WO2023274384A1 - 靶向b7h3的抗原结合多肽及其应用 - Google Patents

靶向b7h3的抗原结合多肽及其应用 Download PDF

Info

Publication number
WO2023274384A1
WO2023274384A1 PCT/CN2022/103070 CN2022103070W WO2023274384A1 WO 2023274384 A1 WO2023274384 A1 WO 2023274384A1 CN 2022103070 W CN2022103070 W CN 2022103070W WO 2023274384 A1 WO2023274384 A1 WO 2023274384A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
hla
cells
gene
immune effector
Prior art date
Application number
PCT/CN2022/103070
Other languages
English (en)
French (fr)
Inventor
尚小云
蒋海娟
王丹
李甲璐
马少文
沈慧
马丽
陈伟杰
Original Assignee
宁波茂行生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波茂行生物医药科技有限公司 filed Critical 宁波茂行生物医药科技有限公司
Priority to CA3224476A priority Critical patent/CA3224476A1/en
Priority to EP22832196.4A priority patent/EP4365203A1/en
Priority to JP2023580778A priority patent/JP2024527557A/ja
Priority to US18/575,650 priority patent/US12133890B2/en
Priority to CN202280004519.XA priority patent/CN115916833B/zh
Priority to KR1020247003777A priority patent/KR20240027117A/ko
Priority to AU2022301099A priority patent/AU2022301099A1/en
Priority to MX2023015153A priority patent/MX2023015153A/es
Publication of WO2023274384A1 publication Critical patent/WO2023274384A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • A61K39/464412CD19 or B4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464429Molecules with a "CD" designation not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70517CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/10Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the structure of the chimeric antigen receptor [CAR]
    • A61K2239/11Antigen recognition domain
    • A61K2239/13Antibody-based
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/26Universal/off- the- shelf cellular immunotherapy; Allogenic cells or means to avoid rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present application relates to the field of biomedicine, in particular to an antigen-binding polypeptide targeting B7H3 and its application.
  • Glioblastomas account for 15 percent of all brain tumors and can originate in ordinary brain cells or develop from low-grade astrocytomas. The usual survival period after diagnosis is 12 to 15 months, and only 3% to 7% of patients survive beyond five years. Survival is usually 3 months without treatment. Glioblastoma, which affects about 3 in every 100,000 people each year, is the most common cancer of brain origin and the second most common brain tumor after meningioma.
  • CAR-T cell technology is a cell-based therapy that has produced excellent results in tumor immunotherapy, especially in the treatment of blood tumors.
  • CAR-T immunotherapy uses genetically modified T cells that can specifically recognize and kill tumor cells expressing specific antigens without being restricted by MHC.
  • CAR-T immunotherapy has achieved good results in the treatment of various B cell malignancies, such as CAR-T cells targeting CD19 in the treatment of acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma ( NHL).
  • ALL acute lymphoblastic leukemia
  • CLL chronic lymphocytic leukemia
  • NHL non-Hodgkin's lymphoma
  • B7H3 also known as CD276, belongs to the B7 family of immunomodulatory proteins and is a type I membrane protein whose extracellular domain sequence is similar to other B7 family members.
  • the B7H3 gene is located on human chromosome 15, and the gene consists of ten exons, of which exons 4 to 7 encode the extracellular IgV-IgC domain.
  • B7H3 mRNA is expressed in a variety of normal tissues and some tumor cell lines, but it cannot be detected in peripheral blood mononuclear cells (PBMC), but can be expressed in dendrites by inflammatory cytokines (IFN ⁇ ) and the combination of PMA and ionomycin Induces B7H3 expression on cells and monocytes.
  • PBMC peripheral blood mononuclear cells
  • B7H3 mRNA Although B7H3 mRNA is widely expressed in normal tissues, the expression level of B7H3 protein is very low or absent in normal tissues, indicating that the protein expression of B7H3 is strictly post-transcriptionally regulated. In contrast, B7H3 protein is overexpressed in a variety of malignancies and is associated with poor prognosis, higher tumor grade and tumor metastasis, drug resistance and poor overall survival.
  • Universal CAR T cells are T cells isolated from healthy donors.
  • the prepared CAR-T cells not only have high expansion efficiency and strong vitality, but also increase the positive rate of infection.
  • universal CAR-T also faces graft-versus-host Problems with disease (GVHD) and immune rejection.
  • GVHD graft-versus-host Problems with disease
  • the CRISPR/Cas9 system is the most commonly used gene editing method, which can be used to generate T cells deficient in TCR and HLA class I molecules, and reduce the immune rejection immune response caused by allogeneic cell therapy.
  • the purpose of the present invention is to prepare a general-purpose CAR-T cell targeting B7H3, which recognizes tumor cell surface antigens and at the same time knocks out the TCR and HLA-A genes expressed by the cells, thereby reducing immune rejection caused by allogeneic CAR-T therapy Response, prolong cell survival time, improve anti-tumor effect.
  • the application provides an antigen-binding polypeptide that binds to B7H3, said antigen-binding polypeptide comprising at least one complementarity determining region (CDR) of an antibody heavy chain variable region (VH), said VH comprising SEQ ID NO: 25 Amino acid sequence shown.
  • CDR complementarity determining region
  • VH antibody heavy chain variable region
  • the VH comprises the amino acid sequence shown in SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28 or SEQ ID NO:29.
  • the antigen-binding polypeptide comprises a VH comprising heavy chain complementarity determining region 1 (HCDR1), heavy chain complementarity determining region 2 (HCDR2) and heavy chain complementarity determining region 3 (HCDR3),
  • HCDR3 comprises the amino acid sequence shown in SEQ ID NO:7.
  • the HCDR3 comprises the amino acid sequence shown in SEQ ID NO:8 or SEQ ID NO:9.
  • the HCDR2 comprises the amino acid sequence shown in SEQ ID NO:4.
  • the HCDR2 comprises the amino acid sequence shown in SEQ ID NO:5 or SEQ ID NO:6.
  • the HCDR1 comprises the amino acid sequence shown in SEQ ID NO:1.
  • the HCDR1 comprises the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:3.
  • the VH comprises: HCDR1 comprising the amino acid sequence shown in SEQ ID NO:1, HCDR2 comprising the amino acid sequence shown in SEQ ID NO:4 and comprising the amino acid shown in SEQ ID NO:7 Sequence of HCDR3.
  • the VH comprises:
  • HCDR1 comprising the amino acid sequence shown in SEQ ID NO:2
  • HCDR2 comprising the amino acid sequence shown in SEQ ID NO:5
  • HCDR3 comprising the amino acid sequence shown in SEQ ID NO:8;
  • HCDR1 comprising the amino acid sequence shown in SEQ ID NO:3
  • HCDR2 comprising the amino acid sequence shown in SEQ ID NO:6
  • HCDR3 comprising the amino acid sequence shown in SEQ ID NO:9.
  • the VH comprises heavy chain framework region 1 (HFR1), heavy chain framework region 2 (HFR2), heavy chain framework region 3 (HFR3) and heavy chain framework region 4 (HFR4), the HFR1 Comprising the amino acid sequence shown in SEQ ID NO:10.
  • the HFR1 comprises the amino acid sequence shown in SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13 or SEQ ID NO:14.
  • the HFR2 comprises the amino acid sequence shown in SEQ ID NO:15.
  • the HFR2 comprises the amino acid sequence shown in SEQ ID NO: 16 or SEQ ID NO: 17.
  • the HFR3 comprises the amino acid sequence shown in SEQ ID NO: 18.
  • the HFR3 comprises the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
  • the HFR4 comprises the amino acid sequence shown in SEQ ID NO:22.
  • the HFR4 comprises the amino acid sequence shown in SEQ ID NO:23 or SEQ ID NO:24.
  • the VH comprises HFR1, HFR2, HFR3 and HFR4, and the HFR1, HFR2, HFR3 and HFR4 are selected from:
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:11
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:16
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:19, comprising SEQ ID NO:23 HFR4 of the indicated amino acid sequence
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:12
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:16
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:20, comprising SEQ ID NO:24 HFR4 of the indicated amino acid sequence
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:13
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:17
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:21, comprising SEQ ID NO:23 HFR4 of the indicated amino acid sequence
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:14
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:17
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:20, comprising SEQ ID NO:24
  • the amino acid sequence of HFR4 is shown.
  • the VH comprises the amino acid sequence shown in SEQ ID NO:25.
  • the VH comprises the amino acid sequence shown in SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28 or SEQ ID NO:29.
  • the antigen-binding polypeptide comprises an antibody or antigen-binding fragment thereof.
  • the antibodies include monoclonal antibodies, polyclonal antibodies, dimers, multimers, multispecific antibodies, intact antibodies, antibody fragments, human antibodies, humanized antibodies, or chimeric antibodies.
  • the antigen-binding fragments include Fab fragments, Fv fragments, F(ab')2, single chain Fv (scFv) or single domain antibodies (VHH).
  • the present application provides a chimeric antigen receptor (CAR), which comprises a targeting moiety, wherein the targeting moiety comprises the aforementioned antigen-binding polypeptide.
  • CAR chimeric antigen receptor
  • the targeting moiety comprises a VHH.
  • the chimeric antigen receptor comprises a transmembrane domain comprising a transmembrane domain derived from one or more proteins selected from the group consisting of CD8A, CD8B, CD28 , CD3 ⁇ (CD3e), 4-1BB, CD4, CD27, CD7, PD-1, TRAC, TRBC, CD3 ⁇ , CTLA-4, LAG-3, CD5, ICOS, OX40, NKG2D, 2B4(CD244), Fc ⁇ RI ⁇ , BTLA , CD30, GITR, HVEM, DAP10, CD2, NKG2C, LIGHT, DAP12, CD40L (CD154), TIM1, CD226, DR3, CD45, CD80, CD86, CD9, CD16, CD22, CD33, CD37, CD64, and SLAM.
  • transmembrane domain comprises a transmembrane domain derived from CD8A.
  • transmembrane domain comprises the amino acid sequence shown in any one of SEQ ID NO:42 to SEQ ID NO:90.
  • the chimeric antigen receptor includes an intracellular co-stimulatory signaling domain comprising one or more proteins derived from the group consisting of Intracellular co-stimulatory signaling domains: CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc ⁇ RI ⁇ , BTLA, GITR, HVEM, DAP10, DAP12, CD30, CD40, CD40L, TIM1, PD-1, LFA-1, LIGHT, JAML, CD244, CD100, ICOS, CD40, and MyD88.
  • Intracellular co-stimulatory signaling domains CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc
  • the intracellular costimulatory signaling domain is derived from a costimulatory signaling domain of 4-1BB.
  • the intracellular co-stimulatory signaling domain comprises the amino acid sequence shown in any one of SEQ ID NO:91 to SEQ ID NO:123.
  • the chimeric antigen receptor comprises an intracellular signaling domain comprising an intracellular protein derived from one or more proteins selected from the group consisting of Signal transduction domain: CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD79a, CD79b, FceRI ⁇ , FceRI ⁇ , Fc ⁇ RIIa, bovine leukemia virus gp30, Epstein-Barr virus (EBV) LMP2A, simian immunodeficiency virus PBj14 Nef, DAP10, DAP-12 and domains containing at least one ITAM.
  • Signal transduction domain CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD79a, CD79b, FceRI ⁇ , FceRI ⁇ , Fc ⁇ RIIa
  • bovine leukemia virus gp30 Epstein-Barr virus (EBV) LMP2A
  • simian immunodeficiency virus PBj14 Nef simian immunodeficiency virus
  • the intracellular signaling domain comprises a signaling domain derived from CD3 ⁇ .
  • said intracellular signal transduction domain comprises any of SEQ ID NO:107, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:124 to SEQ ID NO:134 The amino acid sequence shown in item.
  • the chimeric antigen receptor comprises a hinge region between the targeting moiety and the transmembrane domain, the hinge region comprising a hinge derived from one or more proteins selected from the group consisting of Regions: CD28, IgG1, IgG4, IgD, 4-1BB, CD4, CD27, CD7, CD8A, PD-1, ICOS, OX40, NKG2D, NKG2C, Fc ⁇ RI ⁇ , BTLA, GITR, DAP10, TIM1, SLAM, CD30, and LIGHT.
  • Regions CD28, IgG1, IgG4, IgD, 4-1BB, CD4, CD27, CD7, CD8A, PD-1, ICOS, OX40, NKG2D, NKG2C, Fc ⁇ RI ⁇ , BTLA, GITR, DAP10, TIM1, SLAM, CD30, and LIGHT.
  • the hinge region comprises a hinge region derived from CD8A.
  • the hinge region comprises the amino acid sequence shown in any one of SEQ ID NO: 135 to SEQ ID NO: 156.
  • the non-targeting portion of the chimeric antigen receptor comprises the transmembrane domain of the CD8A molecule, the hinge region of CD8A, the intracellular co-stimulatory signaling domain of 4-1BB, and the CD3 ⁇ intracellular signaling structure area.
  • the non-targeting portion of the chimeric antigen receptor comprises the amino acid sequence shown in SEQ ID NO:30.
  • the chimeric antigen receptor further comprises a signal peptide fragment, and the C-terminus of the signal peptide fragment is connected to the N-terminus of the targeting moiety.
  • the signal peptide fragment comprises a CD8A signal peptide fragment.
  • the signal peptide fragment comprises the amino acid sequence shown in SEQ ID NO:31.
  • the chimeric antigen receptor comprises the amino acid sequence shown in any one of SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34 and SEQ ID NO:35.
  • the present application provides one or more isolated nucleic acid molecules encoding the aforementioned antigen-binding polypeptide or the aforementioned chimeric antigen receptor.
  • the isolated nucleic acid molecule comprises the nucleotide sequence shown in any one of SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39.
  • the present application provides a vector comprising the aforementioned isolated nucleic acid molecule.
  • the vector is an expression vector.
  • the vector is selected from DNA vectors, RNA vectors, plasmids, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors and retroviral vectors.
  • the present application provides a cell i) comprising the aforementioned isolated nucleic acid molecule or the aforementioned vector; and/or ii) expressing the aforementioned antigen-binding polypeptide or chimeric antigen receptor.
  • the present application provides an immune effector cell, which comprises the aforementioned nucleic acid molecule or the aforementioned vector, and/or expresses the aforementioned CAR.
  • the immune effector cells include human cells.
  • the immune effector cells include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • NK cells natural killer cells
  • macrophages include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • the immune effector cells comprise autologous or non-autologous immune effector cells.
  • the immune effector cells include modified immune effector cells.
  • the modified immune effector cells include cells that reduce immune rejection induced by allogeneic cell therapy.
  • TCR T cell antigen receptor
  • MHCI major histocompatibility complex
  • the modification includes down-regulation of the expression and/or activity of one or more genes associated with immune rejection.
  • the gene related to immune rejection is selected from one or more genes in the group consisting of TRAC, TRBC, HLA-A, HLA-B, B2M and CIITA.
  • the expression and/or activity of the TRAC gene and the HLA-A gene are down-regulated in the modified immune effector cells compared to the unmodified corresponding cells.
  • the expression and/or activity of the CIITA gene is not down-regulated in the modified immune effector cells compared to the corresponding cells without the modification.
  • the expression and/or activity of the B2M gene is not down-regulated in the modified immune effector cells compared to the corresponding cells without the modification.
  • the expression and/or activity of the TRAC gene and the HLA-A gene are down-regulated in the modified immune effector cells compared to the corresponding wild-type cells.
  • the expression and/or activity of the B2M gene is not down-regulated in the modified immune effector cells compared to the corresponding wild-type cells.
  • the expression and/or activity of the CIITA gene is not down-regulated in the modified immune effector cells compared to the corresponding wild-type cells.
  • the expression level and/or activity of the gene is down-regulated, including down-regulating the expression and/or activity of a nucleic acid molecule encoding the gene; and/or down-regulating the expression of a protein product encoded by the gene and/or activity is downregulated.
  • the modification includes: gene knockout, gene mutation and/or gene silencing.
  • the modification comprises the knockout of either of the two TRAC alleles and the knockout of either of the two HLA-A alleles in the immune effector cells.
  • the modification comprises knockout of two TRAC alleles and knockout of either of the two HLA-A alleles in the immune cells.
  • the modification comprises knockout of exon of TRAC gene and knockout of exon of HLA-A gene in the immune cells.
  • said modification comprises administering to said immune effector cells one or more substances selected from the group consisting of antisense RNA, siRNA, shRNA and CRISPR/Cas9 system.
  • said modification comprises administering a CRISPR/Cas9 system to said immune effector cells.
  • the modification further comprises administering to the immune effector cells sgRNA targeting the exon portion of the TRAC gene.
  • the sgRNA targeting the exon portion of the TRAC gene comprises the nucleotide sequence shown in any one of SEQ ID NO:157 to SEQ ID NO:171.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the HLA-A gene.
  • the sgRNA targeting the exon portion of the HLA-A gene comprises the nucleotide sequence shown in any one of SEQ ID NO:172 to SEQ ID NO:212.
  • said modification further comprises administering a Cas enzyme to said cells.
  • the Cas enzyme comprises a Cas9 protein.
  • said antisense RNA comprises the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216.
  • the immune effector cells are HLA-B homozygous cells.
  • HLA-B homozygote includes HLA-B*40 homozygote, HLA-B*15 homozygote, HLA-B*46 homozygote, HLA-B*13 homozygote, HLA-B* B*51 homozygote, HLA-B*58 homozygote, HLA-B*07 homozygote, HLA-B*35 homozygote, HLA-B*44 homozygote, HLA-B*52 homozygote, HLA-B* 57 homozygous, HLA-B*54 homozygous, HLA-B*55 homozygous.
  • the immune effector cells are HLA-A homozygous or heterozygous cells.
  • HLA-A homozygote or heterozygote comprises HLA-A*02 homozygote, HLA-A*11 homozygote, HLA-A*02/A*11 heterozygote or HLA-A *24 homozygotes.
  • the present application provides a method for preparing immune effector cells, which includes introducing the aforementioned nucleic acid molecules or the aforementioned vectors into the immune effector cells.
  • the method further comprises: before introducing the nucleic acid molecule according to any one of claims XX-XX or the vector according to any one of claims XX-XX into immune effector cells /Thereafter, modifying the immune effector cells, the modification includes down-regulating the expression and/or activity of one or more genes related to immune rejection.
  • the gene related to immune rejection is selected from one or more genes in the group consisting of TRAC, TRBC, HLA-A, HLA-B, B2M and CIITA.
  • the expression and/or activity of the TRAC gene and the HLA-A gene in said immune effector cells are down-regulated compared to the expression and/or activity of the corresponding genes in corresponding cells without said modification.
  • the expression and/or activity of the CIITA gene is not down-regulated compared to the expression and/or activity of the corresponding gene in a corresponding cell without said modification.
  • the expression and/or activity of the B2M gene is not down-regulated compared to the expression and/or activity of the corresponding gene in a corresponding cell without said modification.
  • the expression and/or activity of the TRAC gene and the HLA-A gene of the immune effector cells is down-regulated compared to corresponding wild-type cells.
  • the expression and/or activity of the CIITA gene is not downregulated compared to corresponding wild-type cells.
  • the expression and/or activity of the B2M gene is not down-regulated compared to corresponding wild-type cells.
  • the expression level and/or activity of the gene is down-regulated, including down-regulating the expression and/or activity of a nucleic acid molecule encoding the gene; and/or down-regulating the expression of a protein product encoded by the gene and/or activity is downregulated.
  • the modification includes: gene knockout, gene mutation and/or gene silencing.
  • the modification comprises the knockout of either of the two TRAC alleles and the knockout of either of the two HLA-A alleles in the immune effector cells.
  • the modification comprises knockout of two TRAC alleles and knockout of either of the two HLA-A alleles in the immune cells.
  • the modification comprises knockout of exon of TRAC gene and knockout of exon of HLA-A gene in the immune cells.
  • said modification comprises administering to said immune effector cells one or more substances selected from the group consisting of antisense RNA, siRNA, shRNA and CRISPR/Cas9 system.
  • said modification comprises administering a CRISPR/Cas9 system to said immune effector cells.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the TRAC gene.
  • the sgRNA targeting the exon portion of the TRAC gene comprises the nucleotide sequence shown in any one of SEQ ID NO:157 to SEQ ID NO:171.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the HLA-A gene.
  • the sgRNA targeting the exon portion of the HLA-A gene comprises the nucleotide sequence shown in any one of SEQ ID NO:172 to SEQ ID NO:212.
  • said modification further comprises administering a Cas enzyme to said cells.
  • the Cas enzyme comprises a Cas9 protein.
  • said antisense RNA comprises the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216.
  • the immune effector cells comprise human cells.
  • the immune effector cells include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • NK cells natural killer cells
  • macrophages include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • the immune effector cells comprise autologous or non-autologous immune effector cells.
  • the cells are homozygous for HLA-B.
  • HLA-B homozygote includes HLA-B*40 homozygote, HLA-B*15 homozygote, HLA-B*46 homozygote, HLA-B*13 homozygote, HLA-B* B*51 homozygote, HLA-B*58 homozygote, HLA-B*07 homozygote, HLA-B*35 homozygote, HLA-B*44 homozygote, HLA-B*52 homozygote, HLA-B* 57 homozygous, HLA-B*54 homozygous, HLA-B*55 homozygous.
  • the cells are HLA-A homozygous or heterozygous cells.
  • HLA-A homozygote or heterozygote comprises HLA-A*02 homozygote, HLA-A*11 homozygote, HLA-A*02/A*11 heterozygote or HLA-A *24 homozygotes.
  • the present application provides the application of the aforementioned chimeric antigen receptor, the aforementioned isolated nucleic acid molecule, the aforementioned vector, the aforementioned cell, or the aforementioned immune effector cell in the preparation of CAR-T cells.
  • the present application provides a pharmaceutical composition
  • a pharmaceutical composition comprising the aforementioned antigen-binding polypeptide, the aforementioned chimeric antigen receptor, the aforementioned isolated nucleic acid molecule, the aforementioned carrier, the aforementioned cell, and/or the aforementioned immune Effector cells, and optionally a pharmaceutically acceptable carrier.
  • the present application provides the aforementioned antigen-binding polypeptide, the aforementioned antigen chimeric receptor, the aforementioned isolated nucleic acid molecule, the aforementioned carrier, the aforementioned cell, the aforementioned immune effector cell, and/or the aforementioned pharmaceutical composition , for use in the treatment of a disease or condition associated with the expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises a disease or disorder associated with upregulated expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises cancer.
  • the cancer comprises adrenocortical carcinoma, bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer , ovarian, pancreatic, prostate, sarcoma, melanoma, gastric, thymus, or endometrial cancer.
  • the present application provides the aforementioned antigen-binding polypeptide, the aforementioned antigen chimeric receptor, the aforementioned isolated nucleic acid molecule, the aforementioned carrier, the aforementioned cell, the aforementioned immune effector cell, and/or the aforementioned pharmaceutical composition Use in the preparation of a medicament for treating cancer.
  • the cancer comprises a B7H3 positive cancer.
  • the cancer comprises adrenocortical carcinoma, bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer , ovarian, pancreatic, prostate, sarcoma, melanoma, gastric, thymus, or endometrial cancer.
  • the present application provides a method for preventing or treating a disease or disorder related to the expression of B7H3, which comprises administering to a subject in need an effective amount of the aforementioned antigen-binding polypeptide, the aforementioned antigen chimeric receptor , the aforementioned isolated nucleic acid molecule, the aforementioned vector, the aforementioned cell, the aforementioned immune effector cell, and/or the aforementioned pharmaceutical composition.
  • the disease or disorder associated with expression of B7H3 comprises a disease or disorder associated with upregulated expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises cancer.
  • the cancer comprises adrenocortical carcinoma, bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer , ovarian, pancreatic, prostate, sarcoma, melanoma, gastric, thymus, or endometrial cancer.
  • Figure 1A shows the anti-B7H3 CAR gene lentiviral expression vector described in the present application
  • Figure 1B shows the construction strategy of anti-B7H3 UCAR-T cells described in the present application
  • Figure 2 shows the affinity curve of the anti-B7H3 VHH antibody described in the present application
  • FIG. 3 shows the ADCC function test results of the anti-B7H3 VHH antibody described in the present application
  • Figures 4A-4C show the cell phenotype detection results of the anti-B7H3 UCAR-T cells described in the present application.
  • Figure 5 shows the results of killing target cells by anti-B7H3 UCAR-T cells described in the present application
  • Figures 6A-6C show the detection results of cytokine secretion in the co-culture of anti-B7H3 UCAR-T cells and target cells described in the present application;
  • Figure 7 shows the in vivo anti-tumor effect of the anti-B7H3 UCAR-T cells described in this application.
  • Figures 8A-8B show the results of GVHD and rejection in vivo targeting anti-B7H3 UCAR-T cells described in this application;
  • Figure 9 shows the off-target analysis of anti-B7H3 UCAR-T cells described in this application.
  • Figure 10 shows the chromosomal translocation analysis of anti-B7H3 UCAR-T cells described in the present application
  • Figure 11 shows the karyotype analysis of anti-B7H3 UCAR-T cells described in the present application
  • Figure 12 shows the analysis of Cas9 residues in anti-B7H3 UCAR-T cells described in this application.
  • FIG. 13 shows the results of Sanger sequencing of the TRAC gene in this application after Sg9RNA editing
  • Figure 14 shows the results of TA clone detection of the TRAC gene in this application after Sg9RNA editing
  • Figure 15 shows the results of flow cytometry detection of the TRAC gene in the present application after Sg9RNA editing
  • Figure 16 shows the results of Sanger sequencing of the HLA-A02 gene in this application after Sg2RNA editing
  • Figure 17 shows the results of Sanger sequencing of the HLA-A02 gene in this application after Sg5RNA editing
  • Figure 18 shows the results of Sanger sequencing of the HLA-A11 gene in this application after Sg21RNA editing
  • FIG 19 shows the results of Sanger sequencing of the HLA-A11 gene in this application after Rsg2RNA editing
  • Figures 20A-20B show the results of simultaneous knockout of HLA-A02 and TRAC in the modified immune effector cells of the present application
  • Figures 21A-21B show the protein levels of HLA-A02 and TRAC in the modified immune effector cells of the present application
  • Figure 22 shows the mRNA levels of TRAC, HLA-A, B2M and CIITA in the modified immune effector cells of the present application
  • Figures 23A-23B show the protein levels of B2M and CIITA in the modified immune effector cells of the present application
  • Figures 24A-24D show the protein levels of TRAC, HLA-A, B2M and CIITA in the modified immune effector cells of the present application;
  • Figures 25A-25B show the knockout situation of TRAC and HLA-A mRNA levels in the modified immune effector cells of the present application
  • FIGS 26A-26B show the protein levels of CD69 and CD137 in the modified immune effector cells of the present application
  • Figure 27 shows the co-cultivation of the modified immune effector cells and NK cells of the present application
  • Figure 28 shows the level of IFN- ⁇ expressed by the modified immune effector cells of the present application.
  • Figures 29A-29D show the protein levels of TRAC, HLA-A, B2M and CIITA in the modified immune effector cells of the present application;
  • Figure 30 shows the infection efficiency of the modified immune effector cells of the present application to CAR
  • Figure 31 shows the amplification factor of the modified immune effector cells of the present application
  • Figure 32 shows the killing effect of the modified immune effector cells of the present application on CD19 positive target cells
  • Figure 33 shows the dosing regimen for administering the modified immune effector cells of the present application
  • Figure 34 shows the killing effect of the modified immune effector cells of the present application on tumors in mice.
  • chimeric antigen receptor generally refers to a group of polypeptides, usually two in the simplest embodiment, which, when in immune effector cells, provide cellular (usually cancer cells) and generate intracellular signals.
  • the CAR comprises at least one extracellular antigen-binding domain (such as a VHH, scFv, or portion thereof), a transmembrane domain, and a cytoplasmic signaling domain (also referred to herein as an "intracellular signaling domain”). ”) comprising a functional signaling domain derived from a stimulatory molecule and/or a co-stimulatory molecule as defined below.
  • the set of polypeptides are in the same polypeptide chain (eg, comprising chimeric fusion proteins). In some embodiments, the set of polypeptides are not contiguous with each other, e.g., in different polypeptide chains. In some aspects, the set of polypeptides includes a dimerization switch that, in the presence of a dimerization molecule, can couple the polypeptides to each other, eg, can couple an antigen binding domain to an intracellular signaling domain. In one aspect, the stimulatory molecule of the CAR is the zeta chain associated with the T cell receptor complex.
  • the cytoplasmic signaling domain comprises a primary signaling domain (eg, the primary signaling domain of CD3-zeta). In one aspect, the cytoplasmic signaling domain further comprises one or more functional signaling domains derived from at least one co-stimulatory molecule as defined below. In one aspect, the co-stimulatory molecule may be selected from 4-1BB (ie CD137), CD27, ICOS and/or CD28. In one aspect, a CAR comprises a chimeric fusion protein that may comprise an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a stimulatory molecule.
  • the CAR comprises a chimeric fusion protein that may comprise an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling structure derived from a co-stimulatory molecule domains and functional signaling domains derived from stimulatory molecules.
  • a CAR comprises a chimeric fusion protein that may comprise an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising functions derived from one or more co-stimulatory molecules Sexual signaling domains and functional signaling domains derived from stimulatory molecules.
  • the CAR comprises a chimeric fusion protein which may comprise an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising at least two co-stimulatory domains derived from one or more co-stimulatory domains.
  • the CAR comprises an optional leader sequence at the amino terminus (N-ter) of the CAR fusion protein.
  • the CAR further comprises a leader sequence at the N-terminus of the extracellular antigen recognition domain, wherein the leader sequence is optionally cleaved from the antigen recognition domain (e.g., VHH) during cellular processing and localizes the CAR to the cell membrane.
  • the antigen recognition domain e.g., VHH
  • antibody is generally used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, dimers, multimers, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments as long as they show the desired biological activity (Miller et al (2003) Jour. of Immunology 170:4854-4861).
  • Antibodies can be murine, human, humanized, chimeric, or derived from other species.
  • a full-length antibody typically refers to an antibody consisting of two “full-length antibody heavy chains” and two “full-length antibody light chains”.
  • a “full-length antibody heavy chain” is generally a polypeptide consisting, in the N-terminal to C-terminal direction, of an antibody heavy chain variable domain (VH), an antibody constant heavy chain domain 1 (CH1), an antibody hinge region (HR) , antibody heavy chain constant domain 2 (CH2), and antibody heavy chain constant domain 3 (CH3), abbreviated as VH-CH1-HR-CH2-CH3; and in the case of antibodies of the IgE subclass, optionally It also includes the antibody heavy chain constant domain 4 (CH4).
  • VH antibody heavy chain variable domain
  • CH1 antibody constant heavy chain domain 1
  • HR antibody hinge region
  • CH2 antibody heavy chain constant domain 2
  • CH3 antibody heavy chain constant domain 3
  • a "full-length antibody heavy chain” is a polypeptide consisting of VH, CH1, HR, CH2 and CH3 in an N-terminal to C-terminal direction.
  • a “full-length antibody light chain” is generally a polypeptide consisting of an antibody light chain variable domain (VL) and an antibody light chain constant domain (CL) in the N-terminal to C-terminal direction, abbreviated as VL-CL.
  • the antibody light chain constant domain (CL) may be kappa (kappa) or lambda (lambda).
  • the two full-length antibody chains are linked together by an inter-polypeptide disulfide bond between the CL domain and the CH1 domain and between the hinge region of the full-length antibody heavy chain.
  • Typical examples of full-length antibodies are natural antibodies such as IgG (eg, IgGl and IgG2), IgM, IgA, IgD, and IgE).
  • antigen-binding fragment generally refers to a portion of an antibody molecule that contains the antigen responsible for the specificity between the antibody and the antigen. combined amino acids.
  • the portion of an antigen that is specifically recognized and bound by an antibody is called an "epitope" as described above.
  • An antigen binding domain will typically comprise an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH); however, it need not comprise both.
  • Fd fragments for example, have two VH regions and typically retain some antigen-binding function of the full antigen-binding domain.
  • antigen-binding fragments of antibodies include (1) Fab fragments, monovalent fragments having VL, VH, constant light chain (CL) and CH1 domains; (2) F(ab') 2 fragments, having two Bivalent fragment of two Fab fragments connected by sulfur bridge; (3) Fd fragment with two VH and CH1 domains; (4) Fv fragment with VL and VH domains of antibody single arm, (5) dAb fragment (Ward et al., "Binding Activities of a Repertoire of Single Immunoglobulin Variable Domains Secreted From Escherichia coli," Nature 341:544-546 (1989), which is hereby incorporated by reference in its entirety), which has a VH domain; (6) Isolated Complementarity Determining Regions (CDRs); (7) Single-chain Fv (scFv), for example derived from a scFv-library.
  • Fab fragments monovalent fragments having VL, VH, constant light chain (CL) and CH1 domains
  • the two domains VL and VH of the Fv fragment are encoded by separate genes, they can be joined using recombinant methods by a synthetic linker that allows it to be produced as a single protein in which the VL and VH regions pair to form a monovalent molecule chain (termed single-chain Fv (scFv)) (see, e.g., Huston et al., "Protein Engineering of Antibody Binding Sites: Recovery of Specific Activity in an Anti-Digoxin Single-Chain Fv Analogue Produced in Escherichia coli," Proc.
  • scFv single-chain Fv
  • VHH involves variable antigen binding from heavy chain antibodies from Camelidae (camel, dromedary, llama, alpaca, etc.) domain (see Nguyen VK et al., 2000, The EMBO Journal, 19, 921-930; Muyldermans S., 2001, J Biotechnol., 74, 277-302 and review Vanlandschoot P. et al., 2011, Antiviral Research 92, 389-407). VHHs may also be referred to as Nanobodies (Nb) and/or Single Domain Antibodies.
  • Antigen-binding fragments targeting IL13R ⁇ 2 are also described in International Patent Application Publications WO2014072888A1 and WO2021041725A1, each of which is incorporated herein by reference in its entirety.
  • single domain antibody or “VHH” generally refers to a class of antibodies that lack the light chain of the antibody and only have the variable region of the heavy chain.
  • the single domain antibody can be from a Bactrian camel, a dromedary, an alpaca, a llama, a nurse shark, a great star shark, or a ray (for example, see Kang Xiaozhen et al., Acta Biological Engineering, 2018, 34( 12): 1974-1984).
  • single domain antibodies can be from alpacas.
  • Single domain antibodies can be composed of a heavy chain variable region (VH).
  • heavy chain variable region generally refers to the amino-terminal domain of the heavy chain of an antigen-binding fragment.
  • the heavy chain variable region can be further divided into hypervariable regions called complementarity determining regions (CDRs), which are interspersed in more conserved regions known as the framework regions (FRs).
  • CDRs complementarity determining regions
  • FRs framework regions
  • Each heavy chain variable region may consist of three CDRs and four FR regions, which may be arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4.
  • the heavy chain variable region contains the binding domain that interacts with the antigen.
  • CDR complementarity determining region
  • CDRs Chothia CDRs
  • Padlan FASEB J.9:133-139 (1995)
  • MacCallum J Mol Biol 262(5):732-45 (1996).
  • CDR boundaries for CDR may not strictly follow one of the above systems, but will still overlap with Kabat CDRs, although they can be shortened according to predictions or experimental findings that specific residues or groups of residues or even CDRs as a whole do not significantly affect antigen binding. or extended. In this application, the IMGT numbering system is used.
  • FR generally refers to the more highly conserved portions of antibody variable domains, known as the framework regions.
  • the variable domains of native heavy and light chains may each comprise four FR regions, four in VH (H-FR1, H-FR2, H-FR3, and H-FR4), and four in VL. (L-FR1, L-FR2, L-FR3 and L-FR4).
  • Framework region generally refers to the art-recognized portion of an antibody variable region that exists between the more divergent (ie hypervariable) CDRs.
  • Framework regions are typically referred to as Frameworks 1 to 4 (FR1, FR2, FR3, and FR4) and provide the backbone for representing the six CDRs (three from the heavy chain and three from the light chain) in three-dimensional space, to Forms the antigen-binding surface.
  • homologous sequences may include amino acid sequences that may be at least 80%, 85%, 90%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, or 99.9% identical to the subject sequence .
  • a homologue will comprise the same active site, etc., as the subject amino acid sequence.
  • Homology can be considered in terms of similarity (ie, amino acid residues having similar chemical properties/functions), or can be expressed in terms of sequence identity.
  • sequence having a percentage identity of any one of the SEQ ID NOs of the mentioned amino acid sequence or nucleotide sequence means having said percentage identity over the entire length of the mentioned SEQ ID NO the sequence of.
  • sequence alignment can be performed by various means known to those skilled in the art, for example, using BLAST, BLAST-2, ALIGN, NEEDLE or Megalign (DNASTAR) software and the like. Those skilled in the art can determine appropriate parameters for alignment, including any algorithms needed to achieve optimal alignment across the full-length sequences being compared.
  • binding when referring to the interaction of a binding molecule (such as an antibody) with its binding partner (such as an antigen) generally means that the interaction depends on a specific structure on the binding partner (such as an antigen). determinant or epitope).
  • an antibody will preferentially bind or recognize a binding partner even when the binding partner is present in a mixture of other molecules or organisms. Binding can be mediated by covalent or non-covalent interactions or a combination of both.
  • specifically binds generally means immunospecifically binding to an antigenic determinant or epitope and not immunospecifically binding to other antigenic determinants or epitopes.
  • a binding molecule that immunospecifically binds an antigen may bind other peptides or polypeptides with lower affinity, as determined by, for example, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), BIACORE, or other assays known in the art. Determination. A binding molecule or fragment thereof that immunospecifically binds an antigen may cross-react with a related antigen bearing the same epitope. In certain instances, a binding molecule or fragment thereof that immunospecifically binds an antigen does not cross-react with other antigens.
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunosorbent assay
  • BIACORE enzyme-linked immunosorbent assay
  • KD is used interchangeably with “KD”, and generally refers to the dissociation equilibrium constant of a specific antibody-antigen interaction, and the unit is M (mol/L).
  • isolated nucleic acid molecule generally refers to an isolated form of nucleotides, deoxyribonucleotides or ribonucleotides or their analogs of any length, isolated from their natural environment or artificially synthesized .
  • the term "vector” generally refers to a nucleic acid molecule capable of self-replication in a suitable host, which transfers an inserted nucleic acid molecule into and/or between host cells.
  • the vectors may include vectors mainly used for inserting DNA or RNA into cells, vectors mainly used for replicating DNA or RNA, and vectors mainly used for expression of transcription and/or translation of DNA or RNA.
  • the carrier also includes a carrier having various functions as described above.
  • the vector may be a polynucleotide capable of being transcribed and translated into a polypeptide when introduced into a suitable host cell. Generally, the vector can produce the desired expression product by culturing an appropriate host cell containing the vector.
  • viral vector is used broadly to refer to nucleic acid molecules (such as transfer plasmids) or viral particles that mediate the transfer of nucleic acid molecules, including virus-derived nucleic acid elements that generally facilitate the transfer or integration of nucleic acid molecules into the genome of a cell .
  • Virions typically include various viral components and sometimes host cell components in addition to nucleic acid.
  • a viral vector may refer to a virus or virus particle capable of transferring nucleic acid into a cell, or the transferred nucleic acid itself.
  • lentivirus generally refers to the group (or genus) of complex retroviruses.
  • exemplary lentiviruses include, but are not limited to: HIV (human immunodeficiency virus; including HIV type 1 and HIV type 2); Visna-maedi virus (visna-maedivirus, VMV) virus; caprine arthritis-encephalitis virus ( CAEV); equine infectious anemia virus (EIAV); feline immunodeficiency virus (FIV); bovine immunodeficiency virus (BIV); and simian immunodeficiency virus (SIV).
  • HIV-based vector backbones ie, HIV cis-acting sequence elements
  • lentiviruses are used to deliver CAR-containing polynucleotides to cells.
  • the term "host cell” or “cell” generally refers to an individual cell, cell lines or cell cultures.
  • the host cells may include progeny of a single host cell. Due to natural, accidental or deliberate mutations, the progeny cells may not necessarily be completely identical in morphology or genome to the original parent cells, but they only need to be able to express the isolated antigen-binding fragments described in this application.
  • the host cells can be obtained by using the vectors described in this application to transfect cells in vitro.
  • the host cell can be a prokaryotic cell (such as Escherichia coli), or a eukaryotic cell (such as yeast cells, such as COS cells, Chinese hamster ovary (CHO) cells, HeLa cells, HEK293 cells, COS-1 cells, NSO cells or myeloma cells).
  • the host cells may be E. coli cells.
  • the host cell may be a yeast cell.
  • the host cell can be a mammalian cell.
  • the mammalian cells may be CHO-K1 cells.
  • T cell or "T lymphocyte” may be any T cell, such as a cultured T cell, for example a primary T cell, or a T cell from a cultured T cell line, or a T cell obtained from a mammal.
  • Cells preferably primate, species including monkey, dog or human. If obtained from a mammal, T cells can be obtained from a number of sources including, but not limited to, blood, bone marrow, lymph nodes, thymus or other tissues or fluids. T cells can also be enriched or normalized. T cells can be obtained by maturing hematopoietic stem cells into T cells in vitro or in vivo. In an exemplary aspect, the T cells are human T cells.
  • the T cells are T cells isolated from humans.
  • T cells can be of any type, including NKT cells, and can be of any developmental stage, including but not limited to CD4+/CD8+ double positive T cells; CDA+ helper T cells; e.g. Th1 and Th2 cells, CD8+ T cells (e.g. Cytotoxic T cells); peripheral blood mononuclear cells (PBMC); peripheral blood leukocytes (PBL); tumor infiltrating cells (TIL); memory T cells; untreated T cells, etc.
  • the T cells are CD8+ T cells or CD4+ T cells.
  • the T cells are allogeneic (from a different donor of the same species) to the subject receiving the cells or cells to be received (e.g., the cells are in the form of a therapeutic composition); in some alternatives, the T cells are autologous (donor and recipient are identical); in some alternative approaches, T cells are syngeneic (donor and recipient are different, but identical twins).
  • immune effector cells generally refers to immune cells that participate in the immune response and perform effector functions.
  • the exercising effector functions may include clearing foreign antigens or promoting immune effector responses and the like.
  • Immune effector cells may include plasma cells, T cells, B cells, natural killer (NK) cells, natural killer T (NKT) cells, mast cells, and myeloid-derived phagocytes.
  • the immune effector cells of the present application may be autologous/autogeneic ("own") or non-autologous ("non-self", eg allogeneic, syngeneic or allogeneic).
  • autologous generally refers to cells from the same subject.
  • Allogeneic generally refers to cells that are of the same species but are genetically different from those to which they are being compared.
  • Isgeneic generally refers to cells of a different subject that are genetically identical to the cells being compared.
  • Allogeneic generally refers to a cell of a different species than the compared cell.
  • the cells of the present application are autologous or allogeneic.
  • the term "modify” generally refers to altering the state or structure of a cell and/or changing the state or structure of a cell.
  • the change is usually compared with the state or structure of the corresponding unmodified cell, and the change may include a change in the expression level or function of an endogenous gene, such as down-regulating the expression level of an endogenous gene in a cell by means of genetic engineering, Up-regulation or non-expression, the genetic engineering means may include homologous recombination, CRISPR/Cas9 system gene editing, etc.; the change may also include changes in cellular protein expression, structure or function, such as through the endogenous gene expression level or Changes in protein expression, changes in structure or function achieved by changes in function, such as changes in protein expression, changes in structure or function achieved by regulating protein translation, post-translational modification; the changes may also include introducing exogenous Genes, expression of foreign proteins, etc.
  • T cell receptor alpha cons-stant T cell receptor alpha cons-stant
  • T cell receptor T cell receptor
  • MHC major histocompatibility complex
