WO2023274336A1 - Wi-Fi定位方法和系统 - Google Patents

Wi-Fi定位方法和系统 Download PDF

Info

Publication number
WO2023274336A1
WO2023274336A1 PCT/CN2022/102585 CN2022102585W WO2023274336A1 WO 2023274336 A1 WO2023274336 A1 WO 2023274336A1 CN 2022102585 W CN2022102585 W CN 2022102585W WO 2023274336 A1 WO2023274336 A1 WO 2023274336A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
frame
frequency
information
time
Prior art date
Application number
PCT/CN2022/102585
Other languages
English (en)
French (fr)
Inventor
王旭
展睿
孟祥雷
符运生
Original Assignee
乐鑫信息科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐鑫信息科技(上海)股份有限公司 filed Critical 乐鑫信息科技(上海)股份有限公司
Publication of WO2023274336A1 publication Critical patent/WO2023274336A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to wireless positioning technology, in particular to a Wi-Fi positioning method and system.
  • indoor positioning mainly uses signals such as Wi-Fi, Bluetooth, UWB, LoRA, ultrasound, and infrared.
  • the technical means used for positioning mainly include RSSI, AoA, ToA/TDoA, Wi-Fi fingerprint (Fingerprint), etc.
  • the existing outdoor positioning mainly uses GPS signals, and the GPS positioning accuracy is low, which cannot meet the needs of outdoor IoT applications.
  • the GPS positioning module usually only supports the positioning function.
  • two modules, the GPS positioning module and the Internet of Things module need to be equipped in the Internet of Things device, which unnecessarily increases the positioning system of the Internet of Things. complexity and deployment and maintenance costs.
  • Wi-Fi-based positioning/ranging technology is a hot topic of research, but existing solutions cannot achieve a good compromise in terms of accuracy/complexity/real-time performance: some existing high-precision Wi-Fi positioning/ The ranging scheme has high complexity and poor real-time performance; while some simple Wi-Fi positioning/ranging schemes have low precision.
  • the existing Wi-Fi positioning technology uses the standard Wi-Fi protocol for distance measurement, and sends more redundant information during channel scanning, and the scanning period is longer, resulting in low efficiency.
  • the purpose of the present invention is to provide a Wi-Fi positioning system and method, which can achieve higher precision positioning with reduced cost and technical complexity.
  • a method for performing Wi-Fi positioning in a Wi-Fi network includes multiple positioning anchor devices and at least one positioned device, wherein the multiple anchor points
  • the device includes at least one access point device and at least one station device, and the method includes: one of the at least one access point device generates and sends a channel state indication frame indicating a current channel state; one of at least one positioned device receives the received The channel status indication frame; the positioned device that receives the channel status indication frame generates a frequency scanning information frame according to the current channel status indicated by the channel status indication frame, and the frequency scanning information frame includes time-frequency domain resource indication information, The time-frequency domain resource indication information specifies one or more time-frequency domain resource blocks; the positioned device that receives the channel status indication frame sends the frequency scanning information frame; the plurality of positioning anchor devices One or more positioning anchor devices receive the frequency scanning information frame; the positioned device that receives the channel status indication frame transmits on one or more time-frequency domain resource blocks specified by the time
  • the time-frequency domain resource indication information is carried in the PHY and/or MAC packet header field of the frequency scanning information frame.
  • the time-frequency domain resource indication information is carried in one or more of a reserved field, a user-defined field, a user-defined frame structure, and a bitmap of the frequency scanning information frame.
  • the one or more positioning anchor devices are located within the Wi-Fi signal transmission range of the positioned device that receives the channel condition indication frame.
  • the one or more positioning anchor devices are located within the Wi-Fi signal transmission range of the positioned device that receives the channel status indication frame and are capable of performing Wi-Fi communication with the positioned device Position the anchor device.
  • the step of determining the CSI information between each positioning anchor device receiving the frequency scanning information frame and the positioned device receiving the channel condition indication frame according to the one or more positioning frames includes :
  • Each positioning anchor device that receives the frequency scanning information frame performs CSI splicing according to the one or more positioning frames, so as to obtain the difference between the positioning anchor device and the positioned device that receives the channel status indication frame CSI information among them.
  • the step of determining the position of the positioned device that receives the frequency scanning information frame according to the CSI information includes: each positioning anchor device that receives the frequency scanning information frame determines the location of the device according to the CSI information positioning the distance between the anchor point device and the positioned device that received the channel condition indication frame, and summarizing the distance to one of the at least one access point device or within the Wi-Fi network or external servers to determine the location of the located device.
  • the positioned device that receives the channel status indication frame sends a CTS frame before sending the one or more positioning frames.
  • a method for performing Wi-Fi positioning in a Wi-Fi network includes multiple positioning anchor devices and at least one positioned device, wherein the multiple anchor devices
  • the point device includes at least one access point device and at least one station device
  • the method includes: one of the at least one access point device sends a frequency scanning indication frame, wherein the frequency scanning indication frame includes time-frequency domain resource indication information, wherein The time-frequency domain resource indication information specifies one or more time-frequency domain resource blocks; one of at least one positioned device receives the frequency scanning indication frame; one or more of the multiple positioning anchor devices locates The anchor device receives the frequency scanning indication frame; the positioned device that receives the frequency scanning indication frame sends one or more positioning frame; one or more positioning anchor devices receiving the frequency scanning indication frame receive the one or more positioning frames on one or more time-frequency domain resource blocks specified by the time-frequency domain resource indication information, And according to the one or more positioning frames, determine the CSI information between each positioning anchor device that receives the frequency scanning indication frame
  • the time-frequency domain resource indication information is carried in the PHY and/or MAC packet header field of the frequency scanning indication frame.
  • the time-frequency domain resource indication information is carried in one or more of a reserved field, a user-defined field, a custom frame structure, and a bit mapping of the frequency scanning indication frame.
  • the frequency scanning indication frame is a trigger frame.
  • the one or more positioning anchor devices are located within the signal transmission range of the positioned device that receives the frequency scanning indication frame.
  • the one or more positioning anchor devices are located within the Wi-Fi signal transmission range of the positioned device that receives the frequency scanning indication frame and are capable of performing Wi-Fi communication with the positioned device Position the anchor device.
  • one of the at least one access point device sends a frequency scanning indication frame to one or more of the at least one positioned device, and one or more of the at least one station device monitors receiving the frequency scanning instruction frame.
  • the step of determining, according to the one or more positioning frames, the CSI information between each positioning anchor device that receives the frequency scanning indication frame and the positioned device that receives the frequency scanning indication frame includes :
  • Each positioning anchor device that receives the frequency scanning instruction frame performs CSI splicing according to the one or more positioning frames, so as to obtain the information between the positioning anchor device and the positioned device that receives the frequency scanning instruction frame CSI information among them.
  • the step of determining the position of the positioned device that receives the frequency scanning indication frame according to the CSI information includes: each positioning anchor device that receives the frequency scanning indication frame determines the location of the device according to the CSI information. locating the distance between the anchor device and the positioned device that received the frequency scanning indication frame, and summarizing the distance to one of the at least one access point device or within the Wi-Fi network or external servers to determine the location of the located device.
  • the positioned device that receives the frequency scanning indication frame sends a CTS frame before sending the one or more positioning frames.
  • the plurality of positioning anchor devices further include one or more positioned devices whose positions have been determined.
  • the time-frequency domain resource indication information includes multiple frequency points and time domain intervals between frequency points and within frequency points.
  • the time-frequency domain resource indication information further includes the number of retransmissions.
  • the time-frequency domain resource indication information includes coding information of the one or more time-frequency domain resource blocks.
  • the positioning frame does not include a payload.
  • the positioning frame includes the HE-LTF field in the PHY header.
  • the plurality of positioning anchor devices and at least one positioned device form a tree-shaped Wi-Fi Mesh network, wherein the at least one access point device forms a root node of the tree-shaped Wi-Fi Mesh network and the intermediate node, the at least one site device and the at least one positioned device form a leaf node of the tree-shaped Wi-Fi Mesh network.
  • each of the at least one access point device is an AP device or a SoftAP device.
  • a Wi-Fi positioning system comprising:
  • a plurality of positioning anchor devices and at least one positioned device forming a Wi-Fi network wherein the plurality of anchor devices include at least one access point device and at least one station device;
  • Wi-Fi positioning system is configured to execute one or more Wi-Fi positioning methods according to the embodiments of the present disclosure.
  • each of the at least one located device has lower computing capability and lower power consumption than each of the at least one station device.
  • each of the at least one site device and the at least one positioned device is a single-antenna device.
  • the advantages of the present invention include but are not limited to:
  • Fig. 1 shows a schematic block diagram of a Wi-Fi positioning system according to an embodiment of the present invention.
  • Fig. 2 shows a schematic flowchart of a method for performing Wi-Fi positioning in a Wi-Fi network according to a first embodiment of the present invention.
  • Fig. 3 shows a schematic block diagram of time-frequency domain resource blocks specified by time-frequency domain resource indication information in an embodiment according to the present invention.
  • Fig. 4 shows a schematic block diagram of a frequency scanning information frame and/or a frequency scanning indication frame in an embodiment according to the present invention.
  • Fig. 5 shows a method for performing Wi-Fi positioning in a Wi-Fi network according to a second embodiment of the present invention.
  • Fig. 1 shows a schematic block diagram of a Wi-Fi positioning system 100 according to an embodiment of the present invention.
  • the Wi-Fi positioning system 100 includes a plurality of positioning anchor devices and a plurality of located devices 112 a , 112 b (collectively referred to as located devices 112 ) forming a Wi-Fi network 102 .
  • the positioning anchor device and the positioned device can be interconnected through a Mesh ad hoc network or a network cable, for example.
  • the plurality of anchor point devices includes access point devices 108a, 108b, and 108c (collectively referred to as access point devices 108) and site devices 110a, 110b, . . . , 110g (collectively referred to as site devices 110).
  • the access point device may be referred to as AP/SoftAP device for short, and the station device may be Wi-Fi station device, referred to as STA device for short.
  • the access point device can be an AP device or a SoftAP device. On the one hand, it can serve as an AP/Soft AP to provide Internet services or network access relays to other STA devices. On the other hand, it can also serve as a positioning anchor point for other things Internet-connected devices provide location services.
  • the STA device can be used as a positioning anchor point to provide positioning services for other IoT devices.
  • the located device may be referred to as a TAG device for short in the present disclosure.
  • the TAG device can work as an STA or include at least one STA, communicate with the AP/SoftAP and access the external network through the AP/SoftAP.
  • the TAG device shown in FIG. 1 includes positioned devices 112a and 112b worn or configured by animals or other moving living things/objects in the farming/herding area shown.
  • a wearable device can be worn on a living thing to be positioned, which includes several sensors and TAG devices or STA devices for positioning and living thing monitoring data transmission.
  • the Wi-Fi positioning system of the present invention is configured for a farming/livestock area, embodiments of the present invention are not limited thereto.
  • the Wi-Fi positioning system of the present invention can be used in various Internet of Things applications, such as outdoor Internet of Things applications such as ranches, farms, orchards, factories, and ports.
  • the positioning anchor device and the positioned device form a tree-shaped Wi-Fi Mesh network, wherein the access point device 108 forms the root node and intermediate nodes of the tree-shaped Wi-Fi Mesh network,
  • the station device 110 and the positioned device 112 form the leaf nodes of the tree-shaped Wi-Fi Mesh network.
  • the roles of the anchor device and the positioned device can be interchanged.
  • one or more located devices whose positions have been determined may function as anchor devices to assist in the positioning of other TAG devices.
  • the roles of the SoftAP device and the STA device can also be switched.
  • a Wi-Fi device with both SoftAP and STA functions enabled can work as an access point device in the solution of the present invention, and the same device can work as an anchor device or a TAG device in the solution of the present invention after the SoftAP function is disabled.
  • the mobile phone 116 or other equipment that needs to be connected to the Internet such as the temperature sensor 114a, the fire hydrant 114b, etc. carried by the livestock farm personnel, can be connected to the Wi-Fi network of the present invention for Wi-Fi network communication, and can be configured according to needs or Work as an access point device, STA device or TAG device.
  • each of the located devices 112 has lower computing power and lower power consumption than each of the station devices 110 .
  • the located device may be a low power IoT device powered by a battery and miniaturized to facilitate tracking of living things/objects.
  • the site equipment can be a relatively fixed equipment, so it can be powered by a battery with a large capacity, or powered by an AC power supply or a solar panel.
  • each of the station device and the located device may be implemented as a single antenna device.
  • the Wi-Fi positioning system of the present invention can be implemented in a cost-effective manner, using low-cost equipment to complete the functions of Wi-Fi network communication and Wi-Fi positioning, without additionally configuring GPS on the positioned equipment module, or use a large number of expensive high-performance AP devices as anchor devices.
  • the Wi-Fi network in the Wi-Fi positioning system 100 of the present invention can be communicatively connected to the server 104, such as a server deployed locally or in the cloud.
  • the server can provide higher computing performance and back-end management functions for the Wi-Fi positioning system of the present invention.
  • users can access the server through different remote terminals 106 to access and manage the Wi-Fi positioning system 100 of the present invention.
  • the Wi-Fi positioning system of the present invention may be implemented as including or not including a server, and the user may access the Wi-Fi positioning system of the local terminal, such as the mobile phone 116, to the Wi-Fi positioning system of the present invention. -Fi positioning system for access and management.
  • the positioned device may transmit a signal using a preset transmission time-frequency domain signal mode, and the positioning anchor obtains CSI from the received signal, and uses the CSI to perform positioning.
  • Fig. 2 shows a schematic flowchart of a method 200 for performing Wi-Fi positioning in a Wi-Fi network according to a first embodiment of the present invention.
  • the Wi-Fi network may include multiple positioning anchor devices and at least one positioned device, where the multiple anchor devices include at least one access point device and at least one station device.
  • the Wi-Fi network may be implemented as Wi-Fi network 102 shown in FIG. 1 .
  • one of the at least one access point device generates and sends a channel condition indication frame indicating the current channel condition.
  • one of the at least one positioned device receives the channel condition indication frame.
  • the access point device may carry available frequency point information by broadcasting a trigger frame or a beacon frame, and the positioned device may obtain channel channel condition information by receiving the trigger frame or beacon frame.
  • power-constrained positioned devices do not need to consume limited battery power to acquire channel conditions (eg, available frequencies) to achieve extended standby and working time.
  • the positioned device that receives the channel status indication frame generates a frequency scanning information frame according to the current channel status indicated by the channel status indication frame, and the frequency scanning information frame includes time-frequency domain resource indication information, wherein the The time-frequency domain resource indication information specifies one or more time-frequency domain resource blocks.
  • step 208 the positioned device that receives the channel status indication frame sends the frequency scanning information frame.
  • one or more positioning anchor devices of the plurality of positioning anchor devices receive the frequency sweep information frame.
  • the positioned device that receives the channel state indication frame sends one or more positioning frames on one or more time-frequency domain resource blocks specified by the time-frequency domain resource indication information.
  • positioning frames may be sent at the MAC layer or the physical layer.
  • the one or more positioning anchor devices receiving the frequency scanning information frame receive the one or more positioning anchor devices on one or more time-frequency domain resource blocks specified by the time-frequency domain resource indication information. frame, and determine the CSI information between each positioning anchor device that receives the frequency scanning information frame and the positioned device that receives the channel condition indication frame according to the one or more positioning frames.
  • step 216 according to the CSI information, the location of the positioned device that receives the frequency scanning information frame is determined.
  • the present invention can improve scanning efficiency, save time-frequency domain resources, reduce power consumption of positioned equipment and station equipment, and improve the accuracy of CSI estimation through a channel scanning mechanism based on a private protocol.
  • Fig. 3 shows a schematic block diagram of time-frequency domain resource blocks specified by time-frequency domain resource indication information in an embodiment according to the present invention.
  • the horizontal axis represents a time interval in the time domain
  • the vertical axis represents frequency points in the frequency domain
  • each grid on the horizontal and vertical intersections represents a resource in the time-frequency domain.
  • the frequency hopping mode does not have to be as shown in FIG. 3 , and different frames may partially overlap in the frequency domain.
  • a grid represents 20M in the frequency domain; blank ones are free; "occupied" indicates that the resource block in the time-frequency domain is occupied.
  • the TAG device can perform multiple frequency point switching when sending the positioning frame, so as to send the positioning frame on a larger bandwidth than data communication.
  • the positioning anchor device site device and/or access point device
  • the positioning anchor device can receive the subsequent positioning packet sent by the TAG device on the specified time-frequency domain resource.
  • the positioning anchor device can obtain the corresponding CSI information, including but not limited to channel estimation on each subcarrier in the frequency domain.
  • the positioning anchor device may perform CSI splicing according to the positioning packet to obtain CSI information.
  • the positioning anchor device may acquire the distance information between the positioning anchor device and the TAG device according to the CSI information by using a known or future developed method.
  • the positioned device can select the time-frequency domain resource indication information according to the available frequency point information, where the time-frequency domain resource indication information can include multiple frequency points and time domains between frequency points and within frequency points interval. Further, the time-frequency domain resource indication information may also include the number of retransmissions.
  • time-frequency domain resource indication information may include information directly indicating one or more time-frequency domain resource blocks, such as frequency points and time domain intervals between frequency points and within frequency points, or may include one or more time-frequency domain resource blocks. Encoding information of domain resource blocks.
  • the sender and receiver of the time-frequency domain resource indication information can generate the encoding information of the time-frequency domain resource block according to the agreed encoding method, and decode the encoded information of the time-frequency domain resource block according to the agreed decoding method, Thereby improving the transmission efficiency.
  • the TAG device can enter the positioning mode by scanning the type/subtype field in the information frame, that is, sending specified time-frequency domain resource indication information to the anchor device for Wi-Fi positioning.
  • the time-frequency domain resource indication information may be carried in the PHY and/or MAC packet header field of the frequency scanning information frame.
  • FIG. 4 shows an example structure of a frequency scanning information frame.
  • Fig. 4 shows a schematic block diagram of frequency scanning information frames and/or frequency scanning indication frames (collectively referred to as "frequency scanning frames") in an embodiment according to the present invention.
  • the header of the frequency sweep frame includes a "protocol version" field 402 of two bytes B0 to B1, a "type” field of two bytes B2 to B3, four bytes B4 to The "subtype” field of B7, these fields are the MAC frame control and sequence control fields in the Wi-Fi protocol as shown in the figure below.
  • the "load” field 410 may carry time-frequency domain resource indication information according to the present invention.
  • bit mapping and meaning of the "type" field are shown in the following table:
  • Types of type description 00 manage 01 control 10 data 11 -
  • the value of the "Subtype” field is 1101 is reserved.
  • the private protocol followed by TAG, STA, and AP/SoftAP can be defined, wherein when the "subtype" field is set to 1101, it means a sweep frame, and the meanings of other fields of the sweep frame are the same as The fields of the data frame (the "subtype” field has a value of 0000) are the same.
  • the TAG, STA, and AP/SoftAP can generate, send, receive, and process frequency sweep frames according to the agreed method.
  • the payload in the MAC PDU of the scanning frame has a special meaning, and can carry time-frequency domain resource indication information, that is, the content in the payload indicates the time-frequency domain resource used by the TAG to scan the channel when sending the positioning frame.
  • TAG After receiving the scanning frame, TAG replies with ACK, and then starts channel scanning.
  • the bit sequence in the payload and the predetermined sequence (such as 8-bit 0xFF) If they are the same, it can indicate that the scanning mode of the TAG is turned off, and the TAG turns off the frequency scanning mode after receiving the packet, and the STA performs ranging on the TAG according to the obtained CSI after receiving the packet.
  • the signal representation mode of the data bits in the bit sequence may indicate a frequency point with 8 bits, and then N frequency points have a total of N ⁇ 8 bits (N is frequency number of points), 8 bits can represent the channel number.
  • the corresponding relationship between the channel number and the frequency can be customized according to the standard Wi-Fi protocol or a private protocol.
  • the following table is an example of the corresponding relationship between channel numbers and frequencies, where the frequency hopping order of channel scanning is the same as the order of N 8 bits.
  • time-frequency domain resource indication information may be carried in one or more of the reserved field, user-defined field, user-defined frame structure and bit mapping of the frequency scanning information frame.
  • the time-frequency domain resource indication information can be transmitted through reserved bits or unused bit mapping in the PHY and MAC packet headers, so as to control the time-frequency domain resources used by TAG sending packets.
  • the access point device or the TAG device may notify the TAG device of the number of frequency hops and the used frequency according to the channel state indication.
  • the time-frequency domain resource indication information of the access point device or the TAG device can also be parsed by the STA device, so as to receive the TAG packet at the corresponding frequency point for positioning.
  • the above methods do not require additional overhead such as control frames, which further improves the efficiency of channel scanning.
  • the receiving end performs receiving processing on the corresponding time-frequency domain resources to obtain CSI, and the receiving end can perform CSI splicing to obtain distance information for positioning.
  • Fig. 5 shows a method 500 for performing Wi-Fi positioning in a Wi-Fi network according to a second embodiment of the present invention.
  • the Wi-Fi network includes multiple positioning anchor devices and at least one positioned device, where the multiple anchor devices include at least one access point device and at least one station device.
  • the Wi-Fi network may be implemented as Wi-Fi network 102 shown in FIG. 1 .
  • one of the at least one access point device sends a frequency scan indication frame, wherein the frequency scan indication frame includes time-frequency domain resource indication information, wherein the time-frequency domain resource indication information specifies one or more time-frequency Domain resource block.
  • step 504 one of the at least one positioned device receives the frequency scan indication frame.
  • step 506 one or more positioning anchor devices among the plurality of positioning anchor devices receive the scanning indication frame.
  • step 508 the positioned device that receives the frequency scanning indication frame sends one or more positioning frames on one or more time-frequency domain resource blocks specified by the time-frequency domain resource indication information.
  • the one or more positioning anchor devices receiving the frequency scanning indication frame receive the one or more positioning anchor devices on one or more time-frequency domain resource blocks specified by the time-frequency domain resource indication information. frames, and according to the one or more positioning frames, determine the CSI information between each positioning anchor device that receives the frequency scanning indication frame and the positioned device that receives the frequency scanning indication frame.
  • step 512 according to the CSI information, determine the location of the positioned device that has received the frequency scanning indication frame.
  • the TAG device specifies the time-frequency domain in which the TAG sends the positioning frame by scanning the information frame resources
  • the access point device AP or SoftAP
  • the format of the frequency scanning information frame sent by the TAG to the STA may be equal to the format of the frequency scanning instruction frame sent by the SoftAP to control the TAG, as described above in relation to the first embodiment.
  • the time-frequency domain resource indication information may include multiple frequency points and time domain intervals between frequency points and within frequency points.
  • the time-frequency domain resource indication information may also include the number of retransmissions.
  • the time-frequency domain resource indication information may include coding information of the one or more time-frequency domain resource blocks.
  • the time-frequency domain resource indication information may be carried in the PHY and/or MAC packet header field of the frequency scanning indication frame.
  • the time-frequency domain resource indication information may be carried in one or more of the reserved field, user-defined field, user-defined frame structure and bit mapping of the frequency scanning indication frame.
  • the frequency sweep indication frame may be a trigger frame (Trigger).
  • Trigger the positioning information according to the private protocol can be added to the standard frame sent by the access point device according to the Wi-Fi protocol, thereby expanding the positioning function of the Wi-Fi device in the solution of the present invention while maintaining the compatibility of the standard protocol .
  • the frame sent by the SoftAP for controlling the TAG to perform channel scanning namely, the frequency scanning instruction frame frame
  • the TAG requires the TAG to feed back an ACK to ensure that the control information is sent correctly.
  • ACK is normally fed back.
  • the positioning frame may not contain a payload. Further, the positioning frame may include the HE-LTF field in the PHY header. In this way, Wi-Fi positioning can be performed based on the packet header field of the physical layer positioning frame, without consuming computing resources and time to analyze the payload of the positioning frame.
  • TAG device channel scanning (frequency hopping) sending packets can also only need to use the HT/VHT/HE-LTF field of the preamble in the PHY to perform channel estimation, so that a similar NDP (Non-data packet) to save time and resources.
  • NDP Non-data packet
  • the preamble in the conventional physical layer packet will contain the HE-LTF field, and the receiver can perform channel estimation based on this field.
  • all positioning anchor devices within the Wi-Fi signal transmission range of the TAG device can participate in the positioning of the TAG device. Further, all positioning anchor devices located within the Wi-Fi signal transmission range of the TAG device and capable of performing Wi-Fi communication with the positioned device can participate in the positioning of the TAG device.
  • the CSI between each positioning anchor device receiving the frequency scanning information frame and the positioned device receiving the channel condition indication frame is determined according to the one or more positioning frames
  • the information step may include: each positioning anchor device that receives the frequency scanning information frame performs CSI splicing according to the one or more positioning frames, so as to obtain the information of the positioning anchor device that received the channel status indication frame CSI information between the positioned devices.
  • the step of determining the position of the positioned device that receives the frequency scanning information frame according to the CSI information may include: each positioning anchor device that receives the frequency scanning information frame according to the The CSI information determines the distance between the positioning anchor device and the positioned device that receives the channel status indication frame, and summarizes the distance to one of the at least one access point device or the device located at the Wi - a server within or outside the Fi network to determine the location of said located device.
  • the positioned device that receives the channel status indication frame may send a CTS frame before sending the one or more positioning frames.
  • the TAG device before sending the positioning frame, the TAG device can send the CTS information (including time information), and the device that hears the CTS information will not send the operation within the specified time, so as to avoid the conflict with the MESH network when the TAG sends the positioning frame.
  • the packet sending collision of other devices helps to improve the accuracy of Wi-Fi positioning according to the solution of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Wi-Fi定位方法和系统,该方法包括:接入点设备生成并发送信道状况指示帧;被定位设备接收信道状况指示帧;被定位设备根据信道状况指示帧指示的当前信道状况生成扫频信息帧,扫频信息帧包括时频域资源指示信息,其中时频域资源指示信息指定时频域资源块;被定位设备发送扫频信息帧;定位锚点设备接收扫频信息帧;被定位设备在时频域资源指示信息指定的时频域资源块上发送定位帧;接收到扫频信息帧的定位锚点设备在时频域资源指示信息指定的时频域资源块上接收定位帧,并根据定位帧确定接收到扫频信息帧的每个定位锚点设备与被定位设备之间的CSI信息;以及根据CSI信息,确定被定位设备的位置。本发明能够以降低的成本和复杂度,完成较高精度的Wi-Fi定位。

Description

Wi-Fi定位方法和系统 技术领域
本申请涉及无线定位技术,尤其涉及一种Wi-Fi定位方法和系统。
背景技术
在过去的几十年中,人们对室内定位技术进行了广泛的研究,智能手机和具有无线通信功能的可穿戴设备的大规模普及使此类设备的定位和跟踪成为相应用户的定位和跟踪的代名词,并实现了广泛的相关应用程序和服务,用户和设备的定位已广泛应用于卫生部门、工业、灾难管理、建筑物管理、监视以及许多其他地方。具体而言,室内定位主要利用Wi-Fi、蓝牙、UWB、LoRA、超声、红外等信号,用于定位的技术手段主要包括RSSI、AoA、ToA/TDoA、Wi-Fi指纹(Fingerprint)等。
然而,在室外物联网应用的场景中,由其例如在牧场、农场、果园、工厂、港口等大规模室外物联网应用中,现有室内/室外定位手段仍然存在明显的不足之处。一方面,现有的室外定位主要通过GPS信号,GPS定位精度低,无法满足室外物联网应用的需求。而且,GPS定位模块通常仅支持定位功能,在GPS与物联网相结合的应用中,在物联网设备中需要配备GPS定位模块以及物联网模块两个模组,不必要地增加了物联网定位系统的复杂度以及部署和维护成本。
另一方面,当前已有的室内定位/测距技术对于室外物联网应用而言仍存在各种各样的缺点。UWB技术定位精度高,但是对硬件要求较高,且支持的终端和锚点少。基于Wi-Fi的定位/测距技术是研究的热门,但已有的方案在精度/复杂度/实时性等方面无法做到很好的折中:已有的一些高精度Wi-Fi定位/测距方案复杂度较高且实时性较差;而一些简单的Wi-Fi定位/测距方案则精度很低。现有Wi-Fi定位技术通过标准Wi-Fi协议进行测距,在信道扫描时发送的冗余信息较多、扫描周期较长,从而效率低下。
此外,本申请的发明人还注意到,这些已有的定位技术往往关注于通过少数几个或者一个锚点设备来定位目标/终端,这对单个锚点设备的测距/方向精度要求很高,且单锚点设备的测量/计算负载也比较大。对于锚点设备众多的室外物联网定位系统而言,由其是一种技术实现和部署和维护成本的阻碍。
综上,现有技术中需要一种物联网定位系统和方法,例如Wi-Fi定位系统和方法,其能够以降低的成本和技术复杂度,完成较高精度的定位(尤其是室外定位),以解决现有技术中存在的至少上述问题。应理解,上述所列举的技术问题仅作为示例而非对本发明的限制,本发明并不限于同时解决上述所有技术问题的技术方案。本发明的技术方案可以实施为解决上述或其他技术问题中的一个或多个。
发明内容
针对上述问题,本发明的目的在于提供一种Wi-Fi定位系统和方法,其能够以降低的成本和技术复杂度,完成较高精度的定位。
在本发明的一方面,提供一种在Wi-Fi网络中进行Wi-Fi定位的方法,该Wi-Fi网络包括多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备,该方法包括:至少一个接入点设备中的一个生成并发送指示当前信道状况的信道状况指示帧;至少一个被定位设备中的一个接收所述信道状况指示帧;接收到所述信道状况指示帧的被定位设备根据所述信道状况指示帧指示的当前信道状况生成扫频信息帧,所述扫频信息帧包括时频域资源指示信息,其中所述时频域资源指示信息指定一个或多个时频域资源块;接收到所述信道状况指示帧的被定位设备发送所述扫频信息帧;所述多个定位锚点设备中的一个或多个定位锚点设备接收所述扫频信息帧;接收到所述信道状况指示帧的被定位设备在所述时频域资源指示信息指定的一个或多个时频域资源块上发送一个或多个定位帧;接收到所述扫频信息帧的一个或多个定位锚点设备在所述时频域资源指示信息指定的一个或多个时频域资源块上接收所 述一个或多个定位帧,并根据所述一个或多个定位帧确定接收到所述扫频信息帧的每个定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息;以及根据所述CSI信息,确定接收到所述扫频信息帧的被定位设备的位置。
可选地,所述时频域资源指示信息承载于所述扫频信息帧的PHY和/或MAC包头字段中。
可选地,所述时频域资源指示信息承载于所述扫频信息帧的保留域、用户自定义字段、自定义帧结构和比特映射的一个或多个中。
可选地,所述一个或多个定位锚点设备位于接收到所述信道状况指示帧的被定位设备的Wi-Fi信号传输范围内。
可选地,所述一个或多个定位锚点设备是位于接收到所述信道状况指示帧的被定位设备的Wi-Fi信号传输范围内并能够与该被定位设备进行Wi-Fi通信的所有定位锚点设备。
可选地,根据所述一个或多个定位帧确定接收到所述扫频信息帧的每个定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息的步骤包括:接收到所述扫频信息帧的每个定位锚点设备根据所述一个或多个定位帧进行CSI拼接,以获得该定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息。
可选地,根据所述CSI信息确定接收到所述扫频信息帧的被定位设备的位置的步骤包括:接收到所述扫频信息帧的每个定位锚点设备根据所述CSI信息确定该定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的距离,并将所述距离汇总到所述至少一个接入点设备中的一个或位于所述Wi-Fi网络之内或之外的服务器以确定所述被定位设备的位置。
可选地,接收到所述信道状况指示帧的被定位设备在发送所述一个或多个定位帧之前,发送CTS帧。
在本发明的另一方面,提供一种在Wi-Fi网络中进行Wi-Fi定位的方法,该Wi-Fi网络包括多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备,该方法包括: 至少一个接入点设备中的一个发送扫频指示帧,其中所述扫频指示帧包括时频域资源指示信息,其中所述时频域资源指示信息指定一个或多个时频域资源块;至少一个被定位设备中的一个接收所述扫频指示帧;所述多个定位锚点设备中的一个或多个定位锚点设备接收所述扫频指示帧;接收到所述扫频指示帧的被定位设备在所述时频域资源指示信息指定的一个或多个时频域资源块上发送一个或多个定位帧;接收到所述扫频指示帧的一个或多个定位锚点设备在所述时频域资源指示信息指定的一个或多个时频域资源块上接收所述一个或多个定位帧,并根据所述一个或多个定位帧确定接收到所述扫频指示帧的每个定位锚点设备与接收到所述扫频指示帧的被定位设备之间的CSI信息;以及根据所述CSI信息,确定接收到所述扫频指示帧的被定位设备的位置。
可选地,所述时频域资源指示信息承载于所述扫频指示帧的PHY和/或MAC包头字段中。
可选地,所述时频域资源指示信息承载于所述扫频指示帧的保留域、用户自定义字段、自定义帧结构和比特映射的一个或多个中。
可选地,所述扫频指示帧为触发帧。
可选地,所述一个或多个定位锚点设备位于接收到所述扫频指示帧的被定位设备的信号传输范围内。
可选地,所述一个或多个定位锚点设备是位于接收到所述扫频指示帧的被定位设备的Wi-Fi信号传输范围内并能够与该被定位设备进行Wi-Fi通信的所有定位锚点设备。
可选地,所述至少一个接入点设备中的一个向所述至少一个被定位设备中的一个或多个发送扫频指示帧,且所述至少一个站点设备中的一个或多个通过监听接收所述扫频指示帧。
可选地,根据所述一个或多个定位帧确定接收到所述扫频指示帧的每个定位锚点设备与接收到所述扫频指示帧的被定位设备之间的CSI信息的步骤包括:接收到所述扫频指示帧的每个定位锚点设备根据所述一个或多 个定位帧进行CSI拼接,以获得该定位锚点设备与接收到所述扫频指示帧的被定位设备之间的CSI信息。
可选地,根据所述CSI信息确定接收到所述扫频指示帧的被定位设备的位置的步骤包括:接收到所述扫频指示帧的每个定位锚点设备根据所述CSI信息确定该定位锚点设备与接收到所述扫频指示帧的被定位设备之间的距离,并将所述距离汇总到所述至少一个接入点设备中的一个或位于所述Wi-Fi网络之内或之外的服务器以确定所述被定位设备的位置。
可选地,接收到所述扫频指示帧的被定位设备在发送所述一个或多个定位帧之前,发送CTS帧。
在根据本发明上述方面的在Wi-Fi网络中进行Wi-Fi定位的方法中,进一步可选地,所述多个定位锚点设备还包括已确定位置的一个或多个被定位设备。
进一步可选地,所述时频域资源指示信息包括多个频点和频点间及频点内的时域间隔。
进一步可选地,所述时频域资源指示信息还包括重发次数。
进一步可选地,所述时频域资源指示信息包括所述一个或多个时频域资源块的编码信息。
进一步可选地,所述定位帧不包含载荷。
进一步可选地,所述定位帧包含PHY头部中的HE-LTF字段。
进一步可选地,所述多个定位锚点设备和至少一个被定位设备形成树形Wi-Fi Mesh网络,其中所述至少一个接入点设备形成所述树形Wi-Fi Mesh网络的根节点和中间节点、所述至少一个站点设备和所述至少一个被定位设备形成所述树形Wi-Fi Mesh网络的叶子节点。
进一步可选地,所述至少一个接入点设备中的每个为AP设备或SoftAP设备。
在本发明的又一方面,提供一种Wi-Fi定位系统,包括:
形成Wi-Fi网络的多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备;
其中所述Wi-Fi定位系统配置为执行根据本公开实施方式的一种或多种Wi-Fi定位方法。
可选地,所述至少一个被定位设备中的每个与所述至少一个站点设备中的每个相比具有较低的计算能力和较低的功耗。
可选地,所述至少一个站点设备以及至少一个被定位设备中的每个为单天线设备。
相比于现有Wi-Fi定位方案,本发明的优点包括但不限于:
(1)通过基于私有协议的信道扫描机制提升扫描效率;
(2)节省时频域资源;
(3)降低被定位设备和站点设备功耗
(4)提升CSI估计的精度;以及
(5)以降低的成本和技术复杂度,完成较高精度的Wi-Fi定位。
应理解,本发明并不限于同时提供上述优点的技术方案。本发明的技术方案可以实施为解决提供上述或其他优点中的一个或多个。还应理解,上述对背景技术以及发明内容概要的描述仅仅是示意性的而非限制性的。
附图说明
图1示出根据本发明实施例的Wi-Fi定位系统的示意性框图。
图2示出根据本发明第一实施例的在Wi-Fi网络中进行Wi-Fi定位的方法的示意流程图。
图3示出在根据本发明的实施例中,由时频域资源指示信息指定的时频域资源块的示意性框图。
图4示出在根据本发明的实施例中,扫频信息帧和/或扫频指示帧的示意性框图。
图5示出根据本发明第二实施例的在Wi-Fi网络中进行Wi-Fi定位的方法。
具体实施方式
在下文中将参考附图更全面地描述本发明,附图构成本发明公开的一部分并通过图示的方式示出示例性的实施例。应理解,附图所示以及下文所述的实施例仅仅是说明性的,而不作为对本发明的限制。
图1示出根据本发明实施例的Wi-Fi定位系统100的示意性框图。如图所示,Wi-Fi定位系统100包括形成Wi-Fi网络102的多个定位锚点设备和多个被定位设备112a、112b(统称为被定位设备112)。定位锚点设备和被定位设备例如可以通过Mesh自组网或网线实现互联。多个锚点设备包括接入点设备108a、108b和108c(统称为接入点设备108)和站点设备110a、110b、…、110g(统称为站点设备110)。为便于叙述,在本公开中,接入点设备可以简称为AP/SoftAP设备,站点设备可以是Wi-Fi站点设备,简称为STA设备。接入点设备可以是AP设备,也可以是SoftAP设备,其一方面能够作为AP/Soft AP向其他STA设备提供互联网的服务或者入网中继,另一方面也可以作为定位锚点,为其他物联网设备提供定位服务。STA设备可以作为定位锚点,为其他物联网设备提供定位服务。
被定位设备在本公开中可以简称为TAG设备。TAG设备可以作为STA工作或包括至少一个STA,与AP/SoftAP通信连接并通过AP/SoftAP访问外部网络。图1示出的TAG设备包括所示养殖/畜牧区域的动物或其他移动的活物/物体佩戴或配置的被定位设备112a和112b。作为非限制性示例,可以在需定位的活物上佩戴可穿戴设备,其中包含若干传感器和TAG设备或者STA设备,用于定位和活物监测数据传输。虽然图1中示出本发明的Wi-Fi定位系统配置用于养殖/畜牧区域,但本发明的实施例并不限制于此。本领域技术人员应理解,本发明的Wi-Fi定位系统可以用于各种物联网应用,例如牧场、农场、果园、工厂、港口等室外物联网应用。
在图1所示的示意性实施例中,定位锚点设备和被定位设备形成树形Wi-Fi Mesh网络,其中接入点设备108形成树形Wi-Fi Mesh网络的根节点和中间节点、站点设备110和被定位设备112形成所述树形Wi-Fi Mesh网络的叶子节点。
应理解,本发明中,锚点设备和被定位设备的角色是可以相互转换的。例如,已确定位置的一个或多个被定位设备可以作为锚点设备工作,以便协助其他TAG设备的定位。另外,本领域技术人员应理解,SoftAP设备和STA设备的角色也是可以切换的。例如,同时开启SoftAP和STA功能的Wi-Fi设备可以在本发明的方案中作为接入点设备工作,而同一设备关闭SoftAP功能后可以在本发明的方案中作为锚点设备或TAG设备工作。此外,畜牧场人员携带的手机116或其他需要联网的设备,例如温度传感器114a、消防栓114b等,均可以接入本发明的Wi-Fi网络进行Wi-Fi网络通信,并且可以根据需要或配置作为接入点设备、STA设备或TAG设备工作。
在一个实施例中,被定位设备112中的每个与站点设备110中的每个相比具有较低的计算能力和较低的功耗。作为非限制性示例,被定位设备可以是由电池供电的低功耗物联网设备,且小型化以便于跟踪活物/物体。站点设备可以是相对固定的设备,因此可以由容量较大的电池供电,或者通过交流电源或太阳能电池板等方式供电。特别是,站点设备以及被定位设备中的每个可以实现为单天线设备。以此方式,可以按成本高效的方式实施本发明的Wi-Fi定位系统,采用低成本的设备来完成Wi-Fi网络通信以及Wi-Fi定位的功能,而无需在被定位设备上额外配置GPS模块,或者采用大量昂贵的高性能AP设备作为锚点设备。
本发明的Wi-Fi定位系统100中的Wi-Fi网络可以通信连接到服务器104,例如部署在本地或云端的服务器。服务器可以为本发明的Wi-Fi定位系统提供更高计算性能以及后端管理功能。例如用户可以通过不同的远程终端106访问服务器以对本发明的Wi-Fi定位系统100进行访问和管理。应理解,本发明的实施不限于此,本发明的Wi-Fi定位系统可以实施为包括或不包括服务器,且用户可以通过接入Wi-Fi定位系统的本地终端,例如手机116对本发明的Wi-Fi定位系统进行访问和管理。
在本发明的实施例中,可以通过被定位设备使用预置的发射时频域信号模式来发射信号,定位锚点通过接收到的信号获得CSI,并利用CSI进行定位。
图2示出根据本发明第一实施例的在Wi-Fi网络中进行Wi-Fi定位的方法200的示意流程图。该Wi-Fi网络可以包括多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备。作为示例而非限制,该Wi-Fi网络可以实施为图1所示的Wi-Fi网络102。
在步骤202,至少一个接入点设备中的一个生成并发送指示当前信道状况的信道状况指示帧。在步骤204,至少一个被定位设备中的一个接收所述信道状况指示帧。例如,接入点设备可以通过广播触发帧或信标帧来承载可用频点信息,被定位设备可以通过接收触发帧或信标帧来获取信道信道状况信息。以此方式,电源受限的被定位设备(TAG设备)不需要消耗受限的电池电力来获取信道状况(例如可用的频点)从而获得延长的待机和工作时间。
在步骤206,接收到所述信道状况指示帧的被定位设备根据所述信道状况指示帧指示的当前信道状况生成扫频信息帧,所述扫频信息帧包括时频域资源指示信息,其中所述时频域资源指示信息指定一个或多个时频域资源块。
在步骤208,接收到所述信道状况指示帧的被定位设备发送所述扫频信息帧。
在步骤210,所述多个定位锚点设备中的一个或多个定位锚点设备接收所述扫频信息帧。
在步骤212,接收到所述信道状况指示帧的被定位设备在所述时频域资源指示信息指定的一个或多个时频域资源块上发送一个或多个定位帧。作为非限制性示例,定位帧可以在MAC层或物理层发送。
在步骤214,接收到所述扫频信息帧的一个或多个定位锚点设备在所述时频域资源指示信息指定的一个或多个时频域资源块上接收所述一个或多个定位帧,并根据所述一个或多个定位帧确定接收到所述扫频信息帧的每个定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息。
在步骤216,根据所述CSI信息,确定接收到所述扫频信息帧的被定位设备的位置。
本发明通过基于私有协议的信道扫描机制能够提升扫描效率、节省时频域资源、降低被定位设备和站点设备功耗,并提升CSI估计的精度。
图3示出在根据本发明的实施例中,由时频域资源指示信息指定的时频域资源块的示意性框图。图3所示的框图中,横轴表示时域上的时间间隔,纵轴表示频域上的频点,横纵交叉点上的每个格子表示一个时频域资源。应理解,跳频方式不必如图3所示,且不同的帧在频域上可以有部分重叠。作为示例而非限制,在图3中,一个格子在频域表示20M;空白的各自空闲;“占用”则表明该时频域资源块被占用。
根据时频域资源指示信息指定的时频域资源块,TAG设备在送定位帧时可以进行多次频点切换,从而在与数据通信相比在更大的带宽上发送定位帧。以此方式,定位锚点设备(站点设备和/或接入点设备)在接收到时频域资源指示信息后,可以在指定的时频域资源上接收TAG设备后续发送的定位包。定位锚点设备收到每一个TAG设备的发包,均可以获取对应的CSI信息,包括但不限于频域上每个子载波上的信道估计。然后,定位锚点设备可以根据定位包,进行CSI拼接,以获得CSI信息。进而,定位锚点设备可以采用已知或将来开发的方法根据CSI信息获取定位锚点设备与TAG设备间的距离信息。
在本发明的实施例中,被定位设备可以根据可用频点信息选择时频域资源指示指示信息,其中时频域资源指示信息可以包括多个频点和频点间及频点内的时域间隔。进一步,时频域资源指示信息还可以包括重发次数。
应理解,时频域资源指示信息可以包括直接指示一个或多个时频域资源块的信息,例如频点和频点间及频点内的时域间隔,也可以包括一个或多个时频域资源块的编码信息。以此方式,时频域资源指示信息的发送方和接收方可以按照约定的编码方式生成时频域资源块的编码信息,并按约定的解码方式对时频域资源块的编码信息进行解码,从而提高传输效率。
作为非限制性示例,TAG设备可以通过扫频信息帧中的类型/子类型字段进入定位模式,即将指定的时频域资源指示信息发送给锚点设备以进行Wi-Fi定位。
在本发明的实施例中,时频域资源指示信息可以承载于扫频信息帧的PHY和/或MAC包头字段中。例如扫频信息帧的一种示例结构如图4所示。图4示出在根据本发明的实施例中,扫频信息帧和/或扫频指示帧(统称为“扫频帧”)的示意性框图。
在图4所示的例子中,扫频帧的头部包括两个字节B0至B1的“协议版本”字段402,两个字节B2至B3的“类型”字段,四个字节B4至B7的“子类型”字段,这些字段为下图是Wi-Fi协议中MAC帧控制和序列控制字段。“载荷”字段410可以承载根据本发明的时频域资源指示信息。
协议中,“类型”字段的比特映射及其含义见下表:
类型 类型描述
00 管理
01 控制
10 数据
11 -
当“类型”字段取值为10(数据帧)时,“子类型”字段的比特映射及其含义见下表:
子类型 子类型描述
0000 数据
... ...
1100 QoS空值(无数据)
1101 保留
1110 QoS CF-轮询(无数据)
1111 QoS CF-Ack+CF-轮询(无数据)
因为Wi-Fi协议中当“类型”字段取值为10时,“子类型“字段取值为1101是保留的。基于此,在本发明的实施例中,可以定义TAG、STA和AP/SoftAP所遵循的私有协议,其中令“子类型”字段为1101时表示扫频帧,该扫频帧的其他字段含义与数据帧(“子类型”字段取值为0000)的字段相同。TAG、STA和AP/SoftAP之间可以应该按照该约定的方式生成、收发以及处理扫频帧。应注意,扫频帧的MAC PDU中的载荷含义特殊,可以承载时频域资源指示信息,即通过载荷中的内容来指示TAG发送定位帧时扫描信道所使用的时频域资源。TAG收到扫频帧后,回复ACK,而后开始信道扫描。在本发明的非限制性实施例中,当“类型”字段取值为10且“子类型”字段取值为1101时,如果载荷中的比特序列与和预定的序列(如8位的0xFF)相同,则可以表示关闭TAG的扫描模式,TAG收到该包后关闭扫频模式,STA在收到该包后根据已获取的CSI对TAG进行测距。
作为示例而非限制,当指示时频域资源时,该比特序列中的数据比特的信号表示模式可以是以8个比特指示一个频点,则N个频点共N×8比特(N为频点个数),8比特可以表示信道编号。信道编号和频率的对应关系可以根据标准Wi-Fi协议,也可以根据私有协议进行自定义。下表是一种信道编号和频率的对应关系的例子,其中信道扫描的跳频顺序和N个8bits的顺序相同。TAG收到该控制帧并反馈ACK后,根据指示的发包指示信息进行信道扫描。
信道编号 频率(MHz)
1 2412
2 2417
... ...
36 5180
... ...
149 5735
... ...
本领域技术人员应理解,以上仅为时频域资源指示信息的的表示和承载方式的非限制性示例,本发明的实施不限于此。相反,时频域资源指示信息可以承载于所述扫频信息帧的保留域、用户自定义字段、自定义帧结构和比特映射的一个或多个中。
根据本发明的实施例,可以通过PHY和MAC包头中的保留比特位或未使用的比特映射来传递时频域资源指示信息,控制TAG发包所使用的时频域资源。接入点设备或者TAG设备可以根据信道状态指示告知TAG设备跳频次数和所使用频率。接入点设备或者TAG设备的时频域资源指示信息也能被STA设备所解析,从而在对应频点接收TAG发包,用于定位。以上方式均不需要控制帧等额外的开销,进一步提高了信道扫描的效率。接收端在对应的时频域资源做接收处理以获取CSI,接收侧可以进行CSI拼接以获得距离信息进行定位。
图5示出根据本发明第二实施例的在Wi-Fi网络中进行Wi-Fi定位的方法500。该Wi-Fi网络包括多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备。作为示例而非限制,该Wi-Fi网络可以实施为图1所示的Wi-Fi网络102。
在步骤502,至少一个接入点设备中的一个发送扫频指示帧,其中所述扫频指示帧包括时频域资源指示信息,其中所述时频域资源指示信息指定一个或多个时频域资源块。
在步骤504,至少一个被定位设备中的一个接收所述扫频指示帧。
在步骤506,所述多个定位锚点设备中的一个或多个定位锚点设备接收所述扫频指示帧。
在步骤508,接收到所述扫频指示帧的被定位设备在所述时频域资源指示信息指定的一个或多个时频域资源块上发送一个或多个定位帧。
在步骤510,接收到所述扫频指示帧的一个或多个定位锚点设备在所述时频域资源指示信息指定的一个或多个时频域资源块上接收所述一个或多个定位帧,并根据所述一个或多个定位帧确定接收到所述扫频指示帧的每个定位锚点设备与接收到所述扫频指示帧的被定位设备之间的CSI信息。
在步骤512,根据所述CSI信息,确定接收到所述扫频指示帧的被定位设备的位置。
应理解,根据第二实施例的方案与根据第一实施例的方案之间的区别主要在于,在第一实施例中,由TAG设备通过扫频信息帧来指定TAG发送定位帧的时频域资源,而在第二实施例中,由接入点设备(AP或SoftAP)通过扫频指示帧来指定TAG发送定位帧的时频域资源。因此,两个实施例中相同或类似的方面将不在此赘述。
在本实施例中,TAG向STA发送的扫频信息帧的格式可以等同于SoftAP控制TAG发包的扫频指示帧的格式,如上文关于第一实施例所述。
例如,所述时频域资源指示信息可以包括多个频点和频点间及频点内的时域间隔。所述时频域资源指示信息还可以包括重发次数。所述时频域资源指示信息可以包括所述一个或多个时频域资源块的编码信息。
在本发明的实施例中,所述时频域资源指示信息可以承载于所述扫频指示帧的PHY和/或MAC包头字段中。所述时频域资源指示信息承可以载于所述扫频指示帧的保留域、用户自定义字段、自定义帧结构和比特映射的一个或多个中。
此外,所述扫频指示帧可以为触发帧(Trigger)。以此方式,可以在接入点设备根据Wi-Fi协议发送的标准帧中附加根据私有协议定位的信息,从而在保持标准协议兼容性的同时,扩展本发明方案中Wi-Fi设备的定位功能。
然而,本发明的实施不限于此,本领域技术人员可以对于扫频信息帧和扫频指示帧可以采用相同或不同的格式,而不脱离本发明的原理。
在本发明的第一实施例中,对于TAG设备所发用于信道扫描的帧(即扫频信息帧),无需反馈ACK。在本发明的第二实施例中,SoftAP下发的用于控制TAG进行信道扫描的帧(即扫频指示帧帧),则需要TAG反馈ACK,以保证控制信息下发正确。对于数据传输的业务包,则正常反馈ACK。
对于本发明的第一实施例和第二实施例而言,所述定位帧可以不包含载荷。进一步,所述定位帧可以包含PHY头部中的HE-LTF字段。以此方式,可以基于物理层定位帧的包头字段进行Wi-Fi定位,而不需消耗计算资源和时间对定位帧的载荷进行解析。
此外,TAG设备信道扫描(跳频)的发包(即扫频指示帧)也可以只需要利用PHY中前导码的HT/VHT/HE-LTF字段进行信道估计,从而可以使用类似NDP(Non-data packet)那样没有载荷包,以节省时间资源。
常规物理层包中的前导码会包含HE-LTF字段,接收方可以根据该字段进行信道估计。
应理解,在树形Wi-Fi Mesh网络中,站点设备相互之间不能直接进行通信的,而需要经由接入点设备AP/SoftAP转发,但本发明的定位方法和系统并不因此受到限制。在本发明的实施例中,TAG设备的Wi-Fi信号传输范围内的定位锚点设备都可以参与该TAG设备的定位。进一步,位于TAG设备的Wi-Fi信号传输范围内并能够与该被定位设备进行Wi-Fi通信的定位锚点设备都可以参与该TAG设备的定位。
在本发明的实施例中,根据所述一个或多个定位帧确定接收到所述扫频信息帧的每个定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息的步骤可以包括:接收到所述扫频信息帧的每个定位锚点设备根据所述一个或多个定位帧进行CSI拼接,以获得该定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息。
在本发明的实施例中,根据所述CSI信息确定接收到所述扫频信息帧的被定位设备的位置的步骤可以包括:接收到所述扫频信息帧的每个定位锚点设备根据所述CSI信息确定该定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的距离,并将所述距离汇总到所述至少一个接入点设备中的一个或位于所述Wi-Fi网络之内或之外的服务器以确定所述被定位设备的位置。
在本发明的实施例中,接收到所述信道状况指示帧的被定位设备在发送所述一个或多个定位帧之前,可以发送CTS帧。以此方式,在发送定 位帧前,TAG设备可以发送CTS信息(含时间信息),听到CTS信息的设备不会在规定的时间内进行发送操作,避免TAG发送定位帧时与MESH网络中的其他设备发生发包碰撞,从而有助于提高根据本发明方案进行Wi-Fi定位的精度。
虽然出于本公开的目的已经描述了本发明各方面的各种实施例,但是不应理解为将本公开的教导限制于这些实施例。在一个具体实施例中公开的特征并不限于该实施例,而是可以和不同实施例中公开的特征进行组合。例如,在一个实施例中描述的根据本发明的系统或方法的一个或多个特征和/或操作,亦可单独地、组合地或整体地应用在另一实施例中。此外,应理解,上文所述方法步骤可以顺序执行、并行执行、合并为更少步骤、拆分为更多步骤,以不同于所述方式组合和/或省略。本领域技术人员应理解,还存在可能的更多可选实施方式和变型,可以对上述方法步骤进行各种改变和修改,而不脱离由本发明权利要求所限定的范围。

Claims (37)

  1. 一种在Wi-Fi网络中进行Wi-Fi定位的方法,该Wi-Fi网络包括多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备,该方法包括:
    至少一个接入点设备中的一个生成并发送指示当前信道状况的信道状况指示帧;
    至少一个被定位设备中的一个接收所述信道状况指示帧;
    接收到所述信道状况指示帧的被定位设备根据所述信道状况指示帧指示的当前信道状况生成扫频信息帧,所述扫频信息帧包括时频域资源指示信息,其中所述时频域资源指示信息指定一个或多个时频域资源块;
    接收到所述信道状况指示帧的被定位设备发送所述扫频信息帧;
    所述多个定位锚点设备中的一个或多个定位锚点设备接收所述扫频信息帧;
    接收到所述信道状况指示帧的被定位设备在所述时频域资源指示信息指定的一个或多个时频域资源块上发送一个或多个定位帧;
    接收到所述扫频信息帧的一个或多个定位锚点设备在所述时频域资源指示信息指定的一个或多个时频域资源块上接收所述一个或多个定位帧,并根据所述一个或多个定位帧确定接收到所述扫频信息帧的每个定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息;以及
    根据所述CSI信息,确定接收到所述扫频信息帧的被定位设备的位置。
  2. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述多个定位锚点设备还包括已确定位置的一个或多个被定位设备。
  3. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息包括多个频点和频点间及频点内的时域间隔。
  4. 根据权利要求3所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息还包括重发次数。
  5. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息包括所述一个或多个时频域资源块的编码信息。
  6. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息承载于所述扫频信息帧的PHY和/或MAC包头字段中。
  7. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息承载于所述扫频信息帧的保留域、用户自定义字段、自定义帧结构和比特映射的一个或多个中。
  8. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述定位帧不包含载荷。
  9. 根据权利要求8所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述定位帧包含PHY头部中的HE-LTF字段。
  10. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述多个定位锚点设备和至少一个被定位设备形成树形Wi-Fi Mesh网络,其中所述至少一个接入点设备形成所述树形Wi-Fi Mesh网络的根节点和中间节点、所述至少一个站点设备和所述至少一个被定位设备形成所述树形Wi-Fi Mesh网络的叶子节点。
  11. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述至少一个接入点设备中的每个为AP设备或SoftAP设备。
  12. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述一个或多个定位锚点设备位于接收到所述信道状况指示帧的被定位设备的Wi-Fi信号传输范围内。
  13. 根据权利要求12所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述一个或多个定位锚点设备是位于接收到所述信道状况指示 帧的被定位设备的Wi-Fi信号传输范围内并能够与该被定位设备进行Wi-Fi通信的所有定位锚点设备。
  14. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,根据所述一个或多个定位帧确定接收到所述扫频信息帧的每个定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息的步骤包括:接收到所述扫频信息帧的每个定位锚点设备根据所述一个或多个定位帧进行CSI拼接,以获得该定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的CSI信息。
  15. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,根据所述CSI信息确定接收到所述扫频信息帧的被定位设备的位置的步骤包括:接收到所述扫频信息帧的每个定位锚点设备根据所述CSI信息确定该定位锚点设备与接收到所述信道状况指示帧的被定位设备之间的距离,并将所述距离汇总到所述至少一个接入点设备中的一个或位于所述Wi-Fi网络之内或之外的服务器以确定所述被定位设备的位置。
  16. 根据权利要求1所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,接收到所述信道状况指示帧的被定位设备在发送所述一个或多个定位帧之前,发送CTS帧。
  17. 一种在Wi-Fi网络中进行Wi-Fi定位的方法,该Wi-Fi网络包括多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备,该方法包括:
    至少一个接入点设备中的一个发送扫频指示帧,其中所述扫频指示帧包括时频域资源指示信息,其中所述时频域资源指示信息指定一个或多个时频域资源块;
    至少一个被定位设备中的一个接收所述扫频指示帧;
    所述多个定位锚点设备中的一个或多个定位锚点设备接收所述扫频指示帧;
    接收到所述扫频指示帧的被定位设备在所述时频域资源指示信息指定的一个或多个时频域资源块上发送一个或多个定位帧;
    接收到所述扫频指示帧的一个或多个定位锚点设备在所述时频域资源指示信息指定的一个或多个时频域资源块上接收所述一个或多个定位帧,并根据所述一个或多个定位帧确定接收到所述扫频指示帧的每个定位锚点设备与接收到所述扫频指示帧的被定位设备之间的CSI信息;以及
    根据所述CSI信息,确定接收到所述扫频指示帧的被定位设备的位置。
  18. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述多个定位锚点设备还包括已确定位置的一个或多个被定位设备。
  19. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息包括多个频点和频点间及频点内的时域间隔。
  20. 根据权利要求19所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息还包括重发次数。
  21. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息包括所述一个或多个时频域资源块的编码信息。
  22. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息承载于所述扫频指示帧的PHY和/或MAC包头字段中。
  23. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述时频域资源指示信息承载于所述扫频指示帧的保留域、用户自定义字段、自定义帧结构和比特映射的一个或多个中。
  24. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述扫频指示帧为触发帧。
  25. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述定位帧不包含载荷。
  26. 根据权利要求25所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述定位帧包含PHY头部中的HE-LTF字段。
  27. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述多个定位锚点设备和至少一个被定位设备形成树形Wi-Fi Mesh网络,其中所述至少一个接入点设备形成所述树形Wi-Fi Mesh网络的根节点和中间节点、所述至少一个站点设备和所述至少一个被定位设备形成所述树形Wi-Fi Mesh网络的叶子节点。
  28. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述至少一个接入点设备中的每个为AP设备或SoftAP设备。
  29. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述一个或多个定位锚点设备位于接收到所述扫频指示帧的被定位设备的信号传输范围内。
  30. 根据权利要求29所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述一个或多个定位锚点设备是位于接收到所述扫频指示帧的被定位设备的Wi-Fi信号传输范围内并能够与该被定位设备进行Wi-Fi通信的所有定位锚点设备。
  31. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,所述至少一个接入点设备中的一个向所述至少一个被定位设备中的一个或多个发送扫频指示帧,且所述至少一个站点设备中的一个或多个通过监听接收所述扫频指示帧。
  32. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,根据所述一个或多个定位帧确定接收到所述扫频指示帧的每个定位锚点设备与接收到所述扫频指示帧的被定位设备之间的CSI信息的步骤包括:接收到所述扫频指示帧的每个定位锚点设备根据所述一个或多个定位帧进行CSI拼接,以获得该定位锚点设备与接收到所述扫频指示帧的被定位设备之间的CSI信息。
  33. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,根据所述CSI信息确定接收到所述扫频指示帧的被定位设备的位置的步骤包括:接收到所述扫频指示帧的每个定位锚点设备根据所述CSI信息确定该定位锚点设备与接收到所述扫频指示帧的被定位设备之间的距 离,并将所述距离汇总到所述至少一个接入点设备中的一个或位于所述Wi-Fi网络之内或之外的服务器以确定所述被定位设备的位置。
  34. 根据权利要求17所述的在Wi-Fi网络中进行Wi-Fi定位的方法,其特征在于,接收到所述扫频指示帧的被定位设备在发送所述一个或多个定位帧之前,发送CTS帧。
  35. 一种Wi-Fi定位系统,包括:
    形成Wi-Fi网络的多个定位锚点设备和至少一个被定位设备,其中所述多个锚点设备包括至少一个接入点设备和至少一个站点设备;
    其中所述Wi-Fi定位系统配置为执行根据权利要求1至16中的任一项所述的Wi-Fi定位方法,和/或根据权利要求权利要求17至34中的任一项所述所述的Wi-Fi定位方法。
  36. 根据权利要求35所述的Wi-Fi定位系统,其特征在于,所述至少一个被定位设备中的每个与所述至少一个站点设备中的每个相比具有较低的计算能力和较低的功耗。
  37. 根据权利要求35所述的Wi-Fi定位系统,其特征在于,所述至少一个站点设备以及至少一个被定位设备中的每个为单天线设备。
PCT/CN2022/102585 2021-06-30 2022-06-30 Wi-Fi定位方法和系统 WO2023274336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110748377.5A CN115550833A (zh) 2021-06-30 2021-06-30 Wi-Fi定位方法和系统
CN202110748377.5 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023274336A1 true WO2023274336A1 (zh) 2023-01-05

Family

ID=84692542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102585 WO2023274336A1 (zh) 2021-06-30 2022-06-30 Wi-Fi定位方法和系统

Country Status (2)

Country Link
CN (1) CN115550833A (zh)
WO (1) WO2023274336A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536412A (zh) * 2019-04-29 2019-12-03 中兴通讯股份有限公司 上行定位的实现方法、装置和存储介质
CN111148014A (zh) * 2018-11-02 2020-05-12 展讯半导体(南京)有限公司 定位参考信号的配置方法、装置、网络侧设备及移动终端
CN111867050A (zh) * 2019-04-29 2020-10-30 中兴通讯股份有限公司 一种信息传输的方法、装置、节点和服务器
CN112262322A (zh) * 2018-06-08 2021-01-22 高通股份有限公司 使用信道状态信息(csi)报告框架以支持定位测量
CN112994858A (zh) * 2019-12-17 2021-06-18 大唐移动通信设备有限公司 一种直通链路定位参考信号的发送、接收方法及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112262322A (zh) * 2018-06-08 2021-01-22 高通股份有限公司 使用信道状态信息(csi)报告框架以支持定位测量
CN111148014A (zh) * 2018-11-02 2020-05-12 展讯半导体(南京)有限公司 定位参考信号的配置方法、装置、网络侧设备及移动终端
CN110536412A (zh) * 2019-04-29 2019-12-03 中兴通讯股份有限公司 上行定位的实现方法、装置和存储介质
CN111867050A (zh) * 2019-04-29 2020-10-30 中兴通讯股份有限公司 一种信息传输的方法、装置、节点和服务器
CN112994858A (zh) * 2019-12-17 2021-06-18 大唐移动通信设备有限公司 一种直通链路定位参考信号的发送、接收方法及终端

Also Published As

Publication number Publication date
CN115550833A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US9456306B2 (en) Fine timing measurement transmissions between APs
CN106792916B (zh) 一种混合型远距离无线传感器网络系统及其通信方法
US9888439B2 (en) Method for communication based on identifying information assignment and apparatus for the same
KR101634017B1 (ko) 무선랜 시스템에서 파워 세이브 모드로 동작하는 스테이션에 의한 통신 방법 및 장치
US9445226B2 (en) Method for improving location accuracy in multi-channel wireless networks
CN105357746B (zh) 两跳无线网络架构
US20080219196A1 (en) Infrastructure offload wake on wireless lan (wowl)
US20220353948A1 (en) Method and device for sidelink communication
US20120106418A1 (en) Client' device power reduction in wireless networks having network-computed client' location
KR20140021714A (ko) 무선랜 시스템에서 통신 방법
US20210352587A1 (en) Communication apparatus and communication method
CN108012313B (zh) 帧传输方法、设备及系统
Tomar Introduction to ZigBee technology
US8982859B2 (en) Wireless device and method of short MAC frame indication
Badihi et al. Performance evaluation of IEEE 802.11 ah actuators
US20050025106A1 (en) Method and apparatus for controlling power consumption of stations on a CSMA/CA-based wireless LAN
EP2954730B1 (en) Systems and methods for power saving for multicast and broadcast data
US20230363049A1 (en) Method and device for performing sidelink transmission and reception
CN110972262B (zh) 节能的室内上行定位的方法及系统
JP2017017670A (ja) 通信装置及び通信方法
WO2017167141A1 (zh) 无线局域网信标发送方法及装置
WO2023274336A1 (zh) Wi-Fi定位方法和系统
CN102572963A (zh) 一种适用于ofdm-uwb系统的协作速率自适应传输方法
Alim et al. Backscatter MAC protocol for future Internet of Things networks
CN109218979B (zh) 一种分布式室内导航系统及其下行信号传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE