WO2023276387A1 - エロージョン推定方法 - Google Patents

エロージョン推定方法 Download PDF

Info

Publication number
WO2023276387A1
WO2023276387A1 PCT/JP2022/016218 JP2022016218W WO2023276387A1 WO 2023276387 A1 WO2023276387 A1 WO 2023276387A1 JP 2022016218 W JP2022016218 W JP 2022016218W WO 2023276387 A1 WO2023276387 A1 WO 2023276387A1
Authority
WO
WIPO (PCT)
Prior art keywords
erosion
steam
pressure
substance
detected
Prior art date
Application number
PCT/JP2022/016218
Other languages
English (en)
French (fr)
Inventor
茂樹 妹尾
創一朗 田畑
徹哉 澤津橋
Original Assignee
三菱パワー株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 三菱重工業株式会社 filed Critical 三菱パワー株式会社
Priority to JP2023531453A priority Critical patent/JPWO2023276387A1/ja
Priority to CN202280036969.7A priority patent/CN117355664A/zh
Priority to KR1020237039351A priority patent/KR20230169348A/ko
Priority to DE112022001873.9T priority patent/DE112022001873T5/de
Publication of WO2023276387A1 publication Critical patent/WO2023276387A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • Patent Document 1 a method of inspecting the water quality of feed water has also been proposed in order to detect corrosion in each part of a steam turbine system.
  • the present disclosure has been made to solve the above problems, and aims to provide an erosion estimation method capable of estimating the progress of erosion simply and at low cost.
  • an erosion estimation method for estimating the progress of erosion of a final stage rotor blade of a steam turbine, wherein sampling feedwater containing a detection target substance from a water supply line connected to the steam turbine; measuring the concentration of the detection target substance in the sampled feedwater; and estimating the progress of erosion.
  • FIG. 1 is a system diagram showing the configuration of a steam turbine system according to an embodiment of the present disclosure
  • FIG. 1 is a schematic diagram showing the configuration of a steam turbine according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing the configuration of a final stage rotor blade according to an embodiment of the present disclosure
  • 4 is a flow chart illustrating the steps of an erosion estimation method according to an embodiment of the present disclosure
  • 4 is a graph showing an example of the degree of progress of erosion in the final stage rotor blade.
  • FIG. 4 is a system diagram showing a modification of the steam turbine system according to the embodiment of the present disclosure
  • FIG. 1 the steam turbine system 100, the final stage rotor blade 90, and the erosion estimation method according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 4.
  • FIG. 1 the steam turbine system 100, the final stage rotor blade 90, and the erosion estimation method according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 4.
  • FIG. 1 the steam turbine system 100, the final stage rotor blade 90, and the erosion estimation method according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 4.
  • the steam turbine system 100 includes a steam turbine 1, a condenser 2, a condensate pump 3, a low pressure economizer 41, an intermediate pressure economizer 43, and a high pressure economizer 42.
  • a feedwater pump 5 a high-pressure evaporator 61, a medium-pressure evaporator 62, a low-pressure evaporator 63, a high-pressure drum 71, a medium-pressure drum 72, a low-pressure drum 73, a high-pressure superheater 81, and a medium-pressure A superheater 82, a low pressure superheater 83, a reheater 9, a sampling line 10, a feed water line 30, a high pressure steam line 51, an intermediate pressure steam line 52, a low pressure steam line 53, and a extraction line 54. , and a reheat steam line 55 .
  • the steam turbine 1 has a rotating shaft 11 , a casing 12 , a rotor blade row 16 and a stator blade row 18 .
  • the rotating shaft 11 extends along the axis O and is rotatable around the axis O.
  • a pair of journal bearings 14 and one thrust bearing 15 are provided at the shaft ends of the rotating shaft 11 .
  • the journal bearing 14 supports radial loads on the rotating shaft 11 .
  • the thrust bearing 15 supports a load in the direction of the axis O with respect to the rotating shaft 11 .
  • a plurality of rotor blade rows 16 arranged at intervals in the direction of the axis O are provided on the outer peripheral surface of the rotating shaft 11 .
  • Each rotor blade row 16 has a plurality of rotor blades 17 arranged at intervals in the circumferential direction with respect to the axis O.
  • the moving blade 17 included in the moving blade row 16 positioned on the most one side in the direction of the axis O among the plurality of moving blade rows 16 is the final stage moving blade 90 .
  • the casing 12 covers the rotating shaft 11 and the rotor blade row 16 from the outer peripheral side.
  • the casing 12 has a tubular shape centered on the axis O.
  • a steam supply port 12a for introducing steam from the outside is formed on the other side of the casing 12 in the direction of the axis O.
  • a steam discharge port 12b for guiding steam to the outside is formed on one side of the casing 12 in the direction of the axis O.
  • a steam passage is provided between the steam supply port 12a and the steam discharge port 12b.
  • the upstream side the side where the steam supply port 12a is located when viewed from the steam discharge port 12b
  • the opposite side is called the downstream side.
  • a plurality of rows of stationary blades 18 arranged at intervals in the direction of the axis O are provided on the inner peripheral surface of the casing 12 .
  • Each stator blade row 18 has a plurality of stator blades 19 arranged at intervals in the circumferential direction with respect to the axis O.
  • the stator blade rows 18 and the rotor blade rows 16 are alternately arranged in the axis O direction. That is, one rotor blade row 16 is arranged downstream of one stator blade row 18 .
  • the final stage rotor blade 90 has a blade body 91 and an erosion shield 92 .
  • the blade main body 91 extends radially outward from the outer peripheral surface of the rotating shaft 11 described above. When viewed from the radial direction, the cross-sectional shape of the blade main body 91 forms an airfoil shape with a leading edge on the upstream side.
