk.
  • the cutting tip can be cut into an intermediate position of the wire rod drawn out from the cutting edge and rotated to move the cutting main body in parallel with the direction in which the wire rod extends.
  • the diameter of the intermediate portion of the wire can be reduced by cutting.
  • the diameter of the middle portion of the metal wire can be reduced by cutting.
  • FIG. 1 is a diagram showing the overall configuration of a wire processing system ST, which is a wire processing system according to one or more embodiments.
  • FIG. 2 is a cross-sectional view taken along line S2-S2 in FIG. 1, showing the internal structure of the wire rod cutting device 93 provided in the wire rod processing system ST.
  • FIG. 3 is a partial cross-sectional view at S3-S3 position in FIG.
  • FIG. 4 is a view of the wire rod cutting device 93 viewed from the upstream side.
  • 5A and 5B are diagrams showing the chip feeding operation of the chip feeding section 5 of the wire rod cutting device 93.
  • FIG. 6 is a graph showing an example of the relationship between the rotation speed of each of the rotating disk 2, the cutting rotary ring 3, and the feed motor 932 and time in the wire rod cutting process by the wire rod cutting device 93.
  • FIG. FIG. 7 is a diagram showing a state in which a cut portion AR is formed in the intermediate portion of the wire rod WR by the wire rod cutting device 93.
  • FIG. 8 is a graph showing Modification 1 of the relationship shown in FIG.
  • FIG. 9 is a graph showing Modification 2 of the relationship shown in FIG.
  • FIG. 10 is a graph showing variation 3 of the relationship shown in FIG.
  • FIG. 1 is a diagram showing the overall configuration of a wire processing system ST, which is a wire processing system according to one or more embodiments.
  • a wire processing system ST which is a wire processing system according to one or more embodiments.
  • upstream and downstream correspond to the running direction (line feeding direction) of the wire rod WR, with the left side of FIG. 1 being the downstream direction and the right side being the upstream direction.
  • the wire processing system ST includes a wire feeding device 912 including an uncoiler 91 and a first wire gripping device 92, a wire cutting device 93, a second wire gripping device 94, and a wire processing device 95. That is, the wire rod cutting device 93 is arranged inline between the wire feeding device 912 and the wire rod processing device 95 .
  • a coil WRa of a metal wire rod WR is attached to the uncoiler 91 .
  • the wire rod WR is delivered from the coil WRa attached to the uncoiler 91 toward the first wire rod gripping device 92 .
  • the first wire rod gripping device 92 determines the traveling position of the wire rod WR fed out from the uncoiler 91 and stably feeds the wire rod WR.
  • the wire rod cutting device 93 performs cutting to reduce the outer diameter of the wire rod WR supplied from the first wire rod gripping device 92 side.
  • a second wire rod gripping device 94 is arranged downstream of the wire rod cutting device 93 in the wire feeding direction.
  • the second wire rod gripping device 94 matches the traveling position of the wire rod WR fed from the wire rod cutting device 93 with that of the first wire rod gripping device 92 and stably maintains the wire rod WR, and feeds the wire rod WR to the downstream side.
  • the running position of the wire rod WR is a position centered on the center line CL1, which is the first center line in FIG. Since the traveling position of the wire rod WR is stably determined between the first wire rod gripping device 92 and the second wire rod gripping device 94, the wire rod cutting device 93 performs cutting with high accuracy.
  • the wire processing device 95 performs machining such as cutting and bending the wire WR delivered from the second wire gripping device 94, processes it into a desired shape, and discharges it as a product Pd.
  • the wire rod cutting device 93 has a guide rail 931, a feed motor 932 (third motor), a feed slider 933, and a cutting main body 934.
  • the guide rail 931 is laid on the floor FL.
  • the feed slider 933 engages with the guide rail 931 and moves within a predetermined range along the guide rail 931 according to the rotation of the ball screw (not shown) (see arrow DR).
  • the ball screw is rotated by feed motor 932 .
  • the operation of the feed motor 932 is controlled by, for example, a controller CT housed in the cutting main body 934 .
  • the control part CT does not have to be housed in the cutting main body part 934, and its location is not limited.
  • FIG. 2 is a cross-sectional view taken along line S2-S2 in FIG. 1, showing the internal structure of the wire rod cutting device 93 provided in the wire rod processing system ST.
  • FIG. 3 is a partial cross-sectional view at S3-S3 position in FIG.
  • FIG. 4 is a view of the wire rod cutting device 93 viewed from the supply side (upstream side) of the wire rod WR.
  • the horizontal direction is defined by the arrows shown in FIG. The left and right sides of the arrow correspond to left and right when viewed from the upstream side.
  • FIG. 2 shows a wire rod cutting device 93 having a cutting main body 934 that moves in a direction parallel to the center line CL1.
  • the wire rod cutting device 93 includes a rotating disk 2 that rotates about the center line CL1, and a cutting rotary ring 3 that rotates about the center line CL1 and has a ring portion 3a on the radially outer side of the rotating disk 2. including.
  • the turntable 2 includes a cutting tip 56, a slider 54, and a direction changing part E.
  • the slider 54 moves in the radial direction so as to move between a first position in which the cutting tip 56 is attached and the cutting tip 56 is arranged on the center line CL1 of the wire rod WR, and a second position in which the cutting tip 56 is cut.
  • the direction changing portion E moves the cutting tip 56 to the second position at a distance Lb corresponding to the phase angle ⁇ a of the ring portion 3a from the initial phase position, which is the position in the rotational direction of the ring portion 3a with respect to the rotating disk 2 at the first position.
  • Slider 54 is moved so as to move toward.
  • FIG. 1 also shows a wire rod processing system ST including the wire rod cutting device 93 shown in FIG.
  • the movement of the slider 54 by the distance Lb is shown as the movement by the distance Lb of the cam follower 53 that moves integrally with the slider 54, and the position of the cam follower 53 after the movement by the distance Lb is shown by a chain double-dashed line.
  • the wire rod processing system ST includes an uncoiler 91 , a first wire rod gripping device 92 and a second wire rod gripping device 94 , a wire rod processing device 95 , and a wire rod cutting device 93 .
  • the uncoiler 91 pulls out the wire WR from the coil WRa of the wire WR.
  • the first wire rod gripping device 92 and the second wire rod gripping device 94 position the wire rod WR pulled out from the uncoiler 91 so as to travel linearly.
  • the wire processing device 95 processes the wire WR from the second wire gripping device 94 .
  • the wire rod cutting device 93 is arranged between the first wire rod gripping device 92 and the second wire rod gripping device 94 .
  • the first wire rod gripping device 92 and the second wire rod gripping device 94 position the wire rod WR on the center line CL ⁇ b>1 of the wire rod cutting device 93 .
  • the wire rod cutting device 93 includes a case 1, a rotating disk 2, a cutting rotating ring 3, a holder plate 4, three chip feeders 5 (5A, 5B, 5C), a base sleeve 6, It comprises a first gear disc 7 and three bearings (a first bearing 8, a second bearing 9 and a third bearing 10).
  • Case 1 is a roughly rectangular parallelepiped exterior case. As shown in FIG. 3, the holder plate 4 has a circular hole 4a centered on the center line CL1, and is fixed inside the case 1 in a posture orthogonal to the center line CL1.
  • the incision rotary ring 3 is a generally ring-shaped member, and is rotatably arranged with a third bearing 10, which is a cross roller bearing, interposed between the rotary ring 3 and the circular hole 4a of the holder plate 4.
  • the incision rotary ring 3 has three cam pushers 51 attached at angular intervals of 120° to the ring portion 3a, which is the peripheral portion of the downstream side.
  • the cam pusher 51 has a cylindrical push portion 51a at the tip protruding downstream from the incision rotary ring 3 .
  • a spur gear-shaped second tooth portion 31 is formed on the upstream peripheral edge portion of the cutting rotary ring 3 .
  • Outer rings of a first bearing 8 and a second bearing 9 are fixed to the inner peripheral surface of the notched rotary ring 3 on the upstream side and the downstream side, respectively.
  • the first bearing 8 and the second bearing 9 are radial ball bearings, and the first bearing 8 is self-aligning type.
  • the inner rings of the first bearing 8 and the second bearing 9 are fixed to the outer peripheral surface of the base sleeve 6.
  • the base sleeve 6 is a tubular metal member having a through hole 6a.
  • the inner diameter of the through hole 6a is larger than the maximum diameter of the wire rod WR that can be cut according to the specifications of the wire rod cutting device 93 .
  • a first gear disc 7 is attached to the upstream end of the base sleeve 6 .
  • the base sleeve 6 and the first gear disc 7 are integrated by a connector 11 such as a dowel pin so as to rotate synchronously.
  • a rotary disk 2 is attached to the downstream end of the base sleeve 6 .
  • the base sleeve 6 and the rotating disk 2 are integrated by a connecting tool 12 such as a dowel pin so as to rotate synchronously.
  • the outer peripheral portion of the incision rotating ring 3 is visually recognized as a ring-shaped ring portion 3a on the radially outer side of the rotating disk 2. As shown in FIG. 2, the outer peripheral portion of the incision rotating ring 3 is visually recognized as a ring-shaped ring portion 3a on the radially outer side of the rotating disk 2. As shown in FIG. 2, the outer peripheral portion of the incision rotating ring 3 is visually recognized as a ring-shaped ring portion 3a on the radially outer side of the rotating disk 2. As shown in FIG.
  • a spur gear-shaped first tooth portion 71 is formed on the outer peripheral portion of the first gear disc 7 .
  • the addendum circle of the first toothing 71 of the first gear wheel 7 is smaller than the addendum circle of the second toothing 31 of the cutting rotary ring 3 on the downstream side.
  • three chip feeders 5A, 5B, and 5C are arranged at a pitch of 120° around the center line CL1.
  • the three chip feeders 5A, 5B and 5C have the same configuration.
  • the tip feeder 5 (5A, 5B, 5C) includes a cam pusher 51, a cam lever 52, a slide base 55, a cam follower 53, a slider 54, a cutting tip 56, a tension coil spring 57, a first hook pin 21, and a second hook pin 542.
  • the cam pusher 51 having a push portion 51 a is directly attached to the rotary cutting ring 3 .
  • the cam lever 52 , slide base 55 and first hook pin 21 are directly attached to the rotating disc 2 .
  • the cam lever 52 is rotatable around a rotation axis CL52 extending in the feed line direction. As shown in FIG. 2, the cam lever 52 includes a first arm portion 52a extending radially outward from the position of the rotation axis CL52, and extending in the counterclockwise circumferential direction in FIG. 2 from the position of the rotation axis CL52. It has a second arm portion 52b and is formed in an inverted L shape.
  • the incision rotary ring 3 is rotated circumferentially with respect to the rotary disc 2 so that the first arm portion 52 a of the cam lever 52 extends diametrically of the rotary disc 2 and contacts the counterclockwise end of the cam pusher 51 . is positioned at
  • the slide base 55 has a guide hole 551 (see FIG. 2) extending parallel to the diameter of the rotary disc 2 and is fixed to the rotary disc 2 .
  • the slider 54 is held in engagement with the guide hole 551 so as to be movable along the guide hole 551 (see arrow DR3).
  • the slider 54 is a member elongated in the radial direction, and has a cam follower 53, a second hook pin 542, and a cutting tip 56 attached thereto.
  • the cam follower 53 is attached to the radial outer edge of the slider 54 so as to protrude downstream in a cylindrical shape.
  • the second hook pin 542 is attached so as to protrude from the right side surface of the slider 54 .
  • a tension coil spring 57 is stretched in a substantially radial direction in a state in which tension is applied to extend beyond its natural length.
  • the slider 54 is urged toward the cam lever 52 by the tension (compressive force) of the extended tension coil spring 57, and the cam follower 53 is always urged toward the surface of the second arm portion 52b of the cam lever 52 on the center line CL1 side. are abutted.
  • the position where the cam follower 53 contacts the second arm portion 52b is one side (in this example, the right side (the left side in FIG. 2)) with respect to the radius connecting the rotation axis CL52 and the center line CL1.
  • the cutting tip 56 is attached to the end of the slider 54 on the side of the center line CL1, and has a blade 56a at its tip for cutting the wire rod WR.
  • FIG. 2 shows a state in which the first arm portion 52a of the cam lever 52 is in a diametrically extended position and the cam follower 53 is in contact with the second arm portion 52b. At this time, the blade 56a of the cutting tip 56 is at the first position separated by a predetermined distance from the outer peripheral surface of the wire rod WR positioned with the center line CL1 as the central axis.
  • a state in which the cutting tip 56 is at the first position separated from the wire rod WR is defined as a standby state of the tip feeding unit 5 .
  • the predetermined distance is, for example, approximately 0.5 mm for the wire rod WR having a diameter of 3.0 mm.
  • the output gear 721 of the chip rotating motor 72 (first motor) meshes with the first toothed portion 71 of the first gear disc 7 .
  • the output gear 321 of the cutting rotation motor 32 (second motor) meshes with the second tooth portion 31 of the cutting rotation ring 3 .
  • the cutting rotary ring 3 is driven by the cutting rotary motor 32 to rotate.
  • the rotation direction of the first gear disc 7 and the cutting rotary ring 3 is clockwise (arrow DR1) in FIG.
  • the incision rotary ring 3 is rotatable with respect to the holder plate 4 via a third bearing 10, and is rotatable with respect to the base sleeve 6 via a first bearing 8 and a second bearing 9. be.
  • the incision rotary ring 3 rotates at a rotational speed V3 (see FIG. 6) corresponding to the rotational speed of the incision rotary motor 32 .
  • the rotating disk 2 rotates integrally with the base sleeve 6 by means of the connecting tool 12, and the base sleeve 6 rotates integrally with the first gear disk 7 by means of the connecting tool 11. Therefore, the rotating disk 2 rotates integrally with the first gear disk 7 and rotates at a rotational speed V2 (see FIG. 6) corresponding to the rotational speed of the chip rotating motor 72 .
  • V2 rotational speed
  • the rotating disk 2 and the rotating ring 3 can rotate independently at different rotation speeds. .
  • the phase position of the rotation direction of the cutting rotary ring 3 with respect to the rotary table 2 when the chip feeding unit 5 is in the standby state is the same rotation as the rotation angular velocity of the cutting rotary ring 3 with 360° rotation as one cycle.
  • the relative phase position of the angular velocity with respect to the rotating disk 2 be the initial phase position
  • the phase angle be the phase angle ⁇ a. That is, the state in which the incision rotary ring 3 rotates with a delay of the phase angle ⁇ a with respect to the rotary disk 2 is the standby state, which is the initial phase position.
  • phase angle ⁇ a changes from the initial state.
  • the phase angle ⁇ a takes a positive value when the incision rotary ring 3 rotates counterclockwise (arrow DR2) in FIG. 2, and a negative value when it rotates clockwise.
  • the wire rod cutting device 93 is attached to the slider 54 and the slider 54 by changing the phase of the cutting rotary ring 3 with respect to the rotary table 2 from the standby state of the chip feeding unit 5 shown in FIG.
  • the cutting tip 56 can be moved in a direction approaching the center line CL1. That is, the wire rod cutting device 93 has a direction converting portion E that converts the rotational movement of the cutting rotary ring 3 into the radial movement of the slider 54 .
  • the direction changing portion E includes a cam pusher 51 and a cam lever 52 . The operation of converting the rotational movement of the incision rotary ring 3 into the radial movement of the slider 54 will be described with reference to FIG.
  • FIG. 5 is a diagram showing the chip feeding operation by the chip feeding section 5 of the wire rod cutting device 93.
  • FIG. 5 shows a state in which the incision rotary ring 3 is shifted counterclockwise (positive direction) in the direction of the arrow DR4 with respect to the rotary disc 2 by the phase angle ⁇ a. That is, FIG. 5 shows a state in which the phase is shifted in the positive direction by the phase angle ⁇ a from the phase angle ⁇ a in the initial state, and the phase difference is zero.
  • the cutting rotary ring 3 is shifted in the positive direction from the standby state of the chip feeder 5 with respect to the rotary table 2 by the phase angle ⁇ a, and the cutting chips 56 are moved to the second position where they cut into the wire rod WR.
  • the state is called the cut state.
  • the direction changing portion E includes a cam pusher 51 attached to the ring portion 3a and a turntable 2, which abuts on the cam pusher 51 and rotates according to the phase angle ⁇ a of the ring portion 3a. It has a cam lever 52 that pushes the slider 54 toward the center line CL1 and moves it by a distance Lb according to the rotation angle by rotating at the rotation angle.
  • the slider 54 to which the cam follower 53 is attached can move in the radial direction of the rotating disk 2 with respect to the slide base 55 . Further, the force transmitted from the cutting rotation motor 32 to rotate the cutting rotation ring 3 counterclockwise with respect to the rotating disk 2 is set to exceed the tension (compression force) of the tension coil spring 57 . Therefore, the slider 54 moves against the tension coil spring 57 so as to further extend it, and the cutting tip 56 moves to a position where it cuts into the wire rod WR.
  • the cam follower 53 in a standby state before movement is indicated by a chain double-dashed line.
  • Rotational speed V2 ⁇ rotational speed V3 the incision rotary ring 3 rotates counterclockwise in FIGS.
  • On the rotating side and V2>rotating speed V3 the incising rotary ring 3 rotates clockwise in FIGS.
  • the control unit CT first sets the cutting rotary ring 3 to the initial phase position so that the chip feeding unit 5 is in the standby state, and then moves the rotating disk 2 and the cutting rotary ring 3 to the same state, for example, in the state shown in FIG. Rotate at rotational speed. After that, the rotation speed V3 of the incision rotary ring 3 is made faster than the rotation speed V2 of the rotary disk 2. - ⁇ As a result, the cutting rotary ring 3 is shifted counterclockwise in FIG. , the amount of cut corresponding to the amount of relative movement of the rotary ring 3 in the circumferential direction is given.
  • the controller CT also drives the feed motor 932 to move the cutting main body 934 within a predetermined range in the feeding direction of the wire rod WR.
  • a desired cutting range in the intermediate portion of the wire rod WR can be cut with a predetermined depth of cut to form a small-diameter cut portion AR (see FIG. 7).
  • FIG. 6 is a graph showing an example of the relationship between the rotation speed of each of the rotating disk 2, the cutting rotating ring 3, and the feed motor 932 and time in the cutting of the wire rod cutting device 93. More specifically, in FIG. 6, the rotation speed V2 of the rotating disk 2 is indicated by a solid line, the rotation speed V3 of the incision rotary ring 3 is indicated by a broken line, and the rotation speed V932 of the feed motor 932 is indicated by a dashed line.
  • velocities Va, Vb, Vc, and Vd mean rotational velocities (rotations/second).
  • the initial position of the cutting body 934 along the wire rod WR is the initial position P1 at the upstream end of the movement range shown in FIG.
  • the wire rod cutting device 93 includes a tip rotation motor 72 that rotates the turntable 2, a cutting rotation motor 32 that rotates the rotary ring 3, and a controller CT that controls the operations of the tip rotation motor 72 and the cutting rotation motor 32. .
  • the control part CT changes the phase angle ⁇ a of the ring part 3a by providing a period tp during which the rotation speed V3 of the rotating ring is higher than the rotation speed V2 of the rotating disk 2 .
  • the tip rotation motor 72, the cutting rotation motor 32, and the controller CT are shown in FIG. 4, and the rotational speed V2, the rotational speed V3, and the period tp are shown in FIG.
  • Time t0 to time t1 The control unit CT operates the tip rotation motor 72 and the cutting rotation motor 32 to equalize the rotation speed V2 and the rotation speed V3 from 0 (zero) to the speed at a constant angular acceleration. Increase to Va. As a result, the rotating disk 2 and the cutting rotating ring 3 rotate at the speed Va synchronously at the time t1.
  • Time t1 to time t2 The control unit CT sets the rotational speed V2 to a constant speed Va at time t1, and the rotational speed V3 continues to increase after time t1 and reaches a speed Vb at time t2.
  • the angular acceleration that increases the rotation speed V3 during this period is not limited, and is assumed to be the same as the angular acceleration from time t0 to time t1, for example. As a result, the rotating disk 2 rotates at a constant speed, and the cutting rotating ring 3 is out of phase with respect to the rotating disk 2 in the counterclockwise direction in FIG.
  • the controller CT keeps the speed Va of the turntable 2 constant, and decreases the rotation speed V3 from the speed Vb to the speed Va.
  • the angular acceleration that reduces the rotation speed V3 is not limited, and is, for example, a negative value of the angular acceleration (absolute value) from time t1 to time t2.
  • a period from time t1 to time t3 in which the rotation speed V3 of the rotating ring 3 is higher than the rotation speed V2 of the rotating disk 2 is defined as a period tp.
  • the incision rotary ring 3 is maintained at a circumferential position with a predetermined phase angle ⁇ a (see FIG. 2) with respect to the rotary disc 2 .
  • the cutting tip 56 is provided with a cutting amount corresponding to the phase angle, and cuts into the wire WR while rotating on the peripheral surface of the wire WR.
  • the control part CT generates the phase angle ⁇ a of the ring part 3a by providing a period tp during which the rotational speed V3 of the rotary ring 3 is made higher than the rotational speed V2 of the rotary disk 2 .
  • the controller CT operates the feed motor 932, increases the rotation speed V932 of the feed motor 932 from 0 (zero) to the speed Vc at time t5, and then reduces it to 0 (zero) again at time t6.
  • the angular acceleration that increases and decreases the rotation speed V932 and its change over time are not limited, and are, for example, constant angular acceleration.
  • the time change of the rotational speed V932 is indicated by an upwardly convex triangular shape in FIG.
  • the rotational speed V932 of the feed motor 932 and the moving speed of the cutting body 934 accompanying the rotation of the feed motor 932 have a linear relationship. Therefore, the cutting main body 934 moves in the extending direction of the wire rod WR by a distance L6 (see FIG. 1) corresponding to the triangular area A6 during the period from time t4 to time t6.
  • the position after the wire rod cutting device 93 has moved by the distance L6 is defined as the post-movement position P2.
  • the wire rod WR is cut by the wire rod cutting device 93 with a predetermined depth of cut in the range of the distance L6, thereby reducing the diameter.
  • the wire rod cutting device 93 includes a feed motor 932 that moves a cutting main body 934 in a direction parallel to the center line CL1 under the control of the controller CT.
  • the controller CT operates the feed motor 932 to move the cutting main body 934 in a direction parallel to the center line CL1.
  • the feed motor 932 shown in FIG. 1 is driven under the control of the controller CT after the period tp to move the cutting body 934 parallel to the center line CL1, as shown in FIG.
  • FIG. 7 is a diagram showing a state in which the wire rod cutting device 93 cuts the intermediate portion of the wire rod WR to have a small diameter.
  • This cut portion is called a cut portion AR.
  • the wire rod WR has a wire diameter Da of 3.0 mm.
  • a cut portion AR which is a small-diameter portion having a wire diameter Db of 2.0 mm, is formed in the range La.
  • the cutting tip 56 moves from the initial position P1 to the post-movement position P2 while cutting the wire rod WR.
  • the cutting main body 934 moves upstream in FIG. 1 when the rotation speed V932 shown in FIG. 6 has a positive value, and moves downstream when it has a negative value.
  • Time t7 to time t8 to time t9 The control unit CT reduces the rotation speed V2 of the rotating disk 2 and the rotation speed V3 of the incision rotating ring 3 to 0 (zero) at time t8 and time t9, respectively.
  • the decreasing angular acceleration is not limited.
  • the time t9 at which the rotation speed V3 becomes 0 (zero) is set later than the time t8 so that the incision rotary ring 3 whose phase is changed between the time t1 and the time t3 is returned to the initial phase position.
  • the chip feeder 5 moves radially outward, and the cutting chip 56 is separated from the wire rod WR.
  • the wire rod WR is cut at the intermediate portion excluding the end portion of the wire rod WR with an arbitrary depth of cut within an arbitrary length range to form a cut portion AR with a reduced diameter.
  • the wire rod cutting device 93 has a rotating disk 2, a cutting rotating ring 3, and a chip feeder 5 including a direction changing portion E and capable of cutting the cutting chip 56 into the wire rod WR.
  • the control unit CT sets a period in which the rotation speed V3 of the cutting rotary ring 3 is higher than the rotation speed V2 of the rotary disk 2, so that the wire rod WR of the three cutting tips 56 is cut by a cutting amount corresponding to the period. can be cut with high accuracy. Therefore, the wire rod cutting device 93 has a simple structure, can easily control the depth of cut, and can finish cutting well.
  • the wire rod cutting device 93 can be installed inline between the uncoiler 91 and the wire rod processing device 95 .
  • products with different wire diameters in the intermediate portion can be produced on the same line, so production of a wide variety of products in small quantities is possible, improving production efficiency.
  • the present invention is not limited to the configuration described above, and can be modified without departing from the gist of the present invention.
  • the control unit CT is not limited to providing the period tp during which the rotation speed V3 of the rotary cutting ring 3 is higher than the rotation speed V2 of the rotary disk 2, and the rotation speed of the rotary cutting ring 3 is higher than the rotation speed V2 of the rotary disk 2.
  • a period during which the speed V3 is reduced may be provided.
  • FIG. 8 is a graph showing a modified example 1 of the relationship between the rotational speed and time of the embodiment shown in FIG. Modification 1 has the same temporal changes in rotational speed V2 and rotational speed V3 as in the embodiment shown in FIG. , is an example of reciprocating movement instead of the one-way movement described above.
  • Time t11 to t13 and time t27 to t29 in FIG. 8 respectively correspond to time t1 to t3 and time t7 to t9 in FIG. 6 of the embodiment. Further, the rotational speeds Va1, Vb1, Vc1 and Vd1 correspond to the rotational speeds Va, Vb, Vc and Vd in FIG. 6 of the embodiment, respectively.
  • the controller CT drives the feed motor 932 to move the position of the cutting tip 56 of the cutting main body 934 from the initial position P1 to the post-movement position P2 during the period from time t14 to t17, and from time t17 to t20. It is returned from the post-movement position P2 to the initial position P1. Further, the controller CT moves the cutting body 934 from the initial position P1 to the post-movement position P2 during the period from time t20 to t23, and moves the position of the cutting tip 56 during the period from time t23 to t26. It is returned from the post-movement position P2 to the initial position P1. That is, the controller CT causes the cutting main body 934 to reciprocate twice at a predetermined distance while cutting the wire rod WR.
  • This reciprocating motion improves the finish of the cutting part AR. Further, when the depth of cut by the cutting tip 56 is large, the cutting depth is divided and reciprocated, so the cutting load is reduced and the life of the cutting tip 56 can be extended.
  • FIG. 9 is a graph showing a modified example 2 of the relationship between the rotational speed and time of the embodiment shown in FIG. Modification 2 is obtained by changing the rising characteristics of the rotating disk 2 and the cutting rotating ring 3 .
  • the control unit CT raises the positive phase angle ⁇ a of the ring portion 3a of the rotating ring 3 with respect to the rotating disk 2 from the rotation stop state to a predetermined rotation speed Va2, which corresponds to the depth of cut.
  • control unit CT increases the rotation speed V2 of the rotating disk 2 from the rotation speed 0 (zero) with an angular acceleration that reaches the rotation speed Va2 at time t32, while the rotation speed of the incision rotating ring 3 V3 increases with angular acceleration from the number of rotations (zero) to reach the rotation speed Va2 at time t31 before time t32.
  • the cutting main body 934 starts cutting into the wire rod WR before the rotation speed V3 reaches the predetermined rotation speed Va2. Therefore, when the wire rod WR is a free-cutting material, the cutting time can be shortened while reducing the load on the cutting tip 56 .
  • FIG. 10 is a graph showing a modified example 3 of the relationship between the rotational speed and time of the embodiment shown in FIG. Modification 3 is similar to Modification 2 in that the rising characteristics of the rotating disk 2 and the incision rotating ring 3 are changed.
  • the control part CT varies the angular acceleration for raising the positive phase angle ⁇ a of the ring portion 3a of the incision rotary ring 3 from the rotation stop state to a predetermined rotational speed Va2 from the middle of the rotation speed increase, which corresponds to the incision amount.
  • the control unit CT increases the rotation speed V2 and the rotation speed V3 at the same angular acceleration from the rotation speed 0 (zero) to the time t41, and changes the angular acceleration from the time t41 to increase the rotation speed V2 to the time
  • the rotational speed Va3 is set to a predetermined value, and the rotational speed V3 reaches the predetermined rotational speed Va3 at time t42, which is earlier than time t43.
  • the embodiment and modification 3 can be combined, and the embodiment and modification 4 can be combined.
  • Modification 1 and Modification 3 can be combined, and Modification 1 and Modification 4 can be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)
  • Coating With Molten Metal (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A wire cutting device (93) comprises a cutting body (934) that includes a turntable (2) rotating about a center line (CL1), and a rotating ring (3) rotating about the center line (CL1), and having a ring part (3a) on the outer side in a radial direction of the turntable (2), and that moves parallel to the center line (CL1). The turntable (2) includes: a cutting tip (56); a slider (54) to which the cutting tip (56) is attached, and which moves in the radial direction so that the cutting tip (56) moves between a first position spaced apart from a wire (WR) on the center line (CL1) and a second position for cutting into the wire (WR); and a direction changing part (E) for moving the cutting tip (56) toward the second position by a distance (Lb) corresponding to a phase angle (θa) of the ring part (3a) from an initial phase position that is a position in a rotating direction of the ring part (3b) with respect to the turntable (2) in the first position.

Description

線材切削装置及び線材加工システムWire rod cutting equipment and wire rod processing system
 本開示は、線材切削装置及び線材加工システムに関する。 The present disclosure relates to a wire rod cutting device and a wire rod processing system.
 特許文献1に、被覆ケーブルの被覆部分を、回転する複数の刃で厚み方向に切断し、切断した被覆を被覆ケーブルの長手方向に移動させて芯材を露出させる被覆剥離装置が記載されている。 Patent Literature 1 describes a coating peeling device that cuts a coated portion of a coated cable in the thickness direction with a plurality of rotating blades and moves the cut coating in the longitudinal direction of the coated cable to expose the core material. .
特許第5699121号公報Japanese Patent No. 5699121
 特許文献1に記載された被覆剥離装置は、被覆を剥離できるものの金属の線材の径を切削で小さくすることはできない。また、特許文献1に記載された被覆剥離装置の構造では、仮に線材の径を小さくする切削ができても、それは線材の端部に対してのみであり、端部を除く中間部位の径を小さくすることはできない。そのため、金属の線材の中間部の径を切削で小さくできる線材切削装置、及び線材切削装置とその線材切削装置で切削した線材を製品に加工する線材加工装置とを備える線材加工システムが望まれている。 The coating stripping device described in Patent Document 1 can strip the coating, but cannot reduce the diameter of the metal wire rod by cutting. In addition, in the structure of the coating stripping device described in Patent Document 1, even if cutting to reduce the diameter of the wire is possible, it is only for the end of the wire, and the diameter of the intermediate portion excluding the end is reduced. It cannot be made smaller. Therefore, there is a demand for a wire rod cutting device that can reduce the diameter of the intermediate portion of a metal wire by cutting, and a wire rod processing system that includes a wire rod cutting device and a wire rod processing device for processing the wire rod cut by the wire rod cutting device into a product. there is
 1またはそれ以上の実施形態の第1の態様は、中心線を中心として回転する回転盤と、前記中心線を中心として回転し、前記回転盤の径方向の外側にリング状のリング部を有する回転リングとを含んで前記中心線と平行な方向に移動する切削本体部を備え、前記回転盤は、切削チップと、前記切削チップが取り付けられ、前記切削チップが前記中心線上に配置された線材に対して離隔した第1位置と前記線材に切り込む第2位置との間で移動するように径方向に移動するスライダと、前記切削チップが、前記第1位置における前記回転盤に対する前記リング部の回転方向の位置である初期位相位置からの前記リング部の位相角に応じた距離で前記第2位置に向けて移動するよう、前記スライダを移動させる方向変換部とを含む線材切削装置を提供する。 A first aspect of one or more embodiments includes a rotating disk that rotates about a centerline and a ring-shaped ring portion that rotates about the centerline and is radially outward of the rotating disk. a cutting body portion that includes a rotating ring and moves in a direction parallel to the center line, the rotating disc having cutting tips; a slider radially moving to move between a first position spaced apart from the wire and a second position to cut into the wire; and a direction changer for moving the slider so as to move toward the second position at a distance according to the phase angle of the ring from an initial phase position, which is a position in the rotational direction. .
第1の態様によれば、回転盤に対する回転リングの周方向の位置に応じて線材の中間位置に切削チップを切り込ませて回転させ、切削本体部を線材の延びる方向に平行に移動させることができる。これにより、第1の態様によれば、線材の中間部の径を切削により小さくすることができる。 According to the first aspect, according to the position of the rotating ring in the circumferential direction with respect to the rotating disk, the cutting tip is cut into an intermediate position of the wire and rotated to move the cutting body in parallel with the direction in which the wire extends. can be done. Thereby, according to the 1st aspect, the diameter of the intermediate part of a wire can be made small by cutting.
 1またはそれ以上の実施形態の第2の態様は、線材のコイルから前記線材を引き出すアンコイラと、前記アンコイラから引き出された前記線材を直線状に走行するよう位置決めする第1線材把持装置及び第2線材把持装置と、前記第2線材把持装置からの前記線材を加工する線材加工装置と、前記第1線材把持装置と前記第2線材把持装置との間に配置された線材切削装置とを備え、前記線材切削装置は上記の線材切削装置であり、前記第1線材把持装置と及び前記第2線材把持装置は、前記線材を前記線材切削装置における前記中心線上に位置決めする線材加工システムを提供する。 A second aspect of one or more embodiments includes an uncoiler for uncoiling the wire from a coil of wire, a first wire gripper and a second wire gripper for positioning the wire uncoiled from the uncoiler for linear travel. A wire rod gripping device, a wire rod processing device for processing the wire from the second wire rod gripping device, and a wire rod cutting device disposed between the first wire rod gripping device and the second wire rod gripping device, The wire rod cutting device is the wire rod cutting device described above, and the first wire rod gripping device and the second wire rod gripping device provide a wire rod processing system that positions the wire rod on the center line of the wire rod cutting device.
 第2の態様によれば、線材加工システムはアンコイラと線材加工装置との間にインラインで配置された線材切削装置を備え、線材切削装置は、回転盤に対する回転リングの周方向位置に応じてアンコイラから引き出された線材の中間位置に切削チップを切り込ませて回転させ、切削本体部を線材の延びる方向に平行に移動させることができる。これにより、第2の態様によれば、線材の中間部の径を切削により小さくすることができる。 According to a second aspect, the wire processing system comprises a wire cutting device arranged in-line between the uncoiler and the wire processing device, the wire cutting device cutting the uncoiler according to the circumferential position of the rotating ring with respect to the rotating disk. The cutting tip can be cut into an intermediate position of the wire rod drawn out from the cutting edge and rotated to move the cutting main body in parallel with the direction in which the wire rod extends. Thus, according to the second aspect, the diameter of the intermediate portion of the wire can be reduced by cutting.
 1またはそれ以上の実施形態によれば、金属の線材の中間部の径を切削で小さくできる。 According to one or more embodiments, the diameter of the middle portion of the metal wire can be reduced by cutting.
図1は、1またはそれ以上の実施形態に係る線材加工システムである線材加工システムSTの全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of a wire processing system ST, which is a wire processing system according to one or more embodiments. 図2は、線材加工システムSTが備える線材切削装置93の内部構造を示す図1におけるS2-S2位置での断面図である。FIG. 2 is a cross-sectional view taken along line S2-S2 in FIG. 1, showing the internal structure of the wire rod cutting device 93 provided in the wire rod processing system ST. 図3は、図2におけるS3-S3位置での一部断面図である。FIG. 3 is a partial cross-sectional view at S3-S3 position in FIG. 図4は、線材切削装置93を上流側から見た図である。FIG. 4 is a view of the wire rod cutting device 93 viewed from the upstream side. 図5は、線材切削装置93が有するチップ送り部5のチップ送り動作を示す図である。5A and 5B are diagrams showing the chip feeding operation of the chip feeding section 5 of the wire rod cutting device 93. FIG. 図6は、線材切削装置93による線材の切削加工における、回転盤2、切込み回転リング3、及び送りモータ932それぞれの回転速度と時間との関係の実施例を示すグラフである。FIG. 6 is a graph showing an example of the relationship between the rotation speed of each of the rotating disk 2, the cutting rotary ring 3, and the feed motor 932 and time in the wire rod cutting process by the wire rod cutting device 93. FIG. 図7は、線材切削装置93によって線材WRの中間部分に切削部ARを形成し状態を示す図である。FIG. 7 is a diagram showing a state in which a cut portion AR is formed in the intermediate portion of the wire rod WR by the wire rod cutting device 93. As shown in FIG. 図8は、図6に示された関係の変形例1を示すグラフである。FIG. 8 is a graph showing Modification 1 of the relationship shown in FIG. 図9は、図6に示された関係の変形例2を示すグラフである。FIG. 9 is a graph showing Modification 2 of the relationship shown in FIG. 図10は、図6に示された関係の変形例3を示すグラフである。FIG. 10 is a graph showing variation 3 of the relationship shown in FIG.
 1またはそれ以上の実施形態に係る線材切削装置及び線材加工システムを線材切削装置93及び線材加工システムSTによって説明する。図1は、1またはそれ以上の実施形態に係る線材加工システムである線材加工システムSTの全体構成を示す図である。上下及び上流下流の各方向を、図1に矢印で示された方向とする。上流下流は、線材WRの走行方向(送線方向)に対応し、図1の左方が下流方向、右方が上流方向である。 A wire cutting device and wire processing system according to one or more embodiments will be described by wire cutting device 93 and wire processing system ST. FIG. 1 is a diagram showing the overall configuration of a wire processing system ST, which is a wire processing system according to one or more embodiments. Let each direction of up-down and upstream-downstream be the direction shown by the arrow in FIG. Upstream and downstream correspond to the running direction (line feeding direction) of the wire rod WR, with the left side of FIG. 1 being the downstream direction and the right side being the upstream direction.
 線材加工システムSTは、アンコイラ91及び第1線材把持装置92を含む送材装置912、線材切削装置93、第2線材把持装置94、及び線材加工装置95を含んで構成されている。すなわち、線材切削装置93は、インラインで送材装置912と線材加工装置95との間に配置されている。 The wire processing system ST includes a wire feeding device 912 including an uncoiler 91 and a first wire gripping device 92, a wire cutting device 93, a second wire gripping device 94, and a wire processing device 95. That is, the wire rod cutting device 93 is arranged inline between the wire feeding device 912 and the wire rod processing device 95 .
 アンコイラ91には金属の線材WRのコイルWRaが装着される。線材WRは、アンコイラ91に装着されたコイルWRaから第1線材把持装置92に向けて送り出される。第1線材把持装置92は、アンコイラ91から送り出された線材WRの走行位置を決めて線材WRを安定的に送出する。 A coil WRa of a metal wire rod WR is attached to the uncoiler 91 . The wire rod WR is delivered from the coil WRa attached to the uncoiler 91 toward the first wire rod gripping device 92 . The first wire rod gripping device 92 determines the traveling position of the wire rod WR fed out from the uncoiler 91 and stably feeds the wire rod WR.
