WO2023276033A1 - Artificial satellite control device - Google Patents

Artificial satellite control device Download PDF

Info

Publication number
WO2023276033A1
WO2023276033A1 PCT/JP2021/024711 JP2021024711W WO2023276033A1 WO 2023276033 A1 WO2023276033 A1 WO 2023276033A1 JP 2021024711 W JP2021024711 W JP 2021024711W WO 2023276033 A1 WO2023276033 A1 WO 2023276033A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
light source
attitude
control
unit
Prior art date
Application number
PCT/JP2021/024711
Other languages
French (fr)
Japanese (ja)
Inventor
華帆 榊原
Original Assignee
Space Entertainment株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Space Entertainment株式会社 filed Critical Space Entertainment株式会社
Priority to PCT/JP2021/024711 priority Critical patent/WO2023276033A1/en
Publication of WO2023276033A1 publication Critical patent/WO2023276033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for

Definitions

  • the present invention relates to a satellite control device that expresses a predetermined object by controlling a plurality of satellites equipped with light sources.
  • Patent Documents 2 and 3 disclose a technology that enables observation of characters and figures by flying multiple artificial satellites in formation.
  • one object of the present invention is to provide a novel technology that utilizes a flight by a plurality of satellites (hereinafter referred to as formation flight) using an artificial satellite having a light source in the entertainment field. .
  • the technology described in the above-mentioned third technology employs a method in which a light source driving unit such as a motor is provided to drive the light source and change the direction of the light source.
  • a light source driving unit such as a motor
  • the inventor of the present invention developed a new physical mechanism (light source driving unit) in this way, and if a motor or the like were to be driven each time the light source was to emit light, it would become impossible to drive due to the effects of metal fatigue and the like. I found a risk that there is a risk of failure. In such a case, since it is not realistic to repair the artificial satellite existing in outer space, further activities are impossible.
  • the inventor of the present invention uses an attitude control mechanism, which is a part of the basic control of a satellite, to change the direction of the entire satellite body.
  • attitude control mechanism which is a part of the basic control of a satellite, to change the direction of the entire satellite body.
  • a light source a body portion provided with the light source portion; an attitude control unit that controls the attitude of the main body; A satellite having The posture control unit controls the posture of the main body so that the light emitted from the light source unit is observable in a predetermined irradiation area, Satellite, is obtained.
  • a satellite control system that expresses a predetermined object using light emitted from a light source by controlling the attitude of a plurality of satellites equipped with a light source, a control signal generating means for generating a control signal for representing the object; providing means for providing the control signal to the satellite; a satellite control system including attitude control means for controlling the attitude of the satellite based on the control signal; is obtained.
  • the direction of the light source is changed by controlling the attitude of the artificial satellite itself, it becomes possible to control the direction of the light source without requiring an additional mechanism such as a light source driving section. .
  • FIG. 2 is a functional block diagram of the artificial satellite of FIG. 1;
  • FIG. 2 is a schematic diagram of the artificial satellite of FIG. 1;
  • FIG. 4 is a schematic diagram showing a state in which the attitude of the artificial satellite of FIG. 3 is controlled;
  • FIG. 2 is a schematic diagram showing how the artificial satellites in FIG. 1 irradiate light from light sources while performing formation flight;
  • FIG. 4 is a schematic diagram showing a state in which both the attitude of the artificial satellite of FIG. 3 and the light source are controlled;
  • the present invention has the following configurations.
  • a light source a body portion provided with the light source portion; an attitude control unit that controls the attitude of the main body;
  • a satellite having The posture control unit controls the posture of the main body so that the light emitted from the light source unit is observable in a predetermined irradiation area, Satellite.
  • the artificial satellite according to claim 1 The attitude control unit continuously controls the attitude of the satellite main body so that the light emitted from the light source unit can be observed in a predetermined irradiation area. Satellite.
  • the artificial satellite according to claim 1 or claim 2 The light source unit has an LED, Equipped with an optical part including a lens that transmits the light irradiated by the LED, Satellite.
  • a satellite according to claim 3 The optical unit is configured to be able to adjust the divergence angle of the irradiation light of the LED, Satellite.
  • the artificial satellite according to claim 3 or claim 4 The optical unit is configured to be able to change the direction of the irradiation light of the LED, Satellite.
  • the artificial satellite according to claim 1 or claim 2 The light source unit has a plurality of light source elements, Satellite.
  • the attitude control unit is obtained by diverting part or all of the function of performing attitude control of the artificial satellite, Satellite.
  • the artificial satellite according to any one of claims 1 to 8, The light source unit is fixed to the main body unit without displacing its orientation, Satellite.
  • the attitude of an artificial satellite having a light source, a main body provided with the light source, and an attitude control section for controlling the attitude of the main body the light emitted from the light source is observed in a predetermined irradiation area. irradiate as possible, Satellite control method.
  • a satellite control system including a satellite controller, ground equipment, and a satellite,
  • the artificial satellite has a light source, a main body provided with the light source, and an attitude control section for controlling the attitude of the main body. irradiating the irradiation light from the light source unit so as to be observable in a predetermined irradiation area,
  • the satellite control device transmits a signal for controlling the attitude of the main body to the satellite via the ground facility. Satellite control system.
  • a satellite control system that expresses a predetermined object using light emitted from a light source by controlling the attitude of a plurality of satellites equipped with a light source, a control signal generating means for generating a control signal for representing the object; providing means for providing the control signal to the satellite; and attitude control means for controlling the attitude of the satellite based on the control signal.
  • a satellite control system controls the attitude of a plurality of satellites equipped with light sources and flying in formation on a predetermined orbit while maintaining a predetermined distance from each other. It is an observable representation of an object.
  • this system includes a user terminal, a satellite control device, ground equipment, and a satellite group consisting of a plurality of satellites. Terminals other than these may be added, or all or part of the functions of these terminals may be integrated by cloud computing technology and logically configured as one or more terminals.
  • a series of processes by the system and terminals described in this specification may be implemented using software, hardware, or a combination of software and hardware. It is possible to prepare a computer program for realizing each function according to the present embodiment and implement it in a PC or the like. It is also possible to provide a computer-readable recording medium storing such a computer program.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
  • the user terminal constitutes part of the system by executing information processing through communication with the satellite controller.
  • Examples of user terminals include general-purpose computers such as workstations and personal computers, and mobile communication devices such as smartphone terminals and tablet terminals.
  • a user terminal should at least have general functions such as a processor, memory, storage, transmission/reception unit, and input/output unit.
  • a user inputs image information to a user terminal using input means (means for operating and acquiring information such as a mouse, keyboard, touch pen, camera, scanner, etc.).
  • the input image information is transmitted to the satellite controller via the network through the transmitting/receiving unit.
  • the satellite controller constitutes a part of the system by performing information processing through communication with the user terminal and ground equipment.
  • it can be configured by any of hardware provided in a computer, DSP (Digital Signal Processor), and software.
  • DSP Digital Signal Processor
  • software when configured by software, it is actually configured with a computer CPU, RAM, ROM, etc., and is realized by running a program stored in a recording medium such as RAM, ROM, hard disk, or semiconductor memory.
  • Ground facilities programmatically control the satellites in all orbital planes.
  • Ground equipment includes, for example, a ground antenna device, a communication device connected to the ground antenna device, a computer, and the like.
  • a ground facility forms a formation flight by communicating with each satellite.
  • the ground equipment has functions such as a track control signal generation unit and an analysis prediction unit.
  • the communication device transmits and receives a signal for tracking and controlling each artificial satellite, and transmits an orbit control signal to each artificial satellite.
