WO2023276030A1 - Artificial satellite control device - Google Patents

Artificial satellite control device Download PDF

Info

Publication number
WO2023276030A1
WO2023276030A1 PCT/JP2021/024708 JP2021024708W WO2023276030A1 WO 2023276030 A1 WO2023276030 A1 WO 2023276030A1 JP 2021024708 W JP2021024708 W JP 2021024708W WO 2023276030 A1 WO2023276030 A1 WO 2023276030A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
control signal
observation
light source
control device
Prior art date
Application number
PCT/JP2021/024708
Other languages
French (fr)
Japanese (ja)
Inventor
華帆 榊原
Original Assignee
Space Entertainment株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Space Entertainment株式会社 filed Critical Space Entertainment株式会社
Priority to PCT/JP2021/024708 priority Critical patent/WO2023276030A1/en
Publication of WO2023276030A1 publication Critical patent/WO2023276030A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles

Definitions

  • the present invention relates to a satellite control device that expresses a predetermined object by controlling a plurality of satellites equipped with light sources.
  • Patent Document 1 discloses a technique for forming an on-orbit screen that can be viewed from the ground using a plurality of pixel satellites arranged on a satellite orbit.
  • Patent Documents 2 and 3 disclose a technology that enables observation of characters and figures by flying multiple artificial satellites in formation.
  • the above-mentioned technology only discloses a method of displaying some kind of object (characters, graphics, etc.) using multiple artificial satellites with light sources, and it is not possible to study commercialization and control methods and operations suitable for the business. No method is disclosed.
  • one object of the present invention is to provide a novel technology that utilizes flight by multiple satellites with light sources (hereinafter referred to as formation flight) in the entertainment field.
  • a satellite control device that represents a plurality of objects at a plurality of observation locations by controlling a plurality of satellites equipped with light sources, Acquisition means for acquiring observation location information and image information regarding the observation location; control signal generating means for generating a control signal for expressing the plurality of objects based on the obtained observation location information and the image information; and output means for outputting the control signal,
  • a satellite controller is obtained comprising:
  • different objects can be represented for multiple observatories by controlling the irradiation direction of the light emitted from the light source by one formation flight.
  • FIG. 2 is an image diagram showing the direction of the light source of the artificial satellite in FIG. 1; It is a flow of processing of this system. It is another flow of processing of this system. It is a block diagram which shows the image outline
  • a satellite control device that represents a plurality of objects at a plurality of observation locations by controlling a plurality of satellites equipped with light sources, Acquisition means for acquiring observation location information and image information regarding the observation location; control signal generating means for generating a control signal for expressing the plurality of objects based on the obtained observation location information and the image information; and output means for outputting the control signal,
  • a satellite control device comprising: [Item 2] The satellite control device according to item 1, The control signal generating means expresses the first object by directing the direction of the light source of the first group of satellites to the first observation site, and the second group of the satellites.
  • Satellite controller [Item 3] The satellite control device according to item 1, The artificial satellite comprises a plurality of the light sources, The control signal generation means generates the control signal by allowing one of the satellites to overlap the first group and the second group. Satellite controller. [Item 4] The satellite control device according to any one of items 1 to 3, The control signal generating means generates a signal for controlling the direction of the light source by changing the attitude of the artificial satellite. Satellite controller. [Item 5] An artificial satellite control system having the configuration according to item 1. [Item 6] A satellite control program that causes the configuration according to item 1 to function in a satellite control device. [Item 7] An artificial satellite control method including steps having the configuration according to item 1.
  • An artificial satellite control system is an artificial satellite that expresses a predetermined object in space by controlling the operation of a plurality of artificial satellites that have light sources and move on predetermined orbits while maintaining a predetermined distance from each other. It is implemented using a satellite controller. In particular, by changing the orientation of the satellite whose orientation is fixed (or by fixing the orientation of the satellite and changing only the orientation of the light source), changing the orientation of the optical axis of the light source, Different objects can be observably represented from multiple observation locations.
  • the system includes a user terminal, a satellite controller, ground equipment, and a plurality of satellites. Terminals other than these may be added, or all or part of the functions of these terminals may be integrated by cloud computing technology and logically configured as one or more terminals.
  • a series of processes by the system and terminals described in this specification may be implemented using software, hardware, or a combination of software and hardware. It is possible to prepare a computer program for realizing each function according to the present embodiment and implement it in a PC or the like. It is also possible to provide a computer-readable recording medium storing such a computer program.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
  • the user terminal constitutes part of the system by executing information processing through communication with the satellite controller.
  • Examples of user terminals include general-purpose computers such as workstations and personal computers, and mobile communication devices such as smartphone terminals and tablet terminals.
  • a user terminal should at least have general functions such as a processor, memory, storage, transmission/reception unit, and input/output unit.
  • a user inputs image information to a user terminal using input means (means for operating and acquiring information such as a mouse, keyboard, touch pen, camera, scanner, etc.).
  • the input image information is transmitted to the satellite controller via the network through the transmitting/receiving unit.
  • the satellite controller constitutes a part of the system by performing information processing through communication with the user terminal and ground equipment.
  • it can be configured by any of hardware provided in a computer, DSP (Digital Signal Processor), and software.
  • DSP Digital Signal Processor
  • software when configured by software, it is actually configured with a computer CPU, RAM, ROM, etc., and is realized by running a program stored in a recording medium such as RAM, ROM, hard disk, or semiconductor memory.
  • Ground facilities programmatically control the satellites in all orbital planes.
  • Ground equipment includes, for example, a ground antenna device, a communication device connected to the ground antenna device, a computer, and the like.
  • a ground facility forms a formation flight by communicating with each satellite.
  • the ground equipment has functions such as a track control signal generation unit and an analysis prediction unit.
  • the communication device transmits and receives a signal for tracking and controlling each artificial satellite, and transmits an orbit control signal to each artificial satellite.
  • the analysis prediction unit analyzes and predicts the orbit of the satellite.
  • the orbit control signal generator generates an orbit control signal to be transmitted to the satellite.
  • the trajectory control signal generation unit and the analysis prediction unit of this embodiment realize the function of formation flight.
  • An artificial satellite includes a light source device, a light source control device, a satellite control device, a satellite communication device, a propulsion device, an attitude control device, a power supply device, and the like.
  • a light source device is a light emitter such as an LED light source or a laser light source.
  • the light source control device controls the operation of the light source device. Specifically, the light source control device controls the timing of light emission, flashing, brightness, color, light emission direction (optical axis), or a combination thereof.
  • the satellite controller includes a computer that controls the propulsion system and the attitude control system.
  • the satellite control device controls the propulsion device and the attitude control device according to various signals transmitted from the ground equipment.
  • a satellite communication device communicates with a ground facility. Specifically, the satellite communication device transmits various data related to its own satellite to the ground equipment. Also, the satellite communication device receives various signals transmitted from the ground equipment.
  • the propulsion device is a device that gives propulsion force to the artificial satellite and changes the speed of the artificial satellite. Specifically, an apogee kick motor, a chemical propulsion device, an electric propulsion device, or the like can be appropriately adopted as the propulsion device.
  • the attitude control device controls attitude elements such as the attitude, angular velocity, and line of sight of a satellite, and changes or maintains each attitude element in a desired direction.
  • An attitude control device includes an attitude sensor, an actuator, and a controller.
  • the power supply device includes equipment such as a solar cell, a battery, and a power control device, and supplies power to each equipment mounted on the satellite.
  • FIG. 1 the system represents a given object by controlling the attitude of multiple satellites with light sources.
  • observation point A a small cross (black circle in the figure) can be observed by the light source shining on it.
  • observation site B a diamond (black circle in the figure) can be observed. In this way, when the same formation flight is observed from different observation locations, it can be seen as different objects.
  • a light source A that irradiates light from a light source toward an observation location A
  • a light source A that irradiates light from a light source toward an observation location B
  • a light source N that does not emit light exists.
  • the cross-shaped light Sa can be observed.
  • other members of the satellite are omitted and only the light source is shown.
  • the satellite control device acquires observation location information and image information regarding the observation location (step S101).
  • the observation location may be in units of municipalities, or in units of prefectures.
  • Image information (expressed as an object) to be observed at these observation locations is managed in association with each observation location.
  • a control signal is generated so that the object is represented for each observation location.
  • the generated control signal is output to the ground equipment and transmitted to the satellite.
  • the process of control signal generation will be described in more detail with reference to FIG.
  • the illustrated flow chart represents two types of objects for two observation locations.
  • the satellite required for observation at the observation site A is specified (step S202), and the direction of the light source is set based on the position (latitude and longitude) of the observation site (step S203).
  • the satellite required for observation at the observation site B is specified (step S205), and the direction of the light source is set based on the position (latitude/longitude) of the observation site (step S206).
  • step S207 it is possible to express the second object at the observation location B (step S207).
  • the artificial satellite had only one light source. Therefore, the same figure could not be expressed in different areas.
  • one of them irradiates light on the observation site A and the other irradiates light on the observation site B, so that different Or it becomes possible to express the same object.
  • the optical axis is directed toward the observation site.
  • an artificial satellite with a fixed light source can be used without preparing a structure for driving the light source.
  • the optical axis may be directed toward the observation site without controlling (or changing) the attitude of the artificial satellite. This eliminates the use of a propulsion device for controlling the attitude of the satellite.
  • both the attitude of the artificial satellite and the light source driver may be controlled by the required amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

[Problem] To provide a novel technology that uses flight by a plurality of satellites that each have a light source for entertainment. [Solution] The present invention is an artificial satellite control device that controls the plurality of artificial satellites each comprising a light source, thereby presenting different objects in a plurality of observation sites. The device according to the present invention comprises: an acquisition means that acquires image information and observation site information pertaining to the observation sites; a control signal generation means that generates a control signal for presenting a plurality of objects on the basis of the acquired observation site information and image information; and an output means that outputs the control signal.