 線材切削装置93は、第1線材把持装置92側から供給された線材WRの外径を小さくする切削加工を行う。線材切削装置93の送線方向の下流側には、第2線材把持装置94が配置されている。第2線材把持装置94は、線材切削装置93から送出された線材WRを、その走行位置を第1線材把持装置92と対応させて安定的に維持して下流側へ送出する。線材WRの走行位置は、図1における第1中心線である中心線CL1を軸心とした位置である。第1線材把持装置92と第2線材把持装置94との間で線材WRの走行位置は安定して決められるので、線材切削装置93において精度の高い切削が行われる。 The wire rod cutting device 93 performs cutting to reduce the outer diameter of the wire rod WR supplied from the first wire rod gripping device 92 side. A second wire rod gripping device 94 is arranged downstream of the wire rod cutting device 93 in the wire feeding direction. The second wire rod gripping device 94 matches the traveling position of the wire rod WR fed from the wire rod cutting device 93 with that of the first wire rod gripping device 92 and stably maintains the wire rod WR, and feeds the wire rod WR to the downstream side. The running position of the wire rod WR is a position centered on the center line CL1, which is the first center line in FIG. Since the traveling position of the wire rod WR is stably determined between the first wire rod gripping device 92 and the second wire rod gripping device 94, the wire rod cutting device 93 performs cutting with high accuracy.
 線材加工装置95は、第2線材把持装置94から送出された線材WRを切断して折り曲げるなどの機械加工を施して所望の形状に加工し、製品Pdとして排出する。 The wire processing device 95 performs machining such as cutting and bending the wire WR delivered from the second wire gripping device 94, processes it into a desired shape, and discharges it as a product Pd.
 図1に示すように、線材切削装置93は、ガイドレール931、送りモータ932(第3モータ)、送りスライダ933、及び切削本体部934を有する。ガイドレール931は、床FLに敷設される。送りスライダ933は、ガイドレール931に係合し、不図示のボールねじの回転に応じてガイドレール931に沿って所定の範囲内を移動する(矢印DR参照)。ボールねじは送りモータ932によって回転する。送りモータ932の動作は、例えば、切削本体部934に収められた制御部CTによって制御される。制御部CTは切削本体部934に収められてなくてもよく、その配置場所は限定されない。 As shown in FIG. 1, the wire rod cutting device 93 has a guide rail 931, a feed motor 932 (third motor), a feed slider 933, and a cutting main body 934. The guide rail 931 is laid on the floor FL. The feed slider 933 engages with the guide rail 931 and moves within a predetermined range along the guide rail 931 according to the rotation of the ball screw (not shown) (see arrow DR). The ball screw is rotated by feed motor 932 . The operation of the feed motor 932 is controlled by, for example, a controller CT housed in the cutting main body 934 . The control part CT does not have to be housed in the cutting main body part 934, and its location is not limited.
 図2~図4を参照して線材切削装置93について詳述する。図2は、線材加工システムSTが備える線材切削装置93の内部構造を示す、図1におけるS2-S2位置での断面図である。図3は、図2におけるS3-S3位置での部分断面図である。図4は、線材切削装置93を線材WRの供給側(上流側)から見た図である。既述の上下、上流、下流の各方向に加え、左右方向を図2に示す矢印で規定する。矢印の左方右方は、上流側からみたときの左右に対応している。 The wire rod cutting device 93 will be described in detail with reference to FIGS. FIG. 2 is a cross-sectional view taken along line S2-S2 in FIG. 1, showing the internal structure of the wire rod cutting device 93 provided in the wire rod processing system ST. FIG. 3 is a partial cross-sectional view at S3-S3 position in FIG. FIG. 4 is a view of the wire rod cutting device 93 viewed from the supply side (upstream side) of the wire rod WR. In addition to the vertical, upstream, and downstream directions already described, the horizontal direction is defined by the arrows shown in FIG. The left and right sides of the arrow correspond to left and right when viewed from the upstream side.
 図2には、中心線CL1と平行な方向に移動する切削本体部934を備える線材切削装置93が示されている。線材切削装置93は、中心線CL1を中心として回転する回転盤2と、中心線CL1を中心として回転し、回転盤2の径方向の外側にリング状のリング部3aを有する切込み回転リング3とを含む。 FIG. 2 shows a wire rod cutting device 93 having a cutting main body 934 that moves in a direction parallel to the center line CL1. The wire rod cutting device 93 includes a rotating disk 2 that rotates about the center line CL1, and a cutting rotary ring 3 that rotates about the center line CL1 and has a ring portion 3a on the radially outer side of the rotating disk 2. including.
 回転盤2は、切削チップ56と、スライダ54と、方向変換部Eとを備える。スライダ54は、切削チップ56が取り付けられ切削チップ56が中心線CL1上に配置された線材WRに対し、離隔した第1位置と切り込む第2位置との間で移動するように径方向に移動する。方向変換部Eは、第1位置における回転盤2に対するリング部3aの回転方向の位置である初期位相位置からのリング部3aの位相角θaに応じた距離Lbで切削チップ56が第2位置に向けて移動するよう、スライダ54を移動させる。  The turntable 2 includes a cutting tip 56, a slider 54, and a direction changing part E. The slider 54 moves in the radial direction so as to move between a first position in which the cutting tip 56 is attached and the cutting tip 56 is arranged on the center line CL1 of the wire rod WR, and a second position in which the cutting tip 56 is cut. . The direction changing portion E moves the cutting tip 56 to the second position at a distance Lb corresponding to the phase angle θa of the ring portion 3a from the initial phase position, which is the position in the rotational direction of the ring portion 3a with respect to the rotating disk 2 at the first position. Slider 54 is moved so as to move toward.
 また、図1には、図2に示す線材切削装置93を含む線材加工システムSTが示されている。図2では、スライダ54の距離Lbの移動を、スライダ54と一体的に移動するカムフォロワ53の距離Lbの移動として示し、カムフォロワ53の距離Lbの移動後の位置を二点鎖線で示している。 FIG. 1 also shows a wire rod processing system ST including the wire rod cutting device 93 shown in FIG. In FIG. 2, the movement of the slider 54 by the distance Lb is shown as the movement by the distance Lb of the cam follower 53 that moves integrally with the slider 54, and the position of the cam follower 53 after the movement by the distance Lb is shown by a chain double-dashed line.
 すなわち、線材加工システムSTは、アンコイラ91と、第1線材把持装置92及び第2線材把持装置94と、線材加工装置95と、線材切削装置93とを備える。アンコイラ91は、線材WRのコイルWRaから線材WRを引き出す。第1線材把持装置92及び第2線材把持装置94は、アンコイラ91から引き出された線材WRを直線状に走行するよう位置決めする。線材加工装置95は、第2線材把持装置94からの線材WRを加工する。線材切削装置93は、第1線材把持装置92と第2線材把持装置94との間に配置されている。第1線材把持装置92と第2線材把持装置94は、線材WRを線材切削装置93における中心線CL1上に位置決めする。 That is, the wire rod processing system ST includes an uncoiler 91 , a first wire rod gripping device 92 and a second wire rod gripping device 94 , a wire rod processing device 95 , and a wire rod cutting device 93 . The uncoiler 91 pulls out the wire WR from the coil WRa of the wire WR. The first wire rod gripping device 92 and the second wire rod gripping device 94 position the wire rod WR pulled out from the uncoiler 91 so as to travel linearly. The wire processing device 95 processes the wire WR from the second wire gripping device 94 . The wire rod cutting device 93 is arranged between the first wire rod gripping device 92 and the second wire rod gripping device 94 . The first wire rod gripping device 92 and the second wire rod gripping device 94 position the wire rod WR on the center line CL<b>1 of the wire rod cutting device 93 .
 図2または図3に示すように、線材切削装置93は、ケース1、回転盤2、切込み回転リング3、ホルダプレート4、3つのチップ送り部5(5A、5B、5C)、ベーススリーブ6、第1歯車盤7、及び3つのベアリング(第1ベアリング8、第2ベアリング9、第3ベアリング10)を含んで構成されている。 As shown in FIG. 2 or FIG. 3, the wire rod cutting device 93 includes a case 1, a rotating disk 2, a cutting rotating ring 3, a holder plate 4, three chip feeders 5 (5A, 5B, 5C), a base sleeve 6, It comprises a first gear disc 7 and three bearings (a first bearing 8, a second bearing 9 and a third bearing 10).
 ケース1は、概ね直方体の外装ケースである。図3に示すように、ホルダプレート4は、中心線CL1を中心とする円形孔4aを有し、中心線CL1に直交する姿勢でケース1の内側に固定配置されている。 Case 1 is a roughly rectangular parallelepiped exterior case. As shown in FIG. 3, the holder plate 4 has a circular hole 4a centered on the center line CL1, and is fixed inside the case 1 in a posture orthogonal to the center line CL1.
 切込み回転リング3は概ねリング状の部材であって、ホルダプレート4の円形孔4aとの間にクロスローラベアリングである第3ベアリング10を介在させて、回転自在に配置されている。切込み回転リング3は、下流側面の周縁部であるリング部3aに120°角度間隔で取り付けられた3個のカムプッシャ51を有する。カムプッシャ51は、切込み回転リング3から下流側に突出した先端部分に円柱形状のプッシュ部51aを有する。切込み回転リング3の上流側の周縁部には、平歯車状の第2歯部31が形成されている。 The incision rotary ring 3 is a generally ring-shaped member, and is rotatably arranged with a third bearing 10, which is a cross roller bearing, interposed between the rotary ring 3 and the circular hole 4a of the holder plate 4. The incision rotary ring 3 has three cam pushers 51 attached at angular intervals of 120° to the ring portion 3a, which is the peripheral portion of the downstream side. The cam pusher 51 has a cylindrical push portion 51a at the tip protruding downstream from the incision rotary ring 3 . A spur gear-shaped second tooth portion 31 is formed on the upstream peripheral edge portion of the cutting rotary ring 3 .
 切込み回転リング3の内周面には、上流側及び下流側にそれぞれ第1ベアリング8及び第2ベアリング9の外輪が固定されている。第1ベアリング8及び第2ベアリング9はラジアルボールベアリングであり、第1ベアリング8は自動調心タイプである。 Outer rings of a first bearing 8 and a second bearing 9 are fixed to the inner peripheral surface of the notched rotary ring 3 on the upstream side and the downstream side, respectively. The first bearing 8 and the second bearing 9 are radial ball bearings, and the first bearing 8 is self-aligning type.
 第1ベアリング8及び第2ベアリング9の内輪は、ベーススリーブ6の外周面に固定されている。ベーススリーブ6は、貫通孔6aを有する筒状の金属部材である。貫通孔6aの内径は、線材切削装置93の仕様として切削加工可能な線材WRの最大径よりも大きい。ベーススリーブ6の上流側端部には、第1歯車盤7が取り付けられている。ベーススリーブ6と第1歯車盤7とは、ノックピンなどの連結具11によって同期回転するように一体化されている。ベーススリーブ6の下流側端部には、回転盤2が取り付けられている。ベーススリーブ6と回転盤2とは、ノックピンなどの連結具12により同期回転するように一体化されている。 The inner rings of the first bearing 8 and the second bearing 9 are fixed to the outer peripheral surface of the base sleeve 6. The base sleeve 6 is a tubular metal member having a through hole 6a. The inner diameter of the through hole 6a is larger than the maximum diameter of the wire rod WR that can be cut according to the specifications of the wire rod cutting device 93 . A first gear disc 7 is attached to the upstream end of the base sleeve 6 . The base sleeve 6 and the first gear disc 7 are integrated by a connector 11 such as a dowel pin so as to rotate synchronously. A rotary disk 2 is attached to the downstream end of the base sleeve 6 . The base sleeve 6 and the rotating disk 2 are integrated by a connecting tool 12 such as a dowel pin so as to rotate synchronously.
 図2に示すように、回転盤2の径方向の外側には、切込み回転リング3の外周部がリング状のリング部3aとして視認される。 As shown in FIG. 2, the outer peripheral portion of the incision rotating ring 3 is visually recognized as a ring-shaped ring portion 3a on the radially outer side of the rotating disk 2. As shown in FIG.
 第1歯車盤7の外周部には、平歯車状の第1歯部71が形成されている。第1歯車盤7の第1歯部71の歯先円は、下流側にある切込み回転リング3の第2歯部31の歯先円よりも小さい。 A spur gear-shaped first tooth portion 71 is formed on the outer peripheral portion of the first gear disc 7 . The addendum circle of the first toothing 71 of the first gear wheel 7 is smaller than the addendum circle of the second toothing 31 of the cutting rotary ring 3 on the downstream side.
 切込み回転リング3及び回転盤2の下流側の面には、中心線CL1を中心とする120°ピッチで、3つのチップ送り部5A、5B、5Cが配置されている。3つのチップ送り部5A、5B、5Cは同じ構成である。 On the downstream side surfaces of the incision rotary ring 3 and the rotary disk 2, three chip feeders 5A, 5B, and 5C are arranged at a pitch of 120° around the center line CL1. The three chip feeders 5A, 5B and 5C have the same configuration.
 チップ送り部5(5A、5B、5C)は、カムプッシャ51、カムレバー52、スライドベース55、カムフォロワ53、スライダ54、切削チップ56、引っ張りコイルばね57、第1フックピン21、及び第2フックピン542を含んで構成されている。チップ送り部5の構成のうち、プッシュ部51aを有するカムプッシャ51は切込み回転リング3に直接取り付けられている。カムレバー52、スライドベース55、及び第1フックピン21は、回転盤2に直接取り付けられている。 The tip feeder 5 (5A, 5B, 5C) includes a cam pusher 51, a cam lever 52, a slide base 55, a cam follower 53, a slider 54, a cutting tip 56, a tension coil spring 57, a first hook pin 21, and a second hook pin 542. consists of The cam pusher 51 having a push portion 51 a is directly attached to the rotary cutting ring 3 . The cam lever 52 , slide base 55 and first hook pin 21 are directly attached to the rotating disc 2 .