  • An erosion shield 92 is provided on the leading edge side of the tip of the blade main body 91 (that is, the portion including the radially outer end). The erosion shield 92 is provided to prevent erosion from occurring on the surface of the final stage moving blade 90 due to droplets scattered from the row of stator blades 18 on the upstream side.
  • the erosion shield 92 is integrally formed of stellite.
  • Stellite is a metallic material containing cobalt as a main component. Although the details will be described later, in this embodiment, the cobalt element contained in the stellite is called a substance to be detected.
  • a water supply line 30 is connected to the downstream side of the steam turbine 1 (that is, the steam discharge port 12b).
  • a condenser 2 , a condensate pump 3 , a sampling line 10 , a low-pressure economizer 41 , and a feedwater pump 5 are provided on the feedwater line 30 in this order from the steam turbine 1 side.
  • the condenser 2 is a device for cooling the low-pressure steam discharged from the steam turbine 1 and returning it to liquid water.
  • the condensate pump 3 pumps this liquid water downstream on the water supply line.
  • the sampling line 10 is a pipe for taking out part of the water supply flowing through the water supply line 30 to the outside.
  • a low pressure economizer 41 is provided for preheating the feed water.
  • the water supply pump 5 further pumps water in the water supply line 30 .
  • the downstream end of the water supply line 30 is connected to the high pressure economizer 42 .
  • a first branch line 31 is connected between the low-pressure economizer 41 and the water supply pump 5 in the water supply line 30 .
  • a downstream end of the first branch line 31 is connected to a low-pressure evaporator 63, which will be described later.
  • a second branch line 32 is connected to the downstream side of the water supply pump 5 in the water supply line 30 .
  • the downstream end of the second branch line 32 is connected to the medium pressure economizer 43 .
  • the medium-pressure economizer 43 and the high-pressure economizer 42 are devices for preheating feed water.
  • Feed water preheated by the low-pressure economizer 41 is sent to the low-pressure evaporator 63 .
  • the low pressure evaporator 63 further heats the feed water to produce low pressure steam.
  • the feed water preheated by the medium pressure economizer 43 is sent to the medium pressure evaporator 62 .
  • Medium pressure evaporator 62 further heats the feed water to produce medium pressure steam.
  • the feed water preheated by the high pressure economizer 42 is sent to the high pressure evaporator 61 .
  • the high pressure evaporator 61 further heats the feed water to produce high pressure steam.
  • the high-pressure drum 71 is provided for gas-liquid separation of the high-pressure steam generated by the high-pressure evaporator 61 .
  • a gas-phase component of the gas-liquid separation is sent to the high-pressure superheater 81 through the high-pressure steam line 51 .
  • the high-pressure superheater 81 superheats high-pressure steam to generate high-pressure superheated steam.
  • the high pressure superheated steam is sent to the steam turbine 1 through the high pressure steam line 51 .
  • the medium-pressure drum 72 is provided for gas-liquid separation of the medium-pressure steam generated by the medium-pressure evaporator 62 .
  • a gas-phase component of the separated gas-liquid is sent to the medium-pressure superheater 82 through the medium-pressure steam line 52 .
  • the intermediate pressure superheater 82 superheats the intermediate pressure steam to generate intermediate pressure superheated steam.
  • the medium-pressure superheated steam is sent to the reheater 9 through the medium-pressure steam line 52 .
  • the reheater 9 further heats the medium-pressure superheated steam.
  • the superheated steam heated by the reheater 9 is sent to the steam turbine 1 through the reheat steam line 55 . Further, part of the steam extracted from the steam turbine 1 flows into the reheater 9 through the extraction line 54 . This extracted steam is also heated by the reheater 9 and then supplied to the steam turbine 1 through the reheat steam line 55 .
  • the low-pressure drum 73 is provided for gas-liquid separation of the low-pressure steam generated by the low-pressure evaporator 63.
  • a gas-phase component of the gas-liquid separation is sent to the low-pressure superheater 83 through the low-pressure steam line 53 .
  • the low-pressure superheater 83 superheats low-pressure steam to generate low-pressure superheated steam.
  • the low pressure superheated steam is sent to the steam turbine 1 through the low pressure steam line 53 .
  • the method for estimating erosion comprises step S1 of sampling water, step S2 of measuring the concentration of a substance to be detected in the water, and estimating the progress of erosion from the concentration.
  • step S1 part of the water supply is collected through the collection line 10 described above.
  • part of the erosion shield 92 described above is eroded, and a part of the component is contained in the water supply. Therefore, in the present embodiment, the cobalt element contained in the stellite that forms the erosion shield 92 is used as the substance to be detected.
  • step S2 the concentration of cobalt element contained in the sampled water is measured.
  • a plasma emission mass spectrometer is preferably used for concentration measurement.
  • the progress of erosion is estimated based on the cobalt element concentration measured in step S2.
  • erosion is known to follow a time change as shown in the graph of FIG.
  • the horizontal axis of the graph in FIG. 5 is not real time, but equivalent time represented by a function with variables of steam wetness, steam turbine output, and steam flow rate.
  • the vertical axis of the graph represents the progress of erosion. As shown by the curve in the figure, almost no erosion or very little erosion occurs until a certain period of time (initial t1) has elapsed from the start of operation. On the other hand, in a period (transitional period t2) after the initial period t1, erosion progresses rapidly.
  • step S3 the progress of erosion is estimated by comparing with the graph of FIG. 5 based on the amount of time change of the cobalt element. In other words, from the amount of time change of the cobalt element, it is estimated which period in the graph of FIG. 5 corresponds to the current progress of erosion.
  • step S4 it is determined whether or not the progress of erosion is greater than or equal to a threshold.
  • step S4: Yes the last-stage moving blade 90 is replaced or repaired in subsequent step S5.
  • step S4: No steps S1 to S4 are repeated again. All steps of the erosion estimation method according to the present embodiment are completed as described above.
  • the progress of erosion of the last-stage rotor blade 90 can be detected by simply measuring the concentration of the substance to be detected in the feed water without opening the casing 12 of the steam turbine 1. can be estimated.
  • inspection work that involves opening the casing 12 incurs a cost for the work itself, and a large cost for the user because the vehicle cannot be operated during the inspection period.
  • the erosion shield 92 where erosion is most likely to concentrate contains the substance to be detected that is not used in other parts of the steam turbine.
  • the progress of erosion can be estimated with high accuracy based on the concentration of the substance to be detected.
  • the cobalt element is used as the substance to be detected. Cobalt is not used in other parts, and since it exhibits properties similar to those of iron (Fe), it is easy to divert the existing monitoring equipment that was installed for the purpose of detecting iron to estimating erosion. becomes possible.
  • Fe iron
  • the degree of progress of erosion can be estimated by sampling the relatively low-temperature water flowing between the condensate pump 3 and the economizer (low-pressure economizer 41).
  • the burden on the operator can be reduced.
  • the cobalt element contained in the stellite that forms the erosion shield is used as the substance to be detected.
  • the substance to be detected instead of the cobalt element, it is also possible to use a radioactive element impregnated in the final stage rotor blade 90 in advance.
  • a radioactive element is used as the substance to be detected. Radioactive elements are not used in other parts of the steam turbine. Therefore, by using a radioactive element as a substance to be detected, the progress of erosion can be estimated clearly and with high accuracy.
  • a condenser 2 In the thermal power generation system 200, a condenser 2, a condensate pump 3, a sampling line 10, a demineralizer 4b, a condensate booster pump 3b, a plurality of A low-pressure heater 5b, a deaerator 6b, a feedwater pump 7b, a plurality of high-pressure heaters 8b, an economizer 9b, a furnace 10b, and a superheater 11b are provided.
  • the superheated steam generated by the superheater 11b is sent to the steam turbine 1 through the high pressure steam line 51b. Also, part of the steam in the steam turbine 1 is sent to the reheater 13b through the extraction line 52b.
  • the steam heated by the reheater 13b is sent to the steam turbine 1 through the reheat steam line 53b.
  • the sampling line 10 may be provided anywhere within the section from the condenser 2 to the low-pressure heater 5b in the water supply line 30b.
  • An erosion estimation method is an erosion estimation method for estimating the degree of progress of erosion of a final stage rotor blade 90 of a steam turbine 1. a step S1 of sampling feedwater containing a detection target substance from the water supply lines 30, 30b connected to the steam turbine 1; and a step S2 of measuring the concentration of the detection target substance in the sampled feedwater. , and a step S3 of estimating the progress of erosion based on said density.
  • the final stage rotor blade 90 is provided on the blade main body 91 and the leading edge side of the tip portion of the blade main body 91, and is formed of a material containing the detection target substance. and an erosion shield 92 .
  • the detection target substance is contained in the erosion shield 92 where erosion is most likely to concentrate. As a result, progress of erosion can be detected with higher accuracy.
  • the final stage rotor blade 90 may have a blade main body 91 and the detection target substance embedded in the blade main body 91 .
  • the substance to be detected may be cobalt element.
  • the cobalt element is used as the substance to be detected. Since the cobalt element exhibits properties similar to those of iron (Fe), it is possible to easily divert the existing monitoring equipment provided for the purpose of detecting iron content to the estimation of erosion.
  • the substance to be detected may be a radioactive element impregnated in the last stage rotor blade 90 in advance.
  • radioactive elements are used as substances to be detected. Radioactive elements are not used in other parts of steam turbine 1 . Therefore, by using a radioactive element as a substance to be detected, the progress of erosion can be estimated clearly and with high accuracy.
  • the condenser 2 that cools the steam discharged from the steam turbine 1 and returns it to water, and the condenser provided downstream of the condenser 2 A pump 3, an economizer (low-pressure economizer 41) provided downstream of the condensate pump 3 for preheating the water, and heating the water preheated by the economizer to generate steam.
  • the condenser 2 that cools the steam discharged from the steam turbine 1 and returns it to water
  • the condenser provided downstream of the condenser 2 A pump 3
  • an economizer low-pressure economizer 41
  • the feed water may be collected from between the condensate pump 3 and the economizer.
  • the progress of erosion can be estimated by sampling the relatively low-temperature water flowing between the condensate pump 3 and the low-pressure economizer 41 .
  • the burden on the operator can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Thermal Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