Description

人工衛星制御装置satellite controller
 本発明は、光源を備えた複数の人工衛星を制御することによって所定のオブジェクトを表現する人工衛星制御装置に関する。 The present invention relates to a satellite control device that expresses a predetermined object by controlling a plurality of satellites equipped with light sources.
 近年、複数の人工衛星を利用した様々な技術が提案されている。 In recent years, various technologies using multiple satellites have been proposed.
 特許文献1には、衛星軌道上に複数配置された画素衛星を利用して地上から視認できる軌道上スクリーンを形成する技術が開示されている。 Patent Document 1 discloses a technique for forming an on-orbit screen that can be viewed from the ground using a plurality of pixel satellites arranged on a satellite orbit.
 特許文献2及び特許文献3には、複数の人工衛星を、編隊して飛行させ文字や図形を観測可能にした技術が開示されている。 Patent Documents 2 and 3 disclose a technology that enables observation of characters and figures by flying multiple artificial satellites in formation.
特開2008-176250号公報JP 2008-176250 A 特開2012-183855号公報JP 2012-183855 A 特開2018-184080号公報JP 2018-184080 A
 上述した技術は、光源を有する複数の人工衛星を利用して何らかのオブジェクト(文字、図形など)、を表示する方法しか開示されておらず、事業化に関する検討や、当該事業に適する制御方法、運用方法は何ら開示されていない。 The above-mentioned technology only discloses a method of displaying some kind of object (characters, graphics, etc.) using multiple artificial satellites with light sources, and it is not possible to study commercialization and control methods and operations suitable for the business. No method is disclosed.
 そこで、本発明は、光源を有する複数の衛星による飛行(以下、フォーメーションフライト:Formation Flightという。)をエンターテインメント領域に活用した新規な技術を提供することを一つの目的とする。 Therefore, one object of the present invention is to provide a novel technology that utilizes flight by multiple satellites with light sources (hereinafter referred to as formation flight) in the entertainment field.
 本発明によれば、
 光源を備えた複数の人工衛星を制御することによって、複数の観測地において複数のオブジェクトとして表現する人工衛星制御装置であって、
 観測地に関する観測地情報と、イメージ情報とを取得する取得手段と、
 取得した前記観測地情報と前記イメージ情報とに基づいて、前記複数のオブジェクトを表現するための制御信号を生成する制御信号生成手段と、
 前記制御信号を出力する出力手段と、を備える、
を備える
人工衛星制御装置が得られる。
According to the invention,
A satellite control device that represents a plurality of objects at a plurality of observation locations by controlling a plurality of satellites equipped with light sources,
Acquisition means for acquiring observation location information and image information regarding the observation location;
control signal generating means for generating a control signal for expressing the plurality of objects based on the obtained observation location information and the image information;
and output means for outputting the control signal,
A satellite controller is obtained comprising:
 本発明によれば、一のフォーメーションフライトによって、その光源から照射される光の照射方向を制御することにより複数の観測所に対して異なるオブジェクトを表現することができる。 According to the present invention, different objects can be represented for multiple observatories by controlling the irradiation direction of the light emitted from the light source by one formation flight.
本発明の実施の形態によるシステムの構成例を示す図である。It is a figure which shows the structural example of the system by embodiment of this invention. 図1の人工衛星の光源の向きを示すイメージ図である。FIG. 2 is an image diagram showing the direction of the light source of the artificial satellite in FIG. 1; 本システムの処理のフローである。It is a flow of processing of this system. 本システムの処理の他のフローである。It is another flow of processing of this system. 本システムのイメージ概要を示すブロック図である。It is a block diagram which shows the image outline|summary of this system.
 本発明の実施形態の内容を列記して説明する。本発明は、以下のような構成を備える。
[項目1]
 光源を備えた複数の人工衛星を制御することによって、複数の観測地において複数のオブジェクトとして表現する人工衛星制御装置であって、
 観測地に関する観測地情報と、イメージ情報とを取得する取得手段と、
 取得した前記観測地情報と前記イメージ情報とに基づいて、前記複数のオブジェクトを表現するための制御信号を生成する制御信号生成手段と、
 前記制御信号を出力する出力手段と、を備える、
を備える
人工衛星制御装置。
[項目2]
 項目1に記載の人工衛星制御装置であって、
 前記制御信号生成手段は、前記人工衛星のうち、第1群の前記人工衛星の前記光源の方向を第1の前記観測地に向けて第1の前記オブジェクトを表現すると共に、第2群の前記人工衛星の前記光源の方向を第2の前記観測地に向けて第2の前記オブジェクトを表現するように前記制御信号を生成する、
人工衛星制御装置。
[項目3]
 項目1に記載の人工衛星制御装置であって、
 前記人工衛星は複数の前記光源を備えており、
 前記制御信号生成手段は、一の前記人工衛星が、前記第1群及び前記第2群に重複することを許容して前記制御信号を生成する、
人工衛星制御装置。
[項目4]
 項目1乃至項目3のいずれかに記載の人工衛星制御装置であって、
 前記制御信号生成手段は、前記人工衛星の姿勢を変更することにより前記光源の向きを制御する信号を生成する、
人工衛星制御装置。
[項目5]
 項目1に記載の構成を備えた人工衛星制御システム。
[項目6]
 項目1に記載の構成を人工衛星制御装置に機能させる人工衛星制御プログラム。
[項目7]
 項目1に記載の構成を有するステップを含む人工衛星制御方法。
The contents of the embodiments of the present invention are listed and explained. The present invention has the following configurations.
[Item 1]
A satellite control device that represents a plurality of objects at a plurality of observation locations by controlling a plurality of satellites equipped with light sources,
Acquisition means for acquiring observation location information and image information regarding the observation location;
control signal generating means for generating a control signal for expressing the plurality of objects based on the obtained observation location information and the image information;
and output means for outputting the control signal,
A satellite control device comprising:
[Item 2]
The satellite control device according to item 1,
The control signal generating means expresses the first object by directing the direction of the light source of the first group of satellites to the first observation site, and the second group of the satellites. generating the control signal to direct the light source of the satellite toward the second observation site to represent a second object;