 カムレバー52は、送線方向に延びる回動軸線CL52の周りに回動可能となっている。図2に示すように、カムレバー52は、回動軸線CL52の位置から径方向の外方に延びる第1腕部52aと、回動軸線CL52の位置から図2における反時計回りの周方向に延びる第2腕部52bとを有して逆L字型状に形成されている。 The cam lever 52 is rotatable around a rotation axis CL52 extending in the feed line direction. As shown in FIG. 2, the cam lever 52 includes a first arm portion 52a extending radially outward from the position of the rotation axis CL52, and extending in the counterclockwise circumferential direction in FIG. 2 from the position of the rotation axis CL52. It has a second arm portion 52b and is formed in an inverted L shape.
 回転盤2に対し、切込み回転リング3は、カムレバー52の第1腕部52aが回転盤2の直径上に延びる姿勢となってカムプッシャ51の反時計回りの端部に当接するように、周方向に位置決めされている。 The incision rotary ring 3 is rotated circumferentially with respect to the rotary disc 2 so that the first arm portion 52 a of the cam lever 52 extends diametrically of the rotary disc 2 and contacts the counterclockwise end of the cam pusher 51 . is positioned at
 スライドベース55は、回転盤2の直径と平行に延びるガイド穴551(図2参照)を有して回転盤2に固定されている。スライダ54は、ガイド穴551に対し、それに沿って移動可能に係合して保持されている(矢印DR3参照)。スライダ54は径方向に長く延びた部材であって、カムフォロワ53、第2フックピン542、及び切削チップ56が取り付けられている。 The slide base 55 has a guide hole 551 (see FIG. 2) extending parallel to the diameter of the rotary disc 2 and is fixed to the rotary disc 2 . The slider 54 is held in engagement with the guide hole 551 so as to be movable along the guide hole 551 (see arrow DR3). The slider 54 is a member elongated in the radial direction, and has a cam follower 53, a second hook pin 542, and a cutting tip 56 attached thereto.
 カムフォロワ53は、スライダ54における径方向の外縁部に、下流側に向け円柱状に突出するように取り付けられている。第2フックピン542は、スライダ54の右側面に突出して取り付けられている。回転盤2に立てられた第1フックピン21と、第2フックピン542との間には、引っ張りコイルばね57が自然長よりも伸びた張力の掛かる状態で概ね径方向に掛けられている。伸ばされた引っ張りコイルばね57の張力(圧縮力)によって、スライダ54は、カムレバー52側に付勢され、カムフォロワ53は、常にカムレバー52の第2腕部52bの中心線CL1側の面に付勢するよう当接している。 The cam follower 53 is attached to the radial outer edge of the slider 54 so as to protrude downstream in a cylindrical shape. The second hook pin 542 is attached so as to protrude from the right side surface of the slider 54 . Between the first hook pin 21 erected on the rotating disk 2 and the second hook pin 542, a tension coil spring 57 is stretched in a substantially radial direction in a state in which tension is applied to extend beyond its natural length. The slider 54 is urged toward the cam lever 52 by the tension (compressive force) of the extended tension coil spring 57, and the cam follower 53 is always urged toward the surface of the second arm portion 52b of the cam lever 52 on the center line CL1 side. are abutted.
 カムフォロワ53が第2腕部52bに当接する位置は、回動軸線CL52と中心線CL1とを結ぶ半径に対し一方側(この例では右側(図2において左側))とされている。 The position where the cam follower 53 contacts the second arm portion 52b is one side (in this example, the right side (the left side in FIG. 2)) with respect to the radius connecting the rotation axis CL52 and the center line CL1.
 切削チップ56は、スライダ54における中心線CL1側の端部に取り付けられており、先端に線材WRを切削する刃56aを有する。図2には、カムレバー52の第1腕部52aが直径上に延びた姿勢にあり、かつカムフォロワ53が第2腕部52bに当接している状態が示されている。このとき、切削チップ56の刃56aは、中心線CL1を中心軸として位置決めされた線材WRの外周面に対し所定の距離だけ離隔した第1位置にある。切削チップ56が線材WRから離隔した第1位置にある状態を、チップ送り部5の待機状態とする。所定の距離は、例えば、直径が3.0mmの線材WRに対し約0.5mmとする。 The cutting tip 56 is attached to the end of the slider 54 on the side of the center line CL1, and has a blade 56a at its tip for cutting the wire rod WR. FIG. 2 shows a state in which the first arm portion 52a of the cam lever 52 is in a diametrically extended position and the cam follower 53 is in contact with the second arm portion 52b. At this time, the blade 56a of the cutting tip 56 is at the first position separated by a predetermined distance from the outer peripheral surface of the wire rod WR positioned with the center line CL1 as the central axis. A state in which the cutting tip 56 is at the first position separated from the wire rod WR is defined as a standby state of the tip feeding unit 5 . The predetermined distance is, for example, approximately 0.5 mm for the wire rod WR having a diameter of 3.0 mm.
 図4に示すように、第1歯車盤7の第1歯部71には、チップ回転モータ72(第1モータ)の出力歯車721が歯合している。これにより、第1歯車盤7はチップ回転モータ72の駆動により回転する。切込み回転リング3の第2歯部31には、切込み回転モータ32(第2モータ)の出力歯車321が歯合している。これにより、切込み回転リング3は切込み回転モータ32の駆動により回転する。第1歯車盤7及び切込み回転リング3の回転方向は、図4において時計回り(矢印DR1)とされる。 As shown in FIG. 4, the output gear 721 of the chip rotating motor 72 (first motor) meshes with the first toothed portion 71 of the first gear disc 7 . As a result, the first gear disc 7 is driven by the tip rotation motor 72 to rotate. The output gear 321 of the cutting rotation motor 32 (second motor) meshes with the second tooth portion 31 of the cutting rotation ring 3 . As a result, the cutting rotary ring 3 is driven by the cutting rotary motor 32 to rotate. The rotation direction of the first gear disc 7 and the cutting rotary ring 3 is clockwise (arrow DR1) in FIG.
 図3に示すように、切込み回転リング3は、ホルダプレート4に対し第3ベアリング10を介して回転自在であり、ベーススリーブ6に対し第1ベアリング8及び第2ベアリング9を介して回転自在である。これにより、切込み回転リング3は、切込み回転モータ32の回転速度に応じた回転速度V3(図6参照)で回転する。 As shown in FIG. 3, the incision rotary ring 3 is rotatable with respect to the holder plate 4 via a third bearing 10, and is rotatable with respect to the base sleeve 6 via a first bearing 8 and a second bearing 9. be. As a result, the incision rotary ring 3 rotates at a rotational speed V3 (see FIG. 6) corresponding to the rotational speed of the incision rotary motor 32 .
 回転盤2は連結具12によってベーススリーブ6と一体的に回転し、ベーススリーブ6は連結具11によって第1歯車盤7と一体的に回転する。従って、回転盤2は、第1歯車盤7と一体的に回転し、チップ回転モータ72の回転速度に応じた回転速度V2(図6参照)で回転する。また、回転盤2と切込み回転リング3との間は、第1ベアリング8及び第2ベアリング9が介在しているので、回転盤2と切込み回転リング3とは異なる回転数で独立して回転できる。 The rotating disk 2 rotates integrally with the base sleeve 6 by means of the connecting tool 12, and the base sleeve 6 rotates integrally with the first gear disk 7 by means of the connecting tool 11. Therefore, the rotating disk 2 rotates integrally with the first gear disk 7 and rotates at a rotational speed V2 (see FIG. 6) corresponding to the rotational speed of the chip rotating motor 72 . In addition, since the first bearing 8 and the second bearing 9 are interposed between the rotating disk 2 and the rotating ring 3, the rotating disk 2 and the rotating ring 3 can rotate independently at different rotation speeds. .
 図2に示す、チップ送り部5が待機状態にあるときの回転盤2に対する切込み回転リング3の回転方向の位相位置は、360°の回転を1周期として切込み回転リング3の回転角速度と同じ回転角速度の回転盤2との相対的な位相位置を初期位相位置とし、その位相角を位相角θaとする。つまり、切込み回転リング3は回転盤2に対して位相角θa分遅れて回転する状態が待機状態であり、初期位相位置である。また、切込み回転リング3の回転角速度と異なる回転角速度の回転盤2との角速度差によって回転角の位相差に変化を生じたとき、位相角θaは初期状態から変化する。 As shown in FIG. 2, the phase position of the rotation direction of the cutting rotary ring 3 with respect to the rotary table 2 when the chip feeding unit 5 is in the standby state is the same rotation as the rotation angular velocity of the cutting rotary ring 3 with 360° rotation as one cycle. Let the relative phase position of the angular velocity with respect to the rotating disk 2 be the initial phase position, and let the phase angle be the phase angle θa. That is, the state in which the incision rotary ring 3 rotates with a delay of the phase angle θa with respect to the rotary disk 2 is the standby state, which is the initial phase position. Further, when the phase difference of the rotation angle changes due to the angular velocity difference between the rotation angular velocity of the incision rotary ring 3 and the rotation angular velocity of the rotary disk 2 having a different rotation angular velocity, the phase angle θa changes from the initial state.
 位相角θaは、切込み回転リング3が、図2における反時計回り(矢印DR2)に生じたときを正値とし、時計回りに生じたときを負値とする。 The phase angle θa takes a positive value when the incision rotary ring 3 rotates counterclockwise (arrow DR2) in FIG. 2, and a negative value when it rotates clockwise.
 線材切削装置93は、回転盤2に対する切込み回転リング3の位相を、図2に示すチップ送り部5の待機状態から矢印DR2で示す反時計回りに変えることで、スライダ54及びスライダ54に取り付けられた切削チップ56を、中心線CL1に接近する方向に移動させることができる。すなわち、線材切削装置93は、切込み回転リング3の回転方向の移動を、スライダ54の径方向の移動に変換する方向変換部Eを有する。方向変換部Eは、カムプッシャ51及びカムレバー52を含んで構成される。図5を参照して、切込み回転リング3の回転方向の移動をスライダ54の径方向の移動に変換する動作を説明する。 The wire rod cutting device 93 is attached to the slider 54 and the slider 54 by changing the phase of the cutting rotary ring 3 with respect to the rotary table 2 from the standby state of the chip feeding unit 5 shown in FIG. The cutting tip 56 can be moved in a direction approaching the center line CL1. That is, the wire rod cutting device 93 has a direction converting portion E that converts the rotational movement of the cutting rotary ring 3 into the radial movement of the slider 54 . The direction changing portion E includes a cam pusher 51 and a cam lever 52 . The operation of converting the rotational movement of the incision rotary ring 3 into the radial movement of the slider 54 will be described with reference to FIG.
 図5は、線材切削装置93が有するチップ送り部5によるチップ送り動作を示す図である。具体的には、図5は、回転盤2に対して切込み回転リング3を矢印DR4の方向である反時計回り(正の方向)に位相角θaだけ位相をずらした状態が示されている。つまり、図5は、初期状態の位相角θaから正方向へ位相角θa分だけ位相をずらして、位相差ゼロにした状態である。このように、この切込み回転リング3を回転盤2に対しチップ送り部5の待機状態から正の方向に位相角θaだけ位相をずらして、切削チップ56が線材WRに切り込む第2位置に移動した状態を、切込み状態と称する。 FIG. 5 is a diagram showing the chip feeding operation by the chip feeding section 5 of the wire rod cutting device 93. FIG. Specifically, FIG. 5 shows a state in which the incision rotary ring 3 is shifted counterclockwise (positive direction) in the direction of the arrow DR4 with respect to the rotary disc 2 by the phase angle θa. That is, FIG. 5 shows a state in which the phase is shifted in the positive direction by the phase angle θa from the phase angle θa in the initial state, and the phase difference is zero. In this way, the cutting rotary ring 3 is shifted in the positive direction from the standby state of the chip feeder 5 with respect to the rotary table 2 by the phase angle θa, and the cutting chips 56 are moved to the second position where they cut into the wire rod WR. The state is called the cut state.
 図5に示す線材切削装置93において、方向変換部Eは、リング部3aに取り付けられたカムプッシャ51と、回転盤2に取り付けられ、カムプッシャ51に当接しリング部3aの位相角θaに応じた回動角度で回動することでスライダ54を中心線CL1に向けて押して回動角度に応じた距離Lbで移動させるカムレバー52とを有する。 In the wire rod cutting device 93 shown in FIG. 5, the direction changing portion E includes a cam pusher 51 attached to the ring portion 3a and a turntable 2, which abuts on the cam pusher 51 and rotates according to the phase angle θa of the ring portion 3a. It has a cam lever 52 that pushes the slider 54 toward the center line CL1 and moves it by a distance Lb according to the rotation angle by rotating at the rotation angle.
 図5において、切込み回転リング3が待機状態の位置から反時計回りに回転すると(矢印DR4参照)、カムプッシャ51がカムレバー52の第1腕部52aを図5の左方に押す。これにより、カムレバー52は、回動中心CL51を中心として反時計回りに回動する(矢印DR5参照)。カムレバー52が反時計回りに回動すると、第2腕部52bがカムフォロワ53を、中心線CL1に接近する方向に押す(矢印DR6参照)。 In FIG. 5, when the cutting rotary ring 3 rotates counterclockwise from the standby position (see arrow DR4), the cam pusher 51 pushes the first arm 52a of the cam lever 52 leftward in FIG. As a result, the cam lever 52 rotates counterclockwise around the rotation center CL51 (see arrow DR5). When the cam lever 52 rotates counterclockwise, the second arm portion 52b pushes the cam follower 53 toward the center line CL1 (see arrow DR6).
 カムフォロワ53が取り付けられているスライダ54は、スライドベース55に対し回転盤2の径方向に移動可能である。また、切込み回転モータ32から伝達され切込み回転リング3を回転盤2に対して反時計回りに回転させる力は、引っ張りコイルばね57による張力(圧縮力)を超えるように設定されている。そのため、スライダ54は、引っ張りコイルばね57に抗してそれをさらに伸ばすように移動し、切削チップ56は線材WRに対し切り込む位置まで移動する。図5では、移動前の待機状態でのカムフォロワ53が二点鎖線で示されている。 The slider 54 to which the cam follower 53 is attached can move in the radial direction of the rotating disk 2 with respect to the slide base 55 . Further, the force transmitted from the cutting rotation motor 32 to rotate the cutting rotation ring 3 counterclockwise with respect to the rotating disk 2 is set to exceed the tension (compression force) of the tension coil spring 57 . Therefore, the slider 54 moves against the tension coil spring 57 so as to further extend it, and the cutting tip 56 moves to a position where it cuts into the wire rod WR. In FIG. 5, the cam follower 53 in a standby state before movement is indicated by a chain double-dashed line.
 切込み回転リング3が、図5に示す切込み状態の位置から時計回り(負の方向)に位相角θaだけ位相をずらし、カムプッシャ51が矢印DR4とは反対方向に移動すると、カムレバー52は、引っ張りコイルばね57の圧縮力を受けたカムフォロワ53によって径方向外方へ押される。そのため、カムレバー52は、カムフォロワ53によってカムプッシャ51に追従するよう回動軸線CL52を中心とした時計回りに回動し、再び待機状態となる。 When the cutting rotary ring 3 shifts the phase clockwise (negative direction) by the phase angle θa from the cutting state position shown in FIG. It is pushed radially outward by the cam follower 53 which receives the compressive force of the spring 57 . Therefore, the cam lever 52 rotates clockwise around the rotation axis CL52 so as to follow the cam pusher 51 by the cam follower 53, and enters the standby state again.
 次に、線材切削装置93による線材WRの切削加工における、回転盤2及び切込み回転リング3の回転速度と時間との関係について説明する。回転盤2の単位時間あたりの回転数を回転速度V2とし、切込み回転リング3の単位時間あたりの回転数を回転速度V3とすると、回転速度V2に対する回転速度V3の大小に応じて、回転盤2に対する切込み回転リング3の相対回転方向が決まる。 Next, the relationship between the rotation speed of the rotating disk 2 and the cutting rotating ring 3 and the time in the cutting of the wire rod WR by the wire rod cutting device 93 will be described. Assuming that the number of revolutions per unit time of the rotary disc 2 is V2, and the number of revolutions per unit time of the incision rotary ring 3 is V3, the rotation rate of the rotary disc 2 varies depending on the magnitude of the rotation speed V3 relative to the rotation speed V2. determines the direction of relative rotation of the incision rotary ring 3 with respect to.
 具体的には、回転方向を図2及び図5の反時計回り(図5における矢印DR4の方向)として、回転速度V2=回転速度V3で、回転盤2と切込み回転リング3とは相対回転なく同期して回転する。回転速度V2<回転速度V3で、切込み回転リング3は回転盤2に対し図2及び図5の反時計回りに相対的に回転する。回転側とV2>回転速度V3で、切込み回転リング3は回転盤2に対し図2及び図5の時計回りに相対的に回転する。 Specifically, the rotation direction is counterclockwise in FIGS. 2 and 5 (the direction of the arrow DR4 in FIG. 5), the rotation speed is V2=the rotation speed is V3, and the rotating disk 2 and the cutting rotating ring 3 do not rotate relative to each other. rotate synchronously. Rotational speed V2<rotational speed V3, the incision rotary ring 3 rotates counterclockwise in FIGS. On the rotating side and V2>rotating speed V3, the incising rotary ring 3 rotates clockwise in FIGS.
 このことから、制御部CTは、まずチップ送り部5が待機状態となるように切り込み回転リング3を初期位相位置とし、回転盤2及び切込み回転リング3とを、例えば図2に示す状態で同じ回転速度で回転させる。その後、切込み回転リング3の回転速度V3を回転盤2の回転速度V2よりも速くする。これにより、切込み回転リング3は回転盤2に対して、相対的に図5の反時計回りに位相のずれを生じ、チップ送り部5が中心線CL1に向けて移動して、切削チップ56に、切込み回転リング3の周方向の相対移動量に応じた切り込み量が与えられる。 For this reason, the control unit CT first sets the cutting rotary ring 3 to the initial phase position so that the chip feeding unit 5 is in the standby state, and then moves the rotating disk 2 and the cutting rotary ring 3 to the same state, for example, in the state shown in FIG. Rotate at rotational speed. After that, the rotation speed V3 of the incision rotary ring 3 is made faster than the rotation speed V2 of the rotary disk 2. - 特許庁As a result, the cutting rotary ring 3 is shifted counterclockwise in FIG. , the amount of cut corresponding to the amount of relative movement of the rotary ring 3 in the circumferential direction is given.
 また、制御部CTは、送りモータ932を駆動し、切削本体部934を線材WRの送線方向の所定範囲で移動させる。これにより、線材WRの中間部における所望の切削範囲を所定の切込み量で切削して、径の小さい切削部AR(図7参照)とすることができる。 The controller CT also drives the feed motor 932 to move the cutting main body 934 within a predetermined range in the feeding direction of the wire rod WR. As a result, a desired cutting range in the intermediate portion of the wire rod WR can be cut with a predetermined depth of cut to form a small-diameter cut portion AR (see FIG. 7).
 図6は、線材切削装置93の切削加工における、回転盤2、切込み回転リング3、及び送りモータ932それぞれの回転速度と時間との関係の実施例を示すグラフである。詳しくは、図6には、回転盤2の回転速度V2が実線で、切込み回転リング3の回転速度V3が破線で、送りモータ932の回転速度V932が一点鎖線で示されている。以下の説明で速度Va、Vb、Vc、Vdは回転速度(回転数/秒)を意味する。また、切削本体部934の線材WRに沿った初期の位置は、図1に示す移動範囲の上流側の端部の初期位置P1とする。 FIG. 6 is a graph showing an example of the relationship between the rotation speed of each of the rotating disk 2, the cutting rotating ring 3, and the feed motor 932 and time in the cutting of the wire rod cutting device 93. More specifically, in FIG. 6, the rotation speed V2 of the rotating disk 2 is indicated by a solid line, the rotation speed V3 of the incision rotary ring 3 is indicated by a broken line, and the rotation speed V932 of the feed motor 932 is indicated by a dashed line. In the following description, velocities Va, Vb, Vc, and Vd mean rotational velocities (rotations/second). The initial position of the cutting body 934 along the wire rod WR is the initial position P1 at the upstream end of the movement range shown in FIG.
 線材切削装置93は、回転盤2を回転させるチップ回転モータ72と、回転リング3を回転させる切込み回転モータ32と、チップ回転モータ72及び切込み回転モータ32の動作を制御する制御部CTとを備える。制御部CTは、回転盤2の回転速度V2よりも回転リングの回転速度V3を大きくする期間tpを設けてリング部3aの位相角θaを変化させる。チップ回転モータ72、切込み回転モータ32、制御部CTは、図4に示され、回転速度V2、回転速度V3、及び期間tpは図6に示されている。 The wire rod cutting device 93 includes a tip rotation motor 72 that rotates the turntable 2, a cutting rotation motor 32 that rotates the rotary ring 3, and a controller CT that controls the operations of the tip rotation motor 72 and the cutting rotation motor 32. . The control part CT changes the phase angle θa of the ring part 3a by providing a period tp during which the rotation speed V3 of the rotating ring is higher than the rotation speed V2 of the rotating disk 2 . The tip rotation motor 72, the cutting rotation motor 32, and the controller CT are shown in FIG. 4, and the rotational speed V2, the rotational speed V3, and the period tp are shown in FIG.
(1)時刻t0~時刻t1:制御部CTは、チップ回転モータ72及び切込み回転モータ32を動作させて、回転速度V2と回転速度V3とを等しく一定の角加速度で速度0(ゼロ)から速度Vaまで大きくする。これにより、回転盤2と切込み回転リング3とは、時刻t1において同期して速度Vaで回転する。 (1) Time t0 to time t1: The control unit CT operates the tip rotation motor 72 and the cutting rotation motor 32 to equalize the rotation speed V2 and the rotation speed V3 from 0 (zero) to the speed at a constant angular acceleration. Increase to Va. As a result, the rotating disk 2 and the cutting rotating ring 3 rotate at the speed Va synchronously at the time t1.
(2)時刻t1~時刻t2:制御部CTは、回転速度V2は時刻t1で速度Vaの一定とし、回転速度V3は時刻t1以降増加を継続して時刻t2で速度Vbとする。この期間における回転速度V3を大きくする角加速度は限定されず、例えば時刻t0~時刻t1までの角加速度と同じとする。これにより、回転盤2は定速回転し切込み回転リング3は、回転盤2に対し相対的に図2における反時計回りに位相がずれる。 (2) Time t1 to time t2: The control unit CT sets the rotational speed V2 to a constant speed Va at time t1, and the rotational speed V3 continues to increase after time t1 and reaches a speed Vb at time t2. The angular acceleration that increases the rotation speed V3 during this period is not limited, and is assumed to be the same as the angular acceleration from time t0 to time t1, for example. As a result, the rotating disk 2 rotates at a constant speed, and the cutting rotating ring 3 is out of phase with respect to the rotating disk 2 in the counterclockwise direction in FIG.
(3)時刻t2~時刻t3
 制御部CTは、回転盤2は速度Vaで一定とし、回転速度V3は速度Vbから速度Vaまで小さくする。回転速度V3を小さくする角加速度は限定されず、例えば時刻t1~時刻t2までの角加速度(絶対値)の負の値とする。回転盤2の回転速度V2よりも回転リング3の回転速度V3が大きくなる時刻t1~時刻t3の期間を期間tpとする。
(3) Time t2 to time t3
The controller CT keeps the speed Va of the turntable 2 constant, and decreases the rotation speed V3 from the speed Vb to the speed Va. The angular acceleration that reduces the rotation speed V3 is not limited, and is, for example, a negative value of the angular acceleration (absolute value) from time t1 to time t2. A period from time t1 to time t3 in which the rotation speed V3 of the rotating ring 3 is higher than the rotation speed V2 of the rotating disk 2 is defined as a period tp.
 これにより、回転盤2に対し切込み回転リング3が所定の位相角θa(図2参照)だけ周方向位置に位相を生じて維持される。これに伴い、切削チップ56は、位相角に対応した切込み量が付与され、線材WRの周面を旋回しながら線材WRに切り込まれる。このように、制御部CTは、回転盤2の回転速度V2よりも回転リング3の回転速度V3を大きくする期間tpを設けてリング部3aの位相角θaを発生させる。 As a result, the incision rotary ring 3 is maintained at a circumferential position with a predetermined phase angle θa (see FIG. 2) with respect to the rotary disc 2 . Along with this, the cutting tip 56 is provided with a cutting amount corresponding to the phase angle, and cuts into the wire WR while rotating on the peripheral surface of the wire WR. In this way, the control part CT generates the phase angle θa of the ring part 3a by providing a period tp during which the rotational speed V3 of the rotary ring 3 is made higher than the rotational speed V2 of the rotary disk 2 .
(4)時刻t3~時刻t4
 切削チップ56によって、その初期位置での線材WRの所定量の切込み切削が行われる。時刻t3~時刻t4の期間は短期間で十分であり、時刻t3=時刻t4の期間0(ゼロ)であってもよい。
(4) Time t3 to time t4
The cutting tip 56 cuts a predetermined amount of the wire rod WR at its initial position. A short period of time t3 to time t4 is sufficient, and the period of time t3=time t4 may be 0 (zero).
(5)時刻t4~時刻t5~時刻t6
 制御部CTは、送りモータ932を動作させ、送りモータ932の回転速度V932を0(ゼロ)から大きくして時刻t5で速度Vcとし、その後小さくして時刻t6で再び0(ゼロ)とする。回転速度V932を増加及び減少する角加速度及びその時間変化は限定されず、例えば等角加速度とする。
(5) Time t4 to time t5 to time t6
The controller CT operates the feed motor 932, increases the rotation speed V932 of the feed motor 932 from 0 (zero) to the speed Vc at time t5, and then reduces it to 0 (zero) again at time t6. The angular acceleration that increases and decreases the rotation speed V932 and its change over time are not limited, and are, for example, constant angular acceleration.
 回転速度V932の時間変化は、図6において上凸の三角形形状で示されている。送りモータ932の回転速度V932と送りモータ932の回転に伴う切削本体部934の移動速度とは線形の関係を有する。従って、時刻t4~時刻t6の期間の三角形形状の面積A6に対応した距離L6(図1参照)だけ、切削本体部934は線材WRの延在方向に移動する。線材切削装置93が距離L6だけ移動した後の位置を、移動後位置P2とする。これにより、線材WRは、線材切削装置93によって距離L6の範囲が所定の切込み量で切削されて径が小さくなる。 The time change of the rotational speed V932 is indicated by an upwardly convex triangular shape in FIG. The rotational speed V932 of the feed motor 932 and the moving speed of the cutting body 934 accompanying the rotation of the feed motor 932 have a linear relationship. Therefore, the cutting main body 934 moves in the extending direction of the wire rod WR by a distance L6 (see FIG. 1) corresponding to the triangular area A6 during the period from time t4 to time t6. The position after the wire rod cutting device 93 has moved by the distance L6 is defined as the post-movement position P2. As a result, the wire rod WR is cut by the wire rod cutting device 93 with a predetermined depth of cut in the range of the distance L6, thereby reducing the diameter.