蒸気タービンの最終段動翼のエロージョンの進行度を推定するエロージョン推定方法であって、最終段動翼を構成する材料に含まれる検知対象物質を含む給水を、蒸気タービンに接続された給水ライン上から採取するステップと、採取された給水中における検知対象物質の濃度を計測するステップと、濃度に基づいてエロージョンの進行度を推定するステップと、を含む。 

Description

エロージョン推定方法
 本開示は、エロージョン推定方法に関する。
 本願は、2021年6月30日に日本に出願された特願2021-109140号について優先権を主張し、その内容をここに援用する。
 蒸気タービンでは、静翼の表面で凝縮した水滴が蒸気流に乗って飛散し、下流側の動翼の表面に当該水滴が衝突することでエロージョンを生じることがある。特に最終段動翼でエロージョンが発生しやすいことが知られている。このようなエロージョンが進行すると翼の強度に影響が及ぶ可能性がある。
 従来は、蒸気タービンの定期点検時にタービンケーシングを開放して翼を露出させ、エロージョンの進行度を実際に計測して評価する方法が採られていた。しかしながら、タービンケーシングの開放には多大な時間とコストがかかることから、近年ではその頻度を減らしたという要請がある。
 一方で、下記特許文献1に示されるように、蒸気タービンシステムの各部の腐食を検知するために、給水の水質検査を行う方法も従来提唱されている。
特開2019-178824号公報
 しかしながら、給水の水質からエロージョンの進行度を推定する方法は確立されていなかった。
 本開示は上記課題を解決するためになされたものであって、簡易かつ低コストでエロージョンの進行度を推定することが可能なエロージョン推定方法を提供することを目的とする。
 上記課題を解決するために、本開示に係るエロージョン推定方法は、蒸気タービンの最終段動翼のエロージョンの進行度を推定するエロージョン推定方法であって、前記最終段動翼を構成する材料に含まれる検知対象物質を含む給水を、前記蒸気タービンに接続された給水ライン上から採取するステップと、前記採取された前記給水中における前記検知対象物質の濃度を計測するステップと、前記濃度に基づいてエロージョンの進行度を推定するステップと、を含む。
 本開示によれば、簡易かつ低コストでエロージョンの進行度を推定することが可能なエロージョン推定方法を提供することができる。
本開示の実施形態に係る蒸気タービンシステムの構成を示す系統図である。 本開示の実施形態に係る蒸気タービンの構成を示す模式図である。 本開示の実施形態に係る最終段動翼の構成を示す模式図である。 本開示の実施形態に係るエロージョン推定方法の工程を示すフローチャートである。 最終段動翼におけるエロージョンの進行度の一例を示すグラフである。 本開示の実施形態に係る蒸気タービンシステムの変形例を示す系統図である。
 以下、本開示の実施形態に係る蒸気タービンシステム100、最終段動翼90、及びエロージョンの推定方法について、図1から図4を参照して説明する。
(蒸気タービンシステムの構成)
 図1に示すように、蒸気タービンシステム100は、蒸気タービン1と、復水器2と、復水ポンプ3と、低圧節炭器41と、中圧節炭器43と、高圧節炭器42と、給水ポンプ5と、高圧蒸発器61と、中圧蒸発器62と、低圧蒸発器63と、高圧ドラム71と、中圧ドラム72と、低圧ドラム73と、高圧過熱器81と、中圧過熱器82と、低圧過熱器83と、再熱器9と、採取ライン10と、給水ライン30と、高圧蒸気ライン51と、中圧蒸気ライン52と、低圧蒸気ライン53と、抽気ライン54と、再熱蒸気ライン55と、を備えている。
(蒸気タービンの構成)
 図2に示すように、蒸気タービン1は、回転軸11と、ケーシング12と、動翼列16と、静翼列18と、を有している。回転軸11は、軸線Oに沿って延びるとともに当該軸線O回りに回転可能とされている。回転軸11の軸端には、一対のジャーナル軸受14、及び1つのスラスト軸受15が設けられている。ジャーナル軸受14は回転軸11に対する径方向の荷重を支持する。スラスト軸受15は回転軸11に対する軸線O方向の荷重を支持する。
 回転軸11の外周面には、軸線O方向に間隔をあけて配列された複数の動翼列16が設けられている。それぞれの動翼列16は、軸線Oに対する周方向に間隔をあけて配列された複数の動翼17を有している。これら複数の動翼列16のうち、軸線O方向における最も一方側に位置する動翼列16に含まれる動翼17は、最終段動翼90とされている。
 ケーシング12は、上記の回転軸11、及び動翼列16を外周側から覆っている。ケーシング12は、軸線Oを中心とする筒状をなしている。ケーシング12の軸線O方向他方側には外部から蒸気を導くための蒸気供給口12aが形成されている。ケーシング12の軸線O方向一方側には蒸気を外部に導くための蒸気排出口12bが形成されている。蒸気供給口12aと蒸気排出口12bの間は蒸気流路とされている。以下の説明では、蒸気排出口12bから見て蒸気供給口12aが位置する側を上流側と呼び、その反対側を下流側と呼ぶ。
 ケーシング12の内周面には、軸線O方向に間隔をあけて配列された複数の静翼列18が設けられている。それぞれの静翼列18は、軸線Oに対する周方向に間隔をあけて配列された複数の静翼19を有している。また、静翼列18と動翼列16は、軸線O方向に交互に配列されている。つまり、1つの静翼列18の下流側には1つの動翼列16が配置されている。
(最終段動翼の構成)
 図3に示すように、最終段動翼90は、翼本体91と、エロージョンシールド92と、を有している。翼本体91は、上記の回転軸11の外周面から径方向外側に向かって延びている。径方向から見た場合、翼本体91の断面形状は、上流側を前縁とする翼型をなしている。翼本体91の先端部(つまり、径方向外側の端部を含む部分)であって、前縁側には、エロージョンシールド92が設けられている。エロージョンシールド92は、上流側の静翼列18から飛散した液滴によって最終段動翼90の表面にエロージョンが生じることを防ぐために設けられている。エロージョンシールド92は、ステライトによって一体に形成されている。ステライトとは、コバルト元素を主成分とする金属材料である。詳しくは後述するが、本実施形態では、このステライトに含まれるコバルト元素を検出対象物質と呼ぶ。
(蒸気タービンシステムの他の構成要素)
 図1に示すように、蒸気タービン1の下流側(つまり、蒸気排出口12b)には、給水ライン30が接続されている。給水ライン30上には、蒸気タービン1側から順に復水器2、復水ポンプ3、採取ライン10、低圧節炭器41、及び給水ポンプ5が設けられている。
 復水器2は、蒸気タービン1から排出された低圧の蒸気を冷却して液体の水に戻すための装置である。復水ポンプ3は、この液体の水を給水ライン上で下流側に向かって圧送する。採取ライン10は、給水ライン30内を流れる給水の一部を外部に取り出すための配管である。低圧節炭器41は、給水を予熱するために設けられている。給水ポンプ5は、給水ライン30内の給水をさらに圧送する。
 給水ライン30の下流側の端部は高圧節炭器42に接続されている。給水ライン30における低圧節炭器41と給水ポンプ5との間には、第一分岐ライン31が接続されている。第一分岐ライン31の下流側の端部は後述する低圧蒸発器63に接続されている。さらに、給水ライン30における給水ポンプ5の下流側には第二分岐ライン32が接続されている。第二分岐ライン32の下流側の端部は中圧節炭器43に接続されている。
 低圧節炭器41と同様に、中圧節炭器43、及び高圧節炭器42は、給水を予熱するための装置である。低圧節炭器41で予熱された給水は、低圧蒸発器63に送られる。低圧蒸発器63は、給水をさらに加熱して低圧の蒸気を生成する。中圧節炭器43で予熱された給水は、中圧蒸発器62に送られる。中圧蒸発器62は、給水をさらに加熱して中圧の蒸気を生成する。同様に、高圧節炭器42で予熱された給水は、高圧蒸発器61に送られる。高圧蒸発器61は、給水をさらに加熱して高圧の蒸気を生成する。
 高圧ドラム71は、高圧蒸発器61で生成された高圧の蒸気を気液分離するために設けられている。気液分離されたうちの気相成分が、高圧蒸気ライン51を通じて高圧過熱器81に送られる。高圧過熱器81は、高圧の蒸気を過熱して高圧の過熱蒸気を生成する。高圧の過熱蒸気は、高圧蒸気ライン51を通じて、蒸気タービン1に送られる。
 中圧ドラム72は、中圧蒸発器62で生成された中圧の蒸気を気液分離するために設けられている。気液分離されたうちの気相成分が、中圧蒸気ライン52を通じて中圧過熱器82に送られる。中圧過熱器82は、中圧の蒸気を過熱して中圧の過熱蒸気を生成する。中圧の過熱蒸気は、中圧蒸気ライン52を通じて、再熱器9に送られる。再熱器9は、中圧の過熱蒸気をさらに加熱する。再熱器9で加熱された過熱蒸気は、再熱蒸気ライン55を通じて蒸気タービン1に送られる。さらに、再熱器9には蒸気タービン1から抽気された蒸気の一部が抽気ライン54を通じて流入する。この抽気された蒸気も再熱器9で加熱された後、再熱蒸気ライン55を通じて蒸気タービン1に供給される。
 低圧ドラム73は、低圧蒸発器63で生成された低圧の蒸気を気液分離するために設けられている。気液分離されたうちの気相成分が、低圧蒸気ライン53を通じて低圧過熱器83に送られる。低圧過熱器83は、低圧の蒸気を過熱して低圧の過熱蒸気を生成する。低圧の過熱蒸気は、低圧蒸気ライン53を通じて、蒸気タービン1に送られる。
(エロージョンの推定方法)
 次いで、本実施形態に係るエロージョンの推定方法について説明する。ここで、上述した蒸気タービン1を運転した場合、蒸気流路の上流側になるほど蒸気の温度が高く、下流側になるほど蒸気の温度が低くなる。このため、下流側の領域では蒸気が凝縮して水滴(液滴)が生じやすい。このような水滴が蒸気流に乗ってさらに下流側に流れ、回転する動翼列16に衝突することがある。すると、衝突のエネルギーによって動翼列16の表面が侵食されてしまう(エロージョンを生じてしまう。)。特に最終段動翼90でエロージョンが発生しやすいことが知られている。このようなエロージョンが進行すると翼の強度に影響が及ぶ可能性がある。そこで、本実施形態では、以下の方法によってエロージョンの進行度を推定する。
 図4に示すように、本実施形態に係るエロージョンの推定方法は、給水を採取するステップS1と、給水中の検出対象物質の濃度を計測するステップS2と、濃度からエロージョンの進行度を推定するステップS3と、進行度が予め定められた閾値以上であるか否かを判定するステップS4と、進行度が閾値以上であると判定された場合に最終段動翼90を補修・交換するステップS5と、を含む。
 ステップS1では、上述した採取ライン10を通じて、給水の一部が採取される。エロージョンが進行する過程では、上述したエロージョンシールド92の一部が侵食されて、その一部の成分が給水中に含まれた状態となる。そこで、本実施形態では、エロージョンシールド92を形成するステライトに含まれるコバルト元素を検出対象物質としている。ステップS2では、採取された給水に含まれるコバルト元素の濃度を計測する。濃度の計測には、プラズマ発光質量分析計が好適に用いられる。
 後続のステップS3では、ステップS2で計測されたコバルト元素の濃度に基づいて、エロージョンの進行度が推定される。ここで、エロージョンは図5に示すグラフのような時間変化をたどることが知られている。図5のグラフの横軸は実時間ではなく、蒸気の湿り度や、蒸気タービンの出力、蒸気流量を変数とする関数で表される等価時間である。グラフの縦軸はエロージョンの進行度を表している。同図中の曲線で示されるように、運転開始から一定の期間(初期t1)が経過するまでは、エロージョンはほぼ発生しないか、ごくわずかである。一方で、初期t1を経過した後の期間(過渡期t2)では、エロージョンが急激に進行する。その後、安定期t3に入ると、エロージョンの進行度の傾きが緩やかになるとともに、おおむね一定の値を取るようになる。ステップS3では、コバルト元素の時間変化量をもとに図5のグラフとの照合を行い、エロージョンの進行度を推定する。つまり、コバルト元素の時間変化量から、現在のエロージョン進行度が図5のグラフのどの時期に当たるかを推定する。
 ステップS4では、エロージョンの進行度が閾値以上であるか否かが判定される。進行度が閾値以上であると判定された場合(ステップS4:Yes)、後続のステップS5で最終段動翼90の交換や補修を行う。進行度が閾値未満であると判定された場合(ステップS4:No)、再びステップS1からステップS4までを繰り返して実行する。以上により、本実施形態に係るエロージョンの推定方法の全工程が完了する。
(作用効果)
 以上、説明したように、上記方法によれば、給水中における検知対象物質の濃度を計測することのみによって、蒸気タービン1のケーシング12を開放することなく、最終段動翼90のエロージョンの進行度を推定することができる。特に、ケーシング12の開放を伴う点検作業は、作業自体のコストが生じることに加え、点検期間中には運転ができないことからユーザにとっての大きなコストが発生する。上記の方法を採用することによって開放の頻度を削減可能となり、メンテナンスおよび運転機会喪失によるコストを削減することができる。
 また、上記方法によれば、最もエロージョンが集中しやすいエロージョンシールド92に蒸気タービンの他の部分には用いられない検知対象物質が含まれている。これにより、当該検知対象物質の濃度に基づいて、エロージョンの進行を高い精度で推定することができる。
 さらに、上記方法によれば、検知対象物質としてコバルト元素が用いられる。コバルト元素は他の部分では使用されていないうえ、鉄(Fe)と類似した性質を示すことから、鉄分の検出を目的として設けられていた既設のモニタリング設備を、エロージョンの推定に容易に転用することが可能となる。言い換えれば、多くの蒸気タービンシステム100において、上述した採取ライン10に類する設備は既設であることから、これを転用して給水の採取を行うことが可能である。