  • the analysis prediction unit analyzes and predicts the orbit of the satellite.
  • the orbit control signal generator generates an orbit control signal to be transmitted to the satellite.
  • the trajectory control signal generation unit and the analysis prediction unit of this embodiment realize the function of formation flight.
  • the artificial satellite As shown in FIGS. 2 to 5, the artificial satellite according to this embodiment is configured to be able to fly in orbits of planets, satellites, etc. (geostationary orbit, geostationary transfer orbit, etc.).
  • the artificial satellite includes a light source section and a body section.
  • the main unit includes a satellite control unit, a transmission/reception unit, a propulsion unit, an attitude control unit, a power supply unit, and the like.
  • 25 artificial satellites maintaining a 5 ⁇ 5 matrix formation are used.
  • the number of satellites and the shape of the formation are not limited to this.
  • predetermined information like a two-dimensional barcode, depending on the position and the number of irradiation lights of the artificial satellite according to this embodiment. Also, by changing the timing of irradiation, it is possible to provide signal information containing more information. Furthermore, by relatively moving the artificial satellite (attitude control and continuing to irradiate the same irradiation area, etc.), it is possible to adjust the exposure time on the ground and express an arbitrary pattern.
  • the information expressed in this manner can be obtained from the ground side by the function of the camera or the like of the user terminal, and the binary data can be encoded to restore the predetermined information.
  • a light source device is a luminous body such as a high-output LED light source or laser light source having a wavelength in the visible light region.
  • the light source control device controls the operation of the light source device. Specifically, the light source control device controls the timing of light emission, flashing, brightness, color, light emission direction (optical axis), or a combination thereof.
  • the light source is fixed to the main body, and in the illustrated satellite, the orientation of the light source is also fixed and unchangeable.
  • an optical section including a lens that transmits the irradiation light from the light source may be provided. Such an optical section makes it possible to adjust the angle of divergence of the light emitted by the light emitter and change the direction of the light emitted.
  • the light source section may have a plurality of light source elements.
  • the satellite control unit is equipped with a computer that controls the propulsion unit and the attitude control unit. Specifically, the satellite control unit controls the propulsion unit and the attitude control unit according to various signals transmitted from the ground equipment.
  • the transceiver unit communicates with the ground equipment. Specifically, the transmission/reception unit transmits various data related to the own satellite to the ground equipment. Also, the transmitting/receiving unit receives various signals transmitted from ground equipment.
  • the propulsion unit is a device that gives propulsion to the satellite, and changes the speed of the satellite. Specifically, an apogee kick motor, a chemical propulsion unit, an electric propulsion unit, or the like can be appropriately adopted as the propulsion unit.
  • the attitude control section includes an attitude sensor, an actuator, and a controller.
  • Attitude sensors include gyroscopes, orbital gyrocompasses, earth sensors, sun sensors, star trackers, thrusters and magnetic sensors.
  • Actuators include attitude control thrusters, spin tables, momentum wheels, reaction wheels, control moment gyros, solar sails, magnetic torquers, and the like.
  • the controller controls the actuators according to measurement data from the attitude sensor or various commands from ground equipment.
  • the power supply unit is equipped with devices such as solar cells, batteries, and power control devices, and supplies power to each device mounted on the satellite.
  • FIG. As described above, the system represents a given object by controlling the attitude of multiple satellites with light sources.
  • each artificial satellite changes the direction of the light emitted by the light source by diverting part or all of the attitude control function of the artificial satellite according to the control signal.
  • the group of artificial satellites performing formation flight is configured so that a predetermined object can be represented in the observation area A by controlling the respective light sources (see FIG. 1).
  • the observation area is changed by changing the direction of the body of the satellite using the attitude control function of each satellite.
  • a given object can be represented in B.
  • the attitude control section continuously controls the attitude of the main body so that even if the positional relationship changes, the light source It is also possible to keep the illumination light from the unit observably illuminated in a predetermined illumination area (for example, observation area A).
  • the light source section may further include a light source control section for controlling the direction of the light source.
  • a light source control section for controlling the direction of the light source.
  • the object information described above is generated, for example, by the following steps, and the information is provided to the content providing device by the artificial guard control device.
  • the satellite controller accepts input of image information from the user.
  • a user can transmit image information using his/her own terminal.
  • the image information according to this embodiment is a still image or moving image including graphics, characters, symbols, signs, signals, pictures, patterns, colors, and the like.
  • the satellite control device may be provided with a storage unit that stores image information registered in advance as a template, and may receive selection of image data from the user. It is also possible to store the image information input in the past and accept the selection of the image data in the same way.
  • the applicant may draw image information with a touch pen, finger, or the like using a touch display or the like. In this case, conversion means may be provided for converting the drawn image information into an approximating figure.
  • the system determines whether image information can be generated from still images or moving images based on information on the number of available satellites (to be described later), and if it can be generated, generates image information and provides it to the user.
  • the satellite control device may accept inputs of brightness information for each light source, information on the color of light emitted by each light source, and information on timing of light emission for each light source.
  • the satellite controller acquires satellite information to determine whether it is possible to represent the object. For example, information such as the number of satellites (number of dots, etc.) required to represent the object, whether the formation flight is properly controlled, etc., but other information to be acquired There may be
  • the satellite control device generates a control signal for representing the object based on the input image information and the acquired satellite information (step S103).
  • the control signal is in a predetermined format that can be read and interpreted by ground equipment.
  • a simulation is performed as to how the object will actually be represented, and a preview is performed so that it can be visually recognized by the user.
  • the preview is output to the display of the user's terminal or the like. This allows the user to confirm in advance how the object will look.
  • the satellite controller transmits control signals to the ground equipment.
  • the control signal may be transmitted to the ground equipment in advance in accordance with the timing of expressing the object, or may be transmitted in real time in consideration of the weather conditions and the possibility of observation from the ground. good too.
  • the optical axis is directed toward the observation site.
  • an artificial satellite with a fixed light source can be used without preparing a structure for driving the light source.
  • the optical axis may be directed toward the observation site without controlling (or changing) the attitude of the artificial satellite. This eliminates the use of a propulsion unit for controlling the attitude of the satellite.
  • both the attitude of the artificial satellite and the light source driver may be controlled by the required amount.
  • a reflecting mirror may be provided so that the irradiation light from the light source unit is reflected by the reflecting mirror and irradiated to the irradiation area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

[Problem] To provide a novel technology which utilizes, in the entertainment field, flight control by a plurality of artificial satellites having a light source. [Solution] The present invention is an artificial satellite control system that controls the posture of a plurality of artificial satellites each having a light source unit provided in a fixed manner, the system thereby utilizing projection light from the light source units to express a prescribed object. The system comprises: a control signal generation means that generates a control signal for expressing an object; a provision means that provides the control signal to an artificial satellite; and a posture control means that controls the posture of the artificial satellite on the basis of the control signal. Due to the above configuration, the orientation of the light source is changed by controlling the posture of the artificial satellite, and this makes it possible to control the orientation of the light source without the need for an additional mechanism such as a light source drive unit.