 線材切削装置93は、制御部CTの制御により切削本体部934を中心線CL1と平行な方向に移動させる送りモータ932を備える。制御部CTは、切削チップ56が第2位置にあるときに、送りモータ932を動作させて切削本体部934を中心線CL1と平行な方向に移動させる。送りモータ932は図1に示され、制御部CTの制御の下、図6に示すように、期間tpの後に駆動されて切削本体部934を中心線CL1と平行に移動させる。 The wire rod cutting device 93 includes a feed motor 932 that moves a cutting main body 934 in a direction parallel to the center line CL1 under the control of the controller CT. When the cutting tip 56 is at the second position, the controller CT operates the feed motor 932 to move the cutting main body 934 in a direction parallel to the center line CL1. The feed motor 932 shown in FIG. 1 is driven under the control of the controller CT after the period tp to move the cutting body 934 parallel to the center line CL1, as shown in FIG.
 図7は、線材切削装置93によって線材WRの中間部分に径が小さく切削加工された部分を形成した状態を示す図である。この切削した部分を切削部ARと称する。例えば、線材WRは線径Daが3.0mmであって、この線材WRの端部を除く中間部に対し、切削チップ56によって切込み量Dcが0.5mmの切削を行い、線材WRに沿う距離Laの範囲に線径Dbが2.0mmの小径部分である切削部ARが形成される。図7において、切削チップ56は、線材WRを切削しながら初期位置P1から移動後位置P2に移動する。 FIG. 7 is a diagram showing a state in which the wire rod cutting device 93 cuts the intermediate portion of the wire rod WR to have a small diameter. This cut portion is called a cut portion AR. For example, the wire rod WR has a wire diameter Da of 3.0 mm. A cut portion AR, which is a small-diameter portion having a wire diameter Db of 2.0 mm, is formed in the range La. In FIG. 7, the cutting tip 56 moves from the initial position P1 to the post-movement position P2 while cutting the wire rod WR.
 切削本体部934は、図6に示す回転速度V932が正値のとき図1の上流方向に移動し、負値のとき下流方向へ移動する。 The cutting main body 934 moves upstream in FIG. 1 when the rotation speed V932 shown in FIG. 6 has a positive value, and moves downstream when it has a negative value.
(6)時刻t6~時刻t7
 時刻t6以降、移動後位置P2において切削チップ56による線材WRの所定量の切込み切削が行われる。図6の時刻t6~時刻t7の期間は、短期間で十分であり、時刻t6=時刻t7の期間0(ゼロ)であってもよい。
(6) Time t6 to time t7
After time t6, the wire rod WR is cut by a predetermined amount with the cutting tip 56 at the post-movement position P2. A short period of time t6 to time t7 in FIG. 6 is sufficient, and the period of time t6=time t7 may be 0 (zero).
(7)時刻t7~時刻t8~時刻t9
 制御部CTは、回転盤2の回転速度V2及び切込み回転リング3の回転速度V3を、それぞれ時刻t8及び時刻t9で0(ゼロ)とするように減少させる。減少の角加速度は限定されない。ただし、時刻t1~時刻t3で位相を変えた切込み回転リング3を再び初期位相位置とするように、回転速度V3が0(ゼロ)となる時刻t9を時刻t8よりも後に設定する。これにより、チップ送り部5は径方向の外方に移動して切削チップ56は線材WRから離脱する。
(7) Time t7 to time t8 to time t9
The control unit CT reduces the rotation speed V2 of the rotating disk 2 and the rotation speed V3 of the incision rotating ring 3 to 0 (zero) at time t8 and time t9, respectively. The decreasing angular acceleration is not limited. However, the time t9 at which the rotation speed V3 becomes 0 (zero) is set later than the time t8 so that the incision rotary ring 3 whose phase is changed between the time t1 and the time t3 is returned to the initial phase position. As a result, the chip feeder 5 moves radially outward, and the cutting chip 56 is separated from the wire rod WR.
(8)時刻t9~時刻t10~時刻t11
 制御部CTは、時刻t8で回転盤2の回転を止め、時刻t9で切込み回転リング3の回転を止めた後、送りモータ932に対し、時刻t4~時刻t6の動作を逆回転で実行させて切削本体部934を移動後位置P2から初期位置P1へ戻す。
(8) Time t9 to time t10 to time t11
After stopping the rotation of the turntable 2 at time t8 and stopping the rotation of the incision rotary ring 3 at time t9, the control unit CT causes the feed motor 932 to perform the operations from time t4 to time t6 in reverse rotation. The cutting main body 934 is returned from the post-movement position P2 to the initial position P1.
 以上で、線材WRの中間部に径を小さく切削した切削部ARを形成する切削加工動作が終了する。 With the above, the cutting operation for forming the cut portion AR cut to a small diameter in the intermediate portion of the wire rod WR is completed.
 上述のように、線材切削装置93によれば、線材WRに対し、端部を除く中間部に任意の長さの範囲で任意の切込み量で切削加工を施し径が縮小した切削部ARを形成できる。
 線材切削装置93は、回転盤2及び切込み回転リング3と、方向転換部Eを含んで切削チップ56を線材WRに切り込ませることができるチップ送り部5を有している。これにより、制御部CTが切込み回転リング3の回転速度V3が回転盤2の回転速度V2よりも大きくなる期間を設けることで、その期間に応じた切込み量で3つの切削チップ56の線材WRへの切込みを高精度に行うことができる。そのため、線材切削装置93は、構造が簡単で、切込み量の制御が容易で、切削の仕上がりが良好である。
As described above, according to the wire rod cutting device 93, the wire rod WR is cut at the intermediate portion excluding the end portion of the wire rod WR with an arbitrary depth of cut within an arbitrary length range to form a cut portion AR with a reduced diameter. can.
The wire rod cutting device 93 has a rotating disk 2, a cutting rotating ring 3, and a chip feeder 5 including a direction changing portion E and capable of cutting the cutting chip 56 into the wire rod WR. As a result, the control unit CT sets a period in which the rotation speed V3 of the cutting rotary ring 3 is higher than the rotation speed V2 of the rotary disk 2, so that the wire rod WR of the three cutting tips 56 is cut by a cutting amount corresponding to the period. can be cut with high accuracy. Therefore, the wire rod cutting device 93 has a simple structure, can easily control the depth of cut, and can finish cutting well.
 また、線材切削装置93は、アンコイラ91と線材加工装置95との間にインラインで設置できる。これにより、中間部の線径が異なる製品を同一ラインで生産できるので、少量多品種の生産が可能であり、生産効率が向上する。 Also, the wire rod cutting device 93 can be installed inline between the uncoiler 91 and the wire rod processing device 95 . As a result, products with different wire diameters in the intermediate portion can be produced on the same line, so production of a wide variety of products in small quantities is possible, improving production efficiency.
 本発明は、上述した構成に限定されるものではなく、本発明の要旨を逸脱しない範囲において変形可能である。例えば、回転盤2の回転速度V2よりも切込み回転リング3の回転速度V3を小さくしても、ずれていた位相を小さくすることができる。制御部CTは、回転盤2の回転速度V2よりも切込み回転リング3の回転速度V3を大きくする期間tpを設けることに限定されず、回転盤2の回転速度V2よりも切込み回転リング3の回転速度V3を小さくする期間を設けてもよい。このように、回転盤2の回転速度V2と切込み回転リング3の回転速度V3とを異ならせることによって、切込み回転リング3は回転盤2に対する位相を調整することが可能である。 The present invention is not limited to the configuration described above, and can be modified without departing from the gist of the present invention. For example, even if the rotation speed V3 of the incision rotary ring 3 is lower than the rotation speed V2 of the rotary disk 2, the shifted phase can be reduced. The control unit CT is not limited to providing the period tp during which the rotation speed V3 of the rotary cutting ring 3 is higher than the rotation speed V2 of the rotary disk 2, and the rotation speed of the rotary cutting ring 3 is higher than the rotation speed V2 of the rotary disk 2. A period during which the speed V3 is reduced may be provided. Thus, by making the rotational speed V2 of the rotating disk 2 and the rotating speed V3 of the rotating incision ring 3 different, it is possible to adjust the phase of the rotating incising ring 3 with respect to the rotating disk 2 .
(変形例1)
 図8は、図6に示す実施例の回転速度と時間との関係の変形例1を示すグラフである。変形例1は、回転速度V2及び回転速度V3の時間変化は図6に示す実施例のそれと同じであり、切削チップ56による線材WRの切削中に、送りモータ932による切削本体部934の移動を、上述の片道移動ではなく往復移動とする例である。
(Modification 1)
FIG. 8 is a graph showing a modified example 1 of the relationship between the rotational speed and time of the embodiment shown in FIG. Modification 1 has the same temporal changes in rotational speed V2 and rotational speed V3 as in the embodiment shown in FIG. , is an example of reciprocating movement instead of the one-way movement described above.
 図8における時刻t11~t13、及び時刻t27~t29は、それぞれ実施例の図6における時刻t1~t3、及び時刻t7~t9に対応する。また、回転速度Va1、Vb1、Vc1、Vd1は、それぞれ実施例の図6における回転速度Va、Vb、Vc、Vdに対応する。 Time t11 to t13 and time t27 to t29 in FIG. 8 respectively correspond to time t1 to t3 and time t7 to t9 in FIG. 6 of the embodiment. Further, the rotational speeds Va1, Vb1, Vc1 and Vd1 correspond to the rotational speeds Va, Vb, Vc and Vd in FIG. 6 of the embodiment, respectively.
 制御部CTは送りモータ932を駆動させて、切削本体部934の切削チップ56の位置を、時刻t14~t17の期間で初期位置P1から移動後位置P2に移動させ、時刻t17~t20の期間で移動後位置P2から初期位置P1に戻す。さらに、制御部CTは、切削本体部934を時刻t20~t23の期間で切削チップ56の位置を初期位置P1から移動後位置P2に移動させ、時刻t23~t26の期間で切削チップ56の位置を移動後位置P2から初期位置P1に戻す。すなわち、制御部CTは、切削本体部934を、線材WRを切削しつつ所定の距離で2往復させる。 The controller CT drives the feed motor 932 to move the position of the cutting tip 56 of the cutting main body 934 from the initial position P1 to the post-movement position P2 during the period from time t14 to t17, and from time t17 to t20. It is returned from the post-movement position P2 to the initial position P1. Further, the controller CT moves the cutting body 934 from the initial position P1 to the post-movement position P2 during the period from time t20 to t23, and moves the position of the cutting tip 56 during the period from time t23 to t26. It is returned from the post-movement position P2 to the initial position P1. That is, the controller CT causes the cutting main body 934 to reciprocate twice at a predetermined distance while cutting the wire rod WR.
 この往復動作により、切削部ARの仕上がりが良好となる。また、切削チップ56による切込み量が大きい場合には、切込み量を分割して往復させることになるので切削負荷が減少し、切削チップ56の長寿命化が図れる。 This reciprocating motion improves the finish of the cutting part AR. Further, when the depth of cut by the cutting tip 56 is large, the cutting depth is divided and reciprocated, so the cutting load is reduced and the life of the cutting tip 56 can be extended.
(変形例2)
 図9は、図6に示す実施例の回転速度と時間との関係の変形例2を示すグラフである。変形例2は、回転盤2及び切込み回転リング3の立ち上がりの特性を変えたものである。制御部CTは、切込み量に対応する、回転盤2に対する回転リング3におけるリング部3aの正の位相角θaを、回転停止状態から所定の回転速度Va2へ立ち上げる角加速度を回転数増加の初めから異ならせることで得ている。具体的には、制御部CTは、回転盤2の回転速度V2を、回転数0(ゼロ)から時刻t32で回転速度Va2に達する角加速度で増加するのに対し、切込み回転リング3の回転速度V3は、回転数(ゼロ)から時刻t32よりも前の時刻t31で回転速度Va2に達する角加速度で増加する。
(Modification 2)
FIG. 9 is a graph showing a modified example 2 of the relationship between the rotational speed and time of the embodiment shown in FIG. Modification 2 is obtained by changing the rising characteristics of the rotating disk 2 and the cutting rotating ring 3 . At the beginning of the rotation speed increase, the control unit CT raises the positive phase angle θa of the ring portion 3a of the rotating ring 3 with respect to the rotating disk 2 from the rotation stop state to a predetermined rotation speed Va2, which corresponds to the depth of cut. obtained by differentiating from Specifically, the control unit CT increases the rotation speed V2 of the rotating disk 2 from the rotation speed 0 (zero) with an angular acceleration that reaches the rotation speed Va2 at time t32, while the rotation speed of the incision rotating ring 3 V3 increases with angular acceleration from the number of rotations (zero) to reach the rotation speed Va2 at time t31 before time t32.