 また、上記方法によれば、復水ポンプ3と節炭器(低圧節炭器41)との間を流れる比較的低温の給水を採取することで、エロージョンの進行度を推定することができる。これにより、例えば高温の蒸気や給水に触れる必要がないため、作業者への負担を軽減することができる。
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上記実施形態では、エロージョンシールドを形成するステライトに含まれるコバルト元素を検出対象物質として用いる例について説明した。しかしながら、検出対象物質そのものを翼本体91の内部に浸透度を変えて埋め込むことも可能である。このような構成によれば、翼本体91に検知対象物質が埋め込まれていることから、当該翼本体91のいかなる部位でエロージョンが進行しても、これを高い精度のもとで検知することができる。
 さらに、検知対象物質として、コバルト元素に代えて、予め最終段動翼90に含侵させた放射性元素を用いることも可能である。
 上記構成によれば、検知対象物質として放射性元素が用いられる。放射性元素は蒸気タービンの他の部分には用いられない。したがって、放射性元素を検知対象物質とすることにより、明確かつ高い精度のもとでエロージョンの進行度を推定することができる。
 また、上記実施形態では、蒸気タービンシステム100中の蒸気タービン1についてエロージョンの推定方法を適用した例について説明した。しかしながら、図6に示すような火力発電システム200に同方法を適用することも可能である。
 火力発電システム200では、給水ライン30b上に、蒸気タービン1から下流側に向かって順に、復水器2、復水ポンプ3、採取ライン10、脱塩装置4b、復水昇圧ポンプ3b、複数の低圧ヒータ5b、脱気器6b、給水ポンプ7b、複数の高圧ヒータ8b、節炭器9b、火炉10b、及び過熱器11bが設けられている。過熱器11bで生成された過熱蒸気は、高圧蒸気ライン51bを通じて蒸気タービン1に送られる。また、蒸気タービン1中の一部の蒸気は抽気ライン52bを通じて再熱器13bに送られる。再熱器13bで加熱された蒸気は再熱蒸気ライン53bを通じて蒸気タービン1に送られる。
 これら要素のうち、採取ライン10は、給水ライン30bにおける復水器2から低圧ヒータ5bまでの区間内であれば、いかなる場所に設けてもよい。
<付記>
 各実施形態に記載のエロージョン推定方法は、例えば以下のように把握される。
(1)第1の態様に係るエロージョン推定方法は、蒸気タービン1の最終段動翼90のエロージョンの進行度を推定するエロージョン推定方法であって、前記最終段動翼90を構成する材料に含まれる検知対象物質を含む給水を、前記蒸気タービン1に接続された給水ライン30,30b上から採取するステップS1と、前記採取された前記給水中における前記検知対象物質の濃度を計測するステップS2と、前記濃度に基づいてエロージョンの進行度を推定するステップS3と、を含む。
 上記方法によれば、給水中における検知対象物質の濃度を計測することのみによって、蒸気タービン1のケーシング12を開放することなく、最終段動翼90のエロージョンの進行度を推定することができる。
(2)第2の態様に係るエロージョン推定方法では、前記最終段動翼90は、翼本体91と、該翼本体91の先端部前縁側に設けられ、前記検知対象物質を含む材料で形成されたエロージョンシールド92と、を有してもよい。
 上記方法によれば、最もエロージョンが集中しやすいエロージョンシールド92に検知対象物質が含まれている。これにより、エロージョンの進行をより高い精度のもとで検知することができる。
(3)第3の態様に係るエロージョン推定方法では、前記最終段動翼90は、翼本体91と、該翼本体91に埋め込まれた前記検知対象物質と、を有してもよい。
 上記方法によれば、翼本体91に検知対象物質が埋め込まれていることから、当該翼本体91のいかなる部位でエロージョンが進行しても、これを高い精度のもとで検知することができる。
(4)第4の態様に係るエロージョン推定方法では、前記検知対象物質は、コバルト元素であってもよい。
 上記方法によれば、検知対象物質としてコバルト元素が用いられる。コバルト元素は鉄(Fe)と類似した性質を示すことから、鉄分の検出を目的として設けられていた既設のモニタリング設備を、エロージョンの推定に容易に転用することが可能となる。
(5)第5の態様に係るエロージョン推定方法では、前記検知対象物質は、予め前記最終段動翼90に含侵させた放射性元素であってもよい。
 上記方法によれば、検知対象物質として放射性元素が用いられる。放射性元素は蒸気タービン1の他の部分には用いられない。したがって、放射性元素を検知対象物質とすることにより、明確かつ高い精度のもとでエロージョンの進行度を推定することができる。
(6)第6の態様に係るエロージョン推定方法では、前記蒸気タービン1から排出された蒸気を冷却して水に戻す復水器2と、該復水器2の下流側に設けられた復水ポンプ3と、該復水ポンプ3の下流側に設けられ、前記水を予熱する節炭器(低圧節炭器41)と、該節炭器で予熱された前記水を加熱して蒸気を発生させる蒸発器(高圧蒸発器61、中圧蒸発器62、低圧蒸発器63)と、該蒸発器で発生した前記蒸気を過熱する過熱器(高圧過熱器81、中圧過熱器82、低圧過熱器83)と、を有する蒸気タービンシステム100において、前記給水を採取するステップS1では、前記復水ポンプ3と前記節炭器との間から前記給水を採取してもよい。
 上記方法によれば、復水ポンプ3と低圧節炭器41との間を流れる比較的に低温の給水を採取することで、エロージョンの進行度を推定することができる。これにより、例えば高温の蒸気や給水に触れる必要がないため、作業者への負担を軽減することができる。
 本開示によれば、簡易かつ低コストでエロージョンの進行度を推定することが可能なエロージョン推定方法を提供することができる。
100 蒸気タービンシステム
1 蒸気タービン
2 復水器
3 復水ポンプ
3b 復水昇圧ポンプ
4b 脱塩装置
5 給水ポンプ
5b 低圧ヒータ
6b 脱気器
7b 給水ポンプ
8b 高圧ヒータ
9 再熱器
9b 節炭器
10b 火炉
10 採取ライン
11 回転軸
11b 過熱器
12 ケーシング
12a 蒸気供給口
12b 蒸気排出口
13b 再熱器
14 ジャーナル軸受
15 スラスト軸受
16 動翼列
17 動翼
18 静翼列
19 静翼
30,30b 給水ライン
31 第一分岐ライン
32 第二分岐ライン
41 低圧節炭器
42 高圧節炭器
43 中圧節炭器
51,51b 高圧蒸気ライン
52 中圧蒸気ライン
53 低圧蒸気ライン
54,52b 抽気ライン
55,53b 再熱蒸気ライン
61 高圧蒸発器
62 中圧蒸発器
63 低圧蒸発器
71 高圧ドラム
72 中圧ドラム
73 低圧ドラム
81 高圧過熱器
82 中圧過熱器
83 低圧過熱器
90 最終段動翼
91 翼本体
92 エロージョンシールド
200 火力発電システム
O 軸線

Claims (6)

  1.  蒸気タービンの最終段動翼のエロージョンの進行度を推定するエロージョン推定方法であって、
     前記最終段動翼を構成する材料に含まれる検知対象物質を含む給水を、前記蒸気タービンに接続された給水ライン上から採取するステップと、
     前記採取された前記給水中における前記検知対象物質の濃度を計測するステップと、
     前記濃度に基づいてエロージョンの進行度を推定するステップと、
    を含むエロージョン推定方法。
  2.  前記最終段動翼は、
     翼本体と、
     該翼本体の先端部前縁側に設けられ、前記検知対象物質を含む材料で形成されたエロージョンシールドと、を有する請求項1に記載のエロージョン推定方法。
  3.  前記最終段動翼は、
     翼本体と、
     該翼本体に埋め込まれた前記検知対象物質と、
    を有する請求項1に記載のエロージョン推定方法。
  4.  前記検知対象物質は、コバルト元素である請求項1から3のいずれか一項に記載のエロージョン推定方法。
  5.  前記検知対象物質は、予め前記最終段動翼に含侵させた放射性元素である請求項1から3のいずれか一項に記載のエロージョン推定方法。
  6.  前記蒸気タービンから排出された蒸気を冷却して水に戻す復水器と、
     該復水器の下流側に設けられた復水ポンプと、
     該復水ポンプの下流側に設けられ、前記水を予熱する節炭器と、
     該節炭器で予熱された前記水を加熱して蒸気を発生させる蒸発器と、
     該蒸発器で発生した前記蒸気を過熱する過熱器と、
    を有する蒸気タービンシステムにおいて、
     前記給水を採取するステップでは、前記復水ポンプと前記節炭器との間から前記給水を採取する請求項1から5のいずれか一項に記載のエロージョン推定方法。
PCT/JP2022/016218 2021-06-30 2022-03-30 エロージョン推定方法 WO2023276387A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023531453A JPWO2023276387A1 (ja) 2021-06-30 2022-03-30
CN202280036969.7A CN117355664A (zh) 2021-06-30 2022-03-30 侵蚀估计方法
KR1020237039351A KR20230169348A (ko) 2021-06-30 2022-03-30 이로전 추정 방법
DE112022001873.9T DE112022001873T5 (de) 2021-06-30 2022-03-30 Erosionsschätzverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109140 2021-06-30
JP2021-109140 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276387A1 true WO2023276387A1 (ja) 2023-01-05

Family

ID=84692664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016218 WO2023276387A1 (ja) 2021-06-30 2022-03-30 エロージョン推定方法

Country Status (5)

Country Link
JP (1) JPWO2023276387A1 (ja)
KR (1) KR20230169348A (ja)
CN (1) CN117355664A (ja)
DE (1) DE112022001873T5 (ja)
WO (1) WO2023276387A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131034A (en) * 1981-02-06 1982-08-13 Toshiba Corp Detection of erosion damage to turbine blade
JP2001065303A (ja) * 1999-08-26 2001-03-13 Hitachi Ltd 蒸気タービン翼とその製法及び蒸気タービン発電プラント並びに低圧蒸気タービン
US20120285226A1 (en) * 2011-05-09 2012-11-15 Kurt Neal Laurer Wear-Indicating System For Use With Turbine Engines and Methods Of Inspecting Same
JP2015140762A (ja) * 2014-01-30 2015-08-03 株式会社Ihi エロージョン環境推定方法及びエロージョン寿命推定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6934833B2 (ja) 2018-03-30 2021-09-15 三菱パワー株式会社 水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法
JP2021109140A (ja) 2020-01-09 2021-08-02 ブラザー工業株式会社 接着装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131034A (en) * 1981-02-06 1982-08-13 Toshiba Corp Detection of erosion damage to turbine blade
JP2001065303A (ja) * 1999-08-26 2001-03-13 Hitachi Ltd 蒸気タービン翼とその製法及び蒸気タービン発電プラント並びに低圧蒸気タービン
US20120285226A1 (en) * 2011-05-09 2012-11-15 Kurt Neal Laurer Wear-Indicating System For Use With Turbine Engines and Methods Of Inspecting Same
JP2015140762A (ja) * 2014-01-30 2015-08-03 株式会社Ihi エロージョン環境推定方法及びエロージョン寿命推定方法

Also Published As

Publication number Publication date
DE112022001873T5 (de) 2024-01-18
CN117355664A (zh) 2024-01-05
KR20230169348A (ko) 2023-12-15
JPWO2023276387A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
CN100437015C (zh) 汽轮机通流间隙变化在线监测方法
CA2625464C (en) Method for warming-up a steam turbine
Hesketh et al. Effects of wetness in steam turbines
JP6934833B2 (ja) 水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法
JP5916431B2 (ja) 発電プラントおよびその運転方法
Jonas et al. Steam Turbine Corrosion and Deposits--Problems and Solutions
CN101832904A (zh) 测量介质纯度的测量装置
US8985143B2 (en) Apparatus for monitoring of valves and method of operating the same
US8454297B2 (en) Method for determining the remaining service life of a rotor of a thermally loaded turboengine
Saito et al. Latest technologies and future prospects for a new steam turbine
WO2023276387A1 (ja) エロージョン推定方法
JPS6038525B2 (ja) 低圧タ−ビン回転羽根に対する腐食性塩溶液の影響を軽減する方法及び装置
Bhatt et al. Performance enhancement in coal fired thermal power plants. Part II: steam turbines
US8682563B2 (en) System and method for predicting turbine rub
JP2011111967A (ja) 複合サイクル発電プラント
JP2018189020A (ja) タービン監視システム、タービン監視方法、及びタービンシステム
Melas et al. Methodology for evaluating efficiency benefits of hydrophobic coatings in steam turbine applications
EP2664749A1 (en) Combined Cycle Power Plant Including a Heat Recovery Steam Generator
Sakharov et al. Results of the commercial introduction of honeycomb shroud seals on 300 MW turbine units
Dooley et al. Assessing and controlling corrosion in air-cooled condensers
Wang et al. Research on Method of the Flow Passage Condition Monitoring and Diagnosis for Steam Turbine
CN114856726B (zh) 一种饱和蒸汽汽轮机乏汽容积流量及湿度实时确定方法
Cornell Steam turbine monitoring technology, validation, and verification tests for power plants
Cornell GE Power, Schenectady, NY, United States
US12025014B2 (en) Pit initiation evaluation system, and, pit initiation evaluation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237039351

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039351

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023531453

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280036969.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18564892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001873

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832548

Country of ref document: EP

Kind code of ref document: A1