Description

人工衛星制御装置satellite controller
 本発明は、光源を備えた複数の人工衛星を制御することによって所定のオブジェクトを表現する人工衛星制御装置に関する。 The present invention relates to a satellite control device that expresses a predetermined object by controlling a plurality of satellites equipped with light sources.
 近年、複数の人工衛星を利用した様々な技術が提案されている。 In recent years, various technologies using multiple satellites have been proposed.
 特許文献2及び特許文献3には、複数の人工衛星を、編隊して飛行させ文字や図形を観測可能にした技術が開示されている。 Patent Documents 2 and 3 disclose a technology that enables observation of characters and figures by flying multiple artificial satellites in formation.
特開2012-183855号公報JP 2012-183855 A 特開2018-184080号公報JP 2018-184080 A
 上述した技術は、いずれも、光源と、当該光源の向きを変える光源駆動部とを有する人工衛星が用いられており、部品数の増加、重量の増加、そして駆動部による故障等による信頼性の低下等の問題が生じ得る。 All of the above technologies use an artificial satellite having a light source and a light source driving unit that changes the direction of the light source, and the number of parts increases, the weight increases, and the reliability is reduced due to failure of the driving unit. Problems such as degradation may occur.
 そこで、本発明は、光源を有する人工衛星を利用して複数の衛星による飛行(以下、フォーメーションフライト:Formation Flightという。)をエンターテインメント領域に活用した新規な技術を提供することを一つの目的とする。 Therefore, one object of the present invention is to provide a novel technology that utilizes a flight by a plurality of satellites (hereinafter referred to as formation flight) using an artificial satellite having a light source in the entertainment field. .
 上述したん項技術に記載の技術は、モーターのような光源駆動部を設けて光源を駆動して光源の向きを変える手法を採用したものである。しかしながら、本発明の発明者は、このように、新たな物理機構(光源駆動部)を開発して光源を発光させる度にモーター等を駆動させることとすると、金属疲労等の影響で駆動できなくなったり、故障する恐れがあるリスクを見出した。このような場合、宇宙空間に存在する人工衛星を修理することは現実的ではないことから、それ以降の活動は不可能となる。 The technology described in the above-mentioned third technology employs a method in which a light source driving unit such as a motor is provided to drive the light source and change the direction of the light source. However, the inventor of the present invention developed a new physical mechanism (light source driving unit) in this way, and if a motor or the like were to be driven each time the light source was to emit light, it would become impossible to drive due to the effects of metal fatigue and the like. I found a risk that there is a risk of failure. In such a case, since it is not realistic to repair the artificial satellite existing in outer space, further activities are impossible.
 一方、本発明の発明者は、人工衛星の基本的な制御の一部である姿勢制御機構を利用することによって、人工衛星の本体ごと方向を変えることとすれば、かかる光源駆動部のような新規の開発も必要がなくなることに着目した。しかも、人工衛星自体の姿勢制御手段は、様々な機構が存在しており、高性能で劣化に強い姿勢制御デバイスも多い。本発明はかかる知見に基づくものである。 On the other hand, the inventor of the present invention uses an attitude control mechanism, which is a part of the basic control of a satellite, to change the direction of the entire satellite body. We focused on eliminating the need for new development. Moreover, there are various mechanisms for the attitude control means of the artificial satellite itself, and there are many attitude control devices with high performance and resistance to deterioration. The present invention is based on such findings.
 即ち、本発明によれば、
 光源部と、
 前記光源部が設けられた本体部と、
 前記本体部の姿勢を制御する姿勢制御部と、
を有する人工衛星であって、
 前記姿勢制御部が前記本体部の姿勢を制御することによって前記光源部による照射光を所定の照射領域において観測可能に照射する、
人工衛星、
が得られる。
That is, according to the present invention,
a light source;
a body portion provided with the light source portion;
an attitude control unit that controls the attitude of the main body;
A satellite having
The posture control unit controls the posture of the main body so that the light emitted from the light source unit is observable in a predetermined irradiation area,
Satellite,
is obtained.
 また、本発明によれば、
光源部を備えた複数の人工衛星の姿勢を制御することによって、前記光源部による照射光を利用して所定のオブジェクトを表現する人工衛星制御システムであって、
 前記オブジェクトを表現するための制御信号を生成する制御信号生成手段と、
 前記制御信号を前記人工衛星に提供する提供手段と、
 前記制御信号に基づいて、前記人工衛星の姿勢を制御する、姿勢制御手段と、を含む
人工衛星制御システム、
が得られる。
Moreover, according to the present invention,
A satellite control system that expresses a predetermined object using light emitted from a light source by controlling the attitude of a plurality of satellites equipped with a light source,
a control signal generating means for generating a control signal for representing the object;
providing means for providing the control signal to the satellite;
a satellite control system including attitude control means for controlling the attitude of the satellite based on the control signal;
is obtained.
 本発明によれば、人工衛星自体の姿勢を制御することによって光源の向きを変更しているため、光源駆動部のような追加の機構を要することなく光源の向きを制御することが可能となる。 According to the present invention, since the direction of the light source is changed by controlling the attitude of the artificial satellite itself, it becomes possible to control the direction of the light source without requiring an additional mechanism such as a light source driving section. .
本発明の実施の形態によるシステムの構成例を示す図である。It is a figure which shows the structural example of the system by embodiment of this invention. 図1の人工衛星の機能ブロック図である。FIG. 2 is a functional block diagram of the artificial satellite of FIG. 1; 図1の人工衛星の模式図である。FIG. 2 is a schematic diagram of the artificial satellite of FIG. 1; 図3の人工衛星の姿勢が制御された状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which the attitude of the artificial satellite of FIG. 3 is controlled; 図1の人工衛星がフォーメーションフライトを行いながら光源から光を照射している様子を示す模式図である。FIG. 2 is a schematic diagram showing how the artificial satellites in FIG. 1 irradiate light from light sources while performing formation flight; 図3の人工衛星の姿勢と光源との双方が制御された状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which both the attitude of the artificial satellite of FIG. 3 and the light source are controlled;
 本発明の実施形態の内容を列記して説明する。本発明は、以下のような構成を備える。
[項目1]
 光源部と、
 前記光源部が設けられた本体部と、
 前記本体部の姿勢を制御する姿勢制御部と、
を有する人工衛星であって、
 前記姿勢制御部が前記本体部の姿勢を制御することによって前記光源部による照射光を所定の照射領域において観測可能に照射する、
人工衛星。
[項目2]
 請求項1に記載の人工衛星であって、
 前記姿勢制御部は、前記人工衛星本体部の姿勢を連続的に制御することによって前記光源部による照射光が所定の照射領域において観測可能に照射されるように維持する、
人工衛星。
[項目3]
 請求項1又は請求項2に記載の人工衛星であって、
 前記光源部は、LEDを有しており、
 当該LEDによる照射光を透過させるレンズを含む光学部を備える、
人工衛星。
[項目4]
 請求項3に記載の人工衛星であって、
 前記光学部は、前記LEDの照射光の発散角を調整可能に構成されている、
人工衛星。
[項目5]
 請求項3又は請求項4に記載の人工衛星であって、
 前記光学部は、前記LEDの照射光の向きを変更可能に構成されている、
人工衛星。
[項目6]
 請求項1乃至請求項5のいずれかに記載の人工衛星であって、
 前記光源部の照射光は、可視光領域の波長を有している
人工衛星。
[項目7]
 請求項1又は請求項2のいずれかに記載の人工衛星であって、
 前記光源部は、複数の光源素子を有している、
人工衛星。
[項目8]
 請求項1乃至請求項7のいずれかに記載の人工衛星であって、
 前記姿勢制御部は、前記人工衛星の姿勢制御を行う機能の一部又は全部を転用したものである、
人工衛星。
[項目9]
 請求項1乃至請求項8のいずれかに記載の人工衛星であって、
 前記光源部は、その向きが変位することなく前記本体部に固定されている、
人工衛星。
[項目10]
 光源部と当該光源部が設けられた本体部と前記本体部の姿勢を制御する姿勢制御部とを有する人工衛星の姿勢を制御することにより、前記光源部による照射光を所定の照射領域において観測可能に照射する、
人工衛星制御方法。
[項目11]
 人工衛星制御装置と、地上設備と、人工衛星とを含む人工衛星制御システムであって、
 前記人工衛星は、光源部と当該光源部が設けられた本体部と前記本体部の姿勢を制御する姿勢制御部とを有すると共に、前記姿勢制御部が前記本体部の姿勢を制御することによって前記光源部による照射光を所定の照射領域において観測可能に照射し、
 前記人工衛星制御装置は、前記地上設備を介して、前記人工衛星に対して前記本体部の前記姿勢を制御するための信号を送信する、
人工衛星制御システム。
[項目12]
 光源部を備えた複数の人工衛星の姿勢を制御することによって、前記光源部による照射光を利用して所定のオブジェクトを表現する人工衛星制御システムであって、
 前記オブジェクトを表現するための制御信号を生成する制御信号生成手段と、
 前記制御信号を前記人工衛星に提供する提供手段と、
 前記制御信号に基づいて、前記人工衛星の姿勢を制御する、姿勢制御手段と、を含む
人工衛星制御システム。
The contents of the embodiments of the present invention are listed and explained. The present invention has the following configurations.
[Item 1]
a light source;
a body portion provided with the light source portion;
an attitude control unit that controls the attitude of the main body;
A satellite having
The posture control unit controls the posture of the main body so that the light emitted from the light source unit is observable in a predetermined irradiation area,
Satellite.
[Item 2]
The artificial satellite according to claim 1,