 この変形例2の方法では、切削本体部934は、回転速度V3が所定の回転速度Va2に達する前に線材WRへの切込みを開始する。そのため、線材WRが快削材である場合などにおいて、切削チップ56への負荷を少なくしつつ切削時間を短縮することができる。 In the method of Modification 2, the cutting main body 934 starts cutting into the wire rod WR before the rotation speed V3 reaches the predetermined rotation speed Va2. Therefore, when the wire rod WR is a free-cutting material, the cutting time can be shortened while reducing the load on the cutting tip 56 .
(変形例3)
 図10は、図6に示す実施例の回転速度と時間との関係の変形例3を示すグラフである。変形例3は、変形例2と同様に、回転盤2及び切込み回転リング3の立ち上がりの特性を変えたものである。制御部CTは、切込み量に対応する、切込み回転リング3におけるリング部3aの正の位相角θaを、回転停止状態から所定の回転速度Va2へ立ち上げる角加速度を回転数増加の途中から異ならせることで得ている。具体的には、制御部CTは、回転速度V2と回転速度V3とを、回転速度0(ゼロ)から時刻t41まで同じ角加速度で増加し、時刻t41から角加速度を変えて回転速度V2は時刻t43で所定の回転速度Va3にし、回転速度V3は時刻t43よりも前の時刻t42で所定の回転速度Va3に達するようにする。
(Modification 3)
FIG. 10 is a graph showing a modified example 3 of the relationship between the rotational speed and time of the embodiment shown in FIG. Modification 3 is similar to Modification 2 in that the rising characteristics of the rotating disk 2 and the incision rotating ring 3 are changed. The control part CT varies the angular acceleration for raising the positive phase angle θa of the ring portion 3a of the incision rotary ring 3 from the rotation stop state to a predetermined rotational speed Va2 from the middle of the rotation speed increase, which corresponds to the incision amount. I get it by Specifically, the control unit CT increases the rotation speed V2 and the rotation speed V3 at the same angular acceleration from the rotation speed 0 (zero) to the time t41, and changes the angular acceleration from the time t41 to increase the rotation speed V2 to the time At t43, the rotational speed Va3 is set to a predetermined value, and the rotational speed V3 reaches the predetermined rotational speed Va3 at time t42, which is earlier than time t43.
 この変形例3の方法では、回転速度V3が比較的低速の段階では線材WRへの切込みが行われず、回転速度V3がある程度上昇してから線材WRへの切込みが開始する。そのため、線材WRが快削材でないなどにおいて、低速での切削は回避され、切削チップ56への負荷を抑制しつつ切削時間を短縮できる。 In the method of Modified Example 3, cutting into the wire WR is not performed when the rotational speed V3 is relatively low, and cutting into the wire WR starts after the rotational speed V3 rises to some extent. Therefore, when the wire rod WR is not a free-cutting material, cutting at a low speed can be avoided, and the cutting time can be shortened while suppressing the load on the cutting tip 56 .
 実施例と変形例3とを組み合わせることができ、実施例と変形例4とを組み合わせることができる。変形例1と変形例3とを組み合わせることができ、変形例1と変形例4とを組み合わせることができる。 The embodiment and modification 3 can be combined, and the embodiment and modification 4 can be combined. Modification 1 and Modification 3 can be combined, and Modification 1 and Modification 4 can be combined.
 本願は、2021年6月29日に日本国特許庁に出願された特願2021-107412号に基づく優先権を主張するものであり、その全ての開示内容は引用によりここに援用される。 This application claims priority based on Japanese Patent Application No. 2021-107412 filed with the Japan Patent Office on June 29, 2021, the entire disclosure of which is incorporated herein by reference.

Claims (6)

  1.  中心線を中心として回転する回転盤と、前記中心線を中心として回転し、前記回転盤の径方向の外側にリング状のリング部を有する回転リングとを含んで前記中心線と平行な方向に移動する切削本体部を備え、
     前記回転盤は、
     切削チップと、
     前記切削チップが取り付けられ、前記切削チップが前記中心線上に配置された線材に対して離隔した第1位置と前記線材に切り込む第2位置との間で移動するように径方向に移動するスライダと、
     前記切削チップが、前記第1位置における前記回転盤に対する前記リング部の回転方向の位置である初期位相位置からの前記リング部の位相角に応じた距離で前記第2位置に向けて移動するよう、前記スライダを移動させる方向変換部と、
     を含む線材切削装置。
    and a rotating ring that rotates about the center line and has a ring-shaped ring portion on the radially outer side of the rotating disc, and rotates in a direction parallel to the center line. Equipped with a moving cutting body,
    The rotating disk is
    a cutting tip;
    a slider on which said cutting tip is mounted and which moves radially so that said cutting tip moves between a first position spaced relative to a wire disposed on said centerline and a second position for cutting into said wire; ,
    so that the cutting tip moves toward the second position at a distance corresponding to the phase angle of the ring from an initial phase position, which is the position in the rotational direction of the ring with respect to the rotating disk at the first position. , a direction changer for moving the slider;
    wire rod cutting equipment including;
  2.  前記方向変換部は、
     前記リング部に取り付けられたカムプッシャと、
     前記回転盤に取り付けられ、前記カムプッシャに当接し、前記リング部の位相角に応じた回動角度で回動することで前記スライダを前記中心線に向けて押して前記回動角度に応じた距離で移動させるカムレバーと、
     を有する請求項1記載の線材切削装置。
    The direction changing unit is
    a cam pusher attached to the ring portion;
    It is attached to the rotating disk, abuts on the cam pusher, and rotates at a rotation angle corresponding to the phase angle of the ring portion, thereby pushing the slider toward the center line and moving a distance corresponding to the rotation angle. a cam lever to move,
    The wire rod cutting device according to claim 1, comprising:
  3.  前記回転盤を回転させる第1モータと、
     前記回転リングを回転させる第2モータと、
     前記第1モータ及び前記第2モータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記回転盤の回転速度と前記回転リングの回転速度とを異ならせた期間を設けて前記リング部の前記位相角を発生させる
     請求項1に記載の線材切削装置。
    a first motor that rotates the turntable;
    a second motor for rotating the rotating ring;
    a control unit that controls operations of the first motor and the second motor;
    with
    The wire rod cutting apparatus according to claim 1, wherein the control section generates the phase angle of the ring section by providing a period in which the rotational speed of the rotating disk and the rotational speed of the rotating ring are different.
  4.  前記回転盤を回転させる第1モータと、
     前記回転リングを回転させる第2モータと、
     前記第1モータ及び前記第2モータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記回転盤の回転速度と前記回転リングの回転速度とを異ならせた期間を設けて前記リング部の前記位相角を発生させる
     請求項2に記載の線材切削装置。
    a first motor that rotates the turntable;
    a second motor for rotating the rotating ring;
    a control unit that controls operations of the first motor and the second motor;
    with
    The wire rod cutting apparatus according to claim 2, wherein the control section generates the phase angle of the ring section by setting a period in which the rotation speed of the rotating disk and the rotation speed of the rotating ring are different.
  5.  前記制御部の制御により前記切削本体部を前記中心線と平行な方向に移動させる第3モータを備え、
     前記制御部は、前記切削チップが前記第2位置にあるときに、前記第3モータを動作させて前記切削本体部を前記中心線と平行な方向に移動させる
     請求項3記載の線材切削装置。
    A third motor for moving the cutting main body in a direction parallel to the center line under the control of the control unit,
    The wire rod cutting device according to claim 3, wherein the control unit operates the third motor to move the cutting main body in a direction parallel to the center line when the cutting tip is at the second position.
  6.  線材のコイルから前記線材を引き出すアンコイラと、
     前記アンコイラから引き出された前記線材を直線状に走行するよう位置決めする第1線材把持装置及び第2線材把持装置と、
     前記第2線材把持装置からの前記線材を加工する線材加工装置と、
     前記第1線材把持装置と前記第2線材把持装置との間に配置された線材切削装置と、
     を備え、
     前記線材切削装置は、請求項1~5のいずれか1項に記載の線材切削装置であり、
     前記第1線材把持装置及び前記第2線材把持装置は、前記線材を前記線材切削装置における前記中心線上に位置決めする
     線材加工システム。
    an uncoiler for pulling out the wire from a coil of wire;
    a first wire rod gripping device and a second wire rod gripping device that position the wire pulled out from the uncoiler so that it travels linearly;
    a wire rod processing device for processing the wire rod from the second wire rod gripping device;
    a wire rod cutting device disposed between the first wire rod gripping device and the second wire rod gripping device;
    with
    The wire rod cutting device is the wire rod cutting device according to any one of claims 1 to 5,
    The wire rod processing system, wherein the first wire rod gripping device and the second wire rod gripping device position the wire rod on the center line of the wire rod cutting device.
PCT/JP2022/022881 2021-06-29 2022-06-07 Wire cutting device and wire machining system WO2023276573A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023531738A JPWO2023276573A1 (en) 2021-06-29 2022-06-07
CN202280046681.8A CN117580665A (en) 2021-06-29 2022-06-07 Wire cutting device and wire processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-107412 2021-06-29
JP2021107412 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276573A1 true WO2023276573A1 (en) 2023-01-05

Family

ID=84690282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022881 WO2023276573A1 (en) 2021-06-29 2022-06-07 Wire cutting device and wire machining system

Country Status (4)

Country Link
JP (1) JPWO2023276573A1 (en)
CN (1) CN117580665A (en)
TW (1) TWI808818B (en)
WO (1) WO2023276573A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548502A (en) * 1978-09-29 1980-04-07 Kieserling & Albrecht Cutter head for duplicating cutting of bar material* pipe* wire rod* etc*
CN1806982A (en) * 2006-01-26 2006-07-26 刘庆国 Round section tubing slitting mill
JP2012210666A (en) * 2011-03-30 2012-11-01 Noritz Corp Method for manufacturing flange-integrated corrugated tube, flange-integrated corrugated tube, and device for cutting corrugated tube used for the manufacturing method
JP2013121182A (en) * 2011-12-06 2013-06-17 Nittoku Eng Co Ltd Apparatus and method for peeling off film of wire rod
JP2013165583A (en) * 2012-02-10 2013-08-22 Aisin Aw Co Ltd Peeling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798162B2 (en) * 2013-09-17 2015-10-21 株式会社板屋製作所 Wire forming equipment
TWM501903U (en) * 2015-02-13 2015-06-01 Cheng I Drawing Machinery Co Ltd Turning structure of wire head turning machine
TWI619563B (en) * 2015-09-24 2018-04-01 成鈺興業有限公司 A carrying handle automatic threading molding machine
US20180133915A1 (en) * 2016-11-11 2018-05-17 Gelmini Srl Apparatus for processing a food product and corresponding method
CN110935788A (en) * 2019-11-27 2020-03-31 常德博嘉电子科技有限公司 Automatic copper foil wrapping machine for wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548502A (en) * 1978-09-29 1980-04-07 Kieserling & Albrecht Cutter head for duplicating cutting of bar material* pipe* wire rod* etc*
CN1806982A (en) * 2006-01-26 2006-07-26 刘庆国 Round section tubing slitting mill
JP2012210666A (en) * 2011-03-30 2012-11-01 Noritz Corp Method for manufacturing flange-integrated corrugated tube, flange-integrated corrugated tube, and device for cutting corrugated tube used for the manufacturing method
JP2013121182A (en) * 2011-12-06 2013-06-17 Nittoku Eng Co Ltd Apparatus and method for peeling off film of wire rod
JP2013165583A (en) * 2012-02-10 2013-08-22 Aisin Aw Co Ltd Peeling device

Also Published As

Publication number Publication date
TW202301767A (en) 2023-01-01
TWI808818B (en) 2023-07-11
CN117580665A (en) 2024-02-20
JPWO2023276573A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US9327358B2 (en) Method for processing gear and cutter for processing gear
EP1017515B1 (en) Spinning processing method and apparatus therefor
JP6814766B2 (en) Motor stator and rotary electric machine
JP5761577B2 (en) Crown gear manufacturing apparatus and method
CN101412058B (en) Rotary extrusion forming method of non-circular cross-section parts and equipment thereof
CN106181061B (en) It is used to implement the laser processing device and method of circular hole cutting
JP2006326825A (en) Method for precisely machining gear section, and machine tool having measuring instrument
JP2008155215A (en) Spring manufacturing machine
CN101618470A (en) Device and method for processing threads of lead screw
KR102644898B1 (en) Double screw body manufacturing method, double screw body manufacturing program
CN102366889A (en) Automatic high-speed precision numerical control machine tool for cutting spherical surface
WO2023276573A1 (en) Wire cutting device and wire machining system
JPWO2011132251A1 (en) Conical spring load characteristic adjustment system
WO2013041404A2 (en) Movement device, particularly for cutting torches of the plasma type and the like
JP2010260110A (en) Machining apparatus and machining method
EP3184190B1 (en) Servo-rotating all-function tool module for use with spring forming machine
EP2714328B1 (en) Machine tools and methods of operation thereof
JP2005297041A (en) Method and apparatus for forming pipe
CN101306479A (en) Object surface cutting device and surface cutting method
EP4353389A1 (en) Gear-manufacturing apparatus, gear-manufacturing method, and threaded tool used in same
JP2001336596A (en) Feeding device for ball screw
CN208744505U (en) A kind of cutting machine
CN113015585B (en) Workpiece cold press forming device and method
CN108500808A (en) A kind of cutting machine
JP4730831B2 (en) Tool post cutting device, guide bush tool used therefor, and rod processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531738

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280046681.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832730

Country of ref document: EP

Kind code of ref document: A1