  • ⁇ T cells account for about 95% of the total T cells, and ⁇ T cells account for about 5% of the total T cells. This ratio varies during ontogeny and in disease states (such as leukemia) and also varies between species. different.
  • Each chain that makes up the TCR contains a variable region and a constant region.
  • the gene encoding the ⁇ chain (TRA, such as the information shown in HGNC: 12027) is located on chromosome 14 and consists of multiple gene segments, including variable Segment (V), connecting segment (J) and constant region (C), TRAC gene usually refers to the gene sequence (for example, the information shown in HGNC:12029) encoding T cell receptor ⁇ chain constant region (C), which is located in Chromosome 14 (14q11.2;14:22,547,505-22,552,131).
  • variable segment (V) genes encoding the N-segment antigen recognition domain is rearranged with one of the junction segment (J) to generate a functional V region exon that is transcribed and spliced together with the
  • the constant regions (C) are linked to form the T cell receptor alpha chain coding sequence.
  • MHC major histocompatibility complex antigen
  • HLA human leukocyte antigen
  • HLA class I antigens (A, B, C in humans) allow each cell to be recognized as "self", while HLA class II antigens (DR, DP and DQ in humans) participate in the communication between lymphocytes and antigen-presenting cells reaction between. Both have been implicated in the rejection of transplanted organs.
  • An important aspect of the HLA gene system is its polymorphism. Different alleles exist for each gene, MHC class I (A, B, and C) and MHC class II (DP, DQ, and DR). HLA alleles are indicated by numbers and subscripts. For example, two unrelated individuals may carry the class I HLA-B genes B5 and Bw41, respectively. Allelic products differ in one or more amino acids in the alpha and/or beta domains.
  • HLA-A MHC class I and II proteins
  • HLA-B HLA-DR
  • the HLA genes are clustered in a "superlocus" present on chromosome position 6p21, which encodes six classical Transplantation of HLA genes and at least 132 protein-coding genes. The complete locus measures roughly 3.6Mb, with at least 224 loci.
  • haplotype a set of alleles present on a single chromosome, inherited from one parent, that tends to be inherited as a group.
  • the set of alleles inherited from each parent forms a haplotype, some of which tend to be associated together. Identifying a patient's haplotype can help predict the probability of finding a matching donor and help develop a search strategy because some alleles and haplotypes are more common than others and they are more common in different races and ethnicities The frequencies in the distribution are different.
  • HLA-A generally refers to a type of human leukocyte antigen polypeptide chain, encoded by the HLA-A gene located on human chromosome 6p21.3 (for example, the information shown in HGNC:4931).
  • HLA-A is one of three major polypeptide types that make up MHC class I molecules on the surface of human cells, the others including HLA-B and HLA-C.
  • the heterodimer composed of the ⁇ chain encoded by the HLA-A gene and the ⁇ chain ( ⁇ 2-microglobulin) encoded by the B2M gene is the HLA-A class MHC I molecule.
  • the ⁇ chain encoded by the HLA-A gene may comprise an ⁇ 1 domain, an ⁇ 2 domain, an ⁇ 3 domain, a transmembrane region, and a cytoplasmic region, wherein the ⁇ 1 domain and the ⁇ 2 domain may be combined with peptides to be activated by MHC I molecules (eg, HLA-A class) present the peptides to cells of the immune lineage.
  • MHC I molecules eg, HLA-A class
  • HLA-A alleles may include those named by the WHO HLA Factor Nomenclature Committee included in the IMGT/HLA database version 3.38.0 (https://www.ebi.ac.uk/ipd/imgt/hla/) Sequence information of the different HLA-A alleles.
  • HLA-B generally refers to a part of the gene family of the human leukocyte antigen (HLA) complex.
  • HLA is the human version of the major histocompatibility complex (MHC), a family of genes present in many species. The genes in this complex are divided into three basic groups: class I, class II and class III.
  • MHC major histocompatibility complex
  • HLA-B gene and two related genes, HLA-A and HLA-C are the major MHC class I genes.
  • the HLA-B gene is located in band 21.3 of the short (p) arm of chromosome 6, from base pairs 31,353,871 to 31,357,211.
  • HLA-B is one of the three main HLAs that should be matched between donor and recipient.
  • HLA-A HLA-B
  • HLA-DR MHC class II
  • HLA-matched refers to a donor-recipient pair in which there is no mismatch in HLA antigens between the donor and recipient, such as providing hematopoietic stem cell transplantation therapy to a recipient in need of A donor for a stem cell transplant.
  • HLA-matched (i.e., in which all 6 alleles are matched) donor-recipient pairs have a reduced risk of graft rejection because endogenous T cells and NK cells are less likely to enter the graft recognized as foreign and thus less likely to mount an immune response against the graft.
  • HLA-mismatched refers to a donor- A recipient pair, such as a donor who provides a hematopoietic stem cell transplant to a recipient in need of hematopoietic stem cell transplantation therapy.
  • one haplotype is matched while the other is not.
  • HLA-mismatched donor-recipient pairs may have an increased risk of graft rejection relative to HLA-matched donor-recipient pairs because endogenous Sexual T cells and NK cells are more likely to recognize an incoming graft as foreign, and such T cells and NK cells are therefore more likely to mount an immune response against the graft.
  • B2M generally refers to ⁇ 2-microglobulin ( ⁇ 2-microglobulin), which is one of the components of MHC class I molecules.
  • ⁇ 2 microglobulin also known as ⁇ chain
  • B2M is normally expressed in all nucleated cells.
  • ⁇ 2 microglobulin is encoded by the B2M gene located at 15q21.1 (for example, the information shown in HGNC:914).
  • CIITA generally refers to the transactivator of major histocompatibility complex class II (MHC II).
  • the transactivator may be a protein having an acidic transcription activation domain, 4 LRRs (leucine rich repeats) and a GTP binding domain.
  • the protein can be localized in the nucleus and acts as a positive regulator of the transcription of major histocompatibility complex class II (MHC II) genes, known as the "master control factor” for the expression of these genes.
  • MHC II major histocompatibility complex class II
  • the protein also binds GTP and uses the binding to GTP to transport itself into the nucleus where it normally acts in a coactivator-like manner through acetyltransferase (AT) activity.
  • the protein is encoded by a gene located at 16p13.13 (for example the information shown at HGNC:7067), enabling the generation of several transcript variants encoding different isoforms.
  • wild-type cell generally refers to a naturally occurring or naturally derived cell.
  • nucleic acid or “polynucleotide” or “nucleic acid molecule” generally refers to deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) and polymers thereof in single- or double-stranded form. Unless specifically limited, the term may include nucleic acids that contain analogs of natural nucleotides that have similar binding properties to a reference nucleic acid (for example, for which sequence information is shown) and in a manner similar to naturally occurring nucleotides metabolism. Unless otherwise stated, the sequence of a nucleic acid may include conservatively modified variants thereof, such as degenerate codon substitutions, alleles, orthologs, SNPs, and complementary sequences, as well as the sequences explicitly indicated.
  • expression generally refers to the transcription and/or translation of a specific nucleotide sequence.
  • gene mutation generally refers to changes in the composition or sequence of base pairs in the structure of a gene. For example, point mutations caused by single base changes, or deletions, duplications, and insertions of multiple bases.
  • the term "gene silencing” generally refers to preventing the expression of certain genes by regulatory mechanisms. It can mainly include two types: one is transcriptional gene silencing (TGS) at the transcriptional level caused by factors such as DNA methylation, heterochromatinization, and position effects, and the other is post-transcriptional gene silencing (post -transcriptional gene silencing (PTGS), that is, at the post-transcriptional level of the gene, it affects the expression of the gene by specifically interfering with the target RNA.
  • TGS transcriptional gene silencing
  • PTGS post-transcriptional gene silencing
  • the expression of the corresponding gene is downregulated/decreased.
  • Gene silencing is generally considered to be a gene knockdown mechanism, and methods commonly used to silence genes can be RNAi, etc.
  • endogenous refers to any substance derived from or produced within an organism, cell, tissue or system.
  • exogenous refers to any substance introduced from or produced outside of an organism, cell, tissue or system.
  • antisense RNA generally refers to a single-stranded RNA that is complementary to the transcript mRNA (messenger RNA). Antisense RNA can inhibit gene expression by binding to mRNA. For example, the combination of antisense RNA and target mRNA increases the sensitivity of the double-stranded RNA molecule to RNase III and degrades it; for example, antisense RNA binds to the upstream non-coding region of mRNA, thereby directly inhibiting the translation of target mRNA .
  • siRNA generally refers to the abbreviation of Small interfering RNA (small interfering RNA) or short in-terfering RNA (short interfering RNA).
  • siRNA is a type of double-stranded non-coding RNA molecule with a length of about 18-28 base pairs, which can cause mRNA degradation through complementary binding to mRNA, thereby interfering with the expression of specific genes.
  • siRNA may be a product obtained by treating long double-stranded RNA or shRNA with Dicer enzyme.
  • the siRNA enters the cell and forms an RNA-induced silencing complex (RISC) with other proteins, the sense strand is degraded, and the antisense strand can bind to a complementary targeting sequence, thereby achieving gene silencing.
  • RISC RNA-induced silencing complex
  • shRNA generally refers to the abbreviation of short hairpin RNA, namely “short hairpin RNA”.
  • shRNA usually includes two short inverted repeat sequences separated by a stem-loop sequence to form a hairpin structure.
  • 5-6 T bases can also be included as the transcription terminator of RNA polymerase III.
  • shRNA can enter cells through viral vectors or plasmids, and be transcribed under the action of polymerase II or polymerase III, and the transcripts are exported from the nucleus (usually through Exportin 5) and then transported after being treated by Dicer To RISC, the sense strand is degraded, and the antisense strand can bind to a complementary targeting sequence, thereby achieving gene silencing.
  • CRISPR/Cas system generally refers to a group of molecules comprising an RNA-guided nuclease or other effector molecule and a gRNA molecule capable of directing and implementing the RNA-guided nuclease or other effector molecule Nucleic acid is modified at a target sequence, eg, causing degradation of the target sequence.
  • a CRISPR system comprises a gRNA and a Cas protein, e.g., a Cas9 protein.
  • Cas9 systems systems comprising Cas9 or functional mutants thereof are referred to herein as “Cas9 systems” or "CRISPR/Cas9 systems”.
  • the gRNA molecule and the Cas molecule can complex to form a ribonucleoprotein (RNP) complex.
  • RNP ribonucleoprotein
  • gRNA molecule or “guide RNA”, “guide RNA”, “guide RNA”, “guide RNA molecule”, “gRNA” are used interchangeably and generally refer to Nucleases or other effector molecules (generally complexed with gRNA molecules) to nucleic acid molecules on the target sequence. In certain embodiments, this is accomplished by hybridizing a portion of the gRNA to DNA (e.g., via a gRNA guidance domain) and by binding a portion of the gRNA molecule to an RNA-guided nuclease or other effector molecule (e.g., via at least a gRNAtracr). described guide.
  • a gRNA molecule consists of a single contiguous polynucleotide molecule, referred to herein as a "single guide RNA” or “sgRNA” or the like.
  • a gRNA molecule consists of multiple (eg, two) polynucleotide molecules that are themselves capable of associating (typically by hybridization), referred to herein as “dual guide RNA” or “dgRNA” and the like.
  • Cas protein generally refers to the enzyme responsible for cutting DNA in the CRISPR/Cas system. Enzymes from Type I, II, and III CRISPR/Cas systems may be included. For example, Cas3, Cas9, Cas10.
  • Cas9 protein generally refers to the enzyme from the bacterial type II CRISPR/Cas system responsible for cutting DNA. Cas9 can include the wild-type protein and its functional mutants.
  • allele generally refers to the different variations that the gene sequence at a locus may have.
  • a genetic locus also known as a gene locus or site, refers to a fixed location on a chromosome, such as where a certain gene is located. The arrangement of loci in the genome is called a genetic map.
  • homozygous generally refers to a genotyped individual whose two alleles on the same locus of the homologous chromosome are the same.
  • a pair of relative genes can have individuals of both genotypes AA and aa.
  • heterozygote generally refers to a diploid individual whose two alleles at the same site on the homologous chromosome are different, such as Aa. Heterozygous genotypes generally have higher fitness than homozygous dominant or homozygous recessive genotypes, a phenomenon known as heterozygous dominance.
  • tumor and cancer are used interchangeably and generally refer to a disease characterized by the rapid and uncontrolled growth of abnormal cells. Cancer cells can spread to other parts of the body locally or through the bloodstream and lymphatic system. Examples of various cancers are described herein and they include, but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, kidney cancer, liver cancer, brain cancer, lymphoma, leukemia, Lung cancer, etc.
  • cancer or “tumor” includes pre-malignant as well as malignant cancers and tumors, and also encompasses solid and non-solid tumors.
  • the term "pharmaceutically acceptable” generally refers to a drug that is commensurate with a reasonable benefit/risk ratio, suitable within the scope of sound medical judgment for use in contact with human and animal tissues without undue toxicity, irritation, Those compounds, materials, compositions and/or dosage forms for allergic reactions or other problems or complications.
  • the term "pharmaceutically acceptable carrier” generally refers to any of those conventionally used, and is subject only to physico-chemical considerations such as solubility and reactivity with active binding agents. lack of) and is limited by the route of administration.
  • the pharmaceutically acceptable carriers described herein, such as vehicles, adjuvants, excipients, and diluents, are well known to those skilled in the art and are readily available to the public.
  • a pharmaceutically acceptable carrier is one that is chemically inert to the active ingredients of the pharmaceutical composition and that exhibits no adverse side effects or toxicity under the conditions of use. In some embodiments, the carrier does not produce an adverse, allergic or other inappropriate reaction when administered to an animal or a human.
  • compositions are free of pyrogens and other impurities that could be harmful to humans or animals.
  • Pharmaceutically acceptable carriers include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like; their use is well known in the art.
  • Acceptable carriers, excipients, or stabilizers are nontoxic to recipients and are preferably inert at the dosages and concentrations employed, and include buffers such as phosphates, citrates, or other organic acids; antioxidants; , such as ascorbic acid; low-molecular-weight polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulin; hydrophilic polymers, such as polyvinylpyrrolidone; amino acids, such as glycine, glutamine, asparagine, arginine, or lysine amino acids; monosaccharides, disaccharides, and other carbohydrates, including glucose, mannose, or dextrin; chelating agents, such as EDTA; sugar alcohols, such as mannitol or sorbitol; salt-forming counterions, such as sodium; and/or Or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).
  • buffers such as phosphates, citrates,
  • the term “effective amount” or “effective dose” generally refers to an amount sufficient to achieve, or at least partially achieve, the desired effect.
  • a “therapeutically effective amount” or “therapeutically effective dose” of a drug or therapeutic agent is typically one that, when used alone or in combination with another therapeutic agent, promotes regression of disease (by reducing the severity of disease symptoms, frequency of asymptomatic periods of disease), any amount of drug that is evidenced by an increase in the degree and duration of the disease, or by the prevention of impairment or disability due to the presence of a disease.
  • a “therapeutically effective amount” or “effective amount” of an anti-B7H3 CAR-T cell is also an amount or dose in which the therapeutically beneficial effect outweighs any toxic or detrimental effects of the anti-B7H3 CAR-T cell, such as CRS.
  • the term “therapeutically effective amount” includes an amount effective to "treat” a subject (eg, a patient).
  • the therapeutically effective dose is the minimum effective dose (MED) of anti-B7H3 CAR-T cells used to treat multiple myeloma in a subject.
  • the therapeutically effective dose is the maximum tolerated dose (MTD) of anti-B7H3 CAR-T cells that does not result in unresolved CRS in the subject.
  • MED minimum effective dose
  • MTD maximum tolerated dose
  • the term "about” generally refers to a range of 0.5%-10% above or below the specified value, such as 0.5%, 1%, 1.5%, 2%, 2.5%, above or below the specified value. 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, or 10%.
  • subject generally refers to human or non-human animals, including but not limited to cats, dogs, horses, pigs, cows, sheep, rabbits, mice, rats or monkeys.
  • the application provides an antigen-binding polypeptide comprising at least one complementarity-determining region (CDR) of an antibody heavy chain variable region (VH), said VH comprising at least one sequence having the amino acid sequence shown in SEQ ID NO:25.
  • Amino acid sequences that are about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the VH comprises at least about 90%, about 91%, of the amino acid sequence set forth in SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28 or SEQ ID NO:29, Amino acid sequences that are about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the antigen-binding polypeptide comprises a VH comprising heavy chain complementarity determining region 1 (HCDR1), heavy chain complementarity determining region 2 (HCDR2) and heavy chain complementarity determining region 3 (HCDR3)
  • the HCDR3 comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 96% of the amino acid sequence shown in SEQ ID NO:7. Amino acid sequences that are 98%, about 99%, about 99.5% identical.
  • the HCDR3 may comprise the amino acid sequence shown in SEQ ID NO:7.
  • the HCDR3 comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 90% of the amino acid sequence shown in SEQ ID NO: 8 or SEQ ID NO: 9 Amino acid sequences that are 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the HCDR3 may comprise the amino acid sequence shown in SEQ ID NO:8 or SEQ ID NO:9.
  • the HCDR2 comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96% of the amino acid sequence shown in SEQ ID NO:4 %, about 97%, about 98%, about 99%, about 99.5% identical amino acid sequences.
  • the HCDR2 may comprise the amino acid sequence shown in SEQ ID NO:4.
  • the HCDR2 comprises at least about 90%, about 91%, about 92%, about 93%, about 94% of the amino acid sequence set forth in SEQ ID NO:5 or SEQ ID NO:6, Amino acid sequences that are about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the HCDR2 may comprise the amino acid sequence shown in SEQ ID NO:5 or SEQ ID NO:6.
  • the HCDR1 comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96% of the amino acid sequence shown in SEQ ID NO: 1 %, about 97%, about 98%, about 99%, about 99.5% identical amino acid sequences.
  • the HCDR1 may comprise the amino acid sequence shown in SEQ ID NO:1.
  • the HCDR1 comprises at least about 90%, about 91%, about 92%, about 93%, about 94% of the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:3, Amino acid sequences that are about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the HCDR1 may comprise the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:3.
  • the VH comprises: comprising at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95% of the amino acid sequence shown in SEQ ID NO: 1, HCDR1 having an amino acid sequence of about 96%, about 97%, about 98%, about 99%, about 99.5% identity, comprising at least about 90%, about 91%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical to the amino acid sequence of HCDR2 and comprising the same as SEQ ID NO:7
  • the amino acid sequences shown are at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical Sexual amino acid sequence of HCDR3.
  • the VH may comprise: HCDR1 comprising the amino acid sequence shown in SEQ ID NO:1, HCDR2 comprising the amino acid sequence shown in SEQ ID NO:4, and HCDR3 comprising the amino acid sequence shown in SEQ ID NO:7.
  • the VH comprises:
  • HCDR1 comprising the amino acid sequence shown in SEQ ID NO:2
  • HCDR2 comprising the amino acid sequence shown in SEQ ID NO:5
  • HCDR3 comprising the amino acid sequence shown in SEQ ID NO:8;
  • HCDR1 comprising the amino acid sequence shown in SEQ ID NO:3
  • HCDR2 comprising the amino acid sequence shown in SEQ ID NO:6
  • HCDR3 comprising the amino acid sequence shown in SEQ ID NO:9.
  • the VH comprises heavy chain framework region 1 (HFR1), heavy chain framework region 2 (HFR2), heavy chain framework region 3 (HFR3) and heavy chain framework region 4 (HFR4), the HFR1 comprising at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98% of the amino acid sequence shown in SEQ ID NO: 10, Amino acid sequences of about 99%, about 99.5% identity.
  • the HFR1 may comprise the amino acid sequence shown in SEQ ID NO:10.
  • the HFR1 comprises at least about 90%, about 91%, of the amino acid sequence set forth in SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13 or SEQ ID NO: 14, Amino acid sequences that are about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the HFR1 comprises the amino acid sequence shown in SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13 or SEQ ID NO:14.
  • the HFR2 comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96% of the amino acid sequence shown in SEQ ID NO: 15 %, about 97%, about 98%, about 99%, about 99.5% identical amino acid sequences.
  • the HFR2 may comprise the amino acid sequence shown in SEQ ID NO: 15.
  • the HFR2 comprises at least about 90%, about 91%, about 92%, about 93%, about 94% of the amino acid sequence shown in SEQ ID NO: 16 or SEQ ID NO: 17, Amino acid sequences that are about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the HFR2 may comprise the amino acid sequence shown in SEQ ID NO: 16 or SEQ ID NO: 17.
  • the HFR3 comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96% of the amino acid sequence shown in SEQ ID NO: 18 %, about 97%, about 98%, about 99%, about 99.5% identical amino acid sequences.
  • the HFR3 may comprise the amino acid sequence shown in SEQ ID NO: 18.
  • the HFR3 comprises at least about 90%, about 91%, about 92%, about 93% of the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21 %, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% amino acid sequence identity.
  • the HFR3 may comprise the amino acid sequence shown in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
  • the HFR4 comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96% of the amino acid sequence shown in SEQ ID NO: 22 %, about 97%, about 98%, about 99%, about 99.5% identical amino acid sequences.
  • the HFR4 may comprise the amino acid sequence shown in SEQ ID NO:22.
  • the HFR4 comprises at least about 90%, about 91%, about 92%, about 93%, about 94% of the amino acid sequence shown in SEQ ID NO: 23 or SEQ ID NO: 24, Amino acid sequences that are about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the HFR4 may comprise the amino acid sequence shown in SEQ ID NO:23 or SEQ ID NO:24.
  • the VH comprises HFR1, HFR2, HFR3 and HFR4, and the HFR1, HFR2, HFR3 and HFR4 are selected from:
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:11
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:16
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:19, comprising SEQ ID NO:23 HFR4 of the indicated amino acid sequence
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:12
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:16
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:20, comprising SEQ ID NO:24 HFR4 of the indicated amino acid sequence
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:13
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:17
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:21, comprising SEQ ID NO:23 HFR4 of the indicated amino acid sequence
  • HFR1 comprising the amino acid sequence shown in SEQ ID NO:14
  • HFR2 comprising the amino acid sequence shown in SEQ ID NO:17
  • HFR3 comprising the amino acid sequence shown in SEQ ID NO:20, comprising SEQ ID NO:24
  • the amino acid sequence of HFR4 is shown.
  • the VH comprises at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96% of the amino acid sequence set forth in SEQ ID NO: 25. %, about 97%, about 98%, about 99%, about 99.5% identical amino acid sequences.
  • the VH can comprise the amino acid sequence shown in SEQ ID NO: 25.
  • the VH comprises at least about 90%, about 91%, of the amino acid sequence set forth in SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28 or SEQ ID NO:29, Amino acid sequences that are about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the VH may comprise the amino acid sequence shown in SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28 or SEQ ID NO:29.
  • the antigen-binding polypeptide comprises an antibody or antigen-binding fragment thereof.
  • the antibodies include monoclonal antibodies, polyclonal antibodies, dimers, multimers, multispecific antibodies, intact antibodies, antibody fragments, human antibodies, humanized antibodies, or chimeric antibodies.
  • the antigen-binding fragments include Fab fragments, Fv fragments, F(ab')2, single chain Fv (scFv) or single domain antibodies (VHH).
  • the present application provides a chimeric antigen receptor (CAR) targeting B7H3, which comprises a targeting moiety, wherein the targeting moiety comprises the aforementioned antigen-binding polypeptide.
  • CAR chimeric antigen receptor
  • the targeting moiety comprises a VHH.
  • the targeting moiety comprises VHH
  • the VHH may comprise: HCDR1 comprising the amino acid sequence shown in SEQ ID NO:1, HCDR2 comprising the amino acid sequence shown in SEQ ID NO:4 and comprising SEQ ID NO:7
  • HCDR3 The amino acid sequence of HCDR3 is shown.
  • the targeting moiety comprises a VHH
  • the VHH may comprise the amino acid sequence shown in SEQ ID NO:25.
  • transmembrane domain comprising a transmembrane domain derived from one or more proteins selected from the group consisting of: CD8A, CD8B, CD28, CD3 ⁇ (CD3e), 4 -1BB, CD4, CD27, CD7, PD-1, TRAC, TRBC, CD3 ⁇ , CTLA-4, LAG-3, CD5, ICOS, OX40, NKG2D, 2B4(CD244), Fc ⁇ RI ⁇ , BTLA, CD30, GITR, HVEM, DAP10, CD2, NKG2C, LIGHT, DAP12, CD40L (CD154), TIM1, CD226, DR3, CD45, CD80, CD86, CD9, CD16, CD22, CD33, CD37, CD64, and SLAM.
  • proteins selected from the group consisting of: CD8A, CD8B, CD28, CD3 ⁇ (CD3e), 4 -1BB, CD4, CD27, CD7, PD-1, TRAC, TRBC, CD3 ⁇ , CTLA
  • transmembrane domain comprises a transmembrane domain derived from CD8A.
  • the transmembrane domain comprises at least about 90%, about 91%, about 92%, about 90% of the amino acid sequence shown in any one of SEQ ID NO:42 to SEQ ID NO:90 Amino acid sequences that are 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • an intracellular co-stimulatory signaling domain comprising intracellular co-stimulatory signaling derived from one or more proteins selected from the group consisting of Domains: CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc ⁇ RI ⁇ , BTLA, GITR, HVEM, DAP10, DAP12 , CD30, CD40, CD40L, TIM1, PD-1, LFA-1, LIGHT, JAML, CD244, CD100, ICOS, CD40, and MyD88.
  • Domains CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc ⁇ RI ⁇ , BTLA, GITR, HVEM,
  • the intracellular costimulatory signaling domain is derived from a costimulatory signaling domain of 4-1BB.
  • the intracellular co-stimulatory signaling domain comprises at least about 90%, about 91%, of the amino acid sequence shown in any one of SEQ ID NO:91 to SEQ ID NO:123, Amino acid sequences that are about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • an intracellular signaling domain comprising an intracellular signaling domain derived from one or more proteins selected from the group consisting of: CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD79a, CD79b, FceRI ⁇ , FceRI ⁇ , Fc ⁇ RIIa, bovine leukemia virus gp30, Epstein-Barr virus (EBV) LMP2A, simian immunodeficiency virus PBj14 Nef, DAP10, DAP-12 and at least one ITAM domain.
  • an intracellular signaling domain comprising an intracellular signaling domain derived from one or more proteins selected from the group consisting of: CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD79a, CD79b, FceRI ⁇ , FceRI ⁇ , Fc ⁇ RIIa, bovine leukemia virus gp30, Epstein-Barr virus (EBV) LMP2A, simian immunodeficiency virus PBj14 Nef, DAP10, DAP-12 and at least one
  • the intracellular signaling domain comprises a signaling domain derived from CD3 ⁇ .
  • said intracellular signal transduction domain comprises any of SEQ ID NO:107, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:124 to SEQ ID NO:134
  • One of the amino acid sequences set forth in any one of the set forth amino acid sequences has at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, Amino acid sequences of about 98%, about 99%, about 99.5% identity.
  • it includes a hinge region between the targeting moiety and the transmembrane domain, said hinge region comprising a hinge region derived from one or more proteins selected from the group consisting of: CD28, IgG1, IgG4 , IgD, 4-1BB, CD4, CD27, CD7, CD8A, PD-1, ICOS, OX40, NKG2D, NKG2C, Fc ⁇ RI ⁇ , BTLA, GITR, DAP10, TIM1, SLAM, CD30, and LIGHT.
  • a hinge region derived from one or more proteins selected from the group consisting of: CD28, IgG1, IgG4 , IgD, 4-1BB, CD4, CD27, CD7, CD8A, PD-1, ICOS, OX40, NKG2D, NKG2C, Fc ⁇ RI ⁇ , BTLA, GITR, DAP10, TIM1, SLAM, CD30, and LIGHT.
  • the hinge region comprises a hinge region derived from CD8A.
  • the hinge region comprises at least about 90%, about 91%, about 92%, about 93% of the amino acid sequence shown in any one of SEQ ID NO: 135 to SEQ ID NO: 156. , about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% amino acid sequence identity.
  • the non-targeting portion of the chimeric antigen receptor includes a hinge region, a transmembrane domain, an intracellular co-stimulatory signaling domain, and an intracellular signal transduction domain.
  • the non-targeting portion of the chimeric antigen receptor comprises the transmembrane domain of the CD8A molecule, the hinge region of CD8A, the intracellular co-stimulatory signaling domain of 4-1BB, and the CD3 ⁇ intracellular signaling structure area.
  • the chimeric antigen receptor uses an anti-B7H3 single domain antibody as the extracellular antigen binding domain, which is connected to the intracellular signaling domain through the CD8A molecular hinge region and transmembrane domain, and the intracellular signaling domain consists of 4 -1BB intracellular co-stimulatory signal transduction domain and CD3 ⁇ intracellular signal transduction domain.
  • the non-targeting portion of the chimeric antigen receptor comprises at least about 90%, about 91%, about 92%, about 93%, about 90% of the amino acid sequence set forth in SEQ ID NO: 30. Amino acid sequences that are 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • the chimeric antigen receptor further comprises a signal peptide fragment, and the C-terminus of the signal peptide fragment is connected to the N-terminus of the targeting moiety.
  • the chimeric antigen receptor may include a CAR including a signal peptide, an anti-B7H3 VHH, a CD8A hinge domain, a CD8A transmembrane domain, a 4-1BB co-stimulatory domain, and a CD3 ⁇ main signaling domain.
  • the signal peptide fragment comprises a CD8A signal peptide fragment.
  • the chimeric antigen receptor, the signal peptide fragment comprises at least about 90%, about 91%, about 92%, about 93% of the amino acid sequence shown in SEQ ID NO: 31 , about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% amino acid sequence identity.
  • the present application provides one or more isolated nucleic acid molecules encoding the aforementioned antigen-binding polypeptide or the aforementioned chimeric antigen receptor.
  • the nucleic acid molecule of described separation comprises and SEQ ID NO:36, the nucleotide sequence shown in any one of SEQ ID NO:37, SEQ ID NO:38 and SEQ ID NO:39 Amino acid sequences having at least about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identity .
  • the present application provides a vector comprising the aforementioned isolated nucleic acid molecule.
  • the vector is an expression vector.
  • the vector is selected from DNA vectors, RNA vectors, plasmids, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors and retroviral vectors.
  • the vector can be a lentiviral vector.
  • the present application provides a cell i) comprising the aforementioned isolated nucleic acid molecule or the aforementioned vector; and/or ii) expressing the aforementioned antigen-binding polypeptide or chimeric antigen receptor.
  • the present application provides an immune effector cell, which comprises the aforementioned nucleic acid molecule or the aforementioned vector, and/or expresses the aforementioned CAR.
  • the immune effector cells include human cells.
  • the immune effector cells include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • the immune effector cells can be T cells.
  • the immune effector cells may be human T cells.
  • the immune effector cells comprise autologous or non-autologous immune effector cells.
  • the immune effector cells include modified immune effector cells.
  • the modified immune effector cells include cells that reduce immune rejection induced by allogeneic cell therapy.
  • TCR T cell antigen receptor
  • MHCI major histocompatibility complex
  • the modification includes down-regulation of the expression and/or activity of one or more genes associated with immune rejection.
  • the gene related to immune rejection is selected from one or more genes in the group consisting of TRAC, TRBC, HLA-A, HLA-B, B2M and CIITA.
  • the gene associated with immune rejection is selected from one or more genes in the group consisting of TRAC, TRBC, HLA-A and HLA-B.
  • the gene related to immune rejection is selected from one or more genes in the group consisting of TRAC, TRBC and HLA-A.
  • the gene associated with immune rejection is selected from one or more genes in the group consisting of TRAC and HLA-A.
  • the expression and/or activity of the TRAC gene and the HLA-A gene are down-regulated in the modified immune effector cells compared to the unmodified corresponding cells.
  • the expression and/or activity of the CIITA gene is not down-regulated in the modified immune effector cells compared to the corresponding cells without the modification.
  • the expression and/or activity of the B2M gene is not down-regulated in the modified immune effector cells compared to the corresponding cells without the modification.
  • the expression and/or activity of the TRAC gene and the HLA-A gene are down-regulated in the modified immune effector cells compared to the corresponding wild-type cells.
  • the expression and/or activity of the B2M gene is not down-regulated in the modified immune effector cells compared to the corresponding wild-type cells.
  • the expression and/or activity of the CIITA gene is not down-regulated in the modified immune effector cells compared to the corresponding wild-type cells.
  • the expression level and/or activity of the gene is down-regulated, including down-regulating the expression and/or activity of a nucleic acid molecule encoding the gene; and/or down-regulating the expression of a protein product encoded by the gene and/or activity is downregulated.
  • the modification includes: gene knockout, gene mutation and/or gene silencing.
  • the modification comprises the knockout of either of the two TRAC alleles and the knockout of either of the two HLA-A alleles in the immune effector cells.
  • the modification comprises knockout of two TRAC alleles and knockout of either of the two HLA-A alleles in the immune cells.
  • the modification comprises knockout of exons of the TRAC gene and knockout of exons of the HLA-A gene in the immune cells.
  • said modification comprises administering to said immune effector cells one or more substances selected from the group consisting of antisense RNA, siRNA, shRNA and CRISPR/Cas9 system.
  • said modification comprises administering a CRISPR/Cas9 system to said immune effector cells.
  • the modification further comprises administering to the immune effector cells sgRNA targeting the exon portion of the TRAC gene.
  • the sgRNA targeting the exon portion of the TRAC gene comprises at least about 90 %, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% amino acid sequence identity.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the HLA-A gene.
  • the sgRNA targeting the exon portion of the HLA-A gene comprises at least one of the nucleotide sequences shown in any one of SEQ ID NO: 172 to SEQ ID NO: 212 Amino acid sequences that are about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • said modification further comprises administering a Cas enzyme to said cells.
  • the Cas enzyme comprises a Cas9 protein.
  • the antisense RNA comprises at least about 90%, about 91%, about 92% of the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216 , about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% amino acid sequence identity.
  • the immune effector cells are HLA-B homozygous cells.
  • HLA-B homozygote includes HLA-B*40 homozygote, HLA-B*15 homozygote, HLA-B*46 homozygote, HLA-B*13 homozygote, HLA-B* B*51 homozygote, HLA-B*58 homozygote, HLA-B*07 homozygote, HLA-B*35 homozygote, HLA-B*44 homozygote, HLA-B*52 homozygote, HLA-B* 57 homozygous, HLA-B*54 homozygous, HLA-B*55 homozygous.
  • the immune effector cells are HLA-A homozygous or heterozygous cells.
  • HLA-A homozygote or heterozygote comprises HLA-A*02 homozygote, HLA-A*11 homozygote, HLA-A*02/A*11 heterozygote or HLA-A *24 homozygotes.
  • the present application provides a method for preparing immune effector cells, which includes introducing the aforementioned nucleic acid molecule or the aforementioned carrier into the immune effector cells.
  • the method further includes: before/after introducing the aforementioned nucleic acid molecule or the aforementioned vector into the immune effector cells, modifying the immune effector cells, the modification includes The expression and/or activity of one or more of the is downregulated.
  • the method includes: after introducing the aforementioned nucleic acid molecule or the aforementioned vector into the immune effector cells, modifying the immune effector cells, the modification including one or The expression and/or activity of multiples were downregulated.
  • the method for preparing immune effector cells may include:
  • the modification includes down-regulating the expression and/or activity of one or more genes related to immune rejection.
  • the gene related to immune rejection is selected from one or more genes in the group consisting of TRAC, TRBC, HLA-A, HLA-B, B2M and CIITA.
  • the expression and/or activity of the TRAC gene and the HLA-A gene in said immune effector cells are down-regulated compared to the expression and/or activity of the corresponding genes in corresponding cells without said modification.
  • the expression and/or activity of the CIITA gene is not down-regulated compared to the expression and/or activity of the corresponding gene in a corresponding cell without said modification.
  • the expression and/or activity of the B2M gene is not down-regulated compared to the expression and/or activity of the corresponding gene in a corresponding cell without said modification.
  • the expression and/or activity of the TRAC gene and the HLA-A gene of the immune effector cells is down-regulated compared to corresponding wild-type cells.
  • the expression and/or activity of the CIITA gene is not downregulated compared to corresponding wild-type cells.
  • the expression and/or activity of the B2M gene is not down-regulated compared to corresponding wild-type cells.
  • the expression level and/or activity of the gene is down-regulated, including down-regulating the expression and/or activity of a nucleic acid molecule encoding the gene; and/or down-regulating the expression of a protein product encoded by the gene and/or activity is downregulated.
  • the modification includes: gene knockout, gene mutation and/or gene silencing.
  • the modification comprises the knockout of either of the two TRAC alleles and the knockout of either of the two HLA-A alleles in the immune effector cells.
  • the modification comprises knockout of two TRAC alleles and knockout of either of the two HLA-A alleles in the immune cells.
  • the modification comprises knockout of exon of TRAC gene and knockout of exon of HLA-A gene in the immune cells.
  • said modification comprises administering to said immune effector cells one or more substances selected from the group consisting of antisense RNA, siRNA, shRNA and CRISPR/Cas9 system.
  • said modification comprises administering a CRISPR/Cas9 system to said immune effector cells.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the TRAC gene.
  • the sgRNA targeting the exon portion of the TRAC gene comprises the nucleotide sequence shown in any one of SEQ ID NO:157 to SEQ ID NO:171.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the HLA-A gene.
  • the sgRNA targeting the exon portion of the HLA-A gene comprises at least one of the nucleotide sequences shown in any one of SEQ ID NO:172 to SEQ ID NO:212 Amino acid sequences that are about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% identical.
  • said modification further comprises administering a Cas enzyme to said cells.
  • the Cas enzyme comprises a Cas9 protein.
  • the antisense RNA comprises at least about 90%, about 91%, about 92% of the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216 , about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% amino acid sequence identity.
  • the immune effector cells comprise human cells.
  • the immune effector cells include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • the immune effector cells can be T cells.
  • the immune effector cells comprise autologous or non-autologous immune effector cells.
  • the cells are homozygous for HLA-B.
  • HLA-B homozygote includes HLA-B*40 homozygote, HLA-B*15 homozygote, HLA-B*46 homozygote, HLA-B*13 homozygote, HLA-B* B*51 homozygote, HLA-B*58 homozygote, HLA-B*07 homozygote, HLA-B*35 homozygote, HLA-B*44 homozygote, HLA-B*52 homozygote, HLA-B* 57 homozygous, HLA-B*54 homozygous, HLA-B*55 homozygous.
  • the cells are HLA-A homozygous or heterozygous cells.
  • HLA-A homozygote or heterozygote comprises HLA-A*02 homozygote, HLA-A*11 homozygote, HLA-A*02/A*11 heterozygote or HLA-A *24 homozygotes.
  • the method for preparing immune effector cells may include:
  • CD3 magnetic beads were added in proportion to collect CD3-T cells (cells not bound to magnetic beads).
  • the present application provides the application of the aforementioned chimeric antigen receptor, the aforementioned isolated nucleic acid molecule, the aforementioned vector, the aforementioned cell, or the aforementioned immune effector cell in the preparation of CAR-T cells.
  • the present application provides a pharmaceutical composition
  • a pharmaceutical composition comprising the aforementioned antigen-binding polypeptide, the aforementioned chimeric antigen receptor, the aforementioned isolated nucleic acid molecule, the aforementioned carrier, the aforementioned cell, and/or the aforementioned immune Effector cells, and optionally a pharmaceutically acceptable carrier.
  • the pharmaceutical composition may include: buffers, such as neutral buffered saline, phosphate buffered saline, etc.; sugars, such as glucose, mannose, sucrose or dextran, mannitol; proteins; polypeptides or amino acids such as glycine; Antioxidants; chelating agents, such as EDTA or glutathione; adjuvants (eg, aluminum hydroxide); and preservatives.
  • buffers such as neutral buffered saline, phosphate buffered saline, etc.
  • sugars such as glucose, mannose, sucrose or dextran, mannitol
  • proteins such as polypeptides or amino acids such as glycine
  • Antioxidants such as EDTA or glutathione
  • adjuvants eg, aluminum hydroxide
  • the pharmaceutical composition includes the aforementioned immune effector cells and optionally a pharmaceutically acceptable carrier.
  • the present application provides the aforementioned antigen-binding polypeptide, the aforementioned antigen chimeric receptor, the aforementioned isolated nucleic acid molecule, the aforementioned carrier, the aforementioned cell, the aforementioned immune effector cell, and/or the aforementioned pharmaceutical composition , for use in the treatment of a disease or condition associated with the expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises a disease or disorder associated with upregulated expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises cancer.
  • the cancer comprises adrenocortical carcinoma, bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer , ovarian, pancreatic, prostate, sarcoma, melanoma, gastric, thymus, or endometrial cancer.
  • the present application provides the aforementioned antigen-binding polypeptide, the aforementioned antigen chimeric receptor, the aforementioned isolated nucleic acid molecule, the aforementioned carrier, the aforementioned cell, the aforementioned immune effector cell, and/or the aforementioned pharmaceutical composition Use in the preparation of a medicament for treating diseases or conditions related to the expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises a disease or disorder associated with upregulated expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises cancer.
  • the cancer comprises adrenocortical carcinoma, bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer , ovarian, pancreatic, prostate, sarcoma, melanoma, gastric, thymus, or endometrial cancer.
  • the present application provides a method for preventing or treating a disease or disorder related to the expression of B7H3, which comprises administering to a subject in need an effective amount of the aforementioned antigen-binding polypeptide, the aforementioned antigen chimeric receptor , the aforementioned isolated nucleic acid molecule, the aforementioned vector, the aforementioned cell, the aforementioned immune effector cell, and/or the aforementioned pharmaceutical composition.
  • the disease or disorder associated with expression of B7H3 comprises a disease or disorder associated with upregulated expression of B7H3.
  • the disease or disorder associated with expression of B7H3 comprises cancer.
  • the cancer comprises adrenocortical carcinoma, bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer , ovarian, pancreatic, prostate, sarcoma, melanoma, gastric, thymus, or endometrial cancer.
  • the present application provides a modified immune effector cell, wherein the expression and/or activity of the TRAC gene and the HLA-A gene are lower than the expression and/or activity of the corresponding gene in the corresponding cell without said modification.
  • the activity is down-regulated, the expression and/or activity of the B2M gene is not down-regulated, and the expression and/or activity of the CIITA gene is not down-regulated; and the HLA-B typing of the modified immune effector cells is consistent with the HLA of the subject -B types are matched.
  • the modified immune effector cells are HLA-B heterozygous and consistent with both alleles of the subject's HLA-B, or the modified immune effector cells are Homozygous for HLA-B and identical to one of the subject's HLA-B alleles.
  • HLA-B homozygote includes HLA-B*40 homozygote, HLA-B*15 homozygote, HLA-B*46 homozygote, HLA-B*13 homozygote, HLA-B* B*51 homozygote, HLA-B*58 homozygote, HLA-B*07 homozygote, HLA-B*35 homozygote, HLA-B*44 homozygote, HLA-B*52 homozygote, HLA-B* 57 homozygous, HLA-B*54 homozygous, HLA-B*55 homozygous.
  • the modification results in down-regulation of the expression and/or activity of two genes, wherein the two genes consist of the TRAC gene and the HLA-A gene.
  • the expression and/or activity of the TRAC gene and the HLA-A gene are down-regulated, the expression and/or activity of the B2M gene are not down-regulated, and the expression of the CIITA gene is and/or activity is not downregulated.
  • the expression and/or activity of two genes is downregulated compared to a corresponding wild-type cell, wherein the two genes consist of a TRAC gene and an HLA-A gene.
  • the expression level and/or activity of the gene is down-regulated, including down-regulating the expression and/or activity of a nucleic acid molecule encoding the gene; and/or down-regulating the expression of a protein product encoded by the gene and/or activity is downregulated.
  • the modification includes: gene mutation and/or gene silencing.
  • said modification comprises administering to said immune effector cells one or more substances selected from the group consisting of antisense RNA, siRNA, shRNA and CRISPR/Cas9 system.
  • said modification comprises administering a CRISPR/Cas9 system to said immune effector cells.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the HLA-A gene.
  • the sgRNA targeting the exon portion of the HLA-A gene comprises the nucleotide sequence shown in any one of SEQ ID NO:172 to SEQ ID NO:212.
  • the modification further comprises administering to the immune effector cells sgRNA targeting the exon portion of the TRAC gene.
  • the sgRNA targeting the exon portion of the TRAC gene comprises the nucleotide sequence shown in any one of SEQ ID NO:157 to SEQ ID NO:171.
  • said modification further comprises administering a Cas enzyme to said cells.
  • the Cas enzyme comprises a Cas9 protein.
  • said antisense RNA comprises the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216.
  • the modified immune effector cells express CAR.
  • the CAR includes an antigen-binding domain, a hinge region, a transmembrane domain, an intracellular co-stimulatory signaling domain, and an intracellular signal transduction domain.
  • the antigen binding domain specifically binds a tumor antigen.
  • the tumor antigen is selected from the group consisting of CD19, CD20, CD22, CD33, BCMA, IL13Ra2, EGFR, Her2, GD2 and B7H3.
  • the antigen binding domain is selected from the group consisting of monoclonal antibodies, polyclonal antibodies, dimers, multimers, multispecific antibodies, intact antibodies, antibody fragments, human antibodies, human Antibodies, chimeric antibodies, Fv fragments, F(ab')2, single chain Fv (scFv) and single domain antibodies (VHH).
  • the transmembrane domain comprises a transmembrane domain derived from one or more proteins selected from the group consisting of: CD8A, CD8B, CD28, CD3 ⁇ (CD3e), 4-1BB, CD4, CD27 , CD7, PD-1, TRAC, TRBC, CD3 ⁇ , CTLA-4, LAG-3, CD5, ICOS, OX40, NKG2D, 2B4 (CD244), Fc ⁇ RI ⁇ , BTLA, CD30, GITR, HVEM, DAP10, CD2, NKG2C, LIGHT, DAP12, CD40L (CD154), TIM1, CD226, DR3, CD45, CD80, CD86, CD9, CD16, CD22, CD33, CD37, CD64, and SLAM.
  • proteins selected from the group consisting of: CD8A, CD8B, CD28, CD3 ⁇ (CD3e), 4-1BB, CD4, CD27 , CD7, PD-1, TRAC, TRBC, CD3 ⁇ , CTLA
  • the intracellular co-stimulatory signaling domain comprises an intracellular co-stimulatory signaling domain derived from one or more proteins selected from the group consisting of CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc ⁇ RI ⁇ , BTLA, GITR, HVEM, DAP10, DAP12, CD30, CD40, CD40L, TIM1, PD- 1. LFA-1, LIGHT, JAML, CD244, CD100, ICOS, CD40 and MyD88.
  • proteins selected from the group consisting of CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc ⁇ RI ⁇ , BTLA, GITR, HVE
  • the intracellular signaling domain comprises an intracellular signaling domain derived from one or more proteins selected from the group consisting of: CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD79a, CD79b, FceRI ⁇ , FceRI ⁇ , Fc ⁇ RIIa, bovine leukemia virus gp30, Epstein-Barr virus (EBV) LMP2A, simian immunodeficiency virus PBj14 Nef, DAP10, DAP-12, and domains containing at least one ITAM.
  • EBV Epstein-Barr virus
  • the hinge region comprises a hinge region derived from one or more proteins selected from the group consisting of CD28, IgG1, IgG4, IgD, 4-1BB, CD4, CD27, CD7, CD8A, PD-1, ICOS, OX40, NKG2D, NKG2C, Fc ⁇ RI ⁇ , BTLA, GITR, DAP10, TIM1, SLAM, CD30, and LIGHT.
  • the CAR further comprises a signal peptide fragment, the C-terminus of the signal peptide fragment is connected to the N-terminus of the targeting moiety.
  • the signal peptide fragment comprises a CD8A signal peptide fragment.
  • the immune effector cells comprise human cells.
  • the immune effector cells include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • NK cells natural killer cells
  • macrophages include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • the immune effector cells comprise non-autologous immune effector cells.
  • the present application provides a method for preparing the aforementioned modified immune effector cells, which comprises the following steps:
  • the modified immune effector cells are HLA-B heterozygous and consistent with both alleles of the subject's HLA-B, or the modified immune effector cells are Homozygous for HLA-B and identical to one of the subject's HLA-B alleles.
  • HLA-B homozygote includes HLA-B*40 homozygote, HLA-B*15 homozygote, HLA-B*46 homozygote, HLA-B*13 homozygote, HLA-B* B*51 homozygote, HLA-B*58 homozygote, HLA-B*07 homozygote, HLA-B*35 homozygote, HLA-B*44 homozygote, HLA-B*52 homozygote, HLA-B* 57 homozygous, HLA-B*54 homozygous, HLA-B*55 homozygous.
  • the modification results in down-regulation of the expression and/or activity of two genes, wherein the two genes consist of the TRAC gene and the HLA-A gene.
  • the expression and/or activity of the TRAC gene and the HLA-A gene are down-regulated, the expression and/or activity of the B2M gene are not down-regulated, and the expression and/or activity of the CIITA gene are down-regulated. /or activity is not downregulated.
  • the expression and/or activity of two genes consisting of a TRAC gene and an HLA-A gene is downregulated compared to a corresponding wild-type cell.
  • the expression level and/or activity of the down-regulated gene comprises down-regulation of the expression and/or activity of the nucleic acid molecule encoding the gene; and/or down-regulation of the expression and/or activity of the protein product encoded by the gene. / or the activity is downregulated.
  • the modification includes: gene mutation and/or gene silencing.
  • said modification comprises administering to said immune effector cells one or more substances selected from the group consisting of antisense RNA, siRNA, shRNA and CRISPR/Cas9 system.
  • said modification comprises administering a CRISPR/Cas9 system to said immune effector cells.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the HLA-A gene.
  • the sgRNA targeting the exon portion of the HLA-A gene comprises the nucleotide sequence shown in any one of SEQ ID NO:172 to SEQ ID NO:212.
  • the modification comprises administering to the immune effector cells an sgRNA targeting an exon portion of the TRAC gene.
  • the sgRNA targeting the exon portion of the TRAC gene comprises the nucleotide sequence shown in any one of SEQ ID NO:157 to SEQ ID NO:171.
  • said modification further comprises administering a Cas enzyme to said cells.
  • the Cas enzyme comprises a Cas9 protein.
  • said antisense RNA comprises the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216.
  • the immune effector cells comprise human cells.
  • the immune effector cells include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • NK cells natural killer cells
  • macrophages include T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • the immune effector cells comprise non-autologous immune effector cells.
  • the present application provides a composition, which includes the aforementioned modified immune effector cells and a pharmaceutically acceptable carrier.
  • the present application provides the application of the aforementioned modified immune effector cells in the preparation of CAR-T cells.
  • the present application provides the application of the aforementioned modified immune effector cells in the preparation of medicines, and the medicines are used for allogeneic therapy.
  • the present application provides the application of the aforementioned modified immune effector cells in the preparation of medicines for treating tumors.
  • the tumor includes solid tumors and non-solid tumors.
  • the tumor is selected from the group consisting of liver cancer, gastric cancer, lung cancer, breast cancer, non-small cell lung cancer, B lymphoma, Hodgkin's lymphoma, glioma, chronic myelogenous leukemia and Acute myeloid leukemia.
  • the modified immune effector cell wherein compared with the expression and/or activity of the corresponding gene in the corresponding cell without said modification, the expression and/or activity of the TRAC gene and the HLA-A gene are down-regulated, and the expression and/or activity of the B2M gene The expression and/or activity are not down-regulated, and the expression and/or activity of the CIITA gene are not down-regulated; and the HLA-B typing of the modified immune effector cells matches the HLA-B typing of the subject .
  • HLA-B homozygotes comprise HLA-B*40 homozygotes, HLA-B*15 homozygotes, HLA-B*46 homozygotes, HLA-B*46 homozygotes, HLA -B*13 homozygote, HLA-B*51 homozygote, HLA-B*58 homozygote, HLA-B*07 homozygote, HLA-B*35 homozygote, HLA-B*44 homozygote, HLA-B *52 homozygous, HLA-B*57 homozygous, HLA-B*54 homozygous, HLA-B*55 homozygous.
  • modified immune effector cell according to any one of claims 128-130, wherein the modification causes the expression and/or activity of two genes to be down-regulated, wherein the two genes consist of the TRAC gene and the HLA gene -A genetic composition.
  • the modified immune effector cell according to any one of claims 128-132, wherein the expression and/or activity of two genes are down-regulated compared to corresponding wild-type cells, wherein the two genes It is composed of TRAC gene and HLA-A gene.
  • modified immune effector cell according to any one of claims 128-133, wherein the expression level and/or activity of the gene is down-regulated and comprises the expression and/or activity of the nucleic acid molecule encoding the gene Down-regulate; and/or cause the expression and/or activity of the protein product encoded by said gene to be down-regulated.
  • the modified immune effector cell according to any one of claims 128-134, wherein said modification comprises: gene mutation and/or gene silencing.
  • modified immune effector cell according to any one of claims 128-135, wherein said modification comprises administering to said immune effector cell one or more substances selected from the group consisting of antisense RNA, siRNA, shRNA, and CRISPR/Cas9 systems.
  • the modified immune effector cell of claim 137 wherein the modification comprises administering to the immune effector cell an sgRNA targeting an exon portion of the HLA-A gene.
  • the modified immune effector cell according to claim 138, wherein the sgRNA targeting the exon portion of the HLA-A gene comprises any one of SEQ ID NO:172 to SEQ ID NO:212 The nucleotide sequence shown.
  • modified immune effector cell according to any one of claims 137-139, wherein said modification further comprises administering to said immune effector cell an sgRNA targeting an exon portion of said TRAC gene.
  • modified immune effector cell according to any one of claims 137-141, wherein said modification further comprises administering a Cas enzyme to said cell.
  • the modified immune effector cell of claim 136, wherein the antisense RNA comprises the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216.
  • the modified immune effector cell of claim 145 wherein the CAR comprises an antigen binding domain, a hinge region, a transmembrane domain, an intracellular co-stimulatory signaling domain, and an intracellular signaling domain.
  • the modified immune effector cell according to any one of claims 147, wherein the tumor antigen is selected from the group consisting of CD19, CD20, CD22, CD33, BCMA, IL13Ra2, EGFR, Her2, GD2 and B7H3.
  • the modified immune effector cell according to any one of claims 146-148, wherein the antigen binding domain is selected from the group consisting of monoclonal antibodies, polyclonal antibodies, dimers, multimers, Multispecific antibodies, whole antibodies, antibody fragments, human antibodies, humanized antibodies, chimeric antibodies, Fv fragments, F(ab')2, single chain Fv (scFv) and single domain antibodies (VHH).
  • the antigen binding domain is selected from the group consisting of monoclonal antibodies, polyclonal antibodies, dimers, multimers, Multispecific antibodies, whole antibodies, antibody fragments, human antibodies, humanized antibodies, chimeric antibodies, Fv fragments, F(ab')2, single chain Fv (scFv) and single domain antibodies (VHH).
  • transmembrane domain comprising a transmembrane domain derived from one or more proteins selected from the group consisting of: CD8A, CD8B , CD28, CD3 ⁇ (CD3e), 4-1BB, CD4, CD27, CD7, PD-1, TRAC, TRBC, CD3 ⁇ , CTLA-4, LAG-3, CD5, ICOS, OX40, NKG2D, 2B4(CD244), Fc ⁇ RI ⁇ , BTLA, CD30, GITR, HVEM, DAP10, CD2, NKG2C, LIGHT, DAP12, CD40L (CD154), TIM1, CD226, DR3, CD45, CD80, CD86, CD9, CD16, CD22, CD33, CD37, CD64, and SLAM.
  • proteins selected from the group consisting of: CD8A, CD8B , CD28, CD3 ⁇ (CD3e), 4-1BB, CD4, CD27, CD7, PD-1, TRAC, TRBC, CD3 ⁇ , CT
  • said intracellular co-stimulatory signaling domain comprising an intracellular protein derived from one or more proteins selected from the group consisting of Costimulatory signaling domains: CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc ⁇ RI ⁇ , BTLA, GITR, HVEM , DAP10, DAP12, CD30, CD40, CD40L, TIM1, PD-1, LFA-1, LIGHT, JAML, CD244, CD100, ICOS, CD40, and MyD88.
  • Costimulatory signaling domains CD28, CD137, CD27, CD2, CD7, CD8A, CD8B, OX40, CD226, DR3, SLAM, CDS, ICAM-1, NKG2D, NKG2C, B7H3, 2B4, Fc ⁇ RI ⁇ , BTLA,
  • said intracellular signaling domain comprising an intracellular signal derived from one or more proteins selected from the group consisting of Transduction domains: CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD79a, CD79b, FceRI ⁇ , FceRI ⁇ , Fc ⁇ RIIa, bovine leukemia virus gp30, Epstein-Barr virus (EBV) LMP2A, simian immunodeficiency virus PBj14 Nef, DAP10, DAP-12 and Contains at least one ITAM domain.
  • Transduction domains CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD79a, CD79b, FceRI ⁇ , FceRI ⁇ , Fc ⁇ RIIa, bovine leukemia virus gp30, Epstein-Barr virus (EBV) LMP2A, simian immunodeficiency virus PBj14 Nef, DAP10, DAP-12 and Contains at least one ITAM domain.
  • said hinge region comprising a hinge region derived from one or more proteins selected from the group consisting of: CD28, IgG1, IgG4 , IgD, 4-1BB, CD4, CD27, CD7, CD8A, PD-1, ICOS, OX40, NKG2D, NKG2C, Fc ⁇ RI ⁇ , BTLA, GITR, DAP10, TIM1, SLAM, CD30, and LIGHT.
  • the modified immune effector cell comprising T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monoclonal Nuclear cells, dendritic cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • modified immune effector cells are HLA-B heterozygous and consistent with both alleles of HLA-B in the subject, or the modified The immune effector cells are homozygous for HLA-B and identical to one of the subject's HLA-B alleles.
  • HLA-B homozygotes comprise HLA-B*40 homozygotes, HLA-B*15 homozygotes, HLA-B*46 homozygotes, HLA-B*13 homozygotes Zygote, HLA-B*51 homozygous, HLA-B*58 homozygous, HLA-B*07 homozygous, HLA-B*35 homozygous, HLA-B*44 homozygous, HLA-B*52 homozygous, HLA-B*57 homozygote, HLA-B*54 homozygote, HLA-B*55 homozygote.
  • the expression level and/or activity of the down-regulating gene comprises down-regulating the expression and/or activity of a nucleic acid molecule encoding the gene; and/or making The expression and/or activity of the protein product encoded by the gene is downregulated.
  • the method of claim 168, wherein the modification comprises administering to the immune effector cells an sgRNA targeting an exonic portion of the HLA-A gene.
  • sgRNA targeting the exon portion of the HLA-A gene comprises the nucleotides shown in any one of SEQ ID NO:172 to SEQ ID NO:212 sequence.
  • sgRNA targeting the exon portion of the TRAC gene comprises the nucleotide sequence shown in any one of SEQ ID NO:157 to SEQ ID NO:171.
  • the Cas enzyme comprises a Cas9 protein.
  • antisense RNA comprises the nucleotide sequence shown in any one of SEQ ID NO:213 to SEQ ID NO:216.
  • said immune effector cells comprising T cells, B cells, natural killer cells (NK cells), macrophages, NKT cells, monocytes, dendritic cells cells, granulocytes, lymphocytes, leukocytes and/or peripheral blood mononuclear cells.
  • composition comprising the modified immune effector cell of any one of claims 128-158 and a pharmaceutically acceptable carrier.
  • the tumor comprises solid tumors and non-solid tumors.
  • the tumor is selected from the group consisting of liver cancer, gastric cancer, lung cancer, breast cancer, non-small cell lung cancer, B lymphocyte tumor, Hodgkin lymphoma , glioma, chronic myeloid leukemia, and acute myeloid leukemia.
  • the B7H3-Fc recombinant protein was immobilized on a CM5 chip using 10 mM acetate buffer, and the single domain antibody prepared above was used as the mobile phase to detect the binding ability of the single domain antibody obtained from the screening to the B7H3-Fc recombinant protein.
  • Running reagent containing 10mM N-(2-hydroxyethyl)piperazine-N-2sulfonic acid (HEPES), 150mM sodium chloride (NaCl), 3mM ethylenediaminetetraacetic acid (EDTA), 0.005% Tween-20 (Tween-20), the pH was adjusted to 7.4.
  • HEPES N-(2-hydroxyethyl)piperazine-N-2sulfonic acid
  • NaCl sodium chloride
  • EDTA 3mM ethylenediaminetetraacetic acid
  • Tween-20 Tween-20
  • Human IgG (Fc) capture kit including: mouse anti-human IgG (Fc) antibody, fixation reagent (sodium acetate, pH5.0), regeneration reagent (magnesium chloride).
  • Amino coupling kit including: N-hydroxysuccinimide (NHS), 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and ethanolamine (pH8. 5). Add 10mL of deionized water to each tube of EDC and NHS, and store in separate packages at -18°C or lower, with a shelf life of two months.
  • NHS N-hydroxysuccinimide
  • EDC 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride
  • ethanolamine pH8. 5
  • the mouse anti-human IgG (Fc) antibody was diluted with a fixative (sodium acetate, pH 5.0), and 950 ⁇ L of the fixation reagent was added to 50 ⁇ L of the mouse anti-human IgG (Fc) antibody for fixing eight channels.
  • a fixative sodium acetate, pH 5.0
  • 950 ⁇ L of the fixation reagent was added to 50 ⁇ L of the mouse anti-human IgG (Fc) antibody for fixing eight channels.
  • the surface of the CM5 chip was activated with EDC and NHS at a flow rate of 10 ⁇ L/min for 360 s.
  • the mouse anti-human IgG (Fc) antibody was injected into the channel (channel 1-8, Fc1, 2) for about 360s at a flow rate of 10 ⁇ L/min, and the fixed amount was about 7000 to 14000RU.
  • the chip was blocked with ethanolamine at 10 ⁇ L/min for 420 s.
  • the human B7H3 protein was subjected to buffer replacement using a desalting column and corresponding running reagents, and the concentration of the replaced sample was determined.
  • the reference channel (Fc1) does not require ligand capture.
  • the human B7H3 protein was diluted 2-fold with the running reagent.
  • the diluted human B7H3 protein was sequentially injected into the experimental channel and the reference channel at a flow rate of 30 ⁇ L/min, and the binding and dissociation time were corresponding. Both binding and dissociation steps are performed in the running reagent.
  • the chip After the analysis of each concentration, the chip needs to be regenerated with magnesium chloride at a flow rate of 20 ⁇ L/min for 30 seconds to wash away the ligand and undissociated analyte. For the next concentration analysis, the experimental channel needs to recapture the same amount of ligand.
  • the KD value of each sample was calculated using Biacore 8K analysis software Biacore Insight Evaluation Software.
  • the reference channel (Fc1) was used for background subtraction.
  • Results Table 1 shows that the B7H3 single domain antibodies 1A5 and 1G7 of the present application and their humanized antibodies all have high affinity to human B7H3 protein.
  • the anti-B7H3 CAR structure includes: a B7H3 antigen-binding region (derived from the anti-B7H3 single domain antibody 1A5, the amino acid sequence of which is shown in SEQ ID NO: 28), a CD8A extracellular hinge region, a CD8A transmembrane region, a 4-1BB intracellular co-stimulatory domain and a CD3 ⁇ activation signaling domain.
  • the amino acid sequence of the non-antigen binding domain of anti-B7H3 CAR is shown in SEQ ID NO:34, and the nucleotide sequence is shown in SEQ ID NO:38.
  • an anti-B7H3 CAR lentiviral expression vector was constructed, and the vector schematic diagram (see Figure 1). Optimization: select the commercial lentiviral expression vector pCDH-CMV-MCS-EF1-copGFP as the backbone, and carry out element transformation on the basis of this vector. First, the ampicillin resistance gene ⁇ -lactamase of the vector was replaced with the aminoglycoside phosphotransferase derived from Tn5, so that the vector had kanamycin resistance. Second, we deleted the CMV promoter and its adjacent downstream multiple cloning sites, which are potentially threatening for in vivo applications.
  • the copGFP gene expressed by the EF1 promoter in the original vector was deleted, the SalI restriction site was retained, and the SmaI restriction site was added at the 5' end of SalI for vector construction to form the final destination vector.
  • the added SmaI restriction site is a single restriction site for the final destination vector, and other sequence parts of the vector do not have this restriction site.
  • the non-limiting design principle of the sgRNA of the CRISPR/Cas9 system used in this example is: 5'-NNN(20)-NGG-3', NGG is called protospacer adjacent motif (PAM), wherein , N represents A, T, C or G.
  • PAM protospacer adjacent motif
  • sgRNAs Since many sgRNAs can be designed on the same exon, and sgRNAs consisting of 20 nucleotide sequences may appear repeatedly in the genome, use the website http://crispr.cos.uni-heidelberg.de to Carry out the design and evaluation of sgRNA, paste the exon sequence to this website, the website designs sgRNA and conducts prediction evaluation, the higher the score in the evaluation, it means that there may be higher editing efficiency and lower off-target risk, from which Select the sgRNA with higher score to test.
  • the sgRNA targeting the TRAC gene is shown in SEQ ID NO:157 to SEQ ID NO:171, the sgRNA targeting the HLA-A02 gene is shown in SEQ ID NO:172 to SEQ ID NO:193, and the targeting HLA-A11 gene
  • the sgRNA of the gene is shown in SEQ ID NO:194 to SEQ ID NO:204, and the sgRNA targeting the HLA-A24 gene is shown in SEQ ID NO:205 to SEQ ID NO:212, which were synthesized by GenScript Biotechnology Company.
  • HLA-B typing of the recipient select HLA-B homozygotes that match the HLA-B typing of the recipient.
  • the source of the donor is based on the HLA-B homozygote in the population.
  • One of the alleles of the patient's HLA-B is consistent with the donor's HLA-B homozygote.
  • Cells from these donors can cover a high number of patient populations . Reduce the rejection caused by the inconsistency of HLA-B subtypes.
  • HLA-B mainly selects B*40 homozygote, B*15 homozygote, B*46 homozygote, B*13 homozygote, B*51 homozygote, B*58 homozygote, B*07 homozygote with high frequency in the population Homozygote, B*35 homozygote, B*44 homozygote, B*52 homozygote, B*57 homozygote, B*54 homozygote, B*55 homozygote.
  • HLA-A selects A*02 homozygotes, A*11 homozygotes and A*02/A11 heterozygotes with higher frequencies in the population.
  • Peripheral blood was collected from healthy donors and diluted 1:1 with PBS buffer.
  • cell separation solution Ficoll
  • blood cell dilution solution very slowly along the tube wall, and centrifuge at 800g for 20min at room temperature (set the centrifuge to increase speed 1, reduce speed 0).
  • the liquid in the centrifuge tube is divided into PBS and serum layer, white blood cell layer, lymphocyte separation solution, and red blood cell layer from top to bottom.
  • remove the PBS and serum layer move the white blood cell layer to a new 50ml centrifuge tube, add PBS to 40ml to wash the cells, and centrifuge at 450g for 10min. After centrifugation, the supernatant was discarded to obtain peripheral blood mononuclear cells. Cell counts were performed after the cells were resuspended.
  • T cells in peripheral blood mononuclear cells were extracted using EasySep TM Human T Cell Separation Kit (purchased from StemCell Technologies, catalog number: 17951). Adjust the PBMC density to 5 ⁇ 10 7 cells/ml, and add PBS buffer in the range of 0.25-2ml; first add cocktail to mix well, then add isolation cocktail at 50 ⁇ l/ml, mix well and place at room temperature for 5 minutes; shake RapidSpheres by vortex After vortexing for 30s, add 40 ⁇ l/ml to the cells and mix well; add buffer to the multiple of 2.5ml, and gently blow up and down 2-3 times; add 2.5ml to each tube respectively, and put Place the cryovial on the magnetic stand, and let it stand at room temperature for 3 minutes; gently open the cap of the cryovial, carefully hold the two sides to pick up the magnetic stand, keep it upside down for 2-3 seconds, and pour the cell solution into a new centrifuge tube at one time; use 10 - After resuspending the cells in 20ml buffer (dependured
  • CD3+T cells D0 days
  • activate them with CD3/CD28 antibody magnetic beads
  • lentiviral vector anti-B7H3 CAR lentiviral expression vector prepared in Example 1 transfection on D1 day after activation.
  • the lentiviral vector was washed out on D2, and electroporation was performed on D3.
  • TRAC sgRNA AGAGTCTCTCAGCTGGTACA (SEQ ID NO: 157), A02 sgRNA: CTGACCATGAAGCCACCCCTG (SEQ ID NO: 174), A11 sgRNA: GGCCCCTCCTGCTCTATCCA (SEQ ID NO: 204).
  • Sorting CD3-negative T cells centrifuging after counting cells, discarding supernatant; resuspending cells with buffer and mixing, adding CD3 magnetic beads to 20ul CD3 magnetic beads/ 107 cells, mixing evenly, and incubating in a 4-degree refrigerator.
  • Cell harvesting Collect cells in a centrifuge tube and discard after centrifugation, wash the cells again with normal saline, centrifuge, prepare a cryopreservation solution, resuspend the centrifuged cells in the cryopreservation solution, and draw the cell suspension into the final product with a cell freezer In the storage bag, label the cell cryopreservation bag for the next step of freezing.
  • Knockout efficiency (AB)/A ⁇ 100%; A is the positive expression rate of the control group; B is the positive expression rate of the knockout group.
  • B7H3 target cells PANC-1-Luciferase; adjust the state of the target cells to the logarithmic growth phase, and need to be continuously passaged twice before the experiment;
  • the target cells were resuspended in 1640+10% FBS, and three 24-well plates were taken for each target site, and the target cells were inoculated according to the amount of 2x10 ⁇ 5/well. (Both target cells and effector cells were seeded at a density of 2x10 ⁇ 6/ml). Then add effector cells according to the E/T (effect-to-target ratio, effector cells: target cells) ratio. Fill each well to the maximum volume (such as 600ul). The control was inoculated with the same number of target cells without adding effector cells (600ul). The well plate was placed in a 5% CO 2 , 37° C. incubator and incubated for 24 hours. E/T: 1:2, 1:1, 2:1, 5:1, 10:1 plank, repeat three times.
  • Anti-B7H3 CAR-T cells and anti-B7H3 UCAR-T had significant killing effect on PANC-1-Luciferase cells.
  • Anti-B7H3 UCAR-T cells can achieve a killing efficiency of more than 90% when the effect-to-target ratio is 10:1 (see Figure 5).
  • mice 8-10-week-old NSG mice were subcutaneously injected with tumor cell PANC-1-Luciferase-GFP (5x10 ⁇ 6). The mice were divided into three groups with 5 mice in each group. The tumor formation time was generally 2-4 weeks. Anti-B7H3 UCAR-T cells, anti-B7H3 CAR-T cells, and non-gene knockout T cells 5E6 were injected intratumorally into each group of mice, at a single point injection, with an injection volume of 50ul. Tumor regression in mice was monitored by luciferase.
  • mice Fifteen humanized immune system mice (hHSC-NCG) were prepared and divided into 3 groups. Preparation of cells, experimental group anti-B7H3 UCAR-T cells (knockout TRAC+HLA-A02); control group 1: anti-B7H3 CAR-T; control group 2: anti-B7H3 UCAR-T cells (knockout TRAC+B2M ); each mouse was injected with 1x10 ⁇ 7 cells, and blood was collected at different time points D0, 2h, D3, D7, D14, D21, D28, D35, D42, D49, D56, D60. Genomes were extracted from blood samples at different time points, and the copy/ng genome DNA was calculated by QPCR absolute quantification method. The positive control used UCAR-T cells harvested on the 14th day, and the negative control used DEPC water.
  • GVHD response Prepare TRAC, HLA-A double-knockout T cells, T cells without gene knockout, irradiate allogeneic PBMC, stimulate the two groups of cells prepared respectively, and detect the level of IFN-r.
  • Allogeneic reaction Allogeneic PBMC stimulated the cells of the two groups after irradiation, and detected the level of IFN-r.
  • mice co-inject 5 ⁇ 10 6 TCR-HLA-A-double-negative anti-B7H3 UCAR-T cells and 5 ⁇ 10 6 allogeneic T cells into NSG mice.
  • Control group Inject 5 ⁇ 10 6 TCR-B7H3 UCAR-T cells and 5 ⁇ 10 6 allogeneic T cells into NSG mice.
  • GVHD response observe graft-versus-host response through clinical indicators: survival rate, fur texture and skin integrity, etc.
  • Cytokine detection Peripheral blood serum was collected to detect the levels of cytokines such as IL6, IL-2, TNF- ⁇ , IFN- ⁇ , etc. Blood collection time: before reinfusion, 24h, D3, D7, D14, D28, 2M. Detection of organ lesions: At the end of the observation period (about 2 months), the spleen, liver, skin, gastrointestinal tract, lung, and kidney of the mice were taken for HE section staining analysis.
  • mice injected with untreated T cells developed lethal graft-versus-host disease (GVHD) within 2 months of injection. None of the mice receiving TRAC, HLA-A double knockout cells developed GVHD; the TRAC, HLA-A double knockout T cell group secreted very low levels of cytokines IL6, IL-2, TNF- ⁇ , IFN- ⁇ ; and The morphology of different organs of the mice was normal. It shows that TRAC, HLA-A double-knockout T cell group greatly reduces the GVHD response.
  • GVHD lethal graft-versus-host disease
  • Allogeneic reaction prepare TRAC, HLA-A double-knockout CAR-T cells, co-inject 1x10 ⁇ 7 TCR-HLA-A-double-knockout CAR-T cells and 2x10 ⁇ 6 allogeneic T cells into NSG small mouse body.
  • Control group Inject 1x10 ⁇ 7 TCR - CAR-T cells into NSG mice.
  • Control group transfer to CAS9+ODN label
  • On-target and off-target-WGS (Whole genome sequencing): On D14, 1 ⁇ 10 ⁇ 6 T cells without gene knockout, TRAC, and HLA-A double-knockout T cells were collected and sent to Suzhou Jinweizhi Biotechnology Co., Ltd. detection.
  • Result analysis double-knockout T cells (TRAC+HLA-A) detected whether chromosomal translocation occurred on D14 (harvest).
  • the detection results the detection values of both translocation methods were close to zero detection value, indicating that no rearrangement of the loci occurred ( See Figure 10).
  • Residual Cas9 protein During cell preparation, 1 ⁇ 10 ⁇ 6 cells at each of the three time points before knockout, after knockout, and before harvest were lysed, and then protein quantification kit (NOVATEINBIO, Cat. No. NB-E1372PR ) for quantification, the samples in each group were adjusted to the same loading volume of 2 ⁇ g, and the CRISPR/Cas9 protein ELISA kit was used for detection according to the instructions.
  • the Cas9 protein in the sample is firmly and stably placed on the test paper well. Then use the detection antibody to recognize the bound Cas9 protein, and then develop with the developer.
  • the Cas9 ratio is proportional to the absorbance, and the absolute amount of Cas9 protein is quantified by comparing with the Cas9 control.
  • Double knockout T cells detected the residue of spCas9 at four time points before electroporation (D3), before electroporation (D5), D9, and D14 (harvest). Trace residues were detected before solution (D5), but not detected at the other three time points. (See Figure 12).
  • the RNP complex was transferred into the activated T cells prepared in Example 2 by electroporation using an electroporation kit (purchased from LONZA, product number V4XXP-3024). Preheat the medium (X-VIVO15 medium + 10% FBS + IL2 (200 U/ml) + IL7 (10 ng/ml) + IL15 (5 ng/ml)) in the well plate 30 minutes in advance.
  • the sgRNA sequence of TRAC is sg9 (as shown in SEQ ID NO:157)
  • the sgRNA sequence of HLA-A is HLA-A02 Sg2 (as shown in SEQ ID NO:173) or HLA-A02 Sg5 (as shown in SEQ ID NO:173) SEQ ID NO:174) or HLA-A11 sg21 (as shown in SEQ ID NO:204) or HLA-A11 Rsg2 (as shown in SEQ ID NO:203)
  • 10 ⁇ g of Cas9 protein purchased from thermo, product number A36499
  • Example 2 Count the activated T cells cultured in Example 2, centrifuge at 300g for 8min, discard the supernatant, add PBS to resuspend the cells, absorb 1E7 cells and centrifuge again at 300g for 8min, discard the supernatant, and resuspend the cells with 100 ⁇ l of prepared electroporation buffer .
  • Add the preheated medium into the electro-cup then transfer the cells into the preheated medium in the well plate with a matching pipette, and then place them in a 37°C, 5% CO 2 incubator for culture.
  • Knockout efficiency (AB)/A ⁇ 100%; A is the positive expression rate of the control group; B is the positive expression rate of the knockout group.
  • the three detection results of TRAC single gene knockout are shown in Figure 13 to Figure 15, and the knockout efficiency calculation results are shown in Table 2.
  • the three detection methods are basically the same, and only the Sanger sequencing method was used to detect the editing efficiency in subsequent experiments.
  • the RNP complex was transferred into the activated T cells prepared in Example 2 by electroporation using an electroporation kit (purchased from LONZA, product number: V4XXP-3024). Preheat the medium (X-VIVO15 medium + 10% FBS + IL2 (200 U/ml) + IL7 (10 ng/ml) + IL15 (5 ng/ml)) in the well plate 30 minutes in advance.
  • TRAC Sg9 20 ⁇ g TRAC sgRNA (TRAC Sg9), 20 ⁇ g HLA-A sgRNA (HLA-A02 Sg2 or HLA-A02 Sg5 or HLA-A11 sg21 or targeting HLA-A*24:02:01, HLA-A A*30:01:01:01, HLA-A*33:01:01:01, HLA-A*03:01:01:01, HLA-A*01:01:01:01, or HLA-A* 26:01:01:01:01 sgRNA) into PCR tubes (no RNA), and then add 10 ⁇ g Cas9 protein (purchased from thermo, product number A36499) respectively, mix gently, and incubate at room temperature for 12 minutes.
  • Cas9 protein purchased from thermo, product number A36499
  • Example 2 Count the activated T cells cultured in Example 2, centrifuge at 300g for 8min, discard the supernatant, add PBS to resuspend the cells, absorb 1E7 cells and centrifuge again at 300g for 8min, discard the supernatant, and resuspend the cells with 100 ⁇ l of prepared electroporation buffer .
  • Add the preheated medium into the electro-cup then transfer the cells into the preheated medium in the well plate with a matching pipette, and then place them in a 37°C, 5% CO 2 incubator for culture.
  • the double-gene knockout efficiency is detected by sequencing, and TRAC-negative and HLA-A-negative T cells with a double-gene knockout efficiency of not less than 80% can be obtained.
  • the results are shown in Figure 20-21.
  • Figure 20A shows the result of using HLA-A02 Sg5 to knock out HLA-A02, wherein the upper row shows the results of the control group (that is, without using HLA-A02 Sg5 to knock out); the next row shows the simultaneous knockout of HLA -The results of A02 and TRAC;
  • Figure 20B shows the results of knocking out TRAC using TRAC Sg9, where the upper line shows the results of the control group (that is, no knocking out with TRAC Sg9); the next line shows simultaneous knockout HLA-A02 and TRAC results.
  • Figure 21A-21B shows the knockout situation of knockout HLA-A02 and TRAC protein level, wherein NEG refers to the negative control, WT refers to the situation without any knockout treatment, TRAC+HLA-A double knockout refers to the simultaneous knockout of HLA- Results of A02 and TRAC.
  • Example 13 Differences in the expression of TRAC gene, HLA-A gene, B2M gene and CIITA gene in T cells with double gene knockout and corresponding genes in corresponding cells
  • Example 2 The activated T cells prepared in Example 2 were divided into two groups, one group was used as a control, and the other group prepared TRAC gene and HLA-A gene double gene knockout T cells according to the method in Example 5, according to Sanger sequencing was performed in the manner of step (1) of Example 4. According to the sequencing results, the TRAC and HLA-A double gene knockout cells were obtained.
  • the prepared double gene knockout T cells are incubated with corresponding TRAC and HLA-A antibodies, and the double gene knockout cell lines can be obtained by flow sorting or magnetic bead sorting.
  • RNA extraction kit purchased from QIAGEN, catalog number: 74004
  • reverse transcription kit purchased from Applied Biosystems, catalog number: 4368814
  • FIG. 22-23 shows the results.
  • Fig. 22 shows the mRNA level determination of gene expression, and wherein Fig. 22 shows the mRNA level of TRAC, HLA-A, B2M and CIITA;
  • WT refers to the situation without any knockout treatment
  • double knockout group refers to TRAC gene and HLA-A gene double knockout T cells results.
  • Figure 23 shows the protein level determination of gene expression, wherein Figure 23A-23B shows the protein expression levels of B2M and CIITA respectively; wherein NEG refers to the negative control, WT refers to the situation without any knockout treatment, TRAC+HLA-A Double knockout refers to the result of T cells with double gene knockout of TRAC gene and HLA-A gene.
  • Example 14 Prepare TRAC gene, HLA-A/B2M gene and CIITA gene knockout T cells and verify the expression changes of the corresponding three genes
  • TRAC, HLA-A and CIITA genes in TRAC, HLA-A and CIITA gene knockout T cells were down-regulated; compared with control cells, TRAC, B2M and CIITA triple gene knockout The protein expressions of TRAC, HLA-A and CIITA genes were down-regulated in T cells.
  • FIGS 24A-24D show the knockout status of TRAC, HLA-A and B2M protein levels in sequence.
  • WT refers to the situation without any knockout treatment
  • TRAC+HLA-A double knockout refers to the result of T cells with double gene knockout of TRAC gene and HLA-A gene
  • TRAC+HLA-A+CIITA triple knockout refers to TRAC, The result of the T cells of HLA-A and CIITA triple gene knockout
  • TRAC+B2M+CIITA triple knockout refers to the result of B2M, CIITA and TRAC triple gene knockout of T cells
  • TRAC+HLA-A knockdown refers to Example 16 Results of preparation of TRAC and HLA-A knockdown T cells.
  • Figure 24D shows the knockdown of CIITA protein levels.
  • Embodiment 15 designs antisense RNA sequence
  • RNA sequences of the corresponding genes (TRAC gene and HLA-A gene) through the database https://www.ncbi.nlm.nih.gov/ or www.ensembl.org/, and design siRNA with reference to the following principles:
  • the designed antisense RNA sequences include HLA-A-homo-551; HLA-A-homo-NEG; TRAC-homo-375; TRAC-homo-NEG.
  • Double gene knockdown was performed using the antisense RNA designed by Example 15.
  • the company prepares lentivirus (Gimma) with antisense RNA sequences of TRAC gene and HLA-A gene.
  • CD3 + T cells were prepared according to the method in Example 2 (D0 days), and activated with CD3/CD28 antibody magnetic beads, and the activated T cells were transfected with lentiviruses carrying the antisense RNA sequences of the TRAC gene and the HLA-A gene (D1 day), wash off the lentiviral vector on D2, and continue to culture until D5.
  • the T cells cultured to D5 days were collected, and the gene knockdown efficiency was detected by quantitative PCR or Western Blot and other methods.
  • T cells with TRAC gene and HLA-A gene knockdown can be obtained by flow sorting or magnetic bead sorting.
  • the results showed that the mRNA and protein expression levels of TRAC and HLA-A were down-regulated in the TRAC and HLA-A gene knockdown group.
  • Figures 25A-25B sequentially show the knockout status of TRAC and HLA-A mRNA levels.
  • WT refers to the situation without any knockout treatment
  • TRAC+HLA-A double knockout refers to the result of T cells with double gene knockout of TRAC gene and HLA-A gene.
  • the knockout levels of TRAC and HLA-A protein levels can be referred to the results in FIG. 24 .
  • T cells without gene knockout, double gene knockout, three gene knockouts and double gene knockdown in Examples 2, 12, 14 and 16 compare the cell counts of several T cell activities in each group and take them respectively 1*10 6 cells were inoculated in a 24-well plate, and PHA (0.3 ⁇ g/ml) (ionomycin +) or 5 ng/ml PMA and 50 ng/ml ionomycin were added to the cells in each well, and after continuing to culture for 5 hours, use CD69 (early activation) (purchased from BD Biosciences, catalog number: FN50) and CD137 (late stage) (purchased from BD Biosciences, catalog number: 4B4-1) antibodies were used to detect the activation status of cells by flow cytometry. The results showed that the activity of T cells with double gene knockout and double gene knockout was better than that of triple gene knockout T cells.
  • TRAC+HLA-A double knockout refers to the result of T cells with double gene knockout of TRAC gene and HLA-A gene
  • TRAC+HLA-A+CIITA triple knockout refers to TRAC
  • the result of the T cells of HLA-A and CIITA triple gene knockout wherein TRAC+B2M+CIITA triple knockout refers to the result of B2M, CIITA and TRAC triple gene knockout of T cells
  • TRAC+HLA-A knockdown refers to Example 16 Results of preparation of TRAC and HLA-A knockdown T cells.
  • T cells without gene knockout, double gene knockout, three gene knockouts and double gene knockdown in Examples 2, 12, 14 and 16 were labeled with CFSE (invitrogen, C34554), and the cell counts were taken as 1 *10 6 cells were co-cultured with NK cells (NK92MI) at a ratio of 1:1. After 24 hours, the co-cultured cells were collected, and the ratio of CFSE-positive cells in the mixed cells was detected by flow cytometry.
  • NK+T refers to the situation in which NK cells are co-cultured with T cells without any knockout treatment
  • NK+TRAC+HLA-A knockdown refers to the combination of NK cells with the TRAC gene and HLA-A gene prepared in Example 16
  • the results of the knockdown T cells co-culture NK+TRAC+HLA-A double knockout refers to the co-culture of NK cells and T cells with TRAC gene and HLA-A gene double gene knockout
  • NK+TRAC+HLA -A+CIITA triple knockout refers to the situation where NK cells are co-cultured with TRAC, HLA-A and CIITA triple knockout T cells
  • NK+TRAC+B2M+CIITA triple knockout refers to the situation where NK cells are combined with B2M
  • No gene knockout, double gene knockout, three gene knockout and double gene knockdown T cells in Examples 2, 12, 14 and 16 were prepared from peripheral blood from donor 1.
  • CD3 + T cells were prepared from peripheral blood from donor 2.
  • Each group of cells prepared from the peripheral blood of donor 1 was mixed with the CD3 + T cells prepared from the peripheral blood of donor 2 in equal proportions, and the expression level of IFN- ⁇ in the cell mixed system was detected 24 hours later. The results showed that the expression level of IFN- ⁇ in the double gene knockout T cell group was lower than that in the triple gene knockout T cell group.
  • TRAC+HLA-A double knockout refers to the result of T cells with double gene knockout of TRAC gene and HLA-A gene
  • TRAC+HLA-A+CIITA Triple knockout refers to the result of T cells knocked out by three genes of TRAC, HLA-A and CIITA
  • TRAC+B2M+CIITA triple knockout refers to the result of T cells knocked out by three genes of B2M, CIITA and TRAC
  • TRAC+HLA-A knockout Low refers to the result of TRAC gene and HLA-A gene knockdown T cells prepared in Example 16.
  • Example 20 Preparation of CAR-T cells with double gene knockout of TRAC gene and HLA-A gene, CAR-T cells with triple gene knockout of TRAC gene, HLA-A gene and CIITA gene, and knockout of TRAC gene, B2M gene and CIITA gene Removed CAR-T cells
  • TRAC gene and HLA-A gene double gene knockout cells according to the methods in Example 12 and Example 14 respectively, TRAC gene, HLA-A gene and CIITA gene as well as TRAC gene, B2M gene and CIITA gene knockout CAR-T cells.
  • the double-gene knockout and triple-gene knockout CAR-T cells can be obtained through flow cytometry detection, and the yield of double-gene knockout CAR-T cells is higher than that of triple-gene knockout CAR-T cells.
  • Figures 29A-29D show the knockout status of TRAC, HLA-A and B2M protein levels in sequence.
  • Figure 29D shows the knockdown of CIITA protein levels.
  • WT refers to the situation without any knockout treatment
  • TRAC+HLA-A double knockout refers to the result of CAR-T cells with double gene knockout of TRAC gene and HLA-A gene
  • TRAC+HLA-A+CIITA triple knockout refers to The results of CAR-T cells with triple gene knockout of TRAC, HLA-A and CIITA
  • TRAC+B2M+CIITA triple knockout refers to the results of CAR-T cells with triple gene knockout of B2M, CIITA and TRAC.
  • the transfection efficiency of CD19CAR is shown in Figure 30A-30B.
  • CAR30%+ represents the transfection efficiency of CD19CAR.
  • Figure 31 shows the expansion factor of different cells. Among them, CAR-T cells with double gene knockout of TRAC gene and HLA-A gene had the highest amplification factor.
  • Figure 32 shows the killing effect of Raji-Luciferase on CD19 target cells, among which the killing effect of CAR-T cells with double knockout of TRAC gene and HLA-A gene is the most significant.
  • each E/T ratio is the result corresponding to the legend of A-D from left to right.
  • NSG mice were injected with tumor cells intravenously. After the tumor was successfully established, CAR-T cells with double gene knockout of TRAC gene and HLA-A gene, CAR-T cells with triple gene knockout, or CAR-T cells without gene knockout were reinfused into the mice. T cells, monitoring tumor volume in mice.
  • the tumor growth rate was significantly slowed down in mice transfused with double-gene knockout CAR-T cells.
  • Figure 33 shows the administration method to mice, i.v. means intravenous injection, and CAR-T cells represent double-gene knockout CAR-T cells expressing CD19 CAR and triple-gene knockout CAR-T cells.
  • Figure 34 shows the volume of tumors in mice after administration of CAR-T cells. Among them, from left to right in Figure 34, the CD19 CAR-T cells, TRAC, HLA-A and CIITA three genes were administered with normal saline, unmodified T cells, TRAC gene and HLA-A gene double gene knockout respectively. Tumor volume in mice after knockout CD19 CAR-T cells, B2M, CIITA and TRAC knockout CD19 CAR-T cells. The results showed that the growth rate of tumors was significantly slowed down in mice transfused with CAR-T cells with double gene knockout of TRAC gene and HLA-A gene.
  • This application prepares a chimeric antigen receptor targeting B7H3.
  • the antigen-binding domain of the recombinant receptor is derived from a nanobody, which has the characteristics of small molecular weight and stable structure.
  • the present application provides a lentiviral expression vector.
  • pCDH-CMV-MCS-EF1-copGFP as the backbone, the ampicillin resistance gene ⁇ -lactamase of the vector was replaced with aminoglycoside phosphotransferase derived from Tn5, so that the vector had kanamycin resistance;
  • the potentially threatening CMV promoter and its adjacent downstream multiple cloning sites in in vivo applications; delete the copGFP gene expressed by the EF1 promoter in the original vector, retain the SalI restriction site, and add it at the 5' end of SalI
  • the SmaI restriction site is used for vector construction to form the final destination vector.
  • This application optimizes the protein-RNA complex electrotransfection technology. A double gene knockout efficiency of more than 90% in primary T cells was obtained.
  • the source of donors for this application is based on the high frequency of HLA-B homozygotes in the population.
  • One allele of the patient’s HLA-B is consistent with the donor’s homozygosity.
  • Cells from these donors can cover a high number of patients population, and can reduce the rejection caused by HLA-B.
  • This application screened out the HLA-A molecules that are highly related to rejection and knocked them out, while retaining other HLA-I molecules, which not only reduced the rejection of allogeneic cells, but also avoided the complete knockout of HLA molecules being NK
  • the occurrence of cell clearance greatly prolongs the half-life of allogeneic CAR-T cells in vivo.
  • This application is the first to construct high-efficiency double-knockout TCR, HLA-A anti-B7H3-UCAR-T cells, to achieve a safe shelf-type ready-to-use therapeutic agent, improve anti-tumor effect, and is used for including adrenal gland Cortical cancer, bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, prostate cancer, sarcoma, melanoma tumor, gastric cancer, thymus cancer, endometrial cancer and other diseases.
  • adrenal gland Cortical cancer bladder cancer, breast cancer, cholangiocarcinoma, colorectal cancer, lymphoma, esophageal cancer, glioma, head and neck squamous cell carcinoma, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供了一种特异性结合B7H3的抗原结合多肽,其包含抗体重链可变区(VH)的至少一个互补决定区(CDR),其中VH包含SEQ ID NO:25所示的氨基酸序列。还提供了包含该抗原结合多肽的嵌合抗原受体,以及包含该嵌合抗原受体的通用型CAR-T细胞,识别肿瘤细胞表面抗原的同时,敲除细胞表达的TCR和HLA-A基因,从而降低异体CAR-T治疗引起的免疫排斥反应,延长细胞存活时间,提高抗肿瘤效果。

Description

靶向B7H3的抗原结合多肽及其应用 技术领域
本申请涉及生物医药领域,具体的涉及一种靶向B7H3的抗原结合多肽及其应用。
背景技术
胶质母细胞瘤占所有脑肿瘤的15%,可起源于普通脑细胞,或由低级星形细胞瘤发展而来。通常诊断后的生存期为12至15个月,患者五年以上生存期只有3%至7%。在不加以治疗的情况下,生存期通常为3个月。每年每10万人中约有3人患胶质母细胞瘤,是最常见的脑起源癌症,是仅次于脑膜瘤的第二常见脑肿瘤。
随着肿瘤免疫理论的发展与技术的进步,细胞免疫治疗肿瘤吸引越来越多的关注。CAR-T细胞技术是一种基于细胞的治疗手段,已经在肿瘤免疫治疗尤其是血液肿瘤的治疗中产生极佳的效果。CAR-T免疫治疗使用基因改造的T细胞,可特异性地识别并杀死表达特定抗原的肿瘤细胞,而不受MHC限制性影响。CAR-T免疫疗法在各种B细胞恶性肿瘤的治疗中取得良好效果,如靶向CD19的CAR-T细胞治疗急性淋巴白血病(ALL),慢性淋巴白血病(CLL)和非霍奇金淋巴瘤(NHL)。同时,CAR-T细胞对多发性骨髓瘤和复发/难治多发性骨髓瘤的临床应用正在进行中,并显示出令人鼓舞的结果。
B7H3,也称为CD276,属于免疫调节蛋白B7家族,是一种I型膜蛋白,其胞外结构域序列与其他B7家族成员相似。B7H3基因位于人类的15号染色体上,该基因由十个外显子组成,其中外显子4至7编码细胞外IgV-IgC结构域。B7H3的mRNA在多种正常组织和一些肿瘤细胞系中表达,在外周血单个核细胞(PBMC)中则无法检测到,但是通过炎症细胞因子(IFNγ)以及PMA和ionomycin组合物,可在树突细胞和单核细胞上诱导B7H3表达。虽然B7H3mRNA在正常组织中广泛表达,但是B7H3蛋白表达水平在正常组织中极低或缺失,表明B7H3的蛋白表达受到严格的转录后调控。与之相对的是,B7H3蛋白在多种恶性肿瘤中过表达,且与不良预后、较高的肿瘤分级和肿瘤转移、耐药及整体生存率低相关。
B7H3在肿瘤与健康组织间的差异表达使其非常适合作为治疗靶点,因为靶向该抗原导致的副作用会非常有限。已开展的临床前研究结果表明,在肿瘤细胞中抑制或降低B7H3蛋白表达,可降低细胞增殖和糖酵解,并增加肿瘤细胞的药物敏感性。
以B7H3为靶点的CAR-T细胞疗法已经展开研究。一项临床前研究证明,anti-B7H3 CAR-T细胞在体内表现出显著的抗肿瘤活性,可使多种异体移植模型(包括骨肉瘤,髓母细胞瘤和尤因肉瘤)中已建立的实体肉瘤消退。
然而,病人自体T细胞在体外扩增困难或功能降低,导致制备的CAR-T细胞产品数量不足或质量差。通用型CAR T细胞是从健康供体分离获得T细胞,制备的CAR-T细胞不但扩增效率高、活力强,而且感染阳性率也有提高,但是通用型CAR-T也面临着移植物抗宿主疾病(GVHD)和免疫排斥的问题。CRISPR/Cas9系统是最常用的基因编辑方法,可用于产生TCR缺陷和HLA I类分子缺陷的T细胞,降低同种异体细胞治疗引起的免疫排斥免疫反应。
发明内容
本发明的目的在于制备一种靶向B7H3的通用型CAR-T细胞,识别肿瘤细胞表面抗原的同时,敲除细胞表达的TCR和HLA-A基因,从而降低异体CAR-T治疗引起的免疫排斥反应,延长细胞存活时间,提高抗肿瘤效果。
一方面,本申请提供一种抗原结合多肽,其结合B7H3,所述抗原结合多肽包含抗体重链可变区(VH)的至少一个互补决定区(CDR),所述VH包含SEQ ID NO:25所示的氨基酸序列。
在某些实施方式中,所述VH包含SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28或SEQ ID NO:29所示的氨基酸序列。
在某些实施方式中,所述的抗原结合多肽包含VH,所述VH包含重链互补决定区1(HCDR1)、重链互补决定区2(HCDR2)和重链互补决定区3(HCDR3),所述HCDR3包含SEQ ID NO:7所示的氨基酸序列。
在某些实施方式中,所述HCDR3包含SEQ ID NO:8或SEQ ID NO:9所示的氨基酸序列。
在某些实施方式中,所述HCDR2包含SEQ ID NO:4所示的氨基酸序列。
在某些实施方式中,所述HCDR2包含SEQ ID NO:5或SEQ ID NO:6所示的氨基酸序列。
在某些实施方式中,所述HCDR1包含SEQ ID NO:1所示的氨基酸序列。
在某些实施方式中,所述HCDR1包含SEQ ID NO:2或SEQ ID NO:3所示的氨基酸序列。
在某些实施方式中,所述VH包含:包含SEQ ID NO:1所示的氨基酸序列的HCDR1、包含SEQ ID NO:4所示的氨基酸序列的HCDR2和包含SEQ ID NO:7所示的氨基酸序列的HCDR3。
在某些实施方式中,所述VH包含:
i)包含SEQ ID NO:2所示的氨基酸序列的HCDR1、包含SEQ ID NO:5示的氨基酸序列的HCDR2和包含SEQ ID NO:8所示的氨基酸序列的HCDR3;或
ii)包含SEQ ID NO:3所示的氨基酸序列的HCDR1、包含SEQ ID NO:6所示的氨基酸序列的HCDR2和包含SEQ ID NO:9所示的氨基酸序列的HCDR3。
在某些实施方式中,所述VH包含重链框架区1(HFR1)、重链框架区2(HFR2)、重链框架区3(HFR3)和重链框架区4(HFR4),所述HFR1包含SEQ ID NO:10所示的氨基酸序列。
在某些实施方式中,所述HFR1包含SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13或SEQ ID NO:14所示的氨基酸序列。
在某些实施方式中,所述HFR2包含SEQ ID NO:15所示的氨基酸序列。
在某些实施方式中,所述HFR2包含SEQ ID NO:16或SEQ ID NO:17所示的氨基酸序列。
在某些实施方式中,所述HFR3包含SEQ ID NO:18所示的氨基酸序列。
在某些实施方式中,所述HFR3包含SEQ ID NO:19、SEQ ID NO:20或SEQ ID NO:21所示的氨基酸序列。
在某些实施方式中,所述HFR4包含SEQ ID NO:22所示的氨基酸序列。
在某些实施方式中,所述HFR4包含SEQ ID NO:23或SEQ ID NO:24所示的氨基酸序列。
在某些实施方式中,所述VH包含HFR1、HFR2、HFR3和HFR4,且所述HFR1、HFR2、HFR3和HFR4选自:
i)包含SEQ ID NO:11所示的氨基酸序列的HFR1,包含SEQ ID NO:16所示的氨基酸序列的HFR2,包含SEQ ID NO:19所示的氨基酸序列的HFR3,包含SEQ ID NO:23所示的氨基酸序列的HFR4;
ii)包含SEQ ID NO:12所示的氨基酸序列的HFR1,包含SEQ ID NO:16所示的氨基酸序列的HFR2,包含SEQ ID NO:20所示的氨基酸序列的HFR3,包含SEQ ID NO:24所示的氨基酸序列的HFR4;
iii)包含SEQ ID NO:13所示的氨基酸序列的HFR1,包含SEQ ID NO:17所示的氨基酸序列的HFR2,包含SEQ ID NO:21所示的氨基酸序列的HFR3,包含SEQ ID NO:23所示的氨基酸序列的HFR4;
vi)包含SEQ ID NO:14所示的氨基酸序列的HFR1,包含SEQ ID NO:17所示的氨基酸序列的HFR2,包含SEQ ID NO:20所示的氨基酸序列的HFR3,包含SEQ ID NO:24所示的氨基酸序列的HFR4。
在某些实施方式中,所述VH包含SEQ ID NO:25所示的氨基酸序列。
在某些实施方式中,所述VH包含SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28或SEQ ID NO:29所示的氨基酸序列。
在某些实施方式中,所述抗原结合多肽包括抗体或其抗原结合片段。
在某些实施方式中,所述抗体包括单克隆抗体、多克隆抗体、二聚体、多聚体、多特异性抗体、完整抗体、抗体片段、人抗体、人源化抗体或嵌合抗体。
在某些实施方式中,所述抗原结合片段包括Fab片段,Fv片段,F(ab’)2,单链Fv(scFv)或单域抗体(VHH)。
另一方面,本申请提供一种嵌合抗原受体(CAR),其包含靶向部分,其中所述靶向部分包含前述的抗原结合多肽。
在某些实施方式中,其中所述靶向部分包括VHH。
在某些实施方式中,所述的嵌合抗原受体包括跨膜域,所述跨膜域包含源自选自下组中的一种或多种蛋白的跨膜域:CD8A、CD8B、CD28、CD3ε(CD3e)、4-1BB、CD4、CD27、CD7、PD-1、TRAC、TRBC、CD3ζ、CTLA-4、LAG-3、CD5、ICOS、OX40、NKG2D、2B4(CD244)、FcεRIγ、BTLA、CD30、GITR、HVEM、DAP10、CD2、NKG2C、LIGHT、DAP12,CD40L(CD154)、TIM1、CD226、DR3、CD45、CD80、CD86、CD9、CD16、CD22、CD33、CD37、CD64和SLAM。
在某些实施方式中,其中所述跨膜域包含源自CD8A的跨膜域。
在某些实施方式中,其中所述跨膜域包含SEQ ID NO:42至SEQ ID NO:90中任一项所示的氨基酸序列。
在某些实施方式中,所述的嵌合抗原受体包括胞内共刺激信号传导结构域,所述胞内共刺激信号传导结构域包含源自选自下组中的一种或多种蛋白的胞内共刺激信号传导结构域:CD28、CD137、CD27、CD2、CD7、CD8A、CD8B、OX40、CD226、DR3、SLAM、CDS、ICAM-1、NKG2D、NKG2C、B7H3、2B4、FcεRIγ、BTLA、GITR、HVEM、DAP10、DAP12、CD30、CD40、CD40L、TIM1、PD-1、LFA-1、LIGHT、JAML、CD244、CD100、ICOS、CD40和MyD88。
在某些实施方式中,其中所述胞内共刺激信号传导结构域源自4-1BB的共刺激信号传导结构域。
在某些实施方式中,其中所述胞内共刺激信号传导结构域包含SEQ ID NO:91至SEQ ID NO:123中任一项所示的氨基酸序列。
在某些实施方式中,所述嵌合抗原受体包括胞内信号转导结构域,所述胞内信号转导结 构域包含源自选自下组中的一种或多种蛋白的胞内信号转导结构域:CD3ζ、CD3δ、CD3γ、CD3ε、CD79a、CD79b、FceRIγ、FceRIβ、FcγRIIa、牛白血病病毒gp30、Epstein-Barr病毒(EBV)LMP2A、猿免疫缺陷病毒PBj14 Nef、DAP10、DAP-12和至少包含一个ITAM的结构域。
在某些实施方式中,其中所述胞内信号转导结构域包含源自CD3ζ的信号传导结构域。
在某些实施方式中,其中所述胞内信号转导结构域包含SEQ ID NO:107、SEQ ID NO:111、SEQ ID NO:112、SEQ ID NO:124至SEQ ID NO:134中任一项所示的氨基酸序列。
在某些实施方式中,所述的嵌合抗原受体在靶向部分和跨膜域之间包括铰链区,所述铰链区包含源自选自下组中的一种或多种蛋白的铰链区:CD28、IgG1、IgG4、IgD、4-1BB、CD4、CD27、CD7、CD8A、PD-1、ICOS、OX40、NKG2D、NKG2C、FcεRIγ、BTLA、GITR、DAP10、TIM1、SLAM、CD30和LIGHT。
在某些实施方式中,所述铰链区包含源自CD8A的铰链区。
在某些实施方式中,所述铰链区包含SEQ ID NO:135至SEQ ID NO:156中任一项所示的氨基酸序列。
在某些实施方式中,所述嵌合抗原受体的非靶向部分包含CD8A分子跨膜域、CD8A的铰链区、4-1BB的胞内共刺激信号传导结构域和CD3ζ胞内信号传导结构域。
在某些实施方式中,所述嵌合抗原受体的非靶向部分包含SEQ ID NO:30所示的氨基酸序列。
在某些实施方式中,所述的嵌合抗原受体还包含信号肽片段,所述信号肽片段的C端与所述靶向部分的N端连接。
在某些实施方式中,所述信号肽片段包括CD8A信号肽片段。
在某些实施方式中,所述信号肽片段包含如SEQ ID NO:31所示的氨基酸序列。
在某些实施方式中,所述的嵌合抗原受体包含SEQ ID NO:32,SEQ ID NO:33,SEQ ID NO:34和SEQ ID NO:35中任一项所示的氨基酸序列。
另一方面,本申请提供一种或多种分离的核酸分子,其编码前述的抗原结合多肽或前述的嵌合抗原受体。
在某些实施方式中,所述的分离的核酸分子包含SEQ ID NO:36,SEQ ID NO:37,SEQ ID NO:38和SEQ ID NO:39中任一项所示的核苷酸序列。
另一方面,本申请提供一种载体,其包含前述的分离的核酸分子。
在某些实施方式中,其中所述载体是表达载体。
在某些实施方式中,其中所述载体选自DNA载体、RNA载体、质粒、慢病毒载体、腺病毒载体、腺相关病毒载体和逆转录病毒载体。
另一方面,本申请提供一种细胞,其i)包含前述的分离的核酸分子或前述的载体;和/或ii)表达前述的抗原结合多肽或嵌合抗原受体。
另一方面,本申请提供一种免疫效应细胞,其包含前述的核酸分子或前述的载体,和/或表达前述的CAR。
在某些实施方式中,所述的免疫效应细胞包括人细胞。
在某些实施方式中,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
在某些实施方式中,所述免疫效应细胞包括自体或非自体的免疫效应细胞。
在某些实施方式中,所述的免疫效应细胞包括经修饰的免疫效应细胞。
在某些实施方式中,其中所述经修饰的免疫效应细胞包括降低同种异体细胞治疗引起的免疫排斥反应的细胞。
在某些实施方式中,其中所述经修饰的免疫效应细胞中的T细胞抗原受体(TCR)和主要组织相容性复合体(MHCI,MHCII)在T细胞中的功能受到抑制。
在某些实施方式中,其中所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
在某些实施方式中,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC、HLA-A、HLA-B、B2M和CIITA。
在某些实施方式中,所述经修饰的免疫效应细胞与未经修饰的相应细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与未经所述修饰的相应细胞相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与未经所述修饰的相应细胞相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
在某些实施方式中,其中所述修饰包括:基因敲除、基因突变和/或基因沉默。
在某些实施方式中,所述修饰包括所述免疫效应细胞中两个TRAC等位基因中的任意一个被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中两个TRAC等位基因被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中TRAC基因外显子被敲除并且HLA-A基因外显子被敲除。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰还包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰还包括向所述细胞施用Cas酶。
在某些实施方式中,其中Cas酶包括Cas9蛋白。
在某些实施方式中,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
在某些实施方式中,其中所述免疫效应细胞为HLA-B纯合子细胞。
在某些实施方式中,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合 子,HLA-B*54纯合子,HLA-B*55纯合子。
在某些实施方式中,其中所述免疫效应细胞为HLA-A纯合子或杂合子细胞。
在某些实施方式中,其中所述HLA-A纯合子或杂合子包括HLA-A*02纯合子,HLA-A*11纯合子,HLA-A*02/A*11杂合子或HLA-A*24纯合子。
另一方面,本申请提供一种制备免疫效应细胞的方法,其包括向免疫效应细胞中引入前述的核酸分子或前述的载体。
在某些实施方式中,所述的方法还包括:在向免疫效应细胞中引入权利要求XX-XX中任一项所述的核酸分子或权利要求XX-XX中任一项所述的载体之前/之后,修饰所述免疫效应细胞,所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
在某些实施方式中,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC、HLA-A、HLA-B、B2M和CIITA。
在某些实施方式中,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,下调所述免疫效应细胞中TRAC基因和HLA-A基因的表达和/或活性。
在某些实施方式中,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,与相应的野生型细胞相比,所述免疫效应细胞的TRAC基因和HLA-A基因的表达和/或活性被下调。
在某些实施方式中,与相应的野生型细胞相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,与相应的野生型细胞相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
在某些实施方式中,其中所述修饰包括:基因敲除、基因突变和/或基因沉默。
在某些实施方式中,所述修饰包括所述免疫效应细胞中两个TRAC等位基因中的任意一个被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中两个TRAC等位基因被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中TRAC基因外显子被敲除并且HLA-A基因外显子被敲除。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰还包括向所述细胞施用Cas酶。
在某些实施方式中,其中Cas酶包括Cas9蛋白。
在某些实施方式中,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
在某些实施方式中,其中所述免疫效应细胞包括人细胞。
在某些实施方式中,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
在某些实施方式中,所述免疫效应细胞包括自体或非自体的免疫效应细胞。
在某些实施方式中,其中所述细胞为HLA-B纯合子细胞。
在某些实施方式中,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
在某些实施方式中,其中所述细胞为HLA-A纯合子或杂合子细胞。
在某些实施方式中,其中所述HLA-A纯合子或杂合子包括HLA-A*02纯合子,HLA-A*11纯合子,HLA-A*02/A*11杂合子或HLA-A*24纯合子。
另一方面,本申请提供前述的嵌合抗原受体,前述的分离的核酸分子,前述的载体,前述的细胞,或前述的免疫效应细胞在制备CAR-T细胞中的应用。
另一方面,本申请提供一种药物组合物,其包含前述的抗原结合多肽,前述的嵌合抗原受体,前述的分离的核酸分子,前述的载体,前述的细胞,和/或前述的免疫效应细胞,以及任选地药学上可接受的载剂。
另一方面,本申请提供前述的抗原结合多肽,前述的抗原嵌合受体,前述的分离的核酸分子,前述的载体,前述的细胞,前述的免疫效应细胞,和/或前述的药物组合物,其用于治疗与B7H3的表达相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括与B7H3的表达上调相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括癌症。
在某些实施方式中,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
另一方面,本申请提供前述的抗原结合多肽,前述的抗原嵌合受体,前述的分离的核酸分子,前述的载体,前述的细胞,前述的免疫效应细胞,和/或前述的药物组合物在制备药物中的用途,所述药物用于治疗癌症。
在某些实施方式中,其中所述癌症包括B7H3阳性的癌症。
在某些实施方式中,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
另一方面,本申请提供一种预防或治疗与B7H3的表达相关的疾病或病症的方法,其包括向有需要的受试者施用有效量的前述的抗原结合多肽,前述的抗原嵌合受体,前述的分离的核酸分子,前述的载体,前述的细胞,前述的免疫效应细胞,和/或前述的药物组合物。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括与B7H3的表达上调相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括癌症。
在某些实施方式中,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
本领域技术人员能够从下文的详细描述中容易地洞察到本申请的其它方面和优势。下文的详细描述中仅显示和描述了本申请的示例性实施方式。如本领域技术人员将认识到的,本 申请的内容使得本领域技术人员能够对所公开的具体实施方式进行改动而不脱离本申请所涉及发明的精神和范围。相应地,本申请的附图和说明书中的描述仅仅是示例性的,而非为限制性的。
附图说明
本申请所涉及的发明的具体特征如所附权利要求书所显示。通过参考下文中详细描述的示例性实施方式和附图能够更好地理解本申请所涉及发明的特点和优势。对附图简要说明如下:
图1A显示的是本申请所述anti-B7H3 CAR基因慢病毒表达载体;
图1B显示的是本申请所述anti-B7H3 UCAR-T细胞的构建策略;
图2显示的是本申请所述anti-B7H3 VHH抗体的亲和曲线;
图3显示的是本申请所述anti-B7H3 VHH抗体的ADCC功能检测结果;
图4A-4C显示的是本申请所述anti-B7H3 UCAR-T细胞的细胞表型检测结果;
图5显示的是本申请所述anti-B7H3 UCAR-T细胞对靶细胞的杀伤结果;
图6A-6C显示的是本申请所述anti-B7H3 UCAR-T细胞与靶细胞共培养细胞因子分泌检测结果;
图7显示的是本申请所述显示的是本申请所述anti-B7H3 UCAR-T细胞体内抗肿瘤效果;
图8A-8B显示的是本申请所述靶向anti-B7H3 UCAR-T细胞体内GVHD和排异反应结果;
图9显示的是本申请所述anti-B7H3 UCAR-T细胞脱靶分析;
图10显示的是本申请所述anti-B7H3 UCAR-T细胞染色体易位分析;
图11显示的是本申请所述anti-B7H3 UCAR-T细胞核型分析;
图12显示的是本申请所述anti-B7H3 UCAR-T细胞Cas9残留分析;
图13显示的是本申请中TRAC基因在Sg9RNA编辑后Sanger测序的结果;
图14显示的是本申请中TRAC基因在Sg9RNA编辑后TA克隆检测的结果;
图15显示的是本申请中TRAC基因在Sg9RNA编辑后流式细胞检测的结果;
图16显示的是本申请中HLA-A02基因在Sg2RNA编辑后Sanger测序的结果;
图17显示的是本申请中HLA-A02基因在Sg5RNA编辑后Sanger测序的结果;
图18显示的是本申请中HLA-A11基因在Sg21RNA编辑后Sanger测序的结果;
图19显示的是本申请中HLA-A11基因在Rsg2RNA编辑后Sanger测序的结果;
图20A-20B显示的是本申请的经修饰的免疫效应细胞中同时敲除HLA-A02和TRAC的 结果;
图21A-21B显示的是本申请的经修饰的免疫效应细胞中HLA-A02和TRAC的蛋白水平;
图22显示的是本申请的经修饰的免疫效应细胞中TRAC、HLA-A、B2M和CIITA的mRNA水平;
图23A-23B显示的是本申请的经修饰的免疫效应细胞中B2M和CIITA的蛋白水平;
图24A-24D显示的是本申请的经修饰的免疫效应细胞中TRAC、HLA-A、B2M和CIITA的蛋白水平;
图25A-25B显示的是本申请的经修饰的免疫效应细胞中TRAC和HLA-A mRNA水平的敲除情况;
图26A-26B显示的是本申请的经修饰的免疫效应细胞中CD69和CD137的蛋白水平;
图27显示的是本申请的经修饰的免疫效应细胞与NK细胞共培养的情况;
图28显示的是本申请的经修饰的免疫效应细胞表达IFN-γ的水平;
图29A-29D显示的是本申请的经修饰的免疫效应细胞中TRAC、HLA-A、B2M和CIITA的蛋白水平;
图30显示的是本申请的经修饰的免疫效应细胞对CAR的感染效率;
图31显示的是本申请的经修饰的免疫效应细胞的扩增倍数;
图32显示的是本申请的经修饰的免疫效应细胞对CD19阳性靶细胞的杀伤效果;
图33显示的是施用本申请的经修饰的免疫效应细胞的给药方案;
图34显示的是本申请的经修饰的免疫效应细胞对小鼠体内肿瘤的杀伤效果。
具体实施方式
以下由特定的具体实施例说明本申请发明的实施方式,熟悉此技术的人士可由本说明书所公开的内容容易地了解本申请发明的其他优点及效果。
术语定义
在本申请中,术语“嵌合抗原受体”或“CAR”通常是指一组多肽,在最简单的实施方案中通常有两种,其当在免疫效应细胞中时,提供细胞对靶细胞(通常为癌细胞)的特异性,并产生细胞内信号。在一些实施方案中,CAR包含至少一个细胞外抗原结合结构域(如VHH、scFv或其部分),跨膜结构域和胞质信号传导结构域(本文中也称为“胞内信号传导结构域”),其包含衍生自如下所定义的刺激分子和/或共刺激分子的功能性信号传导结构域。在一些实施方案中,该组多肽在相同的多肽链中(例如,包含嵌合融合蛋白)。在一些实施方案中,该组多肽彼 此不连续,例如在不同的多肽链中。在一些方面,该组多肽包括二聚化开关,其在二聚化分子的存在下可将多肽彼此偶联,例如可将抗原结合结构域偶联至胞内信号传导结构域。一方面,CAR的刺激分子是与T细胞受体复合物相关的ζ链。在一个方面,细胞质信号传导结构域包含一级信号传导结构域(例如,CD3-ζ的一级信号传导结构域)。在一个方面,细胞质信号传导结构域还包含一个或多个衍生自如下定义的至少一种共刺激分子的功能性信号传导结构域。一方面,共刺激分子可以选自4-1BB(即CD137),CD27,ICOS和/或CD28。一方面,CAR包含嵌合融合蛋白,其可以包含细胞外抗原识别结构域,跨膜结构域和包含衍生自刺激分子的功能性信号传导结构域的细胞内信号传导结构域。一方面,CAR包含嵌合融合蛋白,其可以包含细胞外抗原识别结构域,跨膜结构域和细胞内信号传导结构域,细胞内信号传导结构域包含衍生自共刺激分子的功能性信号传导结构域和衍生自刺激分子的功能性信号传导结构域。一方面,CAR包含嵌合融合蛋白,其可以包含细胞外抗原识别结构域,跨膜结构域和细胞内信号传导结构域,细胞内信号传导结构域包含衍生自一个或多个共刺激分子的功能性信号传导结构域和衍生自刺激分子的功能性信号传导结构域。一方面,CAR包括嵌合融合蛋白,其可以包含细胞外抗原识别结构域,跨膜结构域和细胞内信号传导结构域,细胞内信号传导结构域包含至少两个衍生自一个或多个共刺激分子的功能性信号传导结构域和衍生自刺激分子的功能性信号传导结构域。在一个方面,CAR包含CAR融合蛋白的氨基末端(N-ter)上任选的前导序列。在一个方面,CAR进一步包含在细胞外抗原识别结构域的N末端的前导序列,其中前导序列任选地在细胞加工过程中从抗原识别结构域(例如VHH)切除,并将CAR定位于细胞膜。
在本申请中,术语“抗体”通常是指在最广泛的意义上加以使用并且具体地涵盖单克隆抗体、多克隆抗体、二聚体、多聚体、多特异性抗体(例如,双特异性抗体)、和抗体片段,只要它们显示所期望的生物活性(Milleretal(2003)Jour.ofImmunology170:4854-4861)。抗体可以是鼠、人、人源化、嵌合抗体,或源于其它物种。
全长抗体典型地是指由两条“全长抗体重链”和两条“全长抗体轻链”组成的抗体。“全长抗体重链”通常是这样的多肽,其在N端到C端方向由抗体重链可变结构域(VH)、抗体恒定重链结构域1(CH1),抗体铰链区(HR),抗体重链恒定结构域2(CH2),和抗体重链恒定结构域3(CH3)组成,缩写为VH-CH1-HR-CH2-CH3;并且在IgE亚类的抗体的情形中,任选地还包括抗体重链恒定结构域4(CH4)。在一些实施方式中,“全长抗体重链”是在N端到C端方向由VH,CH1,HR,CH2和CH3组成的多肽。“全长抗体轻链”通常是在N端到C端方向由抗体轻链可变结构域(VL),和抗体轻链恒定结构域(CL)组成的多肽,缩写为VL-CL。所 述抗体轻链恒定结构域(CL)可以是κ(kappa)或λ(lambda)。两条全长抗体链通过在CL结构域和CH1结构域之间的多肽间二硫键和全长抗体重链的铰链区之间的多肽间二硫键连接在一起。典型的全长抗体的实例是天然抗体如IgG(例如,IgG1和IgG2),IgM,IgA,IgD,和IgE)。
在本申请中,术语“抗原结合片段”(在本文中也被称作“靶向部分”或“抗原结合部分”)通常是指抗体分子的一部分,其包含负责抗体与抗原之间的特异性结合的氨基酸。抗原中由抗体特异性地识别和结合的部分是称作如上文所述的“表位”。抗原结合结构域可典型地包含抗体轻链可变区(VL)和抗体重链可变区(VH);然而,其并非必须包含两者。Fd片段例如具有两个VH区并且通常保留完整抗原结合结构域的一些抗原结合功能。抗体的抗原结合片段的实例包括(1)Fab片段,具有VL、VH、恒定轻链(CL)和CH1结构域的单价片段;(2)F(ab’) 2片段,具有由铰链区的二硫桥连接的两个Fab片段的二价片段;(3)具有两个VH和CH1结构域的Fd片段;(4)具有抗体单臂的VL和VH结构域的Fv片段,(5)dAb片段(Ward等人,“Binding Activities of a Repertoire of Single Immunoglobulin Variable Domains Secreted From Escherichia coli,”Nature 341:544-546(1989),其以引用的方式整体并入本申请),其具有VH结构域;(6)分离的互补决定区(CDR);(7)单链Fv(scFv),例如源于scFV-文库。尽管Fv片段的两个结构域VL和VH是由独立基因编码,但其可通过合成连接子使用重组方法接合,合成连接子使得其被制备为其中VL和VH区配对以形成单价分子的单一蛋白链(称为单链Fv(scFv))(可参见例如Huston等人,“Protein Engineering of Antibody Binding Sites:Recovery of Specific Activity in an Anti-Digoxin Single-Chain Fv Analogue Produced in Escherichia coli,”Proc.Natl.Acad.Sci.USA85:5879-5883(1988));和(8)VHH,“VHH”涉及来自骆驼科(骆驼、单峰骆驼、美洲驼、羊驼等)重链抗体的可变抗原结合结构域(参见Nguyen V.K.等人,2000,The EMBO Journal,19,921-930;Muyldermans S.,2001,J Biotechnol.,74,277-302以及综述Vanlandschoot P.等人,2011,Antiviral Research 92,389-407)。VHH也可称为纳米抗体(Nanobody)(Nb)和/或单域抗体。这些抗体片段使用所属领域的技术人员已知的常规技术获得,且以与完整抗体相同的方式评估所述片段的功能。靶向IL13Rα2的抗原结合片段还记载于国际专利申请公开WO2014072888Al和WO2021041725A1,其中的每一个以全文引用的方式并入本申请。
在本申请中,术语“单域抗体”或“VHH”通常是指缺失抗体轻链而只有重链可变区的一类抗体。在某些情形中,单域抗体可以来自双峰驼、单峰驼、羊驼、美洲驼、护士鲨、大星鲨或鳐鱼(例如,可参见康晓圳等,生物工程学报,2018,34(12):1974-1984)。例如,单域抗体可以来自羊驼。单域抗体可由重链可变区(VH)构成。术语“重链可变区”通常是指抗原结合 片段的重链的氨基末端结构域。重链可变区可进一步被区分为称为互补决定区(CDR)的高变区,它们散布在成为框架区(FR)的更保守的区域中。每个重链可变区可由三个CDR和四个FR区构成,它们从氨基端至羧基端可按以下顺序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3和FR4。重链可变区含有与抗原相互作用的结合结构域。
在本申请中,术语“互补决定区”(CDR)通常是指在抗原结合片段可变区内的互补性决定区。在本申请中,所述重链可变区存在3个CDRs,所述CDRs对于每个可变区命名为HCDR1、HCDR2和HCDR3。这些CDRs的确切边界已根据不同系统不同地限定。由Kabat(Kabat等人,Sequences of Proteins of Immunological Interest(National Institutes of Health,Bethesda,Md.(1987)和(1991))描述的系统,不仅提供了可应用于抗原结合片段的任何可变区的明确残基编号系统,还提供了限定3个CDRs的精确残基边界。这些CDRs可以被称为Kabat CDRs。Chothia和同事(Chothia和Lesk,J.Mol.Biol.196:901-917(1987)以及Chothia等人,Nature 342:877-883(1989))发现尽管在氨基酸序列水平上具有大的多样性,但是Kabat CDRs内的某些亚部分采取几乎相同的肽主链构象。这些亚部分命名为L1、L2和L3或H1、H2和H3,其中“L”和“H”分别指轻链和重链区域。这些区域可以被称为Chothia CDRs,所述Chothia CDRs具有与Kabat CDRs重叠的边界。与Kabat CDRs重叠的限定CDRs的其他边界已由Padlan(FASEB J.9:133-139(1995))和MacCallum(J Mol Biol 262(5):732-45(1996))描述。另外,其他的CDR边界定义可能不严格地遵循上述系统之一,但仍将与Kabat CDRs重叠,尽管按照特定残基或残基组或甚至整个CDRs并不显著影响抗原结合的预测或实验发现,它们可以缩短或加长。在本申请中,使用的是IMGT编号系统。
在本申请中,术语“FR”通常是指抗体可变结构域的更高度保守的部分,其被称为框架区。例如,天然重链和轻链的可变结构域各自可以包含四个FR区,即在VH中四个(H-FR1,H-FR2,H-FR3和H-FR4),和在VL中四个(L-FR1,L-FR2,L-FR3和L-FR4)。“框架区”通常是指本领域识别的抗体可变区中存在于分歧性更高的(即高变)CDR之间的部分。此类框架区典型地称为框架1至4(FR1、FR2、FR3和FR4)且提供用于在三维空间中呈现六个CDR(三个来自重链且三个来自轻链)的骨架,以形成抗原结合表面。
在本申请中,术语“同源性”通常可以等同于序列“同一性”。同源序列可以包括可以与主题序列是至少80%、85%、90%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%或99.9%相同的氨基酸序列。通常,同源物将包含与主题氨基酸序列相同的活性位点等。同源性可以根据相似性(即具有相似化学性质/功能的氨基酸残基)来考虑,也可以在序列同一性方面表达同源性。在本申请中,提及的氨基酸序列或核苷酸序列的SEQ ID NO中 的任一项具有百分比同一性的序列是指在所提及的SEQ ID NO的整个长度上具有所述百分比同一性的序列。为了确定序列同一性,可进行序列比对,其可通过本领域技术人员了解的各种方式进行,例如,使用BLAST、BLAST-2、ALIGN、NEEDLE或Megalign(DNASTAR)软件等。本领域技术人员能够确定用于比对的适当参数,包括在所比较的全长序列中实现最优比对所需要的任何算法。
在本申请中,术语“特异性结合”在提及结合分子(例如抗体)与其结合配偶体(例如抗原)的相互作用时,通常是指该相互作用取决于结合配偶体上特定结构(例如抗原决定簇或表位)的存在。换言之,即使在结合配偶体存在于其他分子或有机体的混合物中时,抗体仍会优先结合或识别结合配偶体。结合可通过共价或非共价相互作用或二者的组合介导。换言之,术语“特异性结合”通常是指免疫特异性结合抗原决定簇或表位且不免疫特异性结合其他抗原决定簇或表位。免疫特异性结合抗原的结合分子可以较低亲和力结合其他肽或多肽,如通过(例如)放射免疫分析(RIA)、酶联免疫吸附分析(ELISA)、BIACORE或本领域中已知的其他分析所测定。免疫特异性结合抗原的结合分子或其片段可与带有相同表位的相关抗原交叉反应。在某些情形中,免疫特异性结合抗原的结合分子或其片段不与其他抗原交叉反应。
在本申请中,术语“KD”可与“KD”互换使用,通常是指特定的抗体-抗原相互作用的解离平衡常数,单位为M(mol/L)。KD可通过物质AB和其解离得到的物质A和物质B的浓度来计算:KD=c(A)*c(B)/c(AB)。由该公式可知,KD值越大,说明解离越多,代表物质A、B之间的亲和力越弱;反之,KD值越小,说明解离越少,代表物质A、B之间的亲和力越强。
在本申请中,术语“分离的核酸分子”通常是指从其天然环境中分离的或人工合成的任何长度的分离形式的核苷酸、脱氧核糖核苷酸或核糖核苷酸或其类似物。
在本申请中,术语“载体”通常是指能够在合适的宿主中自我复制的核酸分子,其将插入的核酸分子转移到宿主细胞中和/或宿主细胞之间。所述载体可包括主要用于将DNA或RNA插入细胞中的载体、主要用于复制DNA或RNA的载体,以及主要用于DNA或RNA的转录和/或翻译的表达的载体。所述载体还包括具有多种上述功能的载体。所述载体可以是当引入合适的宿主细胞时能够转录并翻译成多肽的多核苷酸。通常,通过培养包含所述载体的合适的宿主细胞,所述载体可以产生期望的表达产物。
在本申请中,术语“病毒载体”广泛用于指核酸分子(例如转移质粒)或介导核酸转移的病毒颗粒,核酸分子包括病毒衍生的通常促进核酸分子转移或整合到细胞基因组中的核酸元件。病毒颗粒通常包括各种病毒组件,有时还包括除核酸外的宿主细胞组件。病毒载体可以 指能够将核酸转移到细胞中的病毒或病毒颗粒,或被转移的核酸本身。
在本申请中,术语“慢病毒”通常是指复杂逆转录病毒的组(或属)。示例性慢病毒包括但不限于:HIV(人免疫缺陷病毒;包括HIV 1型和HIV 2型);维斯那-梅迪病毒(visna-maedivirus,VMV)病毒;山羊关节炎-脑炎病毒(CAEV);马传染性贫血病毒(EIAV);猫免疫缺陷病毒(FIV);牛免疫缺陷病毒(BIV);和猿猴免疫缺陷病毒(SIV)。在一种实施方式中,基于HIV的载体骨架(即HIV顺式作用序列元件)是优选的。在特别的实施方式中,慢病毒用于将包含CAR的多核苷酸递送至细胞。
在本申请中,术语“宿主细胞”或“细胞”通常是指可以或已经含有包括本申请所述分离的核酸分子的载体,或者能够表达本申请所述分离的抗原结合片段的个体细胞,细胞系或细胞培养物。所述宿主细胞可以包括单个宿主细胞的子代。由于天然的,意外的或故意的突变,子代细胞与原始亲本细胞在形态上或在基因组上可能不一定完全相同,但能够表达本申请所述分离的抗原结合片段即可。所述宿主细胞可以通过使用本申请所述的载体体外转染细胞而得到。所述宿主细胞可以是原核细胞(例如大肠杆菌),也可以是真核细胞(例如酵母细胞,例如COS细胞,中国仓鼠卵巢(CHO)细胞,HeLa细胞,HEK293细胞,COS-1细胞,NS0细胞或骨髓瘤细胞)。例如,所述的宿主细胞可以是大肠杆菌细胞。例如,所述的宿主细胞可以是酵母细胞。例如,所述的宿主细胞可以是哺乳动物细胞。例如,所述哺乳动物细胞可以是CHO-K1细胞。
在本申请中,术语“T细胞”或“T淋巴细胞”可以是任何T细胞,如培养T细胞,例如原代T细胞,或来自培养T细胞系的T细胞,或获自哺乳动物的T细胞(优选灵长类动物,物种,包括猴、狗或人)。如果获自哺乳动物,那么T细胞可以获自诸多来源,包括但不限于血液、骨髓、淋巴结、胸腺或其它组织或流体。T细胞还可以被富集或被化。T细胞可以通过在体外或体内将造血干细胞成熟化成T细胞而获得。在示范性方面中,T细胞是人类T细胞。在示范性方面中,T细胞是从人类中分离的T细胞。T细胞可以是任何类型的T细胞,包括NKT细胞,并且可以具有任何发育阶段,包括但不限于CD4+/CD8+双阳性T细胞;CDA+辅助T细胞;例如Th1和Th2细胞,CD8+T细胞(例如细胞毒性T细胞);外周血液单核细胞(PBMC);外周血液白细胞(PBL);肿瘤浸润细胞(TIL);记忆T细胞;未处理T细胞等等。优选地,T细胞是CD8+T细胞或CD4+T细胞。在一些替代方式中,T细胞与接受细胞或待接受细胞(例如所述细胞处于治疗组合物的形式)的接受受试者是同种异体的(来自相同物种的不同供体);在一些替代方式中,T细胞是自体的(供体和接受者相同);在一些替代方式中,T细胞是同基因的(syngeneic)(供体和接受者不同,但为同卵双胞胎)。
在本申请中,术语“免疫效应细胞”通常是指参与免疫应答,行使效应功能的免疫细胞。例如所述行使效应功能可以包括清除异物抗原或促进免疫效应子应答等。免疫效应细胞可以包括浆细胞、T细胞、B细胞、自然杀伤(NK)细胞、自然杀伤T(NKT)细胞、肥大细胞和骨髓源性吞噬细胞。
本申请的免疫效应细胞可以是自体/自身的(autologous/autogeneic)(“自己的”)或非自体的(“非自己的”,例如同种异体的、同基因的或异基因的)。在本申请中,术语“自体的”通常是指来自相同受试者的细胞。“同种异体的”通常是指与相比较的为相同物种但在遗传上不同的细胞。“同基因的”通常是指在遗传上与相比较的细胞相同的不同受试者的细胞。“异基因的”通常是指物种与相比较的细胞不同的细胞。在一些实施方式中,本申请的细胞是自体的或同种异体的。
在本申请中,术语“修饰”通常是指改变细胞的状态或结构和/或细胞的状态或结构的改变。所述改变通常是与相应未经所述修饰的细胞的状态或结构相比,所述改变可以包括内源基因表达水平或功能的变化,例如通过基因工程手段使得细胞内源基因表达水平下调、上调或不表达,所述基因工程手段可以包括同源重组、CRISPR/Cas9系统基因编辑等;所述改变还可以包括细胞蛋白质表达、结构或功能的变化,例如通过所述内源基因表达水平或功能的变化而实现的相应蛋白质表达的变化、结构或功能的变化,例如通过调节蛋白质翻译、翻译后修饰而实现的蛋白质表达的变化、结构或功能的变化;所述改变还可以包括引入外源基因、表达外源蛋白质等。
在本申请中,术语“TRAC”通常是指T细胞受体α链恒定区(T cell receptor alpha con-stant)。T细胞受体(TCR)通常是指位于T细胞表面的特异性受体,能够识别与主要组织相容性复合物(MHC)分子结合的抗原。TCR通常由两条不同的蛋白质链组成(即异源二聚体)。在人类中,多数T细胞中的TCR由一条α链和一个β链(分别由TRA和TRB编码)组成,这一类T细胞被称为αβT细胞,少数的的T细胞中,TCR由γ链和δ链(分别由TRG和TRD编码)组成,这一类T细胞被称为γδT细胞。通常情况下,αβT细胞约占T细胞总数的95%,γδT细胞约占T细胞总数的5%,该比率在个体发育过程中和患病状态(例如白血病)中发生变化,物种之间也有所不同。组成TCR的每一条链都含有可变区与恒定区,在人类中,编码α链的基因(TRA,例如HGNC:12027所示的信息)位于14号染色体,由多基因片段构成,包括可变段(V)、连接段(J)以及恒定区(C),TRAC基因通常是指编码T细胞受体α链恒定区(C)的基因序列(例如HGNC:12029所示的信息),其位于14号染色体(14q11.2;14:22,547,505-22,552,131)。通常编码N段抗原识别域的可变段(V)基因中的 1个与连接段(J)中的一个重排产生一个功能性V区外显子,该外显子被转录并通过剪接与恒定区(C)连接,从而形成T细胞受体α链编码序列。
在本申请中,术语“主要组织相容性复合物抗原”(“MHC”,在人类的情况下也称为“人类白细胞抗原”(“HLA”))通常是指在细胞表面上表达的赋予细胞独特抗原身份的蛋白质。MHC/HLA抗原是被T细胞和NK细胞识别为源自于与免疫效应细胞相同的造血干细胞来源(“自身”)或识别为源自于另一种造血重建细胞来源(“非自身”)的靶分子。识别了两种主要类别的HLA抗原:HLA I类和HLA II类。HLA I类抗原(人类中的A、B、C)使每个细胞都可被识别为“自身”,而HLA II类抗原(人类中的DR、DP和DQ)参与淋巴细胞和抗原呈递细胞之间的反应。两者都已经与移植器官的排斥有牵涉。HLA基因系统的一个重要方面是其多态性。每个基因,MHC I类(A、B和C)和MHC II类(DP、DQ和DR)存在着不同的等位基因。HLA等位基因由数字和下标表示。例如,两个不相关的个体可能分别携带I类HLA-B基因B5和Bw41。等位基因产物在α和/或β结构域的一个或更多个氨基酸中有差异。大量的特异性抗体或核酸试剂被用于使用表达I类和II类分子的白细胞对个体的HLA单倍型进行分型。通常用于HLA分型的基因是六种MHC I类和II类蛋白,即HLA-A;HLA-B和HLA-DR各自有两个等位基因。HLA基因簇集在存在于染色体位置6p21上的“超级基因座”中,所述“超级基因座”编码在免疫系统以及一些其他的基本分子和细胞过程的调控中具有重要作用的6个经典的移植HLA基因和至少132个蛋白质编码基因。完整的基因座粗略度量为3.6Mb,具有至少224个基因座。这种簇集的一个效果是“单倍型”,即存在于单条染色体上的一组等位基因,是从一个亲本遗传来的,倾向于作为一组进行遗传。从每个亲本遗传来的一组等位基因形成一个单倍型,其中一些等位基因倾向于关联在一起。鉴定患者的单倍型可以帮助预测找到匹配供体的概率,并且帮助制定搜索策略,因为一些等位基因和单倍型比其他等位基因和单倍型更常见,而且它们在不同种族和民族中分布的频率不同。
在本申请中,“HLA-A”通常是指一类人类白细胞抗原(human leukocyte antigens)多肽链,由位于人类染色体6p21.3的HLA-A基因(例如HGNC:4931所示的信息)编码。HLA-A是构成人类细胞表面I类MHC分子的三种主要多肽类型之一,其他还包括HLA-B和HLA-C。由HLA-A基因编码的α链和B2M基因编码的β链(β2-微球蛋白)组成的异二聚体即为HLA-A类MHC I分子。所述由HLA-A基因编码的α链可以包含α1结构域、α2结构域域、α3结构域、跨膜区以及胞质区,其中α1结构域、α2结构域可以与肽段结合从而由MHC I分子(例如HLA-A类)将所述肽段呈递给免疫系细胞。在人类中,与大多数哺乳动物相似,MHC I分子的α链为多态性的,其一级结构有较多变化,截至2013年12月,共有2432个已知的HLA- A等位基因,编码1740个活性蛋白和117个无效蛋白。在本申请中,HLA-A等位基因可以包括IMGT/HLA数据库3.38.0版(https://www.ebi.ac.uk/ipd/imgt/hla/)收录的由WHO HLA因子命名委员会命名的不同HLA-A等位基因的序列信息。
在本申请中,术语“HLA-B”通常是指人类白细胞抗原(HLA)复合物的基因家族的一部分。HLA是主要组织相容性复合体(MHC)的人类版本,MHC是一个存在于许多物种中的基因家族。在这个复杂的基因被分为三个基本组:I类,II类和III类。在人类中,HLA-B基因和两个相关基因HLA-A和HLA-C是MHC I类的主要基因。HLA-B基因位于6号染色体短(p)臂的细胞带21.3,从碱基对31,353,871到31,357,211。HLA-B是供者和受者之间应匹配的三个主要HLA之一。它们是HLA-A、HLA-B(均为I类MHC)和HLA-DR(II类MHC)。如果这两种组织具有编码这三种HLA的相同基因,那么排斥的可能性和严重程度就会降到最低。HLA-B的数百个版本(等位基因)是已知的,每个版本都有一个特定的编号(例如HLA-B27)。密切相关的等位基因被归类在一起;例如,至少有28个非常相似的等位基因是HLA-B27的亚型。这些亚型被指定为HLA-B*2701至HLA-B*2728。
在本申请中,术语“HLA匹配的”是指其中供体和受体之间HLA抗原没有不匹配的供体-受体对,所述供体诸如向需要造血干细胞移植疗法的受体提供造血干细胞移植物的供体。HLA匹配的(即其中所有6个等位基因都是匹配的)供体-受体对具有降低的移植物排斥的风险,原因是内源性T细胞和NK细胞不太可能将进入的移植物识别为外来的,并且因此不太可能产生针对移植物的免疫应答。
在本申请中,术语“HLA不匹配的”是指其中供体和受体之间至少一种HLA抗原(特别是对于HLA-A、HLA-B和HLA-DR)是不匹配的供体-受体对,所述供体诸如向需要造血干细胞移植疗法的受体提供造血干细胞移植物的供体。在一些实施方案中,一个单倍型是匹配的,而另一个是不匹配的。HLA不匹配的供体-受体对相对于HLA匹配的供体-受体对可能具有增加的移植物排斥的风险,原因是在HLA不匹配的供体-受体对的情况下,内源性T细胞和NK细胞更可能将进入的移植物识别为外来的,并且这样的T细胞和NK细胞因此更可能产生针对移植物的免疫应答。
在本申请中,术语“B2M”通常是指是β2微球蛋白(β2-microglobulin),是MHC I类分子的组成部分之一。β2微球蛋白(也称为β链)可以与HLA编码的α链组成MHC I类的分子。B2M通常在所有有核的细胞中都有表达。在人类中,β2微球蛋白由位于15q21.1的B2M基因(例如HGNC:914所示的信息)所编码。
在本申请中,术语“CIITA”通常是指Ⅱ类主要组织相容性复合体(MHCⅡ)的反式激活因 子。所述反式激活因子可以是具有酸性转录激活结构域、4个LRR(富含亮氨酸的重复序列)和GTP结合结构域的蛋白质。所述蛋白质可位于细胞核中,作为II类主要组织相容性复合体(MHCⅡ)基因转录的正向调节剂,被称为表达这些基因的“主控制因子”。该蛋白质还可结合GTP,并利用与GTP结合来使其自身转运到细胞核中,在细胞核中,其通常使通过乙酰转移酶(AT)活性以类似共激活剂的方式起作用。在人类中,所述蛋白质由位于16p13.13的基因(例如HGNC:7067所示的信息)编码,能够产生几种编码不同同工型的转录物变体。
在本申请中,术语“野生型细胞”通常是指自然存在的或者自然来源的细胞。
在本申请中,术语“核酸”或“多核苷酸”或“核酸分子”通常时指脱氧核糖核酸(DNA)或核糖核酸(RNA)及其单链形式或双链形式的聚合物。除非特别限定,否则该术语可以包括含天然核苷酸的类似物的核酸,所述核酸具有与参考核酸(例如示出了序列信息)相似的结合特性并且按照与天然存在核苷酸相似的方式代谢。除非另外说明,核酸的序列可以包括其保守方式修饰的变体,例如简并密码子置换、等位基因、直向同源物、SNP和互补序列,以及明确指出的序列。
在本申请中,术语“表达”通常是指特定核苷酸序列的转录和/或翻译。
在本申请中,术语“基因突变”通常是指基因在结构上发生的碱基对组成或排列顺序的改变。例如单个碱基改变所引起的点突变,或多个碱基的缺失、重复和插入等。
在本申请中,术语“基因沉默”通常是指通过调节机制阻止某些基因的表达。主要可以包括两种:一种是由于DNA甲基化、异染色质化以及位置效应等因素引起的转录水平上的基因沉默(transcriptional gene silencing,TGS),另一种是转录后基因沉默(post-transcriptional gene silencing,PTGS),即在基因转录后的水平上通过对靶标RNA进行特异性干预而影响基因的表达。通常情况下当基因沉默时,相应基因表达下调/减少。而当基因被敲除时则通常表现为不表达,例如在细胞中,某种特定基因的所有等位基因均被敲除后则表现为该基因的表达消失。基因沉默通常被认为是一种基因敲低机制,通用于沉默基因的方法可以如RNAi等。
在本申请中,术语“内源”指来自生物、细胞、组织或系统或在其内部产生的任何物质。
在本申请中,术语“外源”指从生物、细胞、组织或系统外部引入或在其外部产生的任何物质。
在本申请中,术语“反义RNA”通常是指一种与转录产物mRNA(信使RNA)互补的单链RNA。反义RNA可通过与mRNA的结合抑制基因的表达。例如,反义RNA与靶mRNA结合后引起该双链RNA分子对RNA酶Ⅲ的敏感性增加,使其降解;例如,反义RNA与mRNA的上游非编码区结合,从而直接抑制靶mRNA的翻译。
在本申请中,术语“siRNA”通常是指Small interfering RNA(小干扰RNA)或short in-terfering RNA(短干扰RNA)的缩写。siRNA是一类双链非编码RNA分子,长度约为18-28个碱基对,可通过与mRNA的互补结合引起mRNA的降解从而干扰特定基因的表达。在某些实施方式中,siRNA可以是长双链RNA或shRNA经Dicer酶处理得到的产物。在某些实施方式中,siRNA进入细胞与其他蛋白质形成RNA诱导沉默复合体(RISC),有义链发生降解,反义链可与互补的靶向序列结合,从而实现基因沉默。
在本申请中,术语“shRNA”通常是指short hairpin RNA的缩写,即“短发夹RNA”。shRNA通常包括两个短反向重复序列,中间由一茎环(loop)序列分隔,组成发夹结构。通常还可以包括5-6个T碱基作为RNA聚合酶Ⅲ的转录终止子。在某些实施方式中,shRNA可经由病毒载体或质粒进入细胞中,在聚合酶Ⅱ或聚合酶Ⅲ的作用下进行转录,转录产物自细胞核输出(通常可经由Exportin 5)后经Dicer处理后输送至RISC,有义链发生降解,反义链可与互补的靶向序列结合,从而实现基因沉默。
在本申请中,术语“CRISPR/Cas系统”通常是指包含RNA引导的核酸酶或其他效应分子和gRNA分子的一组分子,所述分子能够指引和实现由RNA引导的核酸酶或其他效应分子在靶序列处修饰核酸,例如引起靶序列降解。在某些实施方式中,CRISPR系统包含gRNA和Cas蛋白,例如,Cas9蛋白。包含Cas9或其功能性突变体的系统在本申请中称作“Cas9系统”或“CRISPR/Cas9系统”。在某些实施方式中,gRNA分子和Cas分子可以复合,以形成核糖核蛋白(RNP)复合体。
在本申请中,术语“gRNA分子”或“向导RNA”、“指导RNA”、“指引RNA”、“向导RNA分子”、“gRNA”可互换使用,通常是指能够促进特异性指引RNA引导的核酸酶或其他效应分子(一般与gRNA分子复合)至靶序列上的核酸分子。在某些实施方案中,通过gRNA的一部分与DNA(例如,通过gRNA导引结构域)杂交并且通过gRNA分子的一部分与RNA指导的核酸酶或其他效应分子结合(例如,至少通过gRNAtracr)实现所述引导。在某些实施方案中,gRNA分子由单一的连续多核苷酸分子组成,在本文中称作“单一向导RNA”或“sgRNA”等。在其他实施方案中,gRNA分子由本身能够缔合(一般通过杂交)的多个(例如二个)多核苷酸分子组成,在本文中称作“双重向导RNA”或“dgRNA”等。
在本申请中,术语“Cas蛋白”通常是指CRISPR/Cas系统中负责剪切DNA的酶。可以包括来自Ⅰ、Ⅱ、Ⅲ型CRISPR/Cas系统的酶。例如,Cas3、Cas9、Cas10。
在本申请中,术语“Cas9蛋白”通常是指负责剪切DNA的来自细菌II型CRISPR/Cas系统的酶。Cas9可以包括野生型蛋白及其有功能性突变体。
在本申请中,“等位基因”通常是指基因座上的基因序列可能具有的不同变化的形式。基因座也称作基因位点或位点,是指染色体上的固定位置,例如某个基因所在。基因座在基因组中的排列位置称为基因图谱(genetic map)。
在本申请中,术语“纯合子”通常是指同源染色体在同一基因座上的两个等位基因相同的基因型个体。一对相对基因可以有AA和aa两种基因型的个体。
在本申请中,术语“杂合子”通常是指二倍体中同源染色体同一位点上的两个等位基因不相同的基因型个体,如Aa。杂合基因型一般比纯合显性或纯合隐性基因型的适应性都要高,这种现象被称为杂合子优势。
在本申请中,术语“肿瘤”和“癌症”可以互换地使用,通常是指以异常细胞快速且失控生长为特征的疾病。癌细胞可以局部地或通过血流和淋巴系统扩散到身体其他部分。本文中描述了各种癌症的例子并且它们包括但不限于乳腺癌、前列腺癌、卵巢癌、宫颈癌、皮肤癌、胰腺癌、结直肠癌、肾癌、肝癌、脑癌、淋巴瘤、白血病、肺癌等。术语“癌症”或“肿瘤”包括恶变前以及恶性癌症和肿瘤,还涵盖实体瘤和非实体肿瘤。
在本申请中,术语“药学上可接受的”通常是指代与合理的益处/风险比相称、在合理医学判断范围内适合用于与人类和动物的组织接触而不具有过度毒性、刺激、过敏应答或其它问题或并发症的那些化合物、材料、组合物和/或剂型。
在本申请中,术语“药学上可接受的载剂”通常是指常规使用的那些载剂中的任一种,并且仅受到物理-化学考虑因素(如溶解性和与活性结合剂的反应性的缺乏)限制,并且受给药途径限制。本文所描述的药学上可接受的载剂,例如媒剂、佐剂、赋形剂和稀释剂为所属领域的技术人员所熟知并且公众可容易获得。在一个方面中,药学上可接受的载剂是对医药组合物的活性成分具有化学惰性的载剂,并且是在使用条件下不具有不利的副作用或毒性的载剂。在一些实施例中,当向动物或人类给予时,载剂不产生不良、过敏或其它不适当的反应。在一些方面中,医药组合物不含热原质以及会对人类或动物有害的其它杂质。药学上可接受的载剂包括任何和所有溶剂、分散介质、涂料、抗细菌剂和抗真菌剂、等张剂和吸收延迟剂等等;其用途在所属领域中是众所周知。
可接受的载剂、赋形剂或稳定剂对接受者无毒性并且优选在所采用的剂量和浓度下是惰性的,并且包括缓冲夜,如磷酸盐、柠檬酸盐或其它有机酸;抗氧化剂,如抗坏血酸;低分子量多肽;蛋白质,如血清白蛋白、明胶或免疫球蛋白;亲水性聚合物,如聚乙烯吡咯烷酮;氨基酸,如甘氨酸、谷氨酰胺、天冬酰胺、精氨酸或赖氨酸;单糖、双糖和其它碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂,如EDTA;糖醇,如甘露糖醇或山梨糖醇;盐 形成抗衡离子,如钠;和/或非离子表面活性剂,如Tween、Pluronics或聚乙二醇(PEG)。
在本申请中,术语“有效量”或“有效剂量”通常是指足以实现或至少部分实现所需效果的量。药物或治疗剂的“治疗有效量”或“治疗有效剂量”通常是当单独使用或与另一种治疗剂组合使用时促进疾病消退(这通过疾病症状严重程度的降低、疾病无症状期的频度和持续时间的增加、或者由于罹患疾病而引起的损害或残疾的预防来证明)的任何药物量。
anti-B7H3 CAR-T细胞的“治疗有效量”或“有效量”也是治疗有益效果超过anti-B7H3CAR-T细胞的任何毒性或有害作用例如CRS的量或剂量。术语“治疗有效量”包含有效“治疗”受试者(例如,患者)的量。在一个实施例中,治疗有效剂量是用于治疗受试者的多发性骨髓瘤的anti-B7H3 CAR-T细胞的最小有效剂量(MED)。在一个实施例中,治疗有效剂量是不会导致受试者有无法解决的CRS的anti-B7H3 CAR-T细胞的最大耐受剂量(MTD)。
在本申请中,术语“包括”通常是指包含、总括、含有或包涵的含义。在某些情况下,也表示“为”、“由……组成”的含义。
在本申请中,术语“约”通常是指在指定数值以上或以下0.5%-10%的范围内变动,例如在指定数值以上或以下0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、或10%的范围内变动。
在本申请中,术语“受试者”通常是指人类或非人类动物,包括但不限于猫、狗、马、猪、奶牛、羊、兔、小鼠、大鼠或猴等。
发明详述
抗原结合多肽
一方面,本申请提供一种抗原结合多肽,其包含抗体重链可变区(VH)的至少一个互补决定区(CDR),所述VH包含与SEQ ID NO:25所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,所述VH包含与SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28或SEQ ID NO:29所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,所述的抗原结合多肽包含VH,所述VH包含重链互补决定区1(HCDR1)、重链互补决定区2(HCDR2)和重链互补决定区3(HCDR3),所述HCDR3包含与SEQ ID NO:7所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HCDR3 可以包含SEQ ID NO:7所示的氨基酸序列。
在某些实施方式中,所述HCDR3包含SEQ ID NO:8或SEQ ID NO:9所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HCDR3可以包含SEQ ID NO:8或SEQ ID NO:9所示的氨基酸序列。
在某些实施方式中,所述HCDR2包含与SEQ ID NO:4所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HCDR2可以包含SEQ ID NO:4所示的氨基酸序列。
在某些实施方式中,所述HCDR2包含与SEQ ID NO:5或SEQ ID NO:6所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HCDR2可以包含SEQ ID NO:5或SEQ ID NO:6所示的氨基酸序列。
在某些实施方式中,所述HCDR1包含与SEQ ID NO:1所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HCDR1可以包含SEQ ID NO:1所示的氨基酸序列。
在某些实施方式中,所述HCDR1包含与SEQ ID NO:2或SEQ ID NO:3所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HCDR1可以包含SEQ ID NO:2或SEQ ID NO:3所示的氨基酸序列。
在某些实施方式中,所述VH包含:包含与SEQ ID NO:1所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列的HCDR1、包含与SEQ ID NO:4所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列的HCDR2和包含与SEQ ID NO:7所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列的HCDR3。
例如,所述VH可以包含:包含SEQ ID NO:1所示的氨基酸序列的HCDR1、包含SEQ ID NO:4所示的氨基酸序列的HCDR2和包含SEQ ID NO:7所示的氨基酸序列的HCDR3。
在某些实施方式中,所述VH包含:
i)包含SEQ ID NO:2所示的氨基酸序列的HCDR1、包含SEQ ID NO:5示的氨基酸序列 的HCDR2和包含SEQ ID NO:8所示的氨基酸序列的HCDR3;或
ii)包含SEQ ID NO:3所示的氨基酸序列的HCDR1、包含SEQ ID NO:6所示的氨基酸序列的HCDR2和包含SEQ ID NO:9所示的氨基酸序列的HCDR3。
在某些实施方式中,所述VH包含重链框架区1(HFR1)、重链框架区2(HFR2)、重链框架区3(HFR3)和重链框架区4(HFR4),所述HFR1包含与SEQ ID NO:10所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HFR1可以包含SEQ ID NO:10所示的氨基酸序列。
在某些实施方式中,所述HFR1包含与SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13或SEQ ID NO:14所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HFR1包含SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13或SEQ ID NO:14所示的氨基酸序列。
在某些实施方式中,所述HFR2包含与SEQ ID NO:15所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HFR2可以包含SEQ ID NO:15所示的氨基酸序列。
在某些实施方式中,所述HFR2包含与SEQ ID NO:16或SEQ ID NO:17所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HFR2可以包含SEQ ID NO:16或SEQ ID NO:17所示的氨基酸序列。
在某些实施方式中,所述HFR3包含与SEQ ID NO:18所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HFR3可以包含SEQ ID NO:18所示的氨基酸序列。
在某些实施方式中,所述HFR3包含与SEQ ID NO:19、SEQ ID NO:20或SEQ ID NO:21所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HFR3可以包含SEQ ID NO:19、SEQ ID NO:20或SEQ ID NO:21所示的氨基酸序列。
在某些实施方式中,所述HFR4包含与SEQ ID NO:22所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述HFR4可以包含SEQ ID NO:22所示的氨基酸序列。
在某些实施方式中,所述HFR4包含与SEQ ID NO:23或SEQ ID NO:24所示的氨基酸 序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,,所述HFR4可以包含SEQ ID NO:23或SEQ ID NO:24所示的氨基酸序列。
在某些实施方式中,所述VH包含HFR1、HFR2、HFR3和HFR4,且所述HFR1、HFR2、HFR3和HFR4选自:
i)包含SEQ ID NO:11所示的氨基酸序列的HFR1,包含SEQ ID NO:16所示的氨基酸序列的HFR2,包含SEQ ID NO:19所示的氨基酸序列的HFR3,包含SEQ ID NO:23所示的氨基酸序列的HFR4;
ii)包含SEQ ID NO:12所示的氨基酸序列的HFR1,包含SEQ ID NO:16所示的氨基酸序列的HFR2,包含SEQ ID NO:20所示的氨基酸序列的HFR3,包含SEQ ID NO:24所示的氨基酸序列的HFR4;
iii)包含SEQ ID NO:13所示的氨基酸序列的HFR1,包含SEQ ID NO:17所示的氨基酸序列的HFR2,包含SEQ ID NO:21所示的氨基酸序列的HFR3,包含SEQ ID NO:23所示的氨基酸序列的HFR4;
vi)包含SEQ ID NO:14所示的氨基酸序列的HFR1,包含SEQ ID NO:17所示的氨基酸序列的HFR2,包含SEQ ID NO:20所示的氨基酸序列的HFR3,包含SEQ ID NO:24所示的氨基酸序列的HFR4。
在某些实施方式中,所述VH包含与SEQ ID NO:25所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述VH可以包含SEQ ID NO:25所示的氨基酸序列。
在某些实施方式中,所述VH包含与SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28或SEQ ID NO:29所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。例如,所述VH可以包含SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28或SEQ ID NO:29所示的氨基酸序列。
在某些实施方式中,所述抗原结合多肽包括抗体或其抗原结合片段。
在某些实施方式中,所述抗体包括单克隆抗体、多克隆抗体、二聚体、多聚体、多特异性抗体、完整抗体、抗体片段、人抗体、人源化抗体或嵌合抗体。
在某些实施方式中,所述抗原结合片段包括Fab片段,Fv片段,F(ab’)2,单链Fv(scFv)或单域抗体(VHH)。
嵌合抗原受体
一方面,本申请提供一种靶向B7H3的嵌合抗原受体(CAR),其包含靶向部分,其中所述靶向部分包含前述的抗原结合多肽。
在某些实施方式中,其中所述靶向部分包括VHH。
例如,所述靶向部分包含VHH,所述VHH可以包含:包含SEQ ID NO:1所示的氨基酸序列的HCDR1、包含SEQ ID NO:4所示的氨基酸序列的HCDR2和包含SEQ ID NO:7所示的氨基酸序列的HCDR3。
又例如,所述靶向部分包含VHH,所述VHH可以包含SEQ ID NO:25所示的氨基酸序列。
在某些实施方式中,其包括跨膜域,所述跨膜域包含源自选自下组中的一种或多种蛋白的跨膜域:CD8A、CD8B、CD28、CD3ε(CD3e)、4-1BB、CD4、CD27、CD7、PD-1、TRAC、TRBC、CD3ζ、CTLA-4、LAG-3、CD5、ICOS、OX40、NKG2D、2B4(CD244)、FcεRIγ、BTLA、CD30、GITR、HVEM、DAP10、CD2、NKG2C、LIGHT、DAP12,CD40L(CD154)、TIM1、CD226、DR3、CD45、CD80、CD86、CD9、CD16、CD22、CD33、CD37、CD64和SLAM。
在某些实施方式中,其中所述跨膜域包含源自CD8A的跨膜域。
在某些实施方式中,其中所述跨膜域包含与SEQ ID NO:42至SEQ ID NO:90中任一项所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其包括胞内共刺激信号传导结构域,所述胞内共刺激信号传导结构域包含源自选自下组中的一种或多种蛋白的胞内共刺激信号传导结构域:CD28、CD137、CD27、CD2、CD7、CD8A、CD8B、OX40、CD226、DR3、SLAM、CDS、ICAM-1、NKG2D、NKG2C、B7H3、2B4、FcεRIγ、BTLA、GITR、HVEM、DAP10、DAP12、CD30、CD40、CD40L、TIM1、PD-1、LFA-1、LIGHT、JAML、CD244、CD100、ICOS、CD40和MyD88。
在某些实施方式中,其中所述胞内共刺激信号传导结构域源自4-1BB的共刺激信号传导结构域。
在某些实施方式中,其中所述胞内共刺激信号传导结构域包含与SEQ ID NO:91至SEQ ID NO:123中任一项所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其包括胞内信号转导结构域,所述胞内信号转导结构域包含源自选自下组中的一种或多种蛋白的胞内信号转导结构域:CD3ζ、CD3δ、CD3γ、CD3ε、CD79a、 CD79b、FceRIγ、FceRIβ、FcγRIIa、牛白血病病毒gp30、Epstein-Barr病毒(EBV)LMP2A、猿免疫缺陷病毒PBj14 Nef、DAP10、DAP-12和至少包含一个ITAM的结构域。
在某些实施方式中,其中所述胞内信号转导结构域包含源自CD3ζ的信号传导结构域。
在某些实施方式中,其中所述胞内信号转导结构域包含与SEQ ID NO:107、SEQ ID NO:111、SEQ ID NO:112、SEQ ID NO:124至SEQ ID NO:134中任一项所示的氨基酸序列中任一项所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其在靶向部分和跨膜域之间包括铰链区,所述铰链区包含源自选自下组中的一种或多种蛋白的铰链区:CD28、IgG1、IgG4、IgD、4-1BB、CD4、CD27、CD7、CD8A、PD-1、ICOS、OX40、NKG2D、NKG2C、FcεRIγ、BTLA、GITR、DAP10、TIM1、SLAM、CD30和LIGHT。
在某些实施方式中,所述铰链区包含源自CD8A的铰链区。
在某些实施方式中,所述铰链区包含与SEQ ID NO:135至SEQ ID NO:156中任一项所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,所述嵌合抗原受体的非靶向部分包括铰链区,跨膜域,胞内共刺激信号传导结构域与胞内信号转导结构域。
在某些实施方式中,所述嵌合抗原受体的非靶向部分包含CD8A分子跨膜域、CD8A的铰链区、4-1BB的胞内共刺激信号传导结构域和CD3ζ胞内信号传导结构域。
例如,所述嵌合抗原受体以抗B7H3单域抗体为胞外抗原结合结构域,通过CD8A分子铰链区和跨膜域与胞内信号传导结构域相连接,胞内信号传导结构域由4-1BB胞内共刺激信号传导结构域与CD3ζ胞内信号转导结构域组成。
在某些实施方式中,所述嵌合抗原受体的非靶向部分包含与SEQ ID NO:30所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,所述的嵌合抗原受体还包含信号肽片段,所述信号肽片段的C端与所述靶向部分的N端连接。例如,所述嵌合抗原受体可以包括CAR包括信号肽、抗B7H3VHH、CD8A铰链结构域、CD8A跨膜结构域、4-1BB共刺激结构域和CD3ζ主信号传导结构域。
在某些实施方式中,所述信号肽片段包括CD8A信号肽片段。
在某些实施方式中,所述的嵌合抗原受体,所述信号肽片段包含与SEQ ID NO:31所示的氨基酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
核酸分子、载体、细胞
另一方面,本申请提供一种或多种分离的核酸分子,其编码前述的抗原结合多肽或前述的嵌合抗原受体。
在某些实施方式中,所述的分离的核酸分子包含与SEQ ID NO:36,SEQ ID NO:37,SEQ ID NO:38和SEQ ID NO:39中任一项所示的核苷酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
另一方面,本申请提供一种载体,其包含前述的分离的核酸分子。
在某些实施方式中,其中所述载体是表达载体。
在某些实施方式中,其中所述载体选自DNA载体、RNA载体、质粒、慢病毒载体、腺病毒载体、腺相关病毒载体和逆转录病毒载体。例如,所述载体可以是慢病毒载体。
另一方面,本申请提供一种细胞,i)包含前述的分离的核酸分子或前述的载体;和/或ii)表达前述的抗原结合多肽或嵌合抗原受体。
免疫效应细胞
另一方面,本申请提供一种免疫效应细胞,其包含前述的所述的核酸分子或前述的载体,和/或表达前述的CAR。
在某些实施方式中,所述的免疫效应细胞包括人细胞。
在某些实施方式中,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。例如,所述免疫效应细胞可以是T细胞。又例如,所述免疫效应细胞可以是人T细胞。
在某些实施方式中,所述免疫效应细胞包括自体或非自体的免疫效应细胞。
在某些实施方式中,所述的免疫效应细胞包括经修饰的免疫效应细胞。
在某些实施方式中,其中所述经修饰的免疫效应细胞包括降低同种异体细胞治疗引起的免疫排斥反应的细胞。
在某些实施方式中,其中所述经修饰的免疫效应细胞中的T细胞抗原受体(TCR)和主要组织相容性复合体(MHCI,MHCII)在T细胞中的功能受到抑制。
在某些实施方式中,其中所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
在某些实施方式中,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC、HLA-A、HLA-B、B2M和CIITA。
在某些实施方式中,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC、HLA-A和HLA-B。
在某些实施方式中,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC和HLA-A。
在某些实施方式中,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC和HLA-A。
在某些实施方式中,所述经修饰的免疫效应细胞与未经修饰的相应细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与未经所述修饰的相应细胞相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与未经所述修饰的相应细胞相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
在某些实施方式中,其中所述修饰包括:基因敲除、基因突变和/或基因沉默。
在某些实施方式中,所述修饰包括所述免疫效应细胞中两个TRAC等位基因中的任意一个被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中两个TRAC等位基因被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中TRAC基因外显子被敲除并且HLA- A基因外显子被敲除。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰还包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述TRAC基因外显子部分的sgRNA包含与SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含与SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其中所述修饰还包括向所述细胞施用Cas酶。
在某些实施方式中,其中Cas酶包括Cas9蛋白。
在某些实施方式中,其中所述反义RNA包含与SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其中所述免疫效应细胞为HLA-B纯合子细胞。
在某些实施方式中,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
在某些实施方式中,其中所述免疫效应细胞为HLA-A纯合子或杂合子细胞。
在某些实施方式中,其中所述HLA-A纯合子或杂合子包括HLA-A*02纯合子,HLA-A*11纯合子,HLA-A*02/A*11杂合子或HLA-A*24纯合子。
另一方面,本申请提供一种制备免疫效应细胞的方法,其包括向免疫效应细胞中引入前 述的核酸分子或前述的载体。
在某些实施方式中,所述的方法还包括:在向免疫效应细胞中引入前述的核酸分子或前述的载体之前/之后,修饰所述免疫效应细胞,所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
在某些实施方式中,所述的方法包括:在向免疫效应细胞中引入前述的核酸分子或前述的载体之后,修饰所述免疫效应细胞,所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
例如,所述制备免疫效应细胞的方法可以包括:
(1)向免疫效应细胞中引入前述的核酸分子或前述的载体;
(2)修饰所述免疫效应细胞,所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
在某些实施方式中,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC、HLA-A、HLA-B、B2M和CIITA。
在某些实施方式中,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,下调所述免疫效应细胞中TRAC基因和HLA-A基因的表达和/或活性。
在某些实施方式中,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,与相应的野生型细胞相比,所述免疫效应细胞的TRAC基因和HLA-A基因的表达和/或活性被下调。
在某些实施方式中,与相应的野生型细胞相比,CIITA基因的表达和/或活性未被下调。
在某些实施方式中,与相应的野生型细胞相比,B2M基因的表达和/或活性未被下调。
在某些实施方式中,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
在某些实施方式中,其中所述修饰包括:基因敲除、基因突变和/或基因沉默。
在某些实施方式中,所述修饰包括所述免疫效应细胞中两个TRAC等位基因中的任意一个被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中两个TRAC等位基因被敲除并且两个HLA-A等位基因中的任意一个被敲除。
在某些实施方式中,所述修饰包括所述免疫细胞中TRAC基因外显子被敲除并且HLA-A基因外显子被敲除。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含与SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其中所述修饰还包括向所述细胞施用Cas酶。
在某些实施方式中,其中Cas酶包括Cas9蛋白。
在某些实施方式中,其中所述反义RNA包含与SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列具有至少约90%,约91%,约92%,约93%,约94%,约95%,约96%,约97%,约98%,约99%,约99.5%同一性的氨基酸序列。
在某些实施方式中,其中所述免疫效应细胞包括人细胞。
在某些实施方式中,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。例如,所述免疫效应细胞可以是T细胞。
在某些实施方式中,所述免疫效应细胞包括自体或非自体的免疫效应细胞。
在某些实施方式中,其中所述细胞为HLA-B纯合子细胞。
在某些实施方式中,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
在某些实施方式中,其中所述细胞为HLA-A纯合子或杂合子细胞。
在某些实施方式中,其中所述HLA-A纯合子或杂合子包括HLA-A*02纯合子,HLA-A*11纯合子,HLA-A*02/A*11杂合子或HLA-A*24纯合子。
例如,所述制备免疫效应细胞的方法可以包括:
(1)采集健康人的外周血,进行HLA分型检测,选取符合我们需要的分型,进行PBMC的分离,按照比例加入CD3磁珠孵育,进行CD3+T细胞分选;将CD3/CD28抗体偶联磁珠混匀,按计算的量取出适量磁珠悬液加入到T细胞培养体系中,激活T细胞,过夜培养;
(2)根据anti-B7H3 CAR病毒的滴度感染T细胞;
(3)同时敲除TRAC和HLA-A基因;
(4)CD3阴性T细胞分选:按照比例加入CD3磁珠,收集CD3-T细胞(磁珠未结合的细胞)。
用途、药物组合物与治疗方法
另一方面,本申请提供前述的嵌合抗原受体,前述的分离的核酸分子,前述的载体,前述的细胞,或前述的免疫效应细胞在制备CAR-T细胞中的应用。
另一方面,本申请提供一种药物组合物,其包含前述的抗原结合多肽,前述的嵌合抗原受体,前述的分离的核酸分子,前述的载体,前述的细胞,和/或前述的免疫效应细胞,以及任选地药学上可接受的载剂。
例如,药物组合物可以包括:缓冲液,如中性缓冲盐水、磷酸盐缓冲盐水等;糖类,如葡萄糖、甘露糖、蔗糖或葡聚糖、甘露醇;蛋白质;多肽或如甘氨酸等氨基酸;抗氧化剂;螯合剂,如EDTA或谷胱甘肽;佐剂(例如,氢氧化铝);以及防腐剂。
例如,所述药物组合物包括前述的免疫效应细胞以及任选地药学上可接受的载剂。
另一方面,本申请提供前述的抗原结合多肽,前述的抗原嵌合受体,前述的分离的核酸分子,前述的载体,前述的细胞,前述的免疫效应细胞,和/或前述的药物组合物,其用于治疗与B7H3的表达相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括与B7H3的表达上调相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括癌症。
在某些实施方式中,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
另一方面,本申请提供前述的抗原结合多肽,前述的抗原嵌合受体,前述的分离的核酸分子,前述的载体,前述的细胞,前述的免疫效应细胞,和/或前述的药物组合物在制备药物中的用途,所述药物用于治疗与B7H3的表达相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括与B7H3的表达上调相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括癌症。
在某些实施方式中,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
另一方面,本申请提供一种预防或治疗与B7H3的表达相关的疾病或病症的方法,其包括向有需要的受试者施用有效量的前述的抗原结合多肽,前述的抗原嵌合受体,前述的分离的核酸分子,前述的载体,前述的细胞,前述的免疫效应细胞,和/或前述的药物组合物。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括与B7H3的表达上调相关的疾病或病症。
在某些实施方式中,其中所述与B7H3的表达相关的疾病或病症包括癌症。
在某些实施方式中,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
经修饰的免疫效应细胞
另一方面,本申请提供一种经修饰的免疫效应细胞,其中与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,TRAC基因和HLA-A基因的表达和/或活性被下调,B2M基因的表达和/或活性未被下调,且CIITA基因的表达和/或活性未被下调;且所述经修饰的免疫效应细胞的HLA-B分型与受试者的HLA-B分型是匹配的。
在某些实施方式中,其中所述经修饰的免疫效应细胞为HLA-B杂合子且与受试者的HLA-B的两个等位基因均一致,或所述经修饰的免疫效应细胞为HLA-B纯合子且与受试者的HLA-B的其中一个等位基因一致。
在某些实施方式中,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
在某些实施方式中,其中所述修饰使得两种基因的表达和/或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
在某些实施方式中,其中与相应的野生型细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调,B2M基因的表达和/或活性未被下调,且CIITA基因的表达和/或活性未被下调。
在某些实施方式中,其中与相应的野生型细胞相比,两种基因的表达和/或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
在某些实施方式中,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
在某些实施方式中,其中所述修饰包括:基因突变和/或基因沉默。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰还包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰还包括向所述细胞施用Cas酶。
在某些实施方式中,其中Cas酶包括Cas9蛋白。
在某些实施方式中,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
在某些实施方式中,所述的经修饰的免疫效应细胞表达CAR。
在某些实施方式中,其中所述CAR包括抗原结合结构域、铰链区、跨膜域、胞内共刺激信号传导结构域和胞内信号转导结构域。
在某些实施方式中,其中所述抗原结合结构域特异性地结合肿瘤抗原。
在某些实施方式中,其中所述肿瘤抗原选自以下组:CD19,CD20,CD22,CD33,BCMA, IL13Ra2,EGFR,Her2,GD2和B7H3。
在某些实施方式中,其中所述抗原结合结构域选自以下组:单克隆抗体、多克隆抗体、二聚体、多聚体、多特异性抗体、完整抗体、抗体片段、人抗体、人源化抗体,嵌合抗体,Fv片段,F(ab’)2,单链Fv(scFv)和单域抗体(VHH)。
在某些实施方式中,所述跨膜域包含源自选自下组中的一种或多种蛋白的跨膜域:CD8A、CD8B、CD28、CD3ε(CD3e)、4-1BB、CD4、CD27、CD7、PD-1、TRAC、TRBC、CD3ζ、CTLA-4、LAG-3、CD5、ICOS、OX40、NKG2D、2B4(CD244)、FcεRIγ、BTLA、CD30、GITR、HVEM、DAP10、CD2、NKG2C、LIGHT、DAP12,CD40L(CD154)、TIM1、CD226、DR3、CD45、CD80、CD86、CD9、CD16、CD22、CD33、CD37、CD64和SLAM。
在某些实施方式中,所述胞内共刺激信号传导结构域包含源自选自下组中的一种或多种蛋白的胞内共刺激信号传导结构域:CD28、CD137、CD27、CD2、CD7、CD8A、CD8B、OX40、CD226、DR3、SLAM、CDS、ICAM-1、NKG2D、NKG2C、B7H3、2B4、FcεRIγ、BTLA、GITR、HVEM、DAP10、DAP12、CD30、CD40、CD40L、TIM1、PD-1、LFA-1、LIGHT、JAML、CD244、CD100、ICOS、CD40和MyD88。
在某些实施方式中,所述胞内信号转导结构域包含源自选自下组中的一种或多种蛋白的胞内信号转导结构域:CD3ζ、CD3δ、CD3γ、CD3ε、CD79a、CD79b、FceRIγ、FceRIβ、FcγRIIa、牛白血病病毒gp30、Epstein-Barr病毒(EBV)LMP2A、猿免疫缺陷病毒PBj14 Nef、DAP10、DAP-12和至少包含一个ITAM的结构域。
在某些实施方式中,所述铰链区包含源自选自下组中的一种或多种蛋白的铰链区:CD28、IgG1、IgG4、IgD、4-1BB、CD4、CD27、CD7、CD8A、PD-1、ICOS、OX40、NKG2D、NKG2C、FcεRIγ、BTLA、GITR、DAP10、TIM1、SLAM、CD30和LIGHT。
在某些实施方式中,所述CAR还包含信号肽片段,所述信号肽片段的C端与所述靶向部分的N端连接。
在某些实施方式中,所述信号肽片段包括CD8A信号肽片段。
在某些实施方式中,其中所述免疫效应细胞包括人细胞。
在某些实施方式中,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
在某些实施方式中,所述免疫效应细胞包括非自体的免疫效应细胞。
另一方面,本申请提供一种制备前述的经修饰的免疫效应细胞的方法,其包括以下的步 骤:
1)选择与受试者HLA-B分型匹配的免疫效应细胞;
2)与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,下调所述免疫效应细胞中TRAC基因和HLA-A基因的表达和/或活性;不下调B2M基因的表达和/或活性,且不下调CIITA基因的表达和/或活性。
在某些实施方式中,其中所述经修饰的免疫效应细胞为HLA-B杂合子且与受试者的HLA-B的两个等位基因均一致,或所述经修饰的免疫效应细胞为HLA-B纯合子且与受试者的HLA-B的其中一个等位基因一致。
在某些实施方式中,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
在某些实施方式中,其中所述修饰使得两种基因的表达和/或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
在某些实施方式中,与相应的野生型细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调,B2M基因的表达和/或活性未被下调,且CIITA基因的表达和/或活性未被下调。
在某些实施方式中,与相应的野生型细胞相比,两种基因的表达和/或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
在某些实施方式中,其中所述下调基因的表达水平和/或活性包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
在某些实施方式中,其中所述修饰包括:基因突变和/或基因沉默。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
在某些实施方式中,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
在某些实施方式中,其中所述修饰还包括向所述细胞施用Cas酶。
在某些实施方式中,其中Cas酶包括Cas9蛋白。
在某些实施方式中,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
在某些实施方式中,其中所述免疫效应细胞包括人细胞。
在某些实施方式中,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
在某些实施方式中,所述免疫效应细胞包括非自体的免疫效应细胞。
另一方面本申请提供一种组合物,其包括前述的经修饰的免疫效应细胞和药学上可接受的载剂。
另一方面本申请提供前述的经修饰的免疫效应细胞在制备CAR-T细胞中的应用。
另一方面本申请提供前述经修饰的免疫效应细胞在制备药物中的应用,所述药物用于异体治疗。
另一方面本申请提供前述经修饰的免疫效应细胞在制备药物中的应用,所述药物用于治疗肿瘤。
在某些实施方式中,其中所述肿瘤包括实体瘤和非实体瘤。
在某些实施方式中,其中所述肿瘤选自以下组:肝癌、胃癌、肺癌、乳腺癌、非小细胞肺癌、B淋巴细胞瘤、霍奇金淋巴瘤、胶质瘤、慢性髓性白血病和急性髓样白血病。
本申请还披露了以下实施方式:
128.经修饰的免疫效应细胞,其中与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,TRAC基因和HLA-A基因的表达和/或活性被下调,B2M基因的表达和/或活性未被下调,且CIITA基因的表达和/或活性未被下调;且所述经修饰的免疫效应细胞的HLA-B分型与受试者的HLA-B分型是匹配的。
129.根据权利要求128所述的经修饰的免疫效应细胞,其中所述经修饰的免疫效应细胞为HLA-B杂合子且与受试者的HLA-B的两个等位基因均一致,或所述经修饰的免疫效应细胞为HLA-B纯合子且与受试者的HLA-B的其中一个等位基因一致。
130.根据权利要求129所述的经修饰的免疫效应细胞,其中所述HLA-B纯合子包括HLA- B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
131.根据权利要求128-130中任一项所述的经修饰的免疫效应细胞,其中所述修饰使得两种基因的表达和/或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
132.根据权利要求128-131中任一项所述的经修饰的免疫效应细胞,其中与相应的野生型细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调,B2M基因的表达和/或活性未被下调,且CIITA基因的表达和/或活性未被下调。
133.根据权利要求128-132中任一项所述的经修饰的免疫效应细胞,其中与相应的野生型细胞相比,两种基因的表达和/或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
134.根据权利要求128-133中任一项所述的经修饰的免疫效应细胞,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
135.根据权利要求128-134中任一项所述的经修饰的免疫效应细胞,其中所述修饰包括:基因突变和/或基因沉默。
136.根据权利要求128-135中任一项所述的经修饰的免疫效应细胞,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
137.根据权利要求128-136中任一项所述的经修饰的免疫效应细胞,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
138.根据权利要求137所述的经修饰的免疫效应细胞,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
139.根据权利要求138所述的经修饰的免疫效应细胞,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
140.根据权利要求137-139中任一项所述的经修饰的免疫效应细胞,其中所述修饰还包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
141.根据权利要求140所述的经修饰的免疫效应细胞,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
142.根据权利要求137-141中任一项所述的经修饰的免疫效应细胞,其中所述修饰还包括 向所述细胞施用Cas酶。
143.根据权利要求142所述的经修饰的免疫效应细胞,其中Cas酶包括Cas9蛋白。
144.根据权利要求136所述的经修饰的免疫效应细胞,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
145.根据权利要求128-144中任一项所述的经修饰的免疫效应细胞,其中所述免疫效应细胞表达CAR。
146.根据权利要求145所述的经修饰的免疫效应细胞,其中所述CAR包括抗原结合结构域、铰链区、跨膜域、胞内共刺激信号传导结构域和胞内信号转导结构域。
147.根据权利要求146中任一项所述的经修饰的免疫效应细胞,其中所述抗原结合结构域特异性地结合肿瘤抗原。
148.根据权利要求147中任一项所述的经修饰的免疫效应细胞,其中所述肿瘤抗原选自以下组:CD19,CD20,CD22,CD33,BCMA,IL13Ra2,EGFR,Her2,GD2和B7H3。
149.根据权利要求146-148中任一项所述的经修饰的免疫效应细胞,其中所述抗原结合结构域选自以下组:单克隆抗体、多克隆抗体、二聚体、多聚体、多特异性抗体、完整抗体、抗体片段、人抗体、人源化抗体,嵌合抗体,Fv片段,F(ab’)2,单链Fv(scFv)和单域抗体(VHH)。
150.根据权利要求146-149中任一项所述的经修饰的免疫效应细胞,所述跨膜域包含源自选自下组中的一种或多种蛋白的跨膜域:CD8A、CD8B、CD28、CD3ε(CD3e)、4-1BB、CD4、CD27、CD7、PD-1、TRAC、TRBC、CD3ζ、CTLA-4、LAG-3、CD5、ICOS、OX40、NKG2D、2B4(CD244)、FcεRIγ、BTLA、CD30、GITR、HVEM、DAP10、CD2、NKG2C、LIGHT、DAP12,CD40L(CD154)、TIM1、CD226、DR3、CD45、CD80、CD86、CD9、CD16、CD22、CD33、CD37、CD64和SLAM。
151.根据权利要求146-150中任一项所述的经修饰的免疫效应细胞,所述胞内共刺激信号传导结构域包含源自选自下组中的一种或多种蛋白的胞内共刺激信号传导结构域:CD28、CD137、CD27、CD2、CD7、CD8A、CD8B、OX40、CD226、DR3、SLAM、CDS、ICAM-1、NKG2D、NKG2C、B7H3、2B4、FcεRIγ、BTLA、GITR、HVEM、DAP10、DAP12、CD30、CD40、CD40L、TIM1、PD-1、LFA-1、LIGHT、JAML、CD244、CD100、ICOS、CD40和MyD88。
152.根据权利要求146-151中任一项所述的经修饰的免疫效应细胞,所述胞内信号转导结构域包含源自选自下组中的一种或多种蛋白的胞内信号转导结构域:CD3ζ、CD3δ、CD3γ、CD3ε、CD79a、CD79b、FceRIγ、FceRIβ、FcγRIIa、牛白血病病毒gp30、Epstein-Barr病毒(EBV)LMP2A、猿免疫缺陷病毒PBj14 Nef、DAP10、DAP-12和至少包含一个ITAM的结构 域。
153.根据权利要求146-152中任一项所述的经修饰的免疫效应细胞,所述铰链区包含源自选自下组中的一种或多种蛋白的铰链区:CD28、IgG1、IgG4、IgD、4-1BB、CD4、CD27、CD7、CD8A、PD-1、ICOS、OX40、NKG2D、NKG2C、FcεRIγ、BTLA、GITR、DAP10、TIM1、SLAM、CD30和LIGHT。
154.根据权利要求146-153中任一项所述的经修饰的免疫效应细胞,所述CAR还包含信号肽片段,所述信号肽片段的C端与所述靶向部分的N端连接。
155.根据权利要求146-154中任一项所述的经修饰的免疫效应细胞,所述信号肽片段包括CD8A信号肽片段。
156.根据权利要求128-155中任一项所述的经修饰的免疫效应细胞,其中所述免疫效应细胞包括人细胞。
157.根据权利要求128-156中任一项所述的经修饰的免疫效应细胞,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
158.根据权利要求128-157中任一项所述的方法,所述免疫效应细胞包括非自体的免疫效应细胞。
159.制备权利要求128-158中任一项所述的经修饰的免疫效应细胞的方法,其包括以下的步骤:
1)选择与受试者HLA-B分型匹配的免疫效应细胞;
2)与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,下调所述免疫效应细胞中TRAC基因和HLA-A基因的表达和/或活性;不下调B2M基因的表达和/或活性,且不下调CIITA基因的表达和/或活性。
160.根据权利要求159所述的方法,其中所述经修饰的免疫效应细胞为HLA-B杂合子且与受试者的HLA-B的两个等位基因均一致,或所述经修饰的免疫效应细胞为HLA-B纯合子且与受试者的HLA-B的其中一个等位基因一致。
161.根据权利要求160所述的方法,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
162.根据权利要求159-161中任一项所述的方法,其中所述修饰使得两种基因的表达和/ 或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
163.根据权利要求159-162中任一项所述的方法,与相应的野生型细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调,B2M基因的表达和/或活性未被下调,且CIITA基因的表达和/或活性未被下调。
164.根据权利要求159-163中任一项所述的方法,与相应的野生型细胞相比,两种基因的表达和/或活性被下调,其中所述两种基因由TRAC基因和HLA-A基因组成。
165.根据权利要求159-164中任一项所述的方法,其中所述下调基因的表达水平和/或活性包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
166.根据权利要求159-165中任一项所述的方法,其中所述修饰包括:基因突变和/或基因沉默。
167.根据权利要求159-166中任一项所述的方法,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
168.根据权利要求159-167中任一项所述的方法,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
169.根据权利要求168所述的方法,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
170.根据权利要求169所述的方法,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
171.根据权利要求168-171中任一项所述的方法,其中所述修饰包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
172.根据权利要求171所述的方法,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
173.根据权利要求168-172中任一项所述的方法,其中所述修饰还包括向所述细胞施用Cas酶。
174.根据权利要求173所述的方法,其中Cas酶包括Cas9蛋白。
175.根据权利要求167所述的方法,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
176.根据权利要求159-175中任一项所述的方法,其中所述免疫效应细胞包括人细胞。
177.根据权利要求159-176中任一项所述的方法,所述免疫效应细胞包括T细胞、B细 胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
178.根据权利要求159-177中任一项所述的方法,所述免疫效应细胞包括非自体的免疫效应细胞。
179.组合物,其包括权利要求128-158中任一项所述的经修饰的免疫效应细胞和药学上可接受的载剂。
180.权利要求128-158中任一项所述的经修饰的免疫效应细胞在制备CAR-T细胞中的应用。
181.权利要求128-158中任一项所述的经修饰的免疫效应细胞在制备药物中的应用,所述药物用于异体治疗。
182.权利要求128-158中任一项所述的免疫效应细胞在制备药物中的应用,所述药物用于治疗肿瘤。
183.根据权利要求182所述的应用,其中所述肿瘤包括实体瘤和非实体瘤。
184.根据权利要求182-183中任一项所述的应用,其中所述肿瘤选自以下组:肝癌、胃癌、肺癌、乳腺癌、非小细胞肺癌、B淋巴细胞瘤、霍奇金淋巴瘤、胶质瘤、慢性髓性白血病和急性髓样白血病。
不欲被任何理论所限,下文中的实施例仅仅是为了阐释本申请的嵌合抗原受体、免疫效应细胞、制备方法和用途等,而不用于限制本申请发明的范围。
实施例
实施例1
1.1单域抗体亲和力测定
将B7H3-Fc重组蛋白使用10mM醋酸盐缓冲液固定在CM5芯片上,分别以上述制备的单域抗体作为流动相,检测筛选获得的单域抗体与B7H3-Fc重组蛋白的结合能力。
(1)试剂配制
运行试剂:含10mM N-(2-羟乙基)哌嗪-N-2磺酸(HEPES),150mM氯化钠(NaCl),3mM乙二胺四乙酸(EDTA),0.005%吐温-20(Tween-20),pH调节至7.4。
人IgG(Fc)捕获试剂盒,其中包括:鼠抗人IgG(Fc)抗体,固定试剂(醋酸钠,pH5.0),再生试剂(氯化镁)。
氨基偶联试剂盒,包括:N-羟基丁二酰亚胺(NHS),1-乙基-(3-二甲基氨基丙基)碳二亚 胺盐酸盐(EDC)和乙醇胺(pH8.5)。每管EDC和NHS分别加入10mL去离子水,分装保存到-18℃至更低温度,保质期两个月。
(2)芯片制备
将鼠抗人IgG(Fc)抗体用固定试剂(醋酸钠,pH 5.0)稀释,950μL固定试剂加入50μL鼠抗人IgG(Fc)抗体用于固定八个通道。首先,CM5芯片的表面用EDC和NHS以10μL/min的流速进行360s的活化。其次,将鼠抗人IgG(Fc)抗体以10μL/min的流速注入到通道(channel 1-8,Fc1,2)约360s,固定量约为7000至14000RU。最后,芯片用乙醇胺以10μL/min进行420s封闭。
(3)缓冲液置换
使用脱盐柱及相应运行试剂将人B7H3蛋白进行缓冲液置换,置换后的样品进行浓度测定。
(4)捕获配体
将抗体用运行试剂稀释至10μg/mL并以10μL/min的流速注入到人IgG(Fc)捕获实验通道(Fc2)约300RU。参比通道(Fc1)不需要进行配体的捕获。
(5)分析物多循环分析
将人B7H3蛋白用运行试剂进行2倍倍比稀释。将稀释后的人B7H3蛋白依次以30μL/min的流速注入到实验通道与参比通道,结合和解离相应时间。结合解离步骤均在运行试剂中进行。每一个浓度分析后,芯片需要用氯化镁以20μL/min的流速再生30s,洗掉配体以及未解离的分析物。进行下一个浓度分析时,实验通道需要重新捕获相同量的配体。
(6)数据分析
使用Biacore 8K分析软件Biacore Insight Evaluation Software计算每个样品的KD值。参比通道(Fc1)用于背景的扣减。
结果表1所示,本申请的B7H3单域抗体1A5和1G7及其人源化抗体均与人B7H3蛋白具有较高亲和力。
表1单域抗体与B7H3-Fc重组蛋白的结合结果
  Ka(M -1s -1) Kd(s -1) KD(M)
1A5 6.09×10 5 0.004503 7.394×10 -9
1G7 1.150×10 6 0.006182 5.375×10 -9
1.2抗体亲和曲线
分别将不同浓度的重组抗体与U251细胞(表达B7H3)进行孵育,后通过细胞平均荧光 强度(MFI)检测细胞表面抗体的结合情况,从图2中结果可知,1A5与1G7抗体及其人源化抗体均能有效结合于U251细胞表面。
1.3抗体ADCC功能
将等量NK细胞与U251-LG细胞共培养,向其中加入200ng/ul的重组抗体,共培养24h后检测抗体介导的细胞毒性作用,从图3中结果可知,1A5与1G7抗体及其人源化抗体均能有效通过ADCC作用杀伤U251-LG肿瘤细胞。
1.4抗B7H3嵌合抗原受体(CAR)的设计
anti-B7H3 CAR结构包括:一个B7H3抗原结合区(来源于抗B7H3的单域抗体1A5,其氨基酸序列如SEQ ID NO:28所示),一个CD8A胞外铰链区,一个CD8A跨膜区,一个4-1BB胞内共刺激域和一个CD3ζ激活信号域。anti-B7H3 CAR的非抗原结合域的氨基酸序列如SEQ ID NO:34所示,核苷酸序列如SEQ ID NO:38所示。
1.5 anti-B7H3 CAR的慢病毒载体构建
根据B7H3序列信息及CAR载体结构,构建anti-B7H3 CAR慢病毒表达载体,载体示意图(见图1)。进行优化:选择商业化慢病毒表达载体pCDH-CMV-MCS-EF1-copGFP为骨架,在此载体基础上进行元件改造。首先,将载体的氨苄抗性基因β-内酰胺酶替换为源自Tn5的氨基糖苷磷酸转移酶,使载体具有卡那霉素抗性。其次,我们删除了在体内应用中具有潜在威胁性的CMV启动子及其临近的下游多克隆位点。最后,将原载体中由EF1启动子启动表达的copGFP基因删除,保留SalI酶切位点,并在SalI 5’端加入SmaI酶切位点供载体构建用,形成最终目的载体。加入的SmaI酶切位点是最终目的载体的单一酶切位点,载体的其他序列部分不具有该酶切位点。优化后构建嵌合抗原受体慢病毒表达载体,经sanger测序确证序列无误后,进行慢病毒包装。
实施例2
2.1设计导向RNA
通过网站https://www.ncbi.nlm.nih.gov/,查找并下载相应基因序列,使用SnapGene软件打开基因序列,可在目的基因的不同外显子上设计sgRNA。在本实施例中采用的CRISPR/Cas9系统的sgRNA非限制性的设计原则为:5’-NNN(20)-NGG-3’,NGG被称为原间隔子相邻基序(PAM),其中,N表示A、T、C或G。由于在同一外显子上可以设计出较多sgRNA,并且由20个核苷酸序列组成的sgRNA可能会在基因组中重复出现,所以利用网站http://crispr.cos.uni-heidelberg.de来进行sgRNA的设计与评估,将外显子序列粘贴至该网站,网站设计出sgRNA并进行预测评估,在评估中得分越高,则说明可能存在较高的编辑效率和 较低的脱靶风险,从中选择得分较高的sgRNA进行试验。靶向TRAC基因的sgRNA如SEQ ID NO:157至SEQ ID NO:171所示,靶向HLA-A02基因的sgRNA如SEQ ID NO:172至SEQ ID NO:193所示,靶向HLA-A11基因的sgRNA如SEQ ID NO:194至SEQ ID NO:204所示,靶向HLA-A24基因的sgRNA如SEQ ID NO:205至SEQ ID NO:212所示,由金斯瑞生物科技公司合成。
2.2供体筛选
根据受体的HLA-B分型,选择与受体HLA-B分型匹配的HLA-B纯合子。
首先供者来源基于人群中的HLA-B纯合子,患者HLA-B的其中一个等位基因和供者HLA-B纯合子一致即可,来源于这些供者的细胞能覆盖高数量的患者人群。降低HLA-B亚型不一致引起的排异反应。HLA-B主要选择人群中频率较高的B*40纯合子,B*15纯合子,B*46纯合子,B*13纯合子,B*51纯合子,B*58纯合子,B*07纯合子,B*35纯合子,B*44纯合子,B*52纯合子,B*57纯合子,B*54纯合子,B*55纯合子。HLA-A选择人群中频率较高的A*02纯合子,A*11纯合子及A*02/A11杂合子。
2.3 CD3+T细胞制备
(1)从外周血中分离PBMC
从健康捐献者中采集外周血,用PBS缓冲液按照1:1进行外周血稀释。在新的50mL离心管中先加入稀释后血量1/3的细胞分离液(Ficoll),然后沿着管壁非常缓慢加入血细胞稀释液,800g常温离心20min(离心机设置升速1、降速0)。离心后离心管中的液体自上而下分为PBS与血清层、白细胞层、淋巴细胞分离液、红细胞层。去除PBS与血清层,将白细胞层移至新的50ml离心管中,加入PBS至40ml清洗细胞,450g离心10min。离心后弃上清,即得到外周血单个核细胞。细胞重悬后进行细胞计数。
(2)复苏冻存的健康人PBMC
将冻存的健康人PBMC细胞在37℃水浴锅中进行复苏,完全融化后将细胞吸到含有10ml含10%FBS的X-VIVO15培养基(购自LONZA)的15ml离心管中,400g离心8min;去上清,加入2ml X-VIVO15培养基(含10%FBS和终浓度100μg/ml的DNase I)室温孵育15min,孵育的过程中不断振荡;将孵育结束后的溶液用40μm的滤网进行过滤,并吸取10ml PBS缓冲液重悬底部的细胞再加到滤网上,过虑后400g离心8min,离心后弃上清,细胞重悬后进行细胞计数。
(3)CD3 +T细胞分选
使用EasySep TM人T细胞分选试剂盒(购自StemCell Technologies,货号:17951)提取 外周血单个核细胞(PBMC)中的T细胞。将PBMC密度调整至5×10 7细胞/ml,PBS缓冲液的添加范围在0.25-2ml;先加cocktail混匀再按照50μl/ml加入isolation cocktail,混匀后室温放置5min;将RapidSpheres用旋涡振荡仪涡旋30s后加按照40μl/ml加入至细胞中混匀;补加缓冲液至2.5ml的倍数,上下轻轻吹打2-3次;按照每管2.5ml分别加到冻存管中,将冻存管置于磁力架上,室温放置3min;轻轻打开冻存管盖,小心持两边拿起磁力架,倒置保持2-3s,将细胞液一次性倒入新的离心管中;用10-20ml缓冲液(视细胞量)重悬细胞后,300g离心10min,弃掉上清,得到CD3 +T细胞。
(4)T细胞激活
激活试剂按培养基:Transact=99:1体积比进行配置,培养基为X-VIVO15培养基(含5%FBS、200U/ml IL2、10ng/ml IL7和5ng/ml IL15)、Transact购自美天旎。T细胞按每1×10 6个细胞用1ml激活试剂(含有10μl Transact)充分重悬后,放置于37℃、5%CO 2培养箱中孵育1天。
实施例3
3.1转病毒
按照实施例2的方式获得CD3+T细胞(D0天),并用CD3/CD28抗体磁珠激活,激活后于D1天进行慢病毒载体(实施例1制备的anti-B7H3 CAR慢病毒表达载体)转染,D2天洗去慢病毒载体,D3天进行电转。
3.2基因敲除
使用电转试剂盒(购自LONZA,货号V4XXP-3024)通过电转方式将RNP复合体转入3.1制备的激活后T细胞(取D3天的CAR-T细胞为初始细胞)。取样计数后收集细胞离心,用PBS重悬细胞沉淀。提前30min在孔板中预热培养基(X-VIVO15培养基+10%FBS+IL2(200U/ml)+IL7(10n g/ml)+IL15(5ng/ml))。准备电转缓冲液:Nucleofector Solution:Supplement按照82:18进行配置;根据每个电转体系使用1x10 7的细胞进行分配RNP复合物(Cas9:sgRNA=2:1),先将10μg sgRNA加入到PCR管(无RNA酶)中,再加入20μg Cas9蛋白(购自thermo,货号A36499),轻轻混匀后,室温孵育12min。将上述细胞进行计数,300g离心8min弃上清,加入PBS重悬细胞,吸取1E7个细胞重新300g离心8min,弃上清后用100μl配置好的电转缓冲液重悬细胞。将孵育好的RNP复合体加入上述细胞悬液中,轻柔混匀,然后将混合物轻轻地转移到电转杯中。将电转杯放在Lonza-4D电转仪上,选用EO-115电转程序进行电转。往电转杯中加入预热的培养基,然后用配套吸管将细胞转入孔板中预热的培养基中,然后放置于37℃、5%CO 2培养箱中培养48小时后收 细胞,sanger测序检测编辑效率,同时收细胞FACS检测敲除效率。
其中sgRNA序列TRAC sgRNA:AGAGTCTCTCAGCTGGTACA(SEQ ID NO:157),A02sgRNA:CTGACCATGAAGCCACCCTG(SEQ ID NO:174),A11 sgRNA:GGCCCCTCCTGCTCTATCCA(SEQ ID NO:204)。
3.3 CD3阴性T细胞分选
进行CD3阴性T细胞分选,细胞计数后离心,弃上清;用buffer重悬细胞并混匀,按20ul CD3磁珠/10 7的细胞加CD3磁珠,混合均匀后放4度冰箱孵育,加buffer洗涤细胞离心后进行磁珠分离,首先将column放在磁极上,下面对应放离心管,用buffer浸润column(LD),将细胞加到column上,不要产生气泡,用buffer清洗column 2次,收集清洗下来的液体(CD3-T)于15ml离心管中,取部分细胞进行细胞计数。
3.4细胞培养
镜下观察细胞状态,取细胞进行稀释计数,补充全培养基维持细胞密度在3x10^5-1x10^6个/ml,中间补/换液,放入37℃、5%CO 2培养。细胞收获:收集到细胞离心管中离心后弃上,用生理盐水再次洗涤细胞,离心,配制冻存液,冻存液重悬离心后的细胞,用注射器吸取细胞悬液至终制品用细胞冻存袋中,在细胞冻存袋上贴好标签,进行下一步冻存。
3.5基因敲除效率检测
(1)Sanger测序检测
细胞计数,取3~5×10 4细胞,2000r/min离心5min,尽量去干净上清,然后每管加20μl DE裂解液,细胞裂解后加到PCR管中,瞬时离心后上PCR仪,上机条件:65℃30min,4℃30s、95℃2min、16℃无限。使用引物对TRAC-For/TRAC-Rev,或HLA-A For/HLA-A Rev,将裂解产物作为模板进行PCR,将PCR产物交送金唯智进行Sanger测序。得到sanger测序结果后,使用网站:https://moriaritylab.shinyapps.io/editr_v10/中的EditR编辑器预测编辑发生的位置以及编辑效率。
(2)流式检测细胞计数
取10E5至10E8细胞,2000rpm离心5min,去上清,然后每管加100μl的PBS缓冲液重悬细胞,再加入anti-human AB TCR-APC(购自eBioscience)抗体5μl,HLA-A02 Monoclonal Antibody(BB7.2),APC,eBioscince TM(购自invitrogen)抗体5μl,混合均匀后于室温孵育10min。2000rpm离心5min后再以PBS缓冲液洗2遍,重悬细胞并通过BD FACSAria流式细胞仪进行检测,可得细胞表面TCR、HLA-A02表达阳性率。敲除效率=(A-B)/A×100%;A为对照组表达阳性率;B为敲除组表达阳性率。
结果如图4A-4C所示,anti-B7H3 UCAR-T细胞CAR阳性率可达30%以上(图4A),anti-B7H3 UCAR-T细胞中心记忆比例达50%左右(图4B),anti-B7H3 UCAR-T细胞双敲效率高达90%以上(图4C)。
实施例4 anti-B7H3 UCAR-T细胞体外细胞毒性分析
4.1 anti-B7H3 UCAR-T细胞对靶细胞的杀伤
(1)B7H3靶细胞:PANC-1-Luciferase;调整靶细胞状态至对数生长期,在进行实验前需连续传代2次;
(2)制备anti-B7H3 UCAR-T细胞及对照组anti-B7H3 CAR-T,T细胞,流式检测敲除效率,转染效率,CD3-T分选效率及记忆T细胞的比例,统计扩增倍数;
(3)离心收集制备的几组细胞,每组6x10^6的细胞;
(4)将靶细胞重悬于1640+10%FBS中,每个靶点取3块24孔板,按照2x10^5/孔的量接种靶细胞。(靶细胞和效应细胞都是2x10^6/ml的密度接种)。然后按照E/T(效靶比,效应细胞:靶细胞)比例,加入效应细胞。每孔补液到最大体积(如600ul)。对照接种同样数量的靶细胞,不加效应细胞(600ul)。将孔板置于5%CO 2、37℃培养箱中,培养24小时。E/T:1:2,1:1,2:1,5:1,10:1铺板,重复三次。
(5)培养24小时,将孔板从培养箱中取出,收集200ul上清。然后通过检测Luciferase活性反映重组CAR-T细胞对靶细胞的裂解能力。
靶细胞裂解百分数计算公式:
Figure PCTCN2022103070-appb-000001
结果分析:anti-B7H3 CAR-T细胞与anti-B7H3 UCAR-T对PANC-1-Luciferase细胞有显著的杀伤作用。anti-B7H3 UCAR-T细胞在效靶比10:1时即可达到90%以上的杀伤效率(见图5)。
4.2 anti-B7H3 UCAR-T细胞与靶细胞共培养细胞因子分泌检测
收集上述共培养体系的上清,检测细胞因子分泌水平。结果分析(图6A-6C):anti-B7H3CAR-T和anti-B7H3 UCAR-T均能够显著激活,大量分泌IL-2,IFN-γ和TNF-α细胞因子。
实施例5 anti-B7H3 UCAR-T细胞体内抗肿瘤效果
8-10周大的NSG小鼠皮下注射肿瘤细胞PANC-1-Luciferase-GFP(5x10^6),小鼠分成三组,每组5只,成瘤时间一般2-4周。分别向每组小鼠瘤内注射anti-B7H3 UCAR-T细胞, anti-B7H3 CAR-T细胞,无基因敲除的T细胞5E6,单点注射,注射体积50ul。通过荧光素酶监测小鼠肿瘤消退情况。
结果分析(图7):回输anti-B7H3 UCAR-T细胞的小鼠,肿瘤生长速度明显减缓,anti-B7H3 CAR-T和anti-B7H3 UCAR-T均表现出卓越的抗肿瘤效果。
实施例6 anti-B7H3 UCAR-T细胞体内半衰期检测
准备人源化免疫系统小鼠(hHSC-NCG)15只,分成3组。制备细胞,实验组anti-B7H3 UCAR-T细胞(敲除TRAC+HLA-A02);对照组1:anti-B7H3 CAR-T;对照组2:anti-B7H3 UCAR-T细胞(敲除TRAC+B2M);每只小鼠注射1x10^7细胞,不同的时间点采血D0,2h,D3,D7,D14,D21,D28,D35,D42,D49,D56,D60。提取不同时间点血样中基因组,用QPCR绝对定量的方法计算copy/ng genome DNA,阳性对照用第14天收获的UCAR-T细胞,阴性对照用DEPC水。
结果分析:anti-B7H3 UCAR-T细胞(敲除TRAC+HLA-A02)在小鼠体内存活时间最久。
实施例7通用型T细胞的体外安全性验证
(1)GVHD反应:制备TRAC,HLA-A双敲T细胞,无基因敲除的T细胞,辐照同种异体PBMC,分别刺激制备的2组细胞,检测IFN-r的水平。
结果分析:TRAC,HLA-A双敲T细胞组IFN-γ分泌水平很低,表明TRAC敲除降低了GVHD反应。
(2)同种异体反应:同种异体PBMC刺激辐照后的2组细胞,检测IFN-r的水平。
结果分析:TRAC,HLA-A双敲T细胞组IFN-γ分泌水平很低,表明HLA-A的敲除降低了同种异体反应。
实施例8通用型T细胞的体内安全性验证
实验组:共同注射5×10 6TCR-HLA-A-双阴anti-B7H3 UCAR-T细胞和5×10 6同种异体T细胞到NSG小鼠体内。
对照组:注射5×10 6TCR-B7H3 UCAR-T细胞和5×10 6同种异型T细胞到NSG小鼠体内。
每组5只NSG小鼠。
(1)GVHD反应:通过临床指标:存活率,皮毛纹理和皮肤完整性等,观察移植物抗宿主反应。细胞因子检测:取外周血血清,检测IL6、IL-2、TNF-α、IFN-γ等细胞因子的水平。 取血时间点:回输前,24h,D3,D7,D14,D28,2M。脏器病变检测:观察期结束时(2个月左右),取小鼠的脾脏,肝脏,皮肤、胃肠道,肺,肾脏进行HE切片染色分析。
结果分析:注射未经处理的T细胞的5只小鼠中,有4只在注入后2个月内发生了致死性异种移植物抗宿主病(GVHD)。而接受TRAC,HLA-A双敲细胞的小鼠中没有一个出现GVHD;TRAC,HLA-A双敲T细胞组细胞因子IL6、IL-2、TNF-α、IFN-γ分泌水平很低;并且小鼠不同器官形态正常。说明TRAC,HLA-A双敲T细胞组很大程度上降低了GVHD反应。
(2)同种异体反应:制备TRAC,HLA-A双敲CAR-T细胞,共同注射1x10^7 TCR-HLA-A-双敲CAR-T细胞和2x10^6同种异型T细胞到NSG小鼠体内。对照组:注射1x10^7 TCR -CAR-T细胞到NSG小鼠体内。
不同时间点取血测CAR拷贝数。比较两组CAR的拷贝数变化。时间点:D1,D5,D7,D10,D14,D21,D28。
结论:D21天,对照组小鼠排异反应明显,基本检测不到拷贝数;而实验组拷贝数仍处在相对稳定水平,说明排异反应明显减弱,实验组细胞在小鼠体内存活时间延长。说明TRAC,HLA-A双敲CAR-T细胞组很大程度上降低了排异反应(见图8A-8B)。
实施例9基因编辑的安全性分析
制备TRAC,HLA-A双敲T细胞,无基因敲除的T细胞,检测敲除效率后,进行以下分析:
(1)脱靶:
对照组:转CAS9+ODN标签
实验组:转CAS9+sgRNA(TRAC+HLA-A)+ODN标签
On-target and off-target-WGS:(Whole genome sequencing):D14分别取无基因敲除的T细胞、TRAC,HLA-A双敲的T细胞各1×10^6送苏州金维智生物科技有限公司检测。
结果分析:实验组脱靶率很低,而且脱靶主要集中在基因之间和内含子上,对基因功能的影响不大(见图9)。
(2)染色体易位:采用qPCR方法对同时编辑TRAC和HLA基因座时可能发生的重排进行了定量。两个易位被标记为TRAC:HLA,HLA:TRAC。合成的模板质粒中的阳性参考样品作为检测对照进行评估。以HLA基因组靶区两侧的扩增片段作为内对照。提取基因组DNA进行实时定量PCR,根据标准曲线和Cq值计算基因组DNA的基因拷贝数。
结果分析:双敲T细胞(TRAC+HLA-A)在D14(收获)检测是否发生染色体易位,检测结 果:两种易位方式检测值都接近零检值,提示基因座没有发生重排(见图10)。
(3)核型分型:分别取铺满度在70-80%的无基因敲除的T细胞、TRAC,HLA-A双敲的T细胞各1×10^6装于2个T25瓶中,加满培养液,盖上全密封盖子,缠上封口膜,寄送至浙江如耀生物科技有限公司检测。
结果分析:和对照组比,实验组核型正常(见图11)。
(4)Cas9蛋白残留:细胞制备时,取敲除前、敲除后以及收获前三个时间点的细胞各1×10^6进行裂解,随后用蛋白定量试剂盒(NOVATEINBIO,货号NB-E1372PR)进行定量,将各组样品调整至相同上样量2μg,根据说明书用CRISPR/Cas9蛋白ELISA试剂盒进行检测。样品中的Cas9蛋白被牢固稳定地点在试纸孔上。然后使用检测抗体识别被绑定的Cas9蛋白,然后显影剂进行显影。Cas9比值与吸光度成正比,通过与Cas9对照品比较来定量Cas9蛋白的绝对量。
结果分析:双敲T细胞(TRAC+HLA-A)分别在电转前(D3)、电转后换液前(D5)、D9、D14(收获)四个时间点检测spCas9的残留,除了电转后换液前(D5)检测到微量残留,其余三个时间点均未检出。(见图12)。
实施例10制备单基因敲除的T细胞
使用电转试剂盒(购自LONZA,货号V4XXP-3024)通过电转方式将RNP复合体转入实施例2制备的激活后T细胞。提前30min在孔板中预热培养基(X-VIVO15培养基+10%FBS+IL2(200U/ml)+IL7(10n g/ml)+IL15(5ng/ml))。电转缓冲液按照Nucleofector Solution:Supplement=82:18进行配置。准备RNP复合体:TRAC的sgRNA序列为sg9(如SEQ ID NO:157所示),HLA-A的sgRNA序列为HLA-A02 Sg2(如SEQ ID NO:173所示)或HLA-A02 Sg5(如SEQ ID NO:174所示)或HLA-A11 sg21(如SEQ ID NO:204所示)或HLA-A11 Rsg2(如SEQ ID NO:203所示),先将20μg sgRNA加入到PCR管(无RNA酶)中,再加入10μg Cas9蛋白(购自thermo,货号A36499),轻轻混匀后,室温孵育12min。将实施例2培养的激活后T细胞进行计数,300g离心8min弃上清,加入PBS重悬细胞,吸取1E7个细胞重新300g离心8min,弃上清后用100μl配置好的电转缓冲液重悬细胞。将孵育好的RNP复合体加入上述细胞悬液中,轻柔混匀,然后将混合物轻轻地转移到电转杯中。将电转杯放在Lonza-4D电转仪上,选用EO-115电转程序进行电转。往电转杯中加入预热的培养基,然后用配套吸管将细胞转入孔板中预热的培养基中,然后放置于37℃、5%CO 2培养箱中培养。
实施例11基因敲除效率检测方法的比较
(1)Sanger测序检测
细胞计数,取3~5×104细胞,2000r/min离心5min,尽量去干净上清,然后每管加20μl DE裂解液,细胞裂解后加到PCR管中,瞬时离心后上PCR仪,上机条件:65℃30min,4℃30s、95℃2min、16℃无限。使用引物对TRAC-For/TRAC-Rev,或HLA-A For/HLA-A Rev,将裂解产物作为模板进行PCR,将PCR产物交送金唯智进行Sanger测序。得到sanger测序结果后,使用网站:https://moriaritylab.shinyapps.io/editr_v10/中的EditR编辑器预测编辑发生的位置以及编辑效率。
(2)TA克隆测序检测
利用AxyPrepTM PCR产物清洁试剂盒(购自AXYGEN),将PCR产物纯化,随后用试剂盒(DNA A-Tailing Kit,购自TaKaRa)将纯化后的PCR产物加粘性末端,通过DNA Ligation Kit Ver2.1(购自TaKaRa)将产物连接至T载体(pMDTM19-T Vector Cloning Kit购自TaKaRa),连接产物转化感受态细胞(DH5alpha),然后涂布于含氨苄抗性的LB板,在37℃培养箱培养约12小时后挑单菌落,并将单菌落菌液交由金维智进行测序。敲除效率=突变克隆数/总克隆数。
(3)流式检测细胞计数
取10E5至10E8细胞,2000rpm离心5min,去上清,然后每管加100μl的PBS缓冲液重悬细胞,再加入anti-human AB TCR-APC(购自eBioscience)抗体5μl,HLA-A02 Monoclonal Antibody(BB7.2),APC,eBioscince TM(购自invitrogen)抗体5μl,混合均匀后于室温孵育10min。2000rpm离心5min后再以PBS缓冲液洗2遍,重悬细胞并通过BD FACSAria流式细胞仪进行检测,可得细胞表面TCR、HLA-A02表达阳性率。敲除效率=(A-B)/A×100%;A为对照组表达阳性率;B为敲除组表达阳性率。
TRAC单基因敲除的三种检测结果如图13至图15所示,敲除效率计算结果如表2所示,三种检测方法基本相同,后续试验仅采用Sanger测序方法检测编辑效率。
表2基因敲除效率检测方法结果
Figure PCTCN2022103070-appb-000002
Figure PCTCN2022103070-appb-000003
针对HLA-A02基因编辑的Sanger测序方法结果如图16-17所示,编辑效率均为90%;针对HLA-A11基因编辑的Sanger测序方法结果如图18-19所示。
实施例12制备TRAC基因和HLA-A基因双基因敲除的T细胞
使用电转试剂盒(购自LONZA,货号:V4XXP-3024)通过电转方式将RNP复合体转入实施例2制备的激活后T细胞。提前30min在孔板中预热培养基(X-VIVO15培养基+10%FBS+IL2(200U/ml)+IL7(10ng/ml)+IL15(5ng/ml))。电转缓冲液按照Nucleofector Solution:Supplement=82:18进行配置。准备RNP复合体:分别将20μg TRAC sgRNA(TRAC Sg9),20μg HLA-A sgRNA(HLA-A02 Sg2或HLA-A02 Sg5或HLA-A11 sg21或者靶向HLA-A*24:02:01、HLA-A*30:01:01:01、HLA-A*33:01:01:01、HLA-A*03:01:01:01、HLA-A*01:01:01:01或HLA-A*26:01:01:01的sgRNA)加入到PCR管(无RNA)中,再各自加入10μg Cas9蛋白(购自thermo,货号A36499),轻轻混匀后,室温孵育12min。将实施例2培养的激活后T细胞进行计数,300g离心8min弃上清,加入PBS重悬细胞,吸取1E7个细胞重新300g离心8min,弃上清后用100μl配置好的电转缓冲液重悬细胞。将孵育好的TRAC与HLA-A的RNP复合体加入上述细胞悬液中,轻柔混匀,然后将混合物轻轻地转移到电转杯中。将电转杯放在Lonza-4D电转仪上,选用EO-115电转程序进行电转。往电转杯中加入预热的培养基,然后用配套吸管将细胞转入孔板中预热的培养基中,然后放置于37℃、5%CO 2培养箱中培养。
通过测序检测双基因敲除效率,可得到双基因敲除效率均不低于80%的TRAC阴性、HLA-A阴性的T细胞。结果如图20-21所示。其中图20A显示的是利用HLA-A02 Sg5敲除HLA-A02的结果,其中上一行显示的是对照组结果(即没有使用HLA-A02 Sg5进行敲除);下一行显示的是同时敲除HLA-A02和TRAC的结果;其中图20B显示的是利用TRAC Sg9敲除TRAC的结果,其中上一行显示的是对照组结果(即没有使用TRAC Sg9进行敲除);下一行显示的是同时敲除HLA-A02和TRAC的结果。图21A-21B显示了敲除HLA-A02和TRAC蛋白水平的敲除情况,其中NEG指阴性对照,WT指没有经任何敲除处理的情况,TRAC+HLA-A双敲指同时敲除HLA-A02和TRAC的结果。
实施例13双基因敲除的T细胞中TRAC基因,HLA-A基因,B2M基因和CIITA基因与相应细胞中的相应基因的表达区别
(1)利用实施例2制备的激活后T细胞,分为两组,一组作为对照,另一组按照实施例5的方法制备TRAC基因和HLA-A基因双基因敲除的T细胞,按照实施例4步骤(1)的方式进行Sanger测序。依据测序结果获得TRAC和HLA-A双基因敲除的细胞。将制备的双基因敲除T细胞与相应TRAC和HLA-A抗体孵育,通过流式分选或磁珠分选,可以得到双基因敲除的细胞株。
(2)检测双基因敲除的T细胞与对照组相比mRNA表达水平的变化。使用RNA提取试剂盒(购自QIAGEN,货号:74004)提取RNA,使用逆转录试剂盒(购自Applied Biosystems,货号:4368814)对RNA进行逆转录得到cDNA,以cDNA为模板进行定量PCR检测。
(3)检测双基因敲除的T细胞与对照组相比蛋白表达水平的变化。使用全蛋白提取试剂(购自Thermo Scientific,货号:87787)提取蛋白,通过Western Blot方法或流式方法检测蛋白表达水平,使用的抗体分别为TRAC抗体(购自eBioscience货号:17-9986-42)、HLA-A抗体(购自Merck货号:17-9876-41)、B2M抗体(购自Invitrogen货号:A15770)和CIITA抗体(购自OriGene货号:CF812200)。
Sanger测序检测双基因敲除的T细胞中TRAC和/或HLA-A基因的核苷酸序列相对于对照组发生了变化;定量PCR显示双基因敲除的T细胞中TRAC和/或HLA-A基因mRNA表达量下调,而B2M和/或CIITA基因的mRNA表达量没有下调。FACS和Western Blot结果显示双基因敲除的T细胞中蛋白表量下调,B2M和/或CIITA蛋白表达量没有下调。
结果如图22-23所示。其中,图22显示的是基因表达的mRNA水平测定,其中图22显示了TRAC、HLA-A、B2M和CIITA的mRNA水平;其中WT指没有经任何敲除处理的情况,双敲组指TRAC基因和HLA-A基因双基因敲除的T细胞的结果。图23显示的是基因表达的蛋白水平测定,其中图23A-23B分别显示了B2M和CIITA的蛋白表达水平;其中NEG指阴性对照,WT指没有经任何敲除处理的情况,TRAC+HLA-A双敲指TRAC基因和HLA-A基因双基因敲除的T细胞的结果。
实施例14制备TRAC基因、HLA-A/B2M基因和CIITA基因三基因敲除的T细胞并验证其中相应三种基因的表达变化
(1)按照实施例13步骤(1)的方式准备对照组和TRAC基因、HLA-A基因和CIITA基因三基因敲除的细胞,以及TRAC基因、B2M基因和CIITA基因三基因敲除的细胞。
(2)按照实施例13步骤(3)的方式通过FACS和Western Blot方法检测蛋白表达水平变化。
相对于对照组细胞,TRAC、HLA-A和CIITA三基因敲除的T细胞中TRAC、HLA-A和CIITA基因的蛋白表达量下调;相对于对照组细胞,TRAC、B2M和CIITA三基因敲除的T细胞中TRAC、HLA-A和CIITA基因的蛋白表达量下调。
(3)使用TRAC(购自eBioscience,货号:17-9986-42)、HLA-A(购自Merck,货号:17-9876-41)、B2M(购自:Invitrogen,货号:A15770)抗体通过流式细胞术检测实施例13中的双基因敲除细胞和本实施例中的两种三基因敲除细胞的敲除效率,结果显示在单细胞水平同时实现多基因敲除的效率,双基因敲除明显高于三基因敲除。
结果如图24A-24D所示。其中图24A-24C依次为TRAC、HLA-A和B2M蛋白质水平的敲除情况。其中,WT指没有经任何敲除处理的情况,TRAC+HLA-A双敲指TRAC基因和HLA-A基因双基因敲除的T细胞的结果;TRAC+HLA-A+CIITA三敲指TRAC、HLA-A和CIITA三基因敲除的T细胞的结果;其中TRAC+B2M+CIITA三敲指B2M、CIITA和TRAC三基因敲除的T细胞的结果;TRAC+HLA-A敲低指实施例16制备的TRAC基因和HLA-A基因敲低的T细胞的结果。图24D显示了CIITA蛋白质水平的敲除情况。
图24的结果显示,和WT对照组相比,TRAC、HLA-A、CIITA和B2M的蛋白质水平下调。同时,与TRAC+HLA-A+CIITA三敲或TRAC+B2M+CIITA三敲相比,TRAC+HLA-A双敲的敲除效率更高。
实施例15设计反义RNA序列
通过数据库https://www.ncbi.nlm.nih.gov/或www.ensembl.org/,获得相应基因(TRAC基因和HLA-A基因)的转录RNA序列,参考如下原则设计siRNA:
尽量避免起始密码子下游50-100个核苷酸与终止密码子上游100个核苷酸的序列;选择长度小于30个核苷酸的序列;避免4个或以上的连续相同碱基;避免内含子区域;避免重复序列;避免单核苷酸多态性(SNP)位点;序列GC含量30%-60%之间,优先选择序列模式AA(N<sub>19)、NA(N<sub>21)或NAR(N<sub>17)YNN,A为腺苷酸;T为胸腺苷酸;R为腺苷酸或鸟苷酸(嘌呤类);Y为胸腺苷酸或胞苷酸(嘧啶类);N为腺苷酸、胸腺苷酸、鸟苷酸或胞苷酸;对选择的序列进行同源性比较分析,避免反义RNA与其他基因或序列具有显著的同源性,由此造成脱靶效应。同源性分析利用NCBI Blast tool:Nucleotide-nucleotide BLAST(blastn),UCSC Blat tool或Ensembl Blast进行。
设计获得的反义RNA序列包括HLA-A-homo-551;HLA-A-homo-NEG;TRAC-homo-375; TRAC-homo-NEG。
实施例16制备TRAC基因和HLA-A基因敲低的T细胞
利用通过实施例15设计的反义RNA进行双基因敲低。公司制备TRAC基因和HLA-A基因反义RNA序列的慢病毒(吉玛)。按照实施例2的方式制备CD3 +T细胞(D0天),并用CD3/CD28抗体磁珠激活,将携带TRAC基因和HLA-A基因的反义RNA序列的慢病毒转染激活的T细胞(D1天),D2天洗去慢病毒载体,继续培养至D5天。收集培养至D5天的T细胞,通过定量PCR或Western Blot等方法对基因敲低效率进行检测。对获得的T细胞进行相应TRAC和HLA-A抗体标记,通过流式分选或磁珠分选的方式可以得到TRAC基因和HLA-A基因敲低的T细胞。结果显示,TRAC和HLA-A基因敲低组中TRAC和HLA-A的mRNA和蛋白表达水平均下调。其中,图25A-25B依次为TRAC和HLA-A mRNA水平的敲除情况。其中,WT指没有经任何敲除处理的情况,TRAC+HLA-A双敲指TRAC基因和HLA-A基因双基因敲除的T细胞的结果。其中,为TRAC和HLA-A蛋白质水平的敲除水平可以参见图24的结果。
实施例17不同T细胞活性的区别
制备实施例2、12、14和16中的无基因敲除、双基因敲除、三种基因敲除和双基因敲低的T细胞,比较几种T细胞活性各组细胞计数并分别各取1*10 6细胞接种24孔板中,每孔加入PHA(0.3μg/ml)(离子霉素+)或5ng/ml的PMA和50ng/ml的ionomycin于细胞中,继续培养5小时后,使用CD69(早期活化)(购自BD Biosciences,货号:FN50)、CD137(偏晚期)(购自BD Biosciences,货号:4B4-1)抗体,流式检测细胞的活化状态。结果表明,双基因敲除、双基因敲低的T细胞活性优于三基因敲除的T细胞。
CD69和CD137的蛋白质水平表达情况分别参见图26A-26B。其中,WT指没有经任何敲除处理的情况,TRAC+HLA-A双敲指TRAC基因和HLA-A基因双基因敲除的T细胞的结果;TRAC+HLA-A+CIITA三敲指TRAC、HLA-A和CIITA三基因敲除的T细胞的结果;其中TRAC+B2M+CIITA三敲指B2M、CIITA和TRAC三基因敲除的T细胞的结果;TRAC+HLA-A敲低指实施例16制备的TRAC基因和HLA-A基因敲低的T细胞的结果。
实施例18不同T细胞对异体NK细胞反应性的区别
对实施例2、12、14和16中的无基因敲除、双基因敲除、三种基因敲除和双基因敲低的T细胞进行CFSE(invitrogen,C34554)标记,细胞计数,分别取1*10 6细胞并以1:1比例 与NK细胞(NK92MI)进行共培养,24小时后收集共培养的各组细胞,流式细胞检测混合细胞中CFSE阳性细胞的比率。
结果表明,NK细胞对双基因敲除、双基因敲低的T细胞的杀伤毒性低于三基因敲除的T细胞。结果如图27所示。其中,NK+T指将NK细胞与没有经任何敲除处理的T细胞共培养的情况;NK+TRAC+HLA-A敲低指将NK细胞与实施例16制备的TRAC基因和HLA-A基因敲低的T细胞的结果共培养的情况;NK+TRAC+HLA-A双敲指将NK细胞与TRAC基因和HLA-A基因双基因敲除的T细胞共培养的情况;NK+TRAC+HLA-A+CIITA三敲指将NK细胞与TRAC、HLA-A和CIITA三基因敲除的T细胞共培养的情况;NK+TRAC+B2M+CIITA三敲指将NK细胞与B2M、CIITA和TRAC三基因敲除的T细胞共培养的情况。
实施例19不同的T细胞异体免疫排斥反应的区别
供者1来源的外周血制备实施例2、12、14和16中的无基因敲除、双基因敲除、三种基因敲除和双基因敲低的T细胞。供者2来源的外周血制备CD3 +T细胞。将供者1外周血制备的各组细胞分别与供者2外周血按照实施例2制备的CD3 +T细胞等比例混合,24小时后检测细胞混合体系中的IFN-γ的表达水平。结果显示,双基因敲除的T细胞组IFN-γ的表达水平低于三基因敲除的T细胞组。
结果如图28所示,WT指没有经任何敲除处理的情况,TRAC+HLA-A双敲指TRAC基因和HLA-A基因双基因敲除的T细胞的结果;TRAC+HLA-A+CIITA三敲指TRAC、HLA-A和CIITA三基因敲除的T细胞的结果;其中TRAC+B2M+CIITA三敲指B2M、CIITA和TRAC三基因敲除的T细胞的结果;TRAC+HLA-A敲低指实施例16制备的TRAC基因和HLA-A基因敲低的T细胞的结果。
实施例20制备TRAC基因和HLA-A基因双基因敲除的CAR-T细胞,TRAC基因,HLA-A基因和CIITA基因三基因敲除的CAR-T细胞以及TRAC基因,B2M基因和CIITA基因敲除的CAR-T细胞
(1)按照实施例2的方式获得CD3 +T细胞(D0天),并用CD3/CD28抗体磁珠激活,激活后于D1天进行慢病毒载体(包含CD19-CAR、CD20-CAR或BCMA-CAR等的慢病毒)转染,D2天洗去慢病毒载体,D3天对CAR阳性的T细胞进行分选并继续培养至D5天。
(2)取D5天的CAR-T细胞为初始细胞,分别按照实施例12和实施例14中的方式制备TRAC基因和HLA-A基因双基因基因敲除的细胞,TRAC基因、HLA-A基因和CIITA基 因以及TRAC基因、B2M基因和CIITA基因三基因敲除的CAR-T细胞。
(3)通过流式细胞技术检测可得到上述双基因敲除和三基因敲除的CAR-T细胞,其中双基因敲除CAR-T细胞的得率高于三基因敲除CAR-T细胞。
结果如图29A-29D所示。其中,图29A-29C依次为TRAC、HLA-A和B2M蛋白质水平的敲除情况。图29D显示了CIITA蛋白质水平的敲除情况。其中,WT指没有经任何敲除处理的情况,TRAC+HLA-A双敲指TRAC基因和HLA-A基因双基因敲除的CAR-T细胞的结果;TRAC+HLA-A+CIITA三敲指TRAC、HLA-A和CIITA三基因敲除的CAR-T细胞的结果;其中TRAC+B2M+CIITA三敲指B2M、CIITA和TRAC三基因敲除的CAR-T细胞的结果。
其中,CD19CAR的转染效率如图30A-30B所示。其中,CAR30%+即代表CD19CAR的转染效率。
图31显示了不同细胞的扩增倍数。其中,TRAC基因和HLA-A基因双基因基因敲除的CAR-T细胞扩增倍数最高。
实施例21 TRAC基因和HLA-A基因双基因敲除的CAR-T细胞抗肿瘤效果
制备实施例21中的TRAC基因和HLA-A基因双敲除的CAR-T细胞(靶向CD19、CD20或BCMA),接种表达荧光素酶基因的靶细胞(靶基因阳性的白血病或淋巴瘤细胞系,如Raji、Jurkat、MM1S等)至孔板中,再分别以不同效靶比(1∶2.5,1∶1,5:1,10:1)加入双基因敲除的CAR-T细胞、三基因敲除的CAR-T细胞或无基因敲除的T细胞,共培养24小时后将细胞转移至检测孔板中,加入荧光素酶底物,酶标仪检测荧光值。杀伤效率=1-靶细胞T细胞共培养荧光值/单独培养的靶细胞荧光值。
结果显示TRAC基因和HLA-A基因双敲除的CAR-T细胞对肿瘤细胞有显著的杀伤效果。
图32显示了对CD19靶细胞Raji-Luciferase的杀伤效果,其中TRAC基因和HLA-A基因双敲除的CAR-T细胞的杀伤效果最为显著。其中每个E/T比下从左到右依次是A-D的图注所对应的结果。
实施例22 TRAC基因和HLA-A基因双基因敲除的CAR-T细胞抗肿瘤效果
NSG小鼠静脉注射肿瘤细胞,肿瘤成功建立后向小鼠体内回输TRAC基因和HLA-A基因双基因敲除的CAR-T细胞、三基因敲除的CAR-T细胞或无基因敲除的T细胞,监测小鼠肿瘤体积。
回输双基因敲除CAR-T细胞的小鼠,肿瘤生长速度明显减缓。
结果如图33-34所示。其中,图33显示了对小鼠的给药方式,i.v.表示静脉注射,CAR-T细胞代表表达CD19 CAR的双基因敲除的CAR-T细胞、三基因敲除的CAR-T细胞。图34显示了小鼠在施用CAR-T细胞后体内肿瘤的体积情况。其中,图34从左至右列依次显示了分别施用生理盐水、未改造的T细胞、TRAC基因和HLA-A基因双基因敲除的CD19 CAR-T细胞、TRAC、HLA-A和CIITA三基因敲除的CD19 CAR-T细胞、B2M、CIITA和TRAC三基因敲除的CD19 CAR-T细胞后,小鼠体内肿瘤的体积情况。结果发现回输TRAC基因和HLA-A基因双基因敲除的CAR-T细胞的小鼠,肿瘤生长的速度明显减缓。
综上,
1.本申请制备了一种靶向B7H3的嵌合抗原受体,该重组受体的抗原结合域来自纳米抗体,具有分子量小、结构稳定的特点。
2.本申请提供了一种慢病毒表达载体。以pCDH-CMV-MCS-EF1-copGFP为骨架,将载体的氨苄抗性基因β-内酰胺酶替换为源自Tn5的氨基糖苷磷酸转移酶,使载体具有卡那霉素抗性;删除了在体内应用中具有潜在威胁性的CMV启动子及其临近的下游多克隆位点;将原载体中由EF1启动子启动表达的copGFP基因删除,保留SalI酶切位点,并在SalI 5’端加入SmaI酶切位点供载体构建用,形成最终目的载体。
3.本申请优化了蛋白质RNA复合体电转染技术。获得了原代T细胞中90%以上的双基因敲除效率。
4.本申请供者来源基于人群中高频出现的HLA-B纯合子,患者HLA-B其中一个等位基因和供者纯合子一致即可,来源于这些供者的细胞能覆盖高数量的患者人群,且能够降低HLA-B引起的排异反应。
5.本申请筛选出了与排异高度相关的HLA-A分子进行敲除,而保留了其他HLA-I类分子,既减少了异体细胞的排异,也避免了HLA分子完全敲除被NK细胞清除的发生,大大延长了同种异体CAR-T细胞在体内的半衰期。
6.本申请首次构建了高效率双敲除TCR,HLA-A的anti-B7H3-UCAR-T细胞,做到一种安全型货架式即用型治疗剂,提高抗肿瘤效果,用于包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌,子宫内膜癌等疾病的治疗。

Claims (126)

  1. 抗原结合多肽,其包含抗体重链可变区(VH)的至少一个互补决定区(CDR),所述VH包含SEQ ID NO:25所示的氨基酸序列。
  2. 根据权利要求1所述的抗原结合多肽,所述VH包含SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28或SEQ ID NO:29所示的氨基酸序列。
  3. 根据权利要求1-2中任一项所述的抗原结合多肽,其包含VH,所述VH包含重链互补决定区1(HCDR1)、重链互补决定区2(HCDR2)和重链互补决定区3(HCDR3),所述HCDR3包含SEQ ID NO:7所示的氨基酸序列。
  4. 根据权利要求3所述的抗原结合多肽,所述HCDR3包含SEQ ID NO:8或SEQ ID NO:9所示的氨基酸序列。
  5. 根据权利要求3-4中任一项所述的抗原结合多肽,所述HCDR2包含SEQ ID NO:4所示的氨基酸序列。
  6. 根据权利要求3-5中任一项所述的抗原结合多肽,所述HCDR2包含SEQ ID NO:5或SEQ ID NO:6所示的氨基酸序列。
  7. 根据权利要求3-6中任一项所述的抗原结合多肽,所述HCDR1包含SEQ ID NO:1所示的氨基酸序列。
  8. 根据权利要求3-7中任一项所述的抗原结合多肽,所述HCDR1包含SEQ ID NO:2或SEQ ID NO:3所示的氨基酸序列。
  9. 根据权利要求3-8中任一项所述的抗原结合多肽,所述VH包含:包含SEQ ID NO:1所示的氨基酸序列的HCDR1、包含SEQ ID NO:4所示的氨基酸序列的HCDR2和包含SEQ ID NO:7所示的氨基酸序列的HCDR3。
  10. 根据权利要求3-9中任一项所述的抗原结合多肽,所述VH包含:
    i)包含SEQ ID NO:2所示的氨基酸序列的HCDR1、包含SEQ ID NO:5示的氨基酸序列的HCDR2和包含SEQ ID NO:8所示的氨基酸序列的HCDR3;或
    ii)包含SEQ ID NO:3所示的氨基酸序列的HCDR1、包含SEQ ID NO:6所示的氨基酸序列的HCDR2和包含SEQ ID NO:9所示的氨基酸序列的HCDR3。
  11. 根据权利要求3-10中任一项所述的抗原结合多肽,所述VH包含重链框架区1(HFR1)、重链框架区2(HFR2)、重链框架区3(HFR3)和重链框架区4(HFR4),所述HFR1包含SEQ ID NO:10所示的氨基酸序列。
  12. 根据权利要求11所述的抗原结合多肽,所述HFR1包含SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13或SEQ ID NO:14所示的氨基酸序列。
  13. 根据权利要求11-12中任一项所述的抗原结合多肽,所述HFR2包含SEQ ID NO:15所示的氨基酸序列。
  14. 根据权利要求11-13中任一项所述的抗原结合多肽,所述HFR2包含SEQ ID NO:16或SEQ ID NO:17所示的氨基酸序列。
  15. 根据权利要求11-14中任一项所述的抗原结合多肽,所述HFR3包含SEQ ID NO:18所示的氨基酸序列。
  16. 根据权利要求11-15中任一项所述的抗原结合多肽,所述HFR3包含SEQ ID NO:19、SEQ ID NO:20或SEQ ID NO:21所示的氨基酸序列。
  17. 根据权利要求11-16中任一项所述的抗原结合多肽,所述HFR4包含SEQ ID NO:22所示的氨基酸序列。
  18. 根据权利要求11-17中任一项所述的抗原结合多肽,所述HFR4包含SEQ ID NO:23或SEQ ID NO:24所示的氨基酸序列。
  19. 根据权利要求3-18中任一项所述的抗原结合多肽,所述VH包含HFR1、HFR2、HFR3和HFR4,且所述HFR1、HFR2、HFR3和HFR4选自:
    i)包含SEQ ID NO:11所示的氨基酸序列的HFR1,包含SEQ ID NO:16所示的氨基酸序列的HFR2,包含SEQ ID NO:19所示的氨基酸序列的HFR3,包含SEQ ID NO:23所示的氨基酸序列的HFR4;
    ii)包含SEQ ID NO:12所示的氨基酸序列的HFR1,包含SEQ ID NO:16所示的氨基酸序列的HFR2,包含SEQ ID NO:20所示的氨基酸序列的HFR3,包含SEQ ID NO:24所示的氨基酸序列的HFR4;
    iii)包含SEQ ID NO:13所示的氨基酸序列的HFR1,包含SEQ ID NO:17所示的氨基酸序列的HFR2,包含SEQ ID NO:21所示的氨基酸序列的HFR3,包含SEQ ID NO:23所示的氨基酸序列的HFR4;
    vi)包含SEQ ID NO:14所示的氨基酸序列的HFR1,包含SEQ ID NO:17所示的氨基酸序列的HFR2,包含SEQ ID NO:20所示的氨基酸序列的HFR3,包含SEQ ID NO:24所示的氨基酸序列的HFR4。
  20. 根据权利要求3-19中任一项所述的抗原结合多肽,所述VH包含SEQ ID NO:25所示的氨基酸序列。
  21. 根据权利要求3-20中任一项所述的抗原结合多肽,所述VH包含SEQ ID NO:26、SEQ ID NO:27、SEQ ID NO:28或SEQ ID NO:29所示的氨基酸序列。
  22. 根据权利要求1-21中任一项所述的抗原结合多肽,所述抗原结合多肽包括抗体或其抗原结合片段。
  23. 根据权利要求22所述的抗原结合多肽,所述抗体包括单克隆抗体、多克隆抗体、二聚体、多聚体、多特异性抗体、完整抗体、抗体片段、人抗体、人源化抗体或嵌合抗体。
  24. 根据权利要求22-23中任一项所述的抗原结合多肽,所述抗原结合片段包括Fab片段,Fv片段,F(ab’)2,单链Fv(scFv)或单域抗体(VHH)。
  25. 嵌合抗原受体(CAR),其包含靶向部分,其中所述靶向部分包含权利要求1-24中任一项所述的抗原结合多肽。
  26. 根据权利要求25所述的嵌合抗原受体,其中所述靶向部分包括VHH。
  27. 根据权利要求25-26中任一项所述的嵌合抗原受体,其包括跨膜域,所述跨膜域包含源自选自下组中的一种或多种蛋白的跨膜域:CD8A、CD8B、CD28、CD3ε(CD3e)、4-1BB、CD4、CD27、CD7、PD-1、TRAC、TRBC、CD3ζ、CTLA-4、LAG-3、CD5、ICOS、OX40、NKG2D、2B4(CD244)、FcεRIγ、BTLA、CD30、GITR、HVEM、DAP10、CD2、NKG2C、LIGHT、DAP12,CD40L(CD154)、TIM1、CD226、DR3、CD45、CD80、CD86、CD9、CD16、CD22、CD33、CD37、CD64和SLAM。
  28. 根据权利要求27所述的嵌合抗原受体,其中所述跨膜域包含源自CD8A的跨膜域。
  29. 根据权利要求27-28中任一项所述的嵌合抗原受体,其中所述跨膜域包含SEQ ID NO:42至SEQ ID NO:90中任一项所示的氨基酸序列。
  30. 根据权利要求25-29中任一项所述的嵌合抗原受体,其包括胞内共刺激信号传导结构域,所述胞内共刺激信号传导结构域包含源自选自下组中的一种或多种蛋白的胞内共刺激信号传导结构域:CD28、CD137、CD27、CD2、CD7、CD8A、CD8B、OX40、CD226、DR3、SLAM、CDS、ICAM-1、NKG2D、NKG2C、B7H3、2B4、FcεRIγ、BTLA、GITR、HVEM、DAP10、DAP12、CD30、CD40、CD40L、TIM1、PD-1、LFA-1、LIGHT、JAML、CD244、CD100、ICOS、CD40和MyD88。
  31. 根据权利要求30所述的嵌合抗原受体,其中所述胞内共刺激信号传导结构域源自4-1BB的共刺激信号传导结构域。
  32. 根据权利要求30-31中任一项所述的嵌合抗原受体,其中所述胞内共刺激信号传导结构域包含SEQ ID NO:91至SEQ ID NO:123中任一项所示的氨基酸序列。
  33. 根据权利要求25-32中任一项所述的嵌合抗原受体,其包括胞内信号转导结构域,所述胞内信号转导结构域包含源自选自下组中的一种或多种蛋白的胞内信号转导结构域: CD3ζ、CD3δ、CD3γ、CD3ε、CD79a、CD79b、FceRIγ、FceRIβ、FcγRIIa、牛白血病病毒gp30、Epstein-Barr病毒(EBV)LMP2A、猿免疫缺陷病毒PBj14 Nef、DAP10、DAP-12和至少包含一个ITAM的结构域。
  34. 根据权利要求33所述的嵌合抗原受体,其中所述胞内信号转导结构域包含源自CD3ζ的信号传导结构域。
  35. 根据权利要求33-34中任一项所述的嵌合抗原受体,其中所述胞内信号转导结构域包含SEQ ID NO:107、SEQ ID NO:111、SEQ ID NO:112、SEQ ID NO:124至SEQ ID NO:134中任一项所示的氨基酸序列。
  36. 根据权利要求27-35中任一项所述的嵌合抗原受体,其在靶向部分和跨膜域之间包括铰链区,所述铰链区包含源自选自下组中的一种或多种蛋白的铰链区:CD28、IgG1、IgG4、IgD、4-1BB、CD4、CD27、CD7、CD8A、PD-1、ICOS、OX40、NKG2D、NKG2C、FcεRIγ、BTLA、GITR、DAP10、TIM1、SLAM、CD30和LIGHT。
  37. 根据权利要求36所述的嵌合抗原受体,所述铰链区包含源自CD8A的铰链区。
  38. 根据权利要求36-37中任一项所述的嵌合抗原受体,所述铰链区包含SEQ ID NO:135至SEQ ID NO:156中任一项所示的氨基酸序列。
  39. 根据权利要求25-38所述的嵌合抗原受体,所述嵌合抗原受体的非靶向部分包含CD8A分子跨膜域、CD8A的铰链区、4-1BB的胞内共刺激信号传导结构域和CD3ζ胞内信号传导结构域。
  40. 根据权利要求25-39所述的嵌合抗原受体,所述嵌合抗原受体的非靶向部分包含SEQ ID NO:30所示的氨基酸序列。
  41. 根据权利要求25-40中任一项所述的嵌合抗原受体,其还包含信号肽片段,所述信号肽片段的C端与所述靶向部分的N端连接。
  42. 根据权利要求41所述的嵌合抗原受体,所述信号肽片段包括CD8A信号肽片段。
  43. 根据权利要求41-42所述的嵌合抗原受体,所述信号肽片段包含如SEQ ID NO:31所示的氨基酸序列。
  44. 根据权利要求25-43中任一项所述的嵌合抗原受体,其包含SEQ ID NO:32,SEQ ID NO:33,SEQ ID NO:34和SEQ ID NO:35中任一项所示的氨基酸序列。
  45. 一种或多种分离的核酸分子,其编码权利要求1-24中任一项所述的抗原结合多肽,或权利要求25-44中任一项所述的嵌合抗原受体。
  46. 根据权利要求45所述的分离的核酸分子,其包含SEQ ID NO:36,SEQ ID NO:37,SEQ ID NO:38和SEQ ID NO:39中任一项所示的核苷酸序列。
  47. 载体,其包含权利要求45-46中任一项所述的分离的核酸分子。
  48. 根据权利要求47所述的载体,其中所述载体是表达载体。
  49. 根据权利要求47-48中任一项述的载体,其中所述载体选自DNA载体、RNA载体、质粒、慢病毒载体、腺病毒载体、腺相关病毒载体和逆转录病毒载体。
  50. 细胞,其i)包含权利要求45-46中任一项所述的分离的核酸分子或权利要求47-49中任一项所述的载体;和/或ii)表达权利要求1-24中任一项所述的抗原结合多肽或权利要求25-44中任一项所述的嵌合抗原受体。
  51. 免疫效应细胞,其包含权利要求45-46中任一项所述的核酸分子或权利要求47-49中任一项所述的载体,和/或表达权利要求25-44中任一项所述的CAR。
  52. 根据权利要求51所述的免疫效应细胞,所述的免疫效应细胞包括人细胞。
  53. 根据权利要求51-52中任一项所述的免疫效应细胞,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
  54. 根据权利要求51-53中任一项所述的免疫效应细胞,所述免疫效应细胞包括自体或非自体的免疫效应细胞。
  55. 根据权利要求51-54中任一项所述的免疫效应细胞,所述的免疫效应细胞包括经修饰的免疫效应细胞。
  56. 根据权利要求55所述的免疫效应细胞,其中所述经修饰的免疫效应细胞包括降低同种异体细胞治疗引起的免疫排斥反应的细胞。
  57. 根据权利要求55-56中任一项所述的免疫效应细胞,其中所述经修饰的免疫效应细胞中的T细胞抗原受体(TCR)和主要组织相容性复合体(MHCI,MHCII)在T细胞中的功能受到抑制。
  58. 根据权利要求55-57中任一项所述的免疫效应细胞,其中所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
  59. 根据权利要求58所述的免疫效应细胞,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC、HLA-A、HLA-B、B2M和CIITA。
  60. 根据权利要求55-59中任一项所述的免疫效应细胞,所述经修饰的免疫效应细胞与未经修饰的相应细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调。
  61. 根据权利要求55-60中任一项所述的免疫效应细胞,其中所述经修饰的免疫效应细胞与未经所述修饰的相应细胞相比,CIITA基因的表达和/或活性未被下调。
  62. 根据权利要求55-61中任一项所述的免疫效应细胞,其中所述经修饰的免疫效应细胞与未经所述修饰的相应细胞相比,B2M基因的表达和/或活性未被下调。
  63. 根据权利要求55-62中任一项所述的免疫效应细胞,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,TRAC基因和HLA-A基因的表达和/或活性被下调。
  64. 根据权利要求55-63中任一项所述的免疫效应细胞,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,B2M基因的表达和/或活性未被下调。
  65. 根据权利要求55-64中任一项所述的免疫效应细胞,其中所述经修饰的免疫效应细胞与相应的野生型细胞相比,CIITA基因的表达和/或活性未被下调。
  66. 根据权利要求55-65中任一项所述的免疫效应细胞,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
  67. 根据权利要求55-66中任一项所述的免疫效应细胞,其中所述修饰包括:基因敲除、基因突变和/或基因沉默。
  68. 根据权利要求55-67中任一项所述的免疫效应细胞,所述修饰包括所述免疫效应细胞中两个TRAC等位基因中的任意一个被敲除并且两个HLA-A等位基因中的任意一个被敲除。
  69. 根据权利要求55-68中任一项所述的免疫效应细胞,所述修饰包括所述免疫细胞中两个TRAC等位基因被敲除并且两个HLA-A等位基因中的任意一个被敲除。
  70. 根据权利要求55-69中任一项所述的免疫效应细胞,所述修饰包括所述免疫细胞中TRAC基因外显子被敲除并且HLA-A基因外显子被敲除。
  71. 根据权利要求55-70中任一项所述的免疫效应细胞,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
  72. 根据权利要求55-71中任一项所述的免疫效应细胞,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
  73. 根据权利要求72所述的免疫效应细胞,其中所述修饰还包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
  74. 根据权利要求73所述的免疫效应细胞,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
  75. 根据权利要求72-74中任一项所述的免疫效应细胞,其中所述修饰包括向所述免疫效应细 胞施用靶向所述HLA-A基因外显子部分的sgRNA。
  76. 根据权利要求75所述的免疫效应细胞,其中所述靶向所述HLA-A基因外显子部分的sgRNA包含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
  77. 根据权利要求72-76中任一项所述的免疫效应细胞,其中所述修饰还包括向所述细胞施用Cas酶。
  78. 根据权利要求77所述的免疫效应细胞,其中Cas酶包括Cas9蛋白。
  79. 根据权利要求71所述的免疫效应细胞,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
  80. 根据权利要求51-79中任一项所述的免疫效应细胞,其中所述免疫效应细胞为HLA-B纯合子细胞。
  81. 根据权利要求80所述的免疫效应细胞,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
  82. 根据权利要求51-81中任一项所述的免疫效应细胞,其中所述免疫效应细胞为HLA-A纯合子或杂合子细胞。
  83. 根据权利要求82所述的免疫效应细胞,其中所述HLA-A纯合子或杂合子包括HLA-A*02纯合子,HLA-A*11纯合子,HLA-A*02/A*11杂合子或HLA-A*24纯合子。
  84. 一种制备免疫效应细胞的方法,其包括向免疫效应细胞中引入权利要求45-46中任一项所述的核酸分子或权利要求47-49中任一项所述的载体。
  85. 根据权利要求84所述的方法,其还包括:在向免疫效应细胞中引入权利要求45-46中任一项所述的核酸分子或权利要求47-49中任一项所述的载体之前/之后,修饰所述免疫效应细胞,所述修饰包括与免疫排斥相关基因中的一个或多个的表达和/或活性被下调。
  86. 根据权利要求85所述的方法,其中所述与免疫排斥相关基因选自下组中的一种或多种基因:TRAC、TRBC、HLA-A、HLA-B、B2M和CIITA。
  87. 根据权利要求85-86中任一项所述的方法,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,下调所述免疫效应细胞中TRAC基因和HLA-A基因的表达和/或活性。
  88. 根据权利要求85-87中任一项所述的方法,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,CIITA基因的表达和/或活性未被下调。
  89. 根据权利要求85-88中任一项所述的方法,与未经所述修饰的相应细胞中相应基因的表达和/或活性相比,B2M基因的表达和/或活性未被下调。
  90. 根据权利要求85-89中任一项所述的方法,与相应的野生型细胞相比,所述免疫效应细胞的TRAC基因和HLA-A基因的表达和/或活性被下调。
  91. 根据权利要求85-90中任一项所述的方法,与相应的野生型细胞相比,CIITA基因的表达和/或活性未被下调。
  92. 根据权利要求85-91中任一项所述的方法,与相应的野生型细胞相比,B2M基因的表达和/或活性未被下调。
  93. 根据权利要求85-92中任一项所述的方法,其中所述基因的表达水平和/或活性被下调包括使编码所述基因的核酸分子的表达和/或活性下调;和/或使所述基因编码的蛋白质产物的表达和/或活性被下调。
  94. 根据权利要求85-93中任一项所述的方法,其中所述修饰包括:基因敲除、基因突变和/或基因沉默。
  95. 根据权利要求85-94中任一项所述的方法,所述修饰包括所述免疫效应细胞中两个TRAC等位基因中的任意一个被敲除并且两个HLA-A等位基因中的任意一个被敲除。
  96. 根据权利要求85-95中任一项所述的方法,所述修饰包括所述免疫细胞中两个TRAC等位基因被敲除并且两个HLA-A等位基因中的任意一个被敲除。
  97. 根据权利要求85-96中任一项所述的方法,所述修饰包括所述免疫细胞中TRAC基因外显子被敲除并且HLA-A基因外显子被敲除。
  98. 根据权利要求85-97中任一项所述的方法,其中所述修饰包括向所述免疫效应细胞施用一种或多种选自下组的物质:反义RNA、siRNA、shRNA和CRISPR/Cas9系统。
  99. 根据权利要求85-98中任一项所述的方法,其中所述修饰包括向所述免疫效应细胞施用CRISPR/Cas9系统。
  100. 根据权利要求99所述的方法,其中所述修饰包括向所述免疫效应细胞施用靶向所述TRAC基因外显子部分的sgRNA。
  101. 根据权利要求100所述的方法,其中所述靶向所述TRAC基因外显子部分的sgRNA包含SEQ ID NO:157至SEQ ID NO:171中任一项所示的核苷酸序列。
  102. 根据权利要求99-101中任一项所述的方法,其中所述修饰包括向所述免疫效应细胞施用靶向所述HLA-A基因外显子部分的sgRNA。
  103. 根据权利要求102所述的方法,其中所述靶向所述HLA-A基因外显子部分的sgRNA包 含SEQ ID NO:172至SEQ ID NO:212中任一项所示的核苷酸序列。
  104. 根据权利要求99-103任一项所述的方法,其中所述修饰还包括向所述细胞施用Cas酶。
  105. 根据权利要求104所述的方法,其中Cas酶包括Cas9蛋白。
  106. 根据权利要求98所述的方法,其中所述反义RNA包含SEQ ID NO:213至SEQ ID NO:216中任一项所示的核苷酸序列。
  107. 根据权利要求84-106中任一项所述的方法,其中所述免疫效应细胞包括人细胞。
  108. 根据权利要求84-107中任一项所述的方法,所述免疫效应细胞包括T细胞、B细胞、天然杀伤细胞(NK细胞)、巨噬细胞、NKT细胞、单核细胞、树突状细胞、粒细胞、淋巴细胞、白细胞和/或外周血单个核细胞。
  109. 根据权利要求84-108中任一项所述的方法,所述免疫效应细胞包括自体或非自体的免疫效应细胞。
  110. 根据权利要求84-109中任一项所述的方法,其中所述细胞为HLA-B纯合子细胞。
  111. 根据权利要求110所述的方法,其中所述HLA-B纯合子包括HLA-B*40纯合子,HLA-B*15纯合子,HLA-B*46纯合子,HLA-B*13纯合子,HLA-B*51纯合子,HLA-B*58纯合子,HLA-B*07纯合子,HLA-B*35纯合子,HLA-B*44纯合子,HLA-B*52纯合子,HLA-B*57纯合子,HLA-B*54纯合子,HLA-B*55纯合子。
  112. 根据权利要求84-111所述的方法,其中所述细胞为HLA-A纯合子或杂合子细胞。
  113. 根据权利要求112所述的方法,其中所述HLA-A纯合子或杂合子包括HLA-A*02纯合子,HLA-A*11纯合子,HLA-A*02/A*11杂合子或HLA-A*24纯合子。
  114. 权利要求25-44中任一项所述的嵌合抗原受体,权利要求45-46中任一项所述的分离的核酸分子,权利要求47-49中任一项所述的载体,权利要求50所述的细胞,或权利要求51-83中任一项所述的免疫效应细胞在制备CAR-T细胞中的应用。
  115. 药物组合物,其包含权利要求1-24中任一项所述的抗原结合多肽,权利要求25-44中任一项所述的嵌合抗原受体,权利要求45-46中任一项所述的分离的核酸分子,权利要求47-49中任一项所述的载体,权利要求50所述的细胞,和/或权利要求51-83中任一项所述的免疫效应细胞,以及任选地药学上可接受的载剂。
  116. 权利要求1-24中任一项所述的抗原结合多肽,权利要求25-44中任一项所述的嵌合抗原受体,权利要求45-46中任一项所述的分离的核酸分子,权利要求47-49中任一项所述的载体,权利要求50所述的细胞,和权利要求51-83中任一项所述的免疫效应细胞,和/或权利要求115所述的药物组合物,其用于治疗与B7H3的表达相关的疾病或病症。
  117. 根据权利要求116所述的用途,其中所述与B7H3的表达相关的疾病或病症包括与B7H3的表达上调相关的疾病或病症。
  118. 根据权利要求116-117中任一项所述的用途,其中所述与B7H3的表达相关的疾病或病症包括癌症。
  119. 根据权利要求118所述的用途,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
  120. 权利要求1-24中任一项所述的抗原结合多肽,权利要求25-44中任一项所述的嵌合抗原受体,权利要求45-46中任一项所述的分离的核酸分子,权利要求47-49中任一项所述的载体,权利要求50所述的细胞,和权利要求51-83中任一项所述的免疫效应细胞,和/或权利要求115所述的药物组合物在制备药物中的用途,所述药物用于治疗癌症。
  121. 根据权利要求120所述的用途,其中所述癌症包括B7H3阳性的癌症。
  122. 根据权利要求122所述的用途,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
  123. 预防或治疗与B7H3的表达相关的疾病或病症的方法,其包括向有需要的受试者施用有效量的权利要求1-24中任一项所述的抗原结合多肽,权利要求25-44中任一项所述的嵌合抗原受体,权利要求45-46中任一项所述的分离的核酸分子,权利要求47-49中任一项所述的载体,权利要求50所述的细胞,和权利要求51-83中任一项所述的免疫效应细胞,和/或权利要求115所述的药物组合物。
  124. 根据权利要求124所述的方法,其中所述与B7H3的表达相关的疾病或病症包括与B7H3的表达上调相关的疾病或病症。
  125. 根据权利要求124-125中任一项所述的方法,其中所述与B7H3的表达相关的疾病或病症包括癌症。
  126. 根据权利要求126所述的方法,其中所述癌症包括肾上腺皮质癌,膀胱癌,乳腺癌,胆管癌,结直肠癌,淋巴瘤,食管癌,脑胶质瘤,头颈鳞癌,肾癌,肝癌,肺癌,卵巢癌,胰腺癌,前列腺癌,肉瘤,黑色素瘤,胃癌,胸腺癌或子宫内膜癌。
PCT/CN2022/103070 2021-07-01 2022-06-30 靶向b7h3的抗原结合多肽及其应用 WO2023274384A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3224476A CA3224476A1 (en) 2021-07-01 2022-06-30 Antigen-binding polypeptide targeting b7h3 and application thereof
EP22832196.4A EP4365203A1 (en) 2021-07-01 2022-06-30 Antigen-binding polypeptide targeting b7h3 and application thereof
JP2023580778A JP2024527557A (ja) 2021-07-01 2022-06-30 B7h3を標的とする抗原結合ポリペプチド及びその応用
US18/575,650 US12133890B2 (en) 2021-07-01 2022-06-30 Antigen-binding polypeptide targeting B7H3 and application thereof
CN202280004519.XA CN115916833B (zh) 2021-07-01 2022-06-30 靶向b7h3的抗原结合多肽及其应用
KR1020247003777A KR20240027117A (ko) 2021-07-01 2022-06-30 B7h3을 표적으로 하는 항원 결합 폴리펩티드 및 이의 응용
AU2022301099A AU2022301099A1 (en) 2021-07-01 2022-06-30 Antigen-binding polypeptide targeting b7h3 and application thereof
MX2023015153A MX2023015153A (es) 2021-07-01 2022-06-30 Polipéptido de unión a antígeno que se dirige a b7h3 y aplicación del mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110749481.6 2021-07-01
CN202110749481 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023274384A1 true WO2023274384A1 (zh) 2023-01-05

Family

ID=84690474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103070 WO2023274384A1 (zh) 2021-07-01 2022-06-30 靶向b7h3的抗原结合多肽及其应用

Country Status (8)

Country Link
EP (1) EP4365203A1 (zh)
JP (1) JP2024527557A (zh)
KR (1) KR20240027117A (zh)
CN (1) CN115916833B (zh)
AU (1) AU2022301099A1 (zh)
CA (1) CA3224476A1 (zh)
MX (1) MX2023015153A (zh)
WO (1) WO2023274384A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117924518A (zh) * 2024-01-05 2024-04-26 苏州艾凯利元生物科技有限公司 用于nk细胞的嵌合抗原受体及工程化的nk细胞
WO2024094165A1 (zh) * 2022-11-04 2024-05-10 茂行制药(苏州)有限公司 靶向b7h3的通用型car-t细胞及其制备方法和应用
WO2024193450A1 (en) * 2023-03-17 2024-09-26 Beigene Switzerland Gmbh Anti-b7h3 antibodies and methods of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048193A2 (en) * 2000-12-13 2002-06-20 Unilever N.V. Camelidae antibody arrays
WO2009068631A1 (en) * 2007-11-27 2009-06-04 Ablynx N.V. Method for obtaining polypeptide constructs comprising two or more single domain antibodies
WO2014072888A1 (en) 2012-11-07 2014-05-15 Pfizer Inc. Anti-il-13 receptor alpha 2 antibodies and antibody-drug conjugates
WO2020076970A1 (en) * 2018-10-11 2020-04-16 Inhibrx, Inc. B7h3 single domain antibodies and therapeutic compositions thereof
WO2021041725A1 (en) 2019-08-27 2021-03-04 The Trustees Of The Univeristy Of Pennsylvania SYNTHETIC CARS TO TREAT IL13Rα2 POSITIVE HUMAN AND CANINE TUMORS
WO2021081052A1 (en) * 2019-10-22 2021-04-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity nanobodies targeting b7h3 (cd276) for treating multiple solid tumors
CN113061580A (zh) * 2020-01-02 2021-07-02 江苏茂行科技有限公司 一种经修饰的免疫效应细胞及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048193A2 (en) * 2000-12-13 2002-06-20 Unilever N.V. Camelidae antibody arrays
WO2009068631A1 (en) * 2007-11-27 2009-06-04 Ablynx N.V. Method for obtaining polypeptide constructs comprising two or more single domain antibodies
WO2014072888A1 (en) 2012-11-07 2014-05-15 Pfizer Inc. Anti-il-13 receptor alpha 2 antibodies and antibody-drug conjugates
WO2020076970A1 (en) * 2018-10-11 2020-04-16 Inhibrx, Inc. B7h3 single domain antibodies and therapeutic compositions thereof
WO2021041725A1 (en) 2019-08-27 2021-03-04 The Trustees Of The Univeristy Of Pennsylvania SYNTHETIC CARS TO TREAT IL13Rα2 POSITIVE HUMAN AND CANINE TUMORS
WO2021081052A1 (en) * 2019-10-22 2021-04-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services High affinity nanobodies targeting b7h3 (cd276) for treating multiple solid tumors
CN113061580A (zh) * 2020-01-02 2021-07-02 江苏茂行科技有限公司 一种经修饰的免疫效应细胞及其制备方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877 - 883
CHOTHIALESK, J. MOL. BIOL., vol. 196, 1987, pages 901 - 917
FASEB J., vol. 9, 1995, pages 133 - 139
HUSTON ET AL.: "Protein Engineering of Antibody Binding Sites: Recovery of Specific Activity in an Anti-Digoxin Single-Chain Fv Analogue Produced in Escherichia coli", PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883, XP000872837, DOI: 10.1073/pnas.85.16.5879
KANG XIAOZHEN ET AL., CHINESE JOURNAL OF BIOTECHNOLOGY, vol. 34, no. 12, 2018, pages 1974 - 1984
LEE, M. ET AL.: "Advanced Genetic Engineering to Achieve In Vivo Targeting of Adenovirus Utilizing Camelid Single Domain Antibody", JOURNAL OF CONTROLLED RELEASE, vol. 334, 16 April 2021 (2021-04-16), XP086603144, DOI: 10.1016/j.jconrel.2021.04.009 *
MACCALLUM, J MOL BIOL, vol. 262, no. 5, 1996, pages 732 - 45
MILLER ET AL., JOUR, OF IMMUNOLOGY, vol. 170, 2003, pages 4854 - 4861
MUYLDERMANS S., JBIOTECHNOL., vol. 74, 2001, pages 277 - 302
NGUYEN V.K. ET AL., THE EMBO JOURNAL, vol. 19, 2000, pages 921 - 930
P. ET AL., ANTIVIRAL RESEARCH, vol. 92, 2011, pages 389 - 407
TANG XIN, WANG YUELONG, HUANG JIANHAN, ZHANG ZONGLIANG, LIU FUJUN, XU JIANGUO, GUO GANG, WANG WEI, TONG AIPING, ZHOU LIANGXUE: "Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma", SIGNAL TRANSDUCTION AND TARGETED THERAPY, vol. 6, no. 1, XP093018820, DOI: 10.1038/s41392-021-00505-7 *
WARD ET AL.: "Binding Activities of a Repertoire of Single Immunoglobulin Variable Domains Secreted From Escherichia coli", NATURE, vol. 341, 1989, pages 544 - 546
ZHANG GUIZHEN, YU ZUJIANG; HAN SHUANGYIN: "Progress in B7-H3 targeted CAR-T cells for immunotherapy of solid tumors", ZHONGGUO MIANYIXUE ZAZHI = CHINESE JOURNAL OF IMMUNOLOGY, JILIN SHENG YIXUE QIKANSHE, CN, 23 June 2021 (2021-06-23), CN , pages 2650 - 2655, XP093018819, ISSN: 1000-484X, DOI: 10.3969/j.issn.1000-484X.2022.21.018 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024094165A1 (zh) * 2022-11-04 2024-05-10 茂行制药(苏州)有限公司 靶向b7h3的通用型car-t细胞及其制备方法和应用
WO2024193450A1 (en) * 2023-03-17 2024-09-26 Beigene Switzerland Gmbh Anti-b7h3 antibodies and methods of use
CN117924518A (zh) * 2024-01-05 2024-04-26 苏州艾凯利元生物科技有限公司 用于nk细胞的嵌合抗原受体及工程化的nk细胞

Also Published As

Publication number Publication date
CN115916833B (zh) 2023-10-03
MX2023015153A (es) 2024-04-16
JP2024527557A (ja) 2024-07-25
CN115916833A (zh) 2023-04-04
CA3224476A1 (en) 2023-01-05
AU2022301099A1 (en) 2024-02-15
US20240269283A1 (en) 2024-08-15
EP4365203A1 (en) 2024-05-08
KR20240027117A (ko) 2024-02-29

Similar Documents

Publication Publication Date Title
US20210246423A1 (en) Methods for improving the efficacy and expansion of immune cells
US20230355673A1 (en) Chimeric antigen receptors targeting tim-1
US11028177B2 (en) Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells
US20210347851A1 (en) Cd19 chimeric antigen receptor (car) and cd22 car combination therapies
US20220047633A1 (en) Cd22 chimeric antigen receptor (car) therapies
TW202134264A (zh) 嵌合抗原受體及其用途
WO2023274384A1 (zh) 靶向b7h3的抗原结合多肽及其应用
CN111566124A (zh) 制备表达嵌合抗原受体的细胞的方法
WO2021136263A1 (zh) 一种经修饰的免疫效应细胞及其制备方法
KR20220026586A (ko) 암 치료를 위한 키메라 항원 수용체 t세포 및 nk세포 억제제의 용도
WO2024094165A1 (zh) 靶向b7h3的通用型car-t细胞及其制备方法和应用
KR20230051677A (ko) 메소텔린 양성 암을 치료하기 위한 조성물 및 방법
WO2023274385A1 (zh) 靶向her2的通用型car-t细胞及其制备方法
WO2023274380A1 (zh) 靶向IL13Rα2的通用型CAR-T细胞及其制备方法和应用
WO2023274387A1 (zh) 靶向gd2的通用型car-t细胞及其制备方法和应用
TW202214846A (zh) 用於治療egfr陽性癌症之組合物及方法
US12133890B2 (en) Antigen-binding polypeptide targeting B7H3 and application thereof
WO2023274386A1 (zh) 靶向egfr的通用型car-t细胞及其制备方法
CN118271440A (zh) 靶向IL13Rα2的抗体以及靶向IL13Rα2的免疫效应细胞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/015153

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2023580778

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12023553553

Country of ref document: PH

Ref document number: 202393549

Country of ref document: EA

Ref document number: 3224476

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20247003777

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022832196

Country of ref document: EP

Ref document number: AU2022301099

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022832196

Country of ref document: EP

Effective date: 20240201

ENP Entry into the national phase

Ref document number: 2022301099

Country of ref document: AU

Date of ref document: 20220630

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11202309897V

Country of ref document: SG