Satellite controller.
[Item 3]
The satellite control device according to item 1,
The artificial satellite comprises a plurality of the light sources,
The control signal generation means generates the control signal by allowing one of the satellites to overlap the first group and the second group.
Satellite controller.
[Item 4]
The satellite control device according to any one of items 1 to 3,
The control signal generating means generates a signal for controlling the direction of the light source by changing the attitude of the artificial satellite.
Satellite controller.
[Item 5]
An artificial satellite control system having the configuration according to item 1.
[Item 6]
A satellite control program that causes the configuration according to item 1 to function in a satellite control device.
[Item 7]
An artificial satellite control method including steps having the configuration according to item 1.
<実施の形態の詳細>
 以下、本発明の実施の形態について、図面を参照しながら説明する。
<Details of Embodiment>
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<概要>
 本発明の実施の形態による人工衛星制御システムは、光源を備え互いに所定の間隔を維持しながら所定軌道上を移動する複数の人工衛星の動作を制御することによって所定のオブジェクトを空間に表現する人工衛星制御装置を利用して実現される。特に、光源の向きが固定されている人工衛星の向きを変更することにより(又は、人工衛星の向き固定して光源の向きのみを変更する)ことにより光源の光軸の向きを変更して、複数の観測場所から異なるオブジェクトが観測可能に表現することができる。
<Overview>
An artificial satellite control system according to an embodiment of the present invention is an artificial satellite that expresses a predetermined object in space by controlling the operation of a plurality of artificial satellites that have light sources and move on predetermined orbits while maintaining a predetermined distance from each other. It is implemented using a satellite controller. In particular, by changing the orientation of the satellite whose orientation is fixed (or by fixing the orientation of the satellite and changing only the orientation of the light source), changing the orientation of the optical axis of the light source, Different objects can be observably represented from multiple observation locations.
<ハードウェア構成例>
 図1に示されるように、本システムは、ユーザ端末と、人工衛星制御装置と、地上設備と、複数の人工衛星とを備えている。なお、これ以外の端末が加わってもよいし、これらの端末の機能のすべてまたは一部がクラウドコンピューティング技術によって統合され一又は複数の端末として論理的に構成されることとしてもよい。
<Hardware configuration example>
As shown in FIG. 1, the system includes a user terminal, a satellite controller, ground equipment, and a plurality of satellites. Terminals other than these may be added, or all or part of the functions of these terminals may be integrated by cloud computing technology and logically configured as one or more terminals.
 本明細書において説明するシステム及び端末による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。本実施形態に係る各機能を実現するためのコンピュータプログラムを作製し、PC等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することが可能である。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A series of processes by the system and terminals described in this specification may be implemented using software, hardware, or a combination of software and hardware. It is possible to prepare a computer program for realizing each function according to the present embodiment and implement it in a PC or the like. It is also possible to provide a computer-readable recording medium storing such a computer program. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
<ユーザ端末>
 ユーザ端末は、人工衛星制御装置と通信を介して情報処理を実行することにより、システムの一部を構成する。ユーザ端末を例示すると、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータであってもよいし、スマートフォン端末やタブレット端末等の携帯通信機器等であってもよい。
<User terminal>
The user terminal constitutes part of the system by executing information processing through communication with the satellite controller. Examples of user terminals include general-purpose computers such as workstations and personal computers, and mobile communication devices such as smartphone terminals and tablet terminals.
 ユーザ端末は、少なくとも、プロセッサ、メモリ、ストレージ、送受信部、入出力部等の一般的な機能を備えていればよい。ユーザは、入力手段(マウス、キーボード、タッチペン、カメラ、スキャナ等の操作や情報を取得する手段)を用いて、ユーザ端末にイメージ情報を入力する。入力されたイメージ情報は、送受信部通じてネットワークを介して人工衛星制御装置に送信される。 A user terminal should at least have general functions such as a processor, memory, storage, transmission/reception unit, and input/output unit. A user inputs image information to a user terminal using input means (means for operating and acquiring information such as a mouse, keyboard, touch pen, camera, scanner, etc.). The input image information is transmitted to the satellite controller via the network through the transmitting/receiving unit.
<人工衛星制御装置>
 人工衛星制御装置は、ユーザ端末と地上設備と通信を介して情報処理を行うことにより、システムの一部を構成する。例えばコンピュータに備えられたハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、実際にはコンピュータのCPU、RAM、ROMなどを備えて構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記録媒体に記憶されたプログラムが動作することによって実現される。
<Satellite controller>
The satellite controller constitutes a part of the system by performing information processing through communication with the user terminal and ground equipment. For example, it can be configured by any of hardware provided in a computer, DSP (Digital Signal Processor), and software. For example, when configured by software, it is actually configured with a computer CPU, RAM, ROM, etc., and is realized by running a program stored in a recording medium such as RAM, ROM, hard disk, or semiconductor memory.
<地上設備>
 地上設備は、全ての軌道面の人工衛星をプログラム制御する。地上設備は、例えば、地上アンテナ装置、地上アンテナ装置に接続された通信装置、コンピュータなどを有している。地上設備は、各人工衛星と通信することによってフォーメーションフライトを形成する。地上設備は、機能として、軌道制御信号生成部と、解析予測部等を備える。通信装置は、各人工衛星を追跡管制する信号を送受信したり、軌道制御信号を各人工衛星に送信したりする。解析予測部は、人工衛星の軌道を解析予測する。軌道制御信号生成部は、人工衛星に送信する軌道制御信号を生成する。本実施の軌道制御信号生成部と解析予測部とは、フォーメーションフライトの機能を実現する。
<Ground equipment>
Ground facilities programmatically control the satellites in all orbital planes. Ground equipment includes, for example, a ground antenna device, a communication device connected to the ground antenna device, a computer, and the like. A ground facility forms a formation flight by communicating with each satellite. The ground equipment has functions such as a track control signal generation unit and an analysis prediction unit. The communication device transmits and receives a signal for tracking and controlling each artificial satellite, and transmits an orbit control signal to each artificial satellite. The analysis prediction unit analyzes and predicts the orbit of the satellite. The orbit control signal generator generates an orbit control signal to be transmitted to the satellite. The trajectory control signal generation unit and the analysis prediction unit of this embodiment realize the function of formation flight.
<人工衛星>
 本実施の形態においては、5×5のマトリクスのフォーメーションを維持した25台の人工衛星が用いられるが人工衛星の数やフォーメーションの形状はこれに限られない。人工衛星は、光源装置と、光源制御装置と、衛星制御装置と、衛星通信装置と、推進装置と、姿勢制御装置と、電源装置等を備えている。光源装置は、LED光源やレーザー光源等の発光体である。光源制御装置は、光源装置の動作を制御する。具体的には、光源制御装置は、発光のタイミング、点滅、明るさ、色、発光方向(光軸)、またはこれらの組み合わせを制御する。衛星制御装置は、推進装置と姿勢制御装置とを制御するコンピュータを備える。具体的には、衛星制御装置は、地上設備から送信される各種信号にしたがって、推進装置と姿勢制御装置とを制御する。衛星通信装置は、地上設備と通信する。具体的には、衛星通信装置は、自衛星に関する各種データを地上設備へ送信する。また、衛星通信装置は、地上設備から送信される各種信号を受信する。推進装置は、人工衛星に推進力を与える装置であり、人工衛星の速度を変化させる。具体的には、推進装置は、アポジキックモーター、化学推進装置、電気推進装置等を適宜採用可能である。姿勢制御装置は、人工衛星の姿勢と角速度と視線方向(Line Of Sight)といった姿勢要素を制御して、各姿勢要素を所望の方向に変化させたり所望の方向に維持したりする。姿勢制御装置は、姿勢センサとアクチュエータとコントローラとを備える。電源装置は、太陽電池、バッテリおよび電力制御装置といった機器を備え、人工衛星に搭載される各機器に電力を供給する。
<Satellite>
In this embodiment, 25 satellites maintaining a 5×5 matrix formation are used, but the number of satellites and the shape of the formation are not limited to this. An artificial satellite includes a light source device, a light source control device, a satellite control device, a satellite communication device, a propulsion device, an attitude control device, a power supply device, and the like. A light source device is a light emitter such as an LED light source or a laser light source. The light source control device controls the operation of the light source device. Specifically, the light source control device controls the timing of light emission, flashing, brightness, color, light emission direction (optical axis), or a combination thereof. The satellite controller includes a computer that controls the propulsion system and the attitude control system. Specifically, the satellite control device controls the propulsion device and the attitude control device according to various signals transmitted from the ground equipment. A satellite communication device communicates with a ground facility. Specifically, the satellite communication device transmits various data related to its own satellite to the ground equipment. Also, the satellite communication device receives various signals transmitted from the ground equipment. The propulsion device is a device that gives propulsion force to the artificial satellite and changes the speed of the artificial satellite. Specifically, an apogee kick motor, a chemical propulsion device, an electric propulsion device, or the like can be appropriately adopted as the propulsion device. The attitude control device controls attitude elements such as the attitude, angular velocity, and line of sight of a satellite, and changes or maintains each attitude element in a desired direction. An attitude control device includes an attitude sensor, an actuator, and a controller. The power supply device includes equipment such as a solar cell, a battery, and a power control device, and supplies power to each equipment mounted on the satellite.
<動作 入力機能>
 続いて、図1及び図2を参照して、本システムの入力機能に関する動作を説明する。上述したように、本システムは、光源を備えた複数の人工衛星の姿勢を制御することによって、所定のオブジェクトを表現するものである。
<Operation input function>
Next, operations related to the input function of this system will be described with reference to FIGS. 1 and 2. FIG. As described above, the system represents a given object by controlling the attitude of multiple satellites with light sources.
 特に、観測地Aにおいては小さい十字(図の黒丸)上に光源が光ることにより当該十字のオブジェクトが観測可能である。一方、観測地Bにおいてはひし形(図の黒丸)が観測可能である。このように、異なる観測場所から同一のフォーメーションフライトを観測した際に、夫々異なるオブジェクトとして見ることができる。 In particular, at observation point A, a small cross (black circle in the figure) can be observed by the light source shining on it. On the other hand, at observation site B, a diamond (black circle in the figure) can be observed. In this way, when the same formation flight is observed from different observation locations, it can be seen as different objects.
 詳しくは、図2に示されるように、観測地Aに向けて光源による光が照射される光源Aと、観測地Bに向けて光源による光が照射される光源Aと、発行をしない光源Nとが存在している。観測地Aからは、十字上の光Saが観測可能である。なお、図においては、人工衛星の他の部材は図示を省略し光源のみ示している。 Specifically, as shown in FIG. 2, a light source A that irradiates light from a light source toward an observation location A, a light source A that irradiates light from a light source toward an observation location B, and a light source N that does not emit light exists. From the observation point A, the cross-shaped light Sa can be observed. In the figure, other members of the satellite are omitted and only the light source is shown.
 人工衛星制御装置は、観測地に関する観測地情報と、イメージ情報とを取得する(ステップS101)。観測地は市町村単位でもいいし、都道府県単位でもよい。これらの観測地において観測させるイメージ情報(オブジェクトとして表現される)が、当該観測地毎に関連付けて管理される。続いて、観測地毎にオブジェクトが表現されるように、制御信号を生成する。生成した制御信号は地上設備に出力され、人工衛星に伝達される。 The satellite control device acquires observation location information and image information regarding the observation location (step S101). The observation location may be in units of municipalities, or in units of prefectures. Image information (expressed as an object) to be observed at these observation locations is managed in association with each observation location. Subsequently, a control signal is generated so that the object is represented for each observation location. The generated control signal is output to the ground equipment and transmitted to the satellite.
 なお、制御信号生成のプロセスを図4を参照して更に詳細に説明する。例示されているフローチャートは、2か所の観測地に対して2種類のオブジェクトを表現するものである。まず、第1のオブジェクト(観測地A)と、第2のオブジェクト(観測地B)の情報を取得する。その後、観測地Aで観測させるために必要な人工衛星を特定し(ステップS202)、観測地の位置(緯度・軽度)に基づいて光源の方向を設定する(ステップS203)。これにより、観測地Aに第1のオブジェクトの表現が可能となる(ステップS204)。一方、観測地Bで観測させるために必要な人工衛星を特定し(ステップS205)、観測地の位置(緯度・軽度)に基づいて光源の方向を設定する(ステップS206)。これにより、観測地Bに第2のオブジェクトの表現が可能となる(ステップS207)。 The process of control signal generation will be described in more detail with reference to FIG. The illustrated flow chart represents two types of objects for two observation locations. First, information on a first object (observation location A) and a second object (observation location B) is acquired. After that, the satellite required for observation at the observation site A is specified (step S202), and the direction of the light source is set based on the position (latitude and longitude) of the observation site (step S203). As a result, it is possible to express the first object at the observation site A (step S204). On the other hand, the satellite required for observation at the observation site B is specified (step S205), and the direction of the light source is set based on the position (latitude/longitude) of the observation site (step S206). As a result, it is possible to express the second object at the observation location B (step S207).
 上述した実施の形態においては人工衛星は光源を一つしか持っていない場合を想定していた。したがって、同一の図形を異なる地域に表現させることはできなかった。しかし、人工衛星に複数の光源を実装しておくことにより、一方は観測地Aに光を照射し、他方は観測地Bに光を照射することにより、複数の異なる観測地に対して、異なる又は同一のオブジェクトを表現可能となる。 In the embodiment described above, it was assumed that the artificial satellite had only one light source. Therefore, the same figure could not be expressed in different areas. However, by mounting a plurality of light sources on the artificial satellite, one of them irradiates light on the observation site A and the other irradiates light on the observation site B, so that different Or it becomes possible to express the same object.
 以上説明した実施の形態においては、光源の向きが固定された人工衛星の姿勢を制御することにより、光軸が観測地を向くようにすることとしていた。かかる構成によれば光源を駆動させる構造を用意することなく、光源が固定された人工衛星を用いることができる。一方、光源を駆動させる構造を有する人工衛星の光源駆動部を制御することにより、人工衛星の姿勢は制御せずに(変えずに)光軸が観測地を向くようにすることとしてもよい。これにより、人工衛星の姿勢を制御するための推進装置を使用することがない。更には、人工衛星の姿勢と、光源駆動部の双方を必要な量だけ制御することとしてもよい。 In the embodiment described above, by controlling the attitude of the artificial satellite whose direction of the light source is fixed, the optical axis is directed toward the observation site. According to such a configuration, an artificial satellite with a fixed light source can be used without preparing a structure for driving the light source. On the other hand, by controlling the light source driving section of the artificial satellite having a structure for driving the light source, the optical axis may be directed toward the observation site without controlling (or changing) the attitude of the artificial satellite. This eliminates the use of a propulsion device for controlling the attitude of the satellite. Furthermore, both the attitude of the artificial satellite and the light source driver may be controlled by the required amount.
 本明細書においてフローチャート図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 The processes described using the flowcharts in this specification do not necessarily have to be executed in the illustrated order. Some processing steps may be performed in parallel. Also, additional processing steps may be employed, and some processing steps may be omitted.
 以上説明した実施の形態を適宜組み合わせて実施することとしてもよい。また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 The embodiments described above may be combined as appropriate and implemented. Also, the effects described herein are merely illustrative or exemplary, and are not limiting. In other words, the technology according to the present disclosure can produce other effects that are obvious to those skilled in the art from the description of this specification, in addition to or instead of the above effects.

Claims (4)

  1.  光源を備えた複数の人工衛星を制御することによって、複数の観測地において複数のオブジェクトとして表現する人工衛星制御装置であって、
     観測地に関する観測地情報と、イメージ情報とを取得する取得手段と、
     取得した前記観測地情報と前記イメージ情報とに基づいて、前記複数のオブジェクトを表現するための制御信号を生成する制御信号生成手段と、
     前記制御信号を出力する出力手段と、を備える、
    を備える
    人工衛星制御装置。
    A satellite control device that represents a plurality of objects at a plurality of observation locations by controlling a plurality of satellites equipped with light sources,
    Acquisition means for acquiring observation location information and image information regarding the observation location;
    control signal generating means for generating a control signal for expressing the plurality of objects based on the obtained observation location information and the image information;
    and output means for outputting the control signal,
    A satellite control device comprising:
  2.  請求項1に記載の人工衛星制御装置であって、
     前記制御信号生成手段は、前記人工衛星のうち、第1群の前記人工衛星の前記光源の方向を第1の前記観測地に向けて第1の前記オブジェクトを表現すると共に、第2群の前記人工衛星の前記光源の方向を第2の前記観測地に向けて第2の前記オブジェクトを表現するように前記制御信号を生成する、
    人工衛星制御装置。
    The satellite control device according to claim 1,
    The control signal generating means expresses the first object by directing the direction of the light source of the first group of satellites to the first observation site, and the second group of the satellites. generating the control signal to direct the light source of the satellite toward the second observation site to represent a second object;
    Satellite controller.
  3.  請求項1に記載の人工衛星制御装置であって、
     前記人工衛星は複数の前記光源を備えており、
     前記制御信号生成手段は、一の前記人工衛星が、前記第1群及び前記第2群に重複することを許容して前記制御信号を生成する、
    人工衛星制御装置。
    The satellite control device according to claim 1,
    The artificial satellite comprises a plurality of the light sources,
    The control signal generation means generates the control signal by allowing one of the satellites to overlap the first group and the second group.
    Satellite controller.
  4.  請求項1乃至請求項3のいずれかに記載の人工衛星制御装置であって、
     前記制御信号生成手段は、前記人工衛星の姿勢を変更することにより前記光源の向きを制御する信号を生成する、
    人工衛星制御装置。

     
    The satellite control device according to any one of claims 1 to 3,
    The control signal generating means generates a signal for controlling the direction of the light source by changing the attitude of the artificial satellite.
    Satellite controller.

PCT/JP2021/024708 2021-06-30 2021-06-30 Artificial satellite control device WO2023276030A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024708 WO2023276030A1 (en) 2021-06-30 2021-06-30 Artificial satellite control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024708 WO2023276030A1 (en) 2021-06-30 2021-06-30 Artificial satellite control device

Publications (1)

Publication Number Publication Date
WO2023276030A1 true WO2023276030A1 (en) 2023-01-05

Family

ID=84691624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024708 WO2023276030A1 (en) 2021-06-30 2021-06-30 Artificial satellite control device

Country Status (1)

Country Link
WO (1) WO2023276030A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176250A (en) * 2007-01-17 2008-07-31 Astro Research Corp Sky display system
JP2012183855A (en) * 2011-03-03 2012-09-27 Japan Aerospace Exploration Agency Apparatus and method for generating flash of light toward the earth using solar light reflection
JP2018184080A (en) * 2017-04-26 2018-11-22 国立研究開発法人宇宙航空研究開発機構 Artificial satellite, bright point display method, information providing method, and program
US20190138031A1 (en) * 2017-11-07 2019-05-09 Pedro Arango Configuring a color bi-directional pixel-based display screen with stereo sound for light shows using quadcopters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176250A (en) * 2007-01-17 2008-07-31 Astro Research Corp Sky display system
JP2012183855A (en) * 2011-03-03 2012-09-27 Japan Aerospace Exploration Agency Apparatus and method for generating flash of light toward the earth using solar light reflection
JP2018184080A (en) * 2017-04-26 2018-11-22 国立研究開発法人宇宙航空研究開発機構 Artificial satellite, bright point display method, information providing method, and program
US20190138031A1 (en) * 2017-11-07 2019-05-09 Pedro Arango Configuring a color bi-directional pixel-based display screen with stereo sound for light shows using quadcopters

Similar Documents

Publication Publication Date Title
WO2017136602A1 (en) Unmanned vehicles, systems, apparatus and methods for controlling unmanned vehicles
CN112910539B (en) Wave position numbering method
JP2021049907A (en) Collision avoidance method and ground facility
Madry et al. Innovative design, manufacturing and testing of small satellites
US20220212789A1 (en) Method Of Flight Plan Optimization Of A High Altitude Long Endurance Aircraft
WO2023276030A1 (en) Artificial satellite control device
Sheerin et al. Fast Solar System transportation with electric propulsion powered by directed energy
US20230059554A1 (en) Satellite constellation forming system, satellite constellation forming method, ground facility, business device, and open architecture data repository
WO2018216532A1 (en) Antenna control device and flight vehicle
WO2023276031A1 (en) Artificial satellite control device
Bridges et al. STRaND: Surrey training research and nanosatellite demonstrator
Sundaramoorthy et al. System design of LUMIO: A CubeSat at Earth-Moon L2 for observing lunar meteoroid impacts
WO2023276028A1 (en) Artificial satellite control device
WO2023276033A1 (en) Artificial satellite control device
WO2023276032A1 (en) Satellite control device
US20240051683A1 (en) Hybrid constellation, hybrid constellation forming method, ground system, mission satellite, and ground equipment
JP7086289B2 (en) Satellite constellation formation system, satellite constellation formation method, satellite constellation, and ground equipment
Risquez et al. Dynamical attitude model for Gaia
WO2023276029A1 (en) Object information provision device and content provision system
McNutt et al. The Interstellar Probe Study–A Year 2 Update
WO2021182427A1 (en) Satellite-constellation formation system, satellite-constellation formation method, satellite-constellation formation program, ground equipment, and service device
JP6962626B1 (en) Artificial satellite system, light emission control system and orbit control system
Arestie et al. Ion electrospray propulsion system feasibility study for various satellite missions and architectures
Hu et al. A Minimal Chipsat Interstellar Mission: Technology and Mission Architecture
Straub Consideration of the versatility of the Open Prototype for Educational NanoSats CubeSat design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.04.2024)