The attitude control unit continuously controls the attitude of the satellite main body so that the light emitted from the light source unit can be observed in a predetermined irradiation area.
Satellite.
[Item 3]
The artificial satellite according to claim 1 or claim 2,
The light source unit has an LED,
Equipped with an optical part including a lens that transmits the light irradiated by the LED,
Satellite.
[Item 4]
A satellite according to claim 3,
The optical unit is configured to be able to adjust the divergence angle of the irradiation light of the LED,
Satellite.
[Item 5]
The artificial satellite according to claim 3 or claim 4,
The optical unit is configured to be able to change the direction of the irradiation light of the LED,
Satellite.
[Item 6]
The artificial satellite according to any one of claims 1 to 5,
The artificial satellite, wherein the light emitted from the light source has a wavelength in the visible light region.
[Item 7]
The artificial satellite according to claim 1 or claim 2,
The light source unit has a plurality of light source elements,
Satellite.
[Item 8]
The artificial satellite according to any one of claims 1 to 7,
The attitude control unit is obtained by diverting part or all of the function of performing attitude control of the artificial satellite,
Satellite.
[Item 9]
The artificial satellite according to any one of claims 1 to 8,
The light source unit is fixed to the main body unit without displacing its orientation,
Satellite.
[Item 10]
By controlling the attitude of an artificial satellite having a light source, a main body provided with the light source, and an attitude control section for controlling the attitude of the main body, the light emitted from the light source is observed in a predetermined irradiation area. irradiate as possible,
Satellite control method.
[Item 11]
A satellite control system including a satellite controller, ground equipment, and a satellite,
The artificial satellite has a light source, a main body provided with the light source, and an attitude control section for controlling the attitude of the main body. irradiating the irradiation light from the light source unit so as to be observable in a predetermined irradiation area,
The satellite control device transmits a signal for controlling the attitude of the main body to the satellite via the ground facility.
Satellite control system.
[Item 12]
A satellite control system that expresses a predetermined object using light emitted from a light source by controlling the attitude of a plurality of satellites equipped with a light source,
a control signal generating means for generating a control signal for representing the object;
providing means for providing the control signal to the satellite;
and attitude control means for controlling the attitude of the satellite based on the control signal.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<概要>
 本発明の実施の形態による人工衛星制御システムは、光源を備え互いに所定の間隔を維持しながら所定軌道上をフォーメーションフライトする複数の人工衛星の姿勢を制御することによって、地上の観測領域から所定のオブジェクトを観測可能に表現するものである。
<Overview>
A satellite control system according to an embodiment of the present invention controls the attitude of a plurality of satellites equipped with light sources and flying in formation on a predetermined orbit while maintaining a predetermined distance from each other. It is an observable representation of an object.
<ハードウェア構成例>
 図1に示されるように、本システムは、ユーザ端末と、人工衛星制御装置と、地上設備と、複数の人工衛星で構成される人工衛星群とを備えている。なお、これ以外の端末が加わってもよいし、これらの端末の機能のすべてまたは一部がクラウドコンピューティング技術によって統合され一又は複数の端末として論理的に構成されることとしてもよい。
<Hardware configuration example>
As shown in FIG. 1, this system includes a user terminal, a satellite control device, ground equipment, and a satellite group consisting of a plurality of satellites. Terminals other than these may be added, or all or part of the functions of these terminals may be integrated by cloud computing technology and logically configured as one or more terminals.
 本明細書において説明するシステム及び端末による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。本実施形態に係る各機能を実現するためのコンピュータプログラムを作製し、PC等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することが可能である。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A series of processes by the system and terminals described in this specification may be implemented using software, hardware, or a combination of software and hardware. It is possible to prepare a computer program for realizing each function according to the present embodiment and implement it in a PC or the like. It is also possible to provide a computer-readable recording medium storing such a computer program. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
<ユーザ端末>
 ユーザ端末は、人工衛星制御装置と通信を介して情報処理を実行することにより、システムの一部を構成する。ユーザ端末を例示すると、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータであってもよいし、スマートフォン端末やタブレット端末等の携帯通信機器等であってもよい。
<User terminal>
The user terminal constitutes part of the system by executing information processing through communication with the satellite controller. Examples of user terminals include general-purpose computers such as workstations and personal computers, and mobile communication devices such as smartphone terminals and tablet terminals.
 ユーザ端末は、少なくとも、プロセッサ、メモリ、ストレージ、送受信部、入出力部等の一般的な機能を備えていればよい。ユーザは、入力手段(マウス、キーボード、タッチペン、カメラ、スキャナ等の操作や情報を取得する手段)を用いて、ユーザ端末にイメージ情報を入力する。入力されたイメージ情報は、送受信部通じてネットワークを介して人工衛星制御装置に送信される。 A user terminal should at least have general functions such as a processor, memory, storage, transmission/reception unit, and input/output unit. A user inputs image information to a user terminal using input means (means for operating and acquiring information such as a mouse, keyboard, touch pen, camera, scanner, etc.). The input image information is transmitted to the satellite controller via the network through the transmitting/receiving unit.
<人工衛星制御装置>
 人工衛星制御装置は、ユーザ端末と地上設備と通信を介して情報処理を行うことにより、システムの一部を構成する。例えばコンピュータに備えられたハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、実際にはコンピュータのCPU、RAM、ROMなどを備えて構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記録媒体に記憶されたプログラムが動作することによって実現される。
<Satellite controller>
The satellite controller constitutes a part of the system by performing information processing through communication with the user terminal and ground equipment. For example, it can be configured by any of hardware provided in a computer, DSP (Digital Signal Processor), and software. For example, when configured by software, it is actually configured with a computer CPU, RAM, ROM, etc., and is realized by running a program stored in a recording medium such as RAM, ROM, hard disk, or semiconductor memory.
<地上設備>
 地上設備は、全ての軌道面の人工衛星をプログラム制御する。地上設備は、例えば、地上アンテナ装置、地上アンテナ装置に接続された通信装置、コンピュータなどを有している。地上設備は、各人工衛星と通信することによってフォーメーションフライトを形成する。地上設備は、機能として、軌道制御信号生成部と、解析予測部等を備える。通信装置は、各人工衛星を追跡管制する信号を送受信したり、軌道制御信号を各人工衛星に送信したりする。解析予測部は、人工衛星の軌道を解析予測する。軌道制御信号生成部は、人工衛星に送信する軌道制御信号を生成する。本実施の軌道制御信号生成部と解析予測部とは、フォーメーションフライトの機能を実現する。
<Ground equipment>
Ground facilities programmatically control the satellites in all orbital planes. Ground equipment includes, for example, a ground antenna device, a communication device connected to the ground antenna device, a computer, and the like. A ground facility forms a formation flight by communicating with each satellite. The ground equipment has functions such as a track control signal generation unit and an analysis prediction unit. The communication device transmits and receives a signal for tracking and controlling each artificial satellite, and transmits an orbit control signal to each artificial satellite. The analysis prediction unit analyzes and predicts the orbit of the satellite. The orbit control signal generator generates an orbit control signal to be transmitted to the satellite. The trajectory control signal generation unit and the analysis prediction unit of this embodiment realize the function of formation flight.
<人工衛星>
 図2乃至図5に示されるように、本実施の形態による人工衛星は、惑星や衛星などの軌道上(静止軌道、静止トランスファー軌道等)を飛行可能に構成されている。人工衛星は、光源部と、本体部とを備えている。本体部は、衛星制御装部と、送受信部と、推進部と、姿勢制御部と、電源部等を備えている。
<Satellite>
As shown in FIGS. 2 to 5, the artificial satellite according to this embodiment is configured to be able to fly in orbits of planets, satellites, etc. (geostationary orbit, geostationary transfer orbit, etc.). The artificial satellite includes a light source section and a body section. The main unit includes a satellite control unit, a transmission/reception unit, a propulsion unit, an attitude control unit, a power supply unit, and the like.
 本実施の形態においては、5×5のマトリクスのフォーメーションを維持した25台の人工衛星が用いられている。人工衛星の数やフォーメーションの形状はこれに限られない。複数の人工衛星の光源部を利用することにより、後述するように、図形、文字、シンボル、記号、信号、絵、模様、色彩、等を含む静止画又は動画を表現することが可能となる。 In this embodiment, 25 artificial satellites maintaining a 5×5 matrix formation are used. The number of satellites and the shape of the formation are not limited to this. By using the light source units of a plurality of artificial satellites, it is possible to express still images or moving images including graphics, characters, symbols, signs, signals, pictures, patterns, colors, etc., as will be described later.
 本実施の形態による人工衛星の照射光の照射の位置や数によって、二次元バーコードのように所定の情報を表現することも可能となる。また、照射のタイミングを変えることにより、より多くの情報を含んだ信号情報を提供することも可能となる。更には、人工衛星を相対的に移動させる(姿勢制御を行い同一の照射領域に照射し続ける等)ことにより、地上において露光時間を調整して任意の模様を表現することも可能となる。このように表現された情報は、地上側からユーザ端末のカメラ等の機能によって取得することができ、バイナリデータをエンコードして、所定の情報を復元することが可能となる。 It is also possible to express predetermined information like a two-dimensional barcode, depending on the position and the number of irradiation lights of the artificial satellite according to this embodiment. Also, by changing the timing of irradiation, it is possible to provide signal information containing more information. Furthermore, by relatively moving the artificial satellite (attitude control and continuing to irradiate the same irradiation area, etc.), it is possible to adjust the exposure time on the ground and express an arbitrary pattern. The information expressed in this manner can be obtained from the ground side by the function of the camera or the like of the user terminal, and the binary data can be encoded to restore the predetermined information.
 光源装置は、可視光領域の波長を有す高出力LED光源やレーザー光源等の発光体である。光源制御装置は、光源装置の動作を制御する。具体的には、光源制御装置は、発光のタイミング、点滅、明るさ、色、発光方向(光軸)、またはこれらの組み合わせを制御する。本実施の形態においては、光源は本体部に固定されており、図示される人工衛星においては、光源の向きも固定され不変である。なお、光源の照射光を透過させるレンズを含む光学部を備えていてもよい。このような光学部は、発光体による照射光の発散角を調整可能にしたり、照射光の向きを変更可能にしたりする。また、光源部は、複数の光源素子を有していてもよい。 A light source device is a luminous body such as a high-output LED light source or laser light source having a wavelength in the visible light region. The light source control device controls the operation of the light source device. Specifically, the light source control device controls the timing of light emission, flashing, brightness, color, light emission direction (optical axis), or a combination thereof. In this embodiment, the light source is fixed to the main body, and in the illustrated satellite, the orientation of the light source is also fixed and unchangeable. It should be noted that an optical section including a lens that transmits the irradiation light from the light source may be provided. Such an optical section makes it possible to adjust the angle of divergence of the light emitted by the light emitter and change the direction of the light emitted. Also, the light source section may have a plurality of light source elements.
 衛星制御装部は、推進部と姿勢制御部とを制御するコンピュータを備える。具体的には、衛星制御装部は、地上設備から送信される各種信号にしたがって、推進部と姿勢制御部とを制御する。 The satellite control unit is equipped with a computer that controls the propulsion unit and the attitude control unit. Specifically, the satellite control unit controls the propulsion unit and the attitude control unit according to various signals transmitted from the ground equipment.
 送受信部は、地上設備と通信する。具体的には、送受信部は、自衛星に関する各種データを地上設備へ送信する。また、送受信部は、地上設備から送信される各種信号を受信する。 The transceiver unit communicates with the ground equipment. Specifically, the transmission/reception unit transmits various data related to the own satellite to the ground equipment. Also, the transmitting/receiving unit receives various signals transmitted from ground equipment.
 推進部は、人工衛星に推進力を与える装置であり、人工衛星の速度を変化させる。具体的には、推進部は、アポジキックモーター、化学推進部、電気推進部等を適宜採用可能である。 The propulsion unit is a device that gives propulsion to the satellite, and changes the speed of the satellite. Specifically, an apogee kick motor, a chemical propulsion unit, an electric propulsion unit, or the like can be appropriately adopted as the propulsion unit.
 本実施の形態による姿勢制御部は、スピン方式、三軸方式、バイアスモーメンタム方式、ゼロモーメンタム方式等種々の方式が採用可能であり、人工衛星の姿勢と角速度と視線方向(Line Of Sight)といった姿勢要素を制御して、各姿勢要素を所望の方向に変化させたり所望の方向に維持したりする。姿勢制御部は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、軌道ジャイロコンパス、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサ等である。アクチュエータは、姿勢制御スラスタ、スピンテーブル、モーメンタムホイール、リアクションホイール、コントロール・モーメント・ジャイロ、ソーラーセイル、磁気トルカ等である。コントローラは、姿勢センサの計測データまたは地上設備からの各種コマンドにしたがって、アクチュエータを制御する。 Various systems such as spin system, triaxial system, bias momentum system, and zero momentum system can be adopted for the attitude control unit according to the present embodiment. The elements are controlled to change or maintain each attitude element in the desired direction. The attitude control section includes an attitude sensor, an actuator, and a controller. Attitude sensors include gyroscopes, orbital gyrocompasses, earth sensors, sun sensors, star trackers, thrusters and magnetic sensors. Actuators include attitude control thrusters, spin tables, momentum wheels, reaction wheels, control moment gyros, solar sails, magnetic torquers, and the like. The controller controls the actuators according to measurement data from the attitude sensor or various commands from ground equipment.
 電源部は、太陽電池、バッテリおよび電力制御装置といった機器を備え、人工衛星に搭載される各機器に電力を供給する。 The power supply unit is equipped with devices such as solar cells, batteries, and power control devices, and supplies power to each device mounted on the satellite.
<動作>
 続いて、図4及び図5を参照して、本システムの動作を説明する。上述したように、本システムは、光源を備えた複数の人工衛星の姿勢を制御することによって、所定のオブジェクトを表現するものである。
<Action>
Next, the operation of this system will be described with reference to FIGS. 4 and 5. FIG. As described above, the system represents a given object by controlling the attitude of multiple satellites with light sources.
 図4に示されるように、それぞれの人工衛星は、制御信号に従って、当該人工衛星の姿勢制御機能の一部又は全部を転用して光源部による照射光の向きを変えるものである。図5(a)に示されるようにフォーメーションフライトを行う人工衛星群は、それぞれの光源が制御されることにより、観測領域Aにおいて所定のオブジェクトを表現可能に構成されている(図1参照)。図5(b)に示されるように、光源部による照射光の向きを変更したい場合には各人工衛星の姿勢制御機能を利用して人工衛星の本体部の向きを変更することにより、観測領域Bにおいて所定のオブジェクトを表現可能になる。 As shown in FIG. 4, each artificial satellite changes the direction of the light emitted by the light source by diverting part or all of the attitude control function of the artificial satellite according to the control signal. As shown in FIG. 5(a), the group of artificial satellites performing formation flight is configured so that a predetermined object can be represented in the observation area A by controlling the respective light sources (see FIG. 1). As shown in FIG. 5(b), when it is desired to change the direction of the light emitted from the light source, the observation area is changed by changing the direction of the body of the satellite using the attitude control function of each satellite. A given object can be represented in B.
 なお、人工衛星と地上とは互いに相対的に位置関係が変わることから、姿勢制御部は、本体部の姿勢を連続的に制御することによって、当該位置関係が変わった場合であっても、光源部による照射光が所定の照射領域(例えば、観測領域A)において観測可能に照射されるように維持することも可能である。 Since the positional relationship between the artificial satellite and the ground changes relative to each other, the attitude control section continuously controls the attitude of the main body so that even if the positional relationship changes, the light source It is also possible to keep the illumination light from the unit observably illuminated in a predetermined illumination area (for example, observation area A).
 なお、図6に示されるように、光源部に、当該光源の向きを制御する光源制御部を更に設けることとしてもよい。この場合、本体部の姿勢制御機能に加えて、光源駆動部の工藤の両方を用いて、商社光の向きを変更す目ことができる。
<オブジェクト情報の生成>
 上述したオブジェクト情報は、例えば、以下のような工程によって生成され、その情報が人工衛制御装置によって、コンテンツ提供装置に提供される。
As shown in FIG. 6, the light source section may further include a light source control section for controlling the direction of the light source. In this case, in addition to the attitude control function of the main body, it is possible to change the direction of the trading company light by using both the light source driver Kudo.
<Generation of object information>
The object information described above is generated, for example, by the following steps, and the information is provided to the content providing device by the artificial guard control device.
 人工衛星制御装置は、ユーザからイメージ情報の入力を受け付ける。ユーザは、自身の端末を利用してイメージ情報を送信等することができる。本実施の形態によるイメージ情報は、図形、文字、シンボル、記号、信号、絵、模様、色彩、等を含む静止画又は動画である。人工衛星制御装置は、事前に登録されたイメージ情報をテンプレートとして記憶する記憶部を備えユーザからイメージデータの選択を受け付けることとしてもよい。また、過去に入力されたイメージ情報を記憶しておき同様にイメージデータの選択を受け付けることとしてもよい。なお、タッチディスプレイ等を利用して出願人がタッチペンや指等でイメージ情報を描画することとしてもよい。この場合、描画されたイメージ情報を近似する図形に変換する変換手段を備えることとしてもよい。システムは、利用可能な人工衛星の台数情報(後述する)に基づいて静止画又は動画からイメージ情報を生成できるか判定し、生成できる場合にはイメージ情報を生成しユーザに提供する。人工衛星制御装置は、光源ごとの明るさ情報、光源ごとの発光色の情報、光源ごとの発光のタイミング情報の入力を受け付けることとしてもよい。 The satellite controller accepts input of image information from the user. A user can transmit image information using his/her own terminal. The image information according to this embodiment is a still image or moving image including graphics, characters, symbols, signs, signals, pictures, patterns, colors, and the like. The satellite control device may be provided with a storage unit that stores image information registered in advance as a template, and may receive selection of image data from the user. It is also possible to store the image information input in the past and accept the selection of the image data in the same way. The applicant may draw image information with a touch pen, finger, or the like using a touch display or the like. In this case, conversion means may be provided for converting the drawn image information into an approximating figure. The system determines whether image information can be generated from still images or moving images based on information on the number of available satellites (to be described later), and if it can be generated, generates image information and provides it to the user. The satellite control device may accept inputs of brightness information for each light source, information on the color of light emitted by each light source, and information on timing of light emission for each light source.
 次に、人工衛星制御装置は、オブジェクトを表現することが可能かどうかを判断するために人工衛星情報を取得する。例えば、オブジェクトを表現するために必要な人工衛星の数(ドット数等)であるか、フォーメーションフライトの制御は適切になされているか等の情報が取得の対象となるが、これ以外に取得する情報があってもよい。 Next, the satellite controller acquires satellite information to determine whether it is possible to represent the object. For example, information such as the number of satellites (number of dots, etc.) required to represent the object, whether the formation flight is properly controlled, etc., but other information to be acquired There may be
 続いて、人工衛星制御装置は、入力されたイメージ情報と、取得した人工衛星の情報とに基づいて、オブジェクトを表現するための制御信号を生成する(ステップS103)。制御信号は、地上設備で読込・解釈可能な所定の形式である。 Subsequently, the satellite control device generates a control signal for representing the object based on the input image information and the acquired satellite information (step S103). The control signal is in a predetermined format that can be read and interpreted by ground equipment.
 本実施の形態においては、生成した制御信号に基づいて、オブジェクトが実際にどのように表現されるのかについてシミュレーションを行い、ユーザに視認可能にプレビューを行う。プレビューは、ユーザの端末のディスプレイ等に出力される。これにより、ユーザはオブジェクトの見え方を事前に確認することが可能になる。 In this embodiment, based on the generated control signal, a simulation is performed as to how the object will actually be represented, and a preview is performed so that it can be visually recognized by the user. The preview is output to the display of the user's terminal or the like. This allows the user to confirm in advance how the object will look.
 最後に、人工衛星制御装置は、制御信号を地上設備に送信する。なお、制御信号は、オブジェクトの表現を行うタイミングに合わせて事前に地上設備に送信されることとしてもよいし、天候状態や地上からの観測可能性等を考慮してリアルタイムに送信されることとしてもよい。 Finally, the satellite controller transmits control signals to the ground equipment. In addition, the control signal may be transmitted to the ground equipment in advance in accordance with the timing of expressing the object, or may be transmitted in real time in consideration of the weather conditions and the possibility of observation from the ground. good too.
 以上説明した実施の形態においては、光源の向きが固定された人工衛星の姿勢を制御することにより、光軸が観測地を向くようにすることとしていた。かかる構成によれば光源を駆動させる構造を用意することなく、光源が固定された人工衛星を用いることができる。一方、光源を駆動させる構造を有する人工衛星の光源駆動部を制御することにより、人工衛星の姿勢は制御せずに(変えずに)光軸が観測地を向くようにすることとしてもよい。これにより、人工衛星の姿勢を制御するための推進部を使用することがない。更には、人工衛星の姿勢と、光源駆動部の双方を必要な量だけ制御することとしてもよい。 In the embodiment described above, by controlling the attitude of the artificial satellite whose direction of the light source is fixed, the optical axis is directed toward the observation site. According to such a configuration, an artificial satellite with a fixed light source can be used without preparing a structure for driving the light source. On the other hand, by controlling the light source driving section of the artificial satellite having a structure for driving the light source, the optical axis may be directed toward the observation site without controlling (or changing) the attitude of the artificial satellite. This eliminates the use of a propulsion unit for controlling the attitude of the satellite. Furthermore, both the attitude of the artificial satellite and the light source driver may be controlled by the required amount.
 また、反射鏡を備え、光源部による照射光を反射鏡に反射させて照射領域に照射することとしてもよい。 Alternatively, a reflecting mirror may be provided so that the irradiation light from the light source unit is reflected by the reflecting mirror and irradiated to the irradiation area.
 本明細書においてフローチャート図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 The processes described using the flowcharts in this specification do not necessarily have to be executed in the illustrated order. Some processing steps may be performed in parallel. Also, additional processing steps may be employed, and some processing steps may be omitted.
 以上説明した実施の形態を適宜組み合わせて実施することとしてもよい。また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 The embodiments described above may be combined as appropriate and implemented. Also, the effects described herein are merely illustrative or exemplary, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification, in addition to or instead of the above effects.

Claims (12)

  1.  光源部と、
     前記光源部が設けられた本体部と、
     前記本体部の姿勢を制御する姿勢制御部と、
    を有する人工衛星であって、
     前記姿勢制御部が前記本体部の姿勢を制御することによって前記光源部による照射光を所定の照射領域において観測可能に照射する、
    人工衛星。
    a light source;
    a body portion provided with the light source portion;
    an attitude control unit that controls the attitude of the main body;
    A satellite having
    The posture control unit controls the posture of the main body so that the light emitted from the light source unit is observable in a predetermined irradiation area,
    Satellite.
  2.  請求項1に記載の人工衛星であって、
     前記姿勢制御部は、前記人工衛星本体部の姿勢を連続的に制御することによって前記光源部による照射光が所定の照射領域において観測可能に照射されるように維持する、
    人工衛星。
    The artificial satellite according to claim 1,
    The attitude control unit continuously controls the attitude of the satellite main body so that the light emitted from the light source unit can be observed in a predetermined irradiation area.
    Satellite.
  3.  請求項1又は請求項2に記載の人工衛星であって、
     前記光源部は、LEDを有しており、
     当該LEDによる照射光を透過させるレンズを含む光学部を備える、
    人工衛星。
    The artificial satellite according to claim 1 or claim 2,
    The light source unit has an LED,
    Equipped with an optical part including a lens that transmits the light irradiated by the LED,
    Satellite.
  4.  請求項3に記載の人工衛星であって、
     前記光学部は、前記LEDの照射光の発散角を調整可能に構成されている、
    人工衛星。
    A satellite according to claim 3,
    The optical unit is configured to be able to adjust the divergence angle of the irradiation light of the LED,
    Satellite.
  5.  請求項3又は請求項4に記載の人工衛星であって、
     前記光学部は、前記LEDの照射光の向きを変更可能に構成されている、
    人工衛星。
    The artificial satellite according to claim 3 or claim 4,
    The optical unit is configured to be able to change the direction of the irradiation light of the LED,
    Satellite.
  6.  請求項1乃至請求項5のいずれかに記載の人工衛星であって、
     前記光源部の照射光は、可視光領域の波長を有している
    人工衛星。
    The artificial satellite according to any one of claims 1 to 5,
    The artificial satellite, wherein the light emitted from the light source has a wavelength in the visible light region.
  7.  請求項1又は請求項2のいずれかに記載の人工衛星であって、
     前記光源部は、複数の光源素子を有している、
    人工衛星。
    The artificial satellite according to claim 1 or claim 2,
    The light source unit has a plurality of light source elements,
    Satellite.
  8.  請求項1乃至請求項7のいずれかに記載の人工衛星であって、
     前記姿勢制御部は、前記人工衛星の姿勢制御を行う機能の一部又は全部を転用したものである、
    人工衛星。
    The artificial satellite according to any one of claims 1 to 7,
    The attitude control unit is obtained by diverting part or all of the function of performing attitude control of the artificial satellite,
    Satellite.
  9.  請求項1乃至請求項8のいずれかに記載の人工衛星であって、
     前記光源部は、その向きが変位することなく前記本体部に固定されている、
    人工衛星。
    The artificial satellite according to any one of claims 1 to 8,
    The light source unit is fixed to the main body unit without displacing its orientation,
    Satellite.
  10.  光源部と当該光源部が設けられた本体部と前記本体部の姿勢を制御する姿勢制御部とを有する人工衛星の姿勢を制御することにより、前記光源部による照射光を所定の照射領域において観測可能に照射する、
    人工衛星制御方法。
    By controlling the attitude of an artificial satellite that has a light source, a main body provided with the light source, and an attitude control section that controls the attitude of the main body, the light emitted from the light source is observed in a predetermined irradiation area. irradiate as possible,
    Satellite control method.
  11.  人工衛星制御装置と、地上設備と、人工衛星とを含む人工衛星制御システムであって、
     前記人工衛星は、光源部と当該光源部が設けられた本体部と前記本体部の姿勢を制御する姿勢制御部とを有すると共に、前記姿勢制御部が前記本体部の姿勢を制御することによって前記光源部による照射光を所定の照射領域において観測可能に照射し、
     前記人工衛星制御装置は、前記地上設備を介して、前記人工衛星に対して前記本体部の前記姿勢を制御するための信号を送信する、
    人工衛星制御システム。
    A satellite control system including a satellite controller, ground equipment, and a satellite,
    The artificial satellite has a light source, a main body provided with the light source, and an attitude control section for controlling the attitude of the main body. irradiating the irradiation light from the light source unit so as to be observable in a predetermined irradiation area,
    The satellite control device transmits a signal for controlling the attitude of the main body to the satellite via the ground facility.
    Satellite control system.
  12.  光源部を備えた複数の人工衛星の姿勢を制御することによって、前記光源部による照射光を利用して所定のオブジェクトを表現する人工衛星制御システムであって、
     前記オブジェクトを表現するための制御信号を生成する制御信号生成手段と、
     前記制御信号を前記人工衛星に提供する提供手段と、
     前記制御信号に基づいて、前記人工衛星の姿勢を制御する、姿勢制御手段と、を含む
    人工衛星制御システム。

     
    A satellite control system that expresses a predetermined object using light emitted from a light source by controlling the attitude of a plurality of satellites equipped with a light source,
    a control signal generating means for generating a control signal for representing the object;
    providing means for providing the control signal to the satellite;
    and attitude control means for controlling the attitude of the satellite based on the control signal.

PCT/JP2021/024711 2021-06-30 2021-06-30 Artificial satellite control device WO2023276033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024711 WO2023276033A1 (en) 2021-06-30 2021-06-30 Artificial satellite control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024711 WO2023276033A1 (en) 2021-06-30 2021-06-30 Artificial satellite control device

Publications (1)

Publication Number Publication Date
WO2023276033A1 true WO2023276033A1 (en) 2023-01-05

Family

ID=84691661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024711 WO2023276033A1 (en) 2021-06-30 2021-06-30 Artificial satellite control device

Country Status (1)

Country Link
WO (1) WO2023276033A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045232A1 (en) * 2010-09-10 2012-05-24 Daniel Noack Device for displaying symbol for earth, comprises multiple satellites for forming satellite formation, where multiple satellites are provided with optical system, where single satellite records image point
US20160257432A1 (en) * 2015-03-02 2016-09-08 Technion Research & Development Foundation Limited Terrestrially observable displays from space
JP2018184080A (en) * 2017-04-26 2018-11-22 国立研究開発法人宇宙航空研究開発機構 Artificial satellite, bright point display method, information providing method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010045232A1 (en) * 2010-09-10 2012-05-24 Daniel Noack Device for displaying symbol for earth, comprises multiple satellites for forming satellite formation, where multiple satellites are provided with optical system, where single satellite records image point
US20160257432A1 (en) * 2015-03-02 2016-09-08 Technion Research & Development Foundation Limited Terrestrially observable displays from space
JP2018184080A (en) * 2017-04-26 2018-11-22 国立研究開発法人宇宙航空研究開発機構 Artificial satellite, bright point display method, information providing method, and program

Similar Documents

Publication Publication Date Title
US10960991B2 (en) Control system and method for unmanned aerial vehicles
JP7446521B2 (en) Abort-safe vehicle rendezvous in case of partial control failure
Madry et al. Innovative design, manufacturing and testing of small satellites
Lubin et al. The path to interstellar flight
JP2022042950A (en) Drift-based rendezvous control
CN108263641A (en) A kind of sky-based laser flight instruments
JP2021049907A (en) Collision avoidance method and ground facility
US20190291893A1 (en) Unmanned aircraft and system for generating an image in the airspace
WO2023276033A1 (en) Artificial satellite control device
US9774395B1 (en) Space optical communications using laser beams
AU2020307360A1 (en) Method of flight plan optimization of a high altitude long endurance aircraft
Bridges et al. STRaND: Surrey training research and nanosatellite demonstrator
Dalbins et al. Interplanetary Student Nanospacecraft: Development of the LEO Demonstrator ESTCube-2
WO2023276031A1 (en) Artificial satellite control device
WO2023276030A1 (en) Artificial satellite control device
WO2023276028A1 (en) Artificial satellite control device
WO2023276032A1 (en) Satellite control device
WO2023276029A1 (en) Object information provision device and content provision system
US11987396B2 (en) Fail-safe vehicle rendezvous in case of total control failure
Ellery Self-replicating probes are imminent–implications for SETI
Amit Prepare to make the jump to light speed
Arthur III et al. Part-task simulation of synthetic and enhanced vision concepts for lunar landing
JP4001740B2 (en) Repetitive propulsion device and lightweight small aircraft using the same
Umansky-Castro et al. Design of the Alpha CubeSat: Technology demonstration of a chipsat-equipped retroreflective light sail
JP6962626B1 (en) Artificial satellite system, light emission control system and orbit control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE