WO2023273733A1 - 一种具有表面修饰纳米结构阵列的多孔材料及其应用 - Google Patents

一种具有表面修饰纳米结构阵列的多孔材料及其应用 Download PDF

Info

Publication number
WO2023273733A1
WO2023273733A1 PCT/CN2022/095419 CN2022095419W WO2023273733A1 WO 2023273733 A1 WO2023273733 A1 WO 2023273733A1 CN 2022095419 W CN2022095419 W CN 2022095419W WO 2023273733 A1 WO2023273733 A1 WO 2023273733A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous material
nanostructure
modified
array
nanostructure array
Prior art date
Application number
PCT/CN2022/095419
Other languages
English (en)
French (fr)
Inventor
吴乾元
彭露
朱浩杰
杨诚
胡洪营
Original Assignee
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳国际研究生院 filed Critical 清华大学深圳国际研究生院
Priority to US18/056,607 priority Critical patent/US20230113859A1/en
Publication of WO2023273733A1 publication Critical patent/WO2023273733A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/24Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients to enhance the sticking of the active ingredients
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the invention relates to the field of microbial risk control, in particular to a porous material with a surface-modified nanostructure array and its application in disinfection.
  • the small-scale and high-curvature characteristics of bacteria allow the inward stress imposed by nanomaterials to be dispersed, and the fluidity of the cell membrane enables bacteria to achieve self-healing in the event of slight damage. Therefore, the reported mechanical antibacterial effect usually requires several hours of contact time or additional surface energy to achieve a more significant antibacterial effect.
  • the main purpose of the present invention is to overcome the deficiencies of the prior art, to propose a porous material with a surface-modified nanostructure array, to achieve physical fragmentation of microorganisms by changing the interaction between the nanostructures and microorganisms, so as to solve the existing mechanical inhibition.
  • the antibacterial effect of the antibacterial method is not obvious, and the contact time is long.
  • a porous material with a surface-modified nanostructure array comprising: a porous material substrate, and a nanostructure array constructed in situ on the porous material substrate; wherein, a surface modification layer is arranged on the nanostructure surface of the nanostructure array , the surface modification layer is used to increase the adhesion of the nanostructure to microorganisms.
  • the nanostructure is elongated.
  • the nanostructure array is a nanotip array, a nanowire array or a nanopillar array.
  • the axial height of the nanostructure is 5-10 ⁇ m, and the radial dimension is 100-200 nm.
  • the surface modification layer is an adhesion layer that covers the surface of the nanostructure and does not change the morphology of the nanostructure.
  • the thickness of the adhesion layer is 5-15nm
  • the adhesive layer is carbon film, gelatin or polylysine.
  • Another aspect of the present invention proposes an application of a porous material with a surface-modified nanostructure array, the application is to apply the aforementioned porous material with a surface-modified nanostructure array to sterilize fluid; the sterilization is During the contact process between the nanostructure and the flowing fluid, the microstructure is physically broken by tearing the microbe through the flow field force generated by the fluid and the adhesion force of the nanostructure to the microbe.
  • porous material is placed in a flowing fluid, so that the fluid shuttles through the gaps of the nanostructure array in a filtering flow state, and the sterilization and disinfection are realized during the shuttle flow.
  • the present invention achieves short-term adhesion to microorganisms such as bacteria by modifying the surface of the nanostructure array. While the adhesion force acts on the bacteria, the flow field force generated by the fluid flow exerts outward tensile stress on the high curvature surface of the bacteria To achieve the tearing of bacteria, so that the bacterial cell membrane is irreversibly physically broken, and then achieve the effect of disinfection and sterilization.
  • the method of disinfection and sterilization using porous materials with surface-modified nanostructure arrays of the present invention has the following advantages:
  • the modified nanostructure array of the present invention can cause irreversible physical damage to the bacteria within a few seconds of contact time, which in turn leads to the inactivation of the bacteria, and there is no subsequent resurrection phenomenon;
  • the present invention utilizes the surface modified nanostructure array
  • the bacteriostatic method of the porous material has broad-spectrum to bacterial inactivation, can realize effective inactivation to typical Gram-negative bacteria and positive bacteria in water body;
  • the present invention utilizes the porous material with surface-modified nanostructure array
  • the antibacterial method is universal, and for nanostructure arrays with different chemical compositions, the antibacterial effect can be significantly improved after surface modification.
  • Figure 1 is a schematic diagram of the principle of sterilization using a porous material with a surface-modified nanostructure array according to an embodiment of the present invention
  • Figure 2 is the inactivation characteristics of the surface-modified copper hydroxide nanowire array and the original copper hydroxide nanowire array to Escherichia coli;
  • Figure 3a-3d is the storage curve of four kinds of Gram-negative and positive bacteria after disinfection treatment and untreated (the circle represents after treatment, and the triangle represents before treatment);
  • Fig. 4 is the inactivation characteristic of Escherichia coli by surface-modified zinc oxide nanorod arrays and original zinc oxide nanorods;
  • Figure 5 shows the inactivation characteristics of cobalt-manganese nanowire arrays and original cobalt-manganese nanowire arrays to Escherichia coli after surface modification
  • Fig. 6 shows the inactivation properties of the surface-modified titanate nanowire array and the original titanate nanowire array on Escherichia coli.
  • the specific embodiment of the present invention provides a method for efficient sterilization and disinfection using a porous material with a surface-modified nanostructure array.
  • the porous material with a surface-modified nanostructure array includes a porous material substrate and a nanostructure array constructed in situ on the porous material substrate.
  • a surface modification layer is provided on the surface of the nanostructures of the nanostructure array, and the surface modification layer is used to increase the adhesion of the nanostructures to microorganisms (such as bacteria).
  • Applying the porous material with the surface-modified nanostructure array to disinfection its action process can refer to Figure 1, including: placing the porous material with the surface-modified nanostructure array in the flowing fluid, so that the fluid is filtered The flow state of the nanostructure shuttles through the gaps of the nanostructure array. During the shuttle flow, the nanostructure 20 is in contact with the flowing fluid, and the flow field force (outward pulling force) generated by the fluid and the force of the nanostructure 20 on the bacteria 10 The adhesion force will tear the bacteria and cause the bacteria to be physically broken to achieve sterilization.
  • the nanostructures constituting the nanostructure array are elongated, with an axial height of 5-10 ⁇ m and a radial dimension of 100-200 nm.
  • a dense array of nanotips, nanowires or nanopillars can be constructed in situ on a porous material substrate.
  • the embodiments of the present invention use nano-tip arrays for sterilization and disinfection.
  • the nanostructure array needs to be surface modified to strengthen the adhesion of the nanostructure to bacteria.
  • a layer of adhesion layer can be coated on the surface of the nanostructure.
  • the thickness of the adhesion layer is is 5-15 nm, so the coating of the adhesion layer does not change the morphology of the nanostructure.
  • the adhesive layer can be a layer of carbon film, or can be formed by gelatin, polylysine and other materials with adhesive force.
  • a dense copper hydroxide nanowire array is grown in situ on the surface of the porous copper foam by using a chemical oxidation method.
  • Surface modification is carried out on the copper hydroxide nanowire array, specifically, a layer of carbon film is coated on the surface of the copper hydroxide nanowire to strengthen the adhesion force with the bacterial cell membrane.
  • the water sample containing bacteria to be treated is vertically flowed through the copper hydroxide nanowire array to control the hydraulic retention time of the bacteria in the nanowire array.
  • nano-tip arrays, nano-column arrays or nano-wire arrays with any chemical composition can achieve efficient disinfection by surface modification of the adhesion layer.
  • a surface-modified copper hydroxide nanowire array was prepared and placed in a closed pipeline, as shown in Figure 1.
  • the water sample containing 10 6 -10 7 CFU/mL Escherichia coli (CGMCC 1.3373) was introduced into the pipeline through the water pump. Treatment is complete when the water sample flows out through the nanowire array.
  • the concentration of viable bacteria in the treated water sample and the treated water sample was determined by plate counting method, and the bacterial inactivation efficiency was evaluated by logarithmic inactivation rate, which was calculated as -log 10 (N/N 0 ), where N 0 N is the bacterial concentration in the influent, and N is the bacterial concentration in the effluent.
  • the inactivation rate of the surface-modified copper hydroxide nanowires on Escherichia coli is shown in the bar graph Modified NWs in Figure 2.
  • the bacteria in the effluent are completely inactivated, and the inactivation rate can reach more than 6log.
  • Pristine unmodified copper hydroxide nanowire arrays were placed in a closed tube.
  • a water sample containing 10 6 -10 7 CFU/mL Escherichia coli (CGMCC 1.3373) was introduced into the pipeline through a water pump, and the same water flow rate as in Example 1 was controlled to ensure the same residence time of bacteria in the nanowire array. Treatment is complete when the water sample flows out through the nanowire array.
  • the inactivation rate of Escherichia coli by the copper hydroxide nanowires is shown in the bar graph Cu(OH) 2 NWs in Figure 2, and the inactivation rate of bacteria in the effluent is about 1 log.
  • Surface-modified copper hydroxide nanowire arrays were used to treat four typical bacteria in water bodies, and the treated water samples were stored at 25°C under simulated light conditions, at the time points of 0, 1, 5, 10, and 24 hours of storage Samples were taken to determine the concentration of viable bacteria in the treated water samples by the plate count method.
  • Gram-negative Escherichia coli E.coli, CGMCC 1.3373
  • Pseudomonas aeruginosa P.Aeruginosa
  • Gram-positive Enterococcus faecalis E.faecalis, CGMCC 1.2135
  • Staphylococcus aureus S.aureus, CGMCC 1.12409
  • ZnO nanorod arrays grown in situ on copper foam were prepared, and the same surface modification method was used to treat the ZnO nanorod arrays.
  • Escherichia coli were treated with surface-modified and pristine unmodified ZnO nanorod arrays.
  • Other operation steps are identical with embodiment 1.
  • samples were taken at the storage time points of 0, 1, 5, and 10 h to determine the concentration of viable bacteria in the treated water samples by plate counting.
  • the results are shown in Figure 4, the surface-modified zinc oxide nanorod array (Modified-ZnO nanorods) can achieve a 4log inactivation rate after treating Escherichia coli, while the original zinc oxide nanorod array has no significant antibacterial effect Effect.
  • Embodiment 3 The difference between this embodiment and Embodiment 3 is that the cobalt-manganese nanowire arrays grown in-situ on nickel foam are used, and other steps and parameters are the same as those of Embodiment 3.
  • the results are shown in Figure 5, the surface-modified cobalt-manganese nanowire arrays (Modified-Co, Mn LDH) can achieve a 5log inactivation rate after treating Escherichia coli, while the original cobalt-manganese nanowire arrays have no significant Bacteriostatic effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种具有表面修饰纳米结构阵列的多孔材料及其应用,多孔材料,包括:多孔材料基底,以及于所述多孔材料基底上原位构筑的纳米结构阵列;其中,在所述纳米结构阵列的纳米结构表面设置表面修饰层,所述表面修饰层用于增加所述纳米结构对微生物的粘附力。所述多孔材料应用于消毒,包括:将具有表面修饰纳米结构阵列的多孔材料置于流动的流体中,使流体以过滤式的流态从纳米结构阵列的缝隙中穿梭流过,在穿梭流动的过程中,微生物与纳米结构接触,通过流体产生的流场力和纳米结构对微生物的粘附力对微生物产生撕扯而使微生物被物理破碎来实现消毒。

Description

一种具有表面修饰纳米结构阵列的多孔材料及其应用 技术领域
本发明涉及微生物风险控制领域,具体涉及一种具有表面修饰纳米结构阵列的多孔材料及其在消毒方面的应用。
背景技术
传统消毒技术(如氯、臭氧、紫外消毒及高温高压灭菌等)面临有毒有害副产物生成、能耗大及细菌复活等问题,为了控制环境风险、保证用水健康,亟待开发新型的安全高效的消毒技术。纳米材料的机械抑菌效应被认为是一种理想的控制微生物风险的方式。纳米结构与细菌接触过程中,可使细胞膜发生变形或者穿刺,直至细菌丧失完整细胞膜结构进而死亡。然而,细菌小尺度、高曲率的特性使得纳米材料施加的内向应力得以分散,细胞膜的流动性使细菌在轻微损伤的情况下能够实现自愈。因此,已报导的机械抑菌效应通常需要长达数小时的接触时间或者借助额外的表面能才能实现较为显著的抑菌效果。
发明内容
本发明的主要目的在于克服现有技术的不足,提出一种具有表面修饰纳米结构阵列的多孔材料,通过改变纳米结构与微生物的作用方式来达到对微生物的物理破碎,以解决现有的机械抑菌方式存在的抑菌效果不明显、接触时间较长等问题。
为达上述目的,本发明的一方面提出如下技术方案:
一种具有表面修饰纳米结构阵列的多孔材料,包括:多孔材料基底,以及于所述多孔材料基底上原位构筑的纳米结构阵列;其中,在所述纳米结构阵列的纳米结构表面设置表面修饰层,所述表面修饰层用于增加所述纳米结构对微生物的粘附力。
进一步地,所述纳米结构呈细长状。
进一步地,所述纳米结构阵列为纳米尖锥阵列、纳米线阵列或纳米柱阵列。
进一步地,所述纳米结构的轴向高度为5~10μm,径向尺寸为100~200nm。
进一步地,所述表面修饰层为包覆在所述纳米结构表面,且不改变纳米结构形貌的一粘附层。
进一步地,所述粘附层的厚度为5-15nm
进一步地,所述粘附层为碳膜、明胶或多聚赖氨酸。
本发明的另一方面提出一种具有表面修饰纳米结构阵列的多孔材料的应用,所述应用是将前述的具有表面修饰纳米结构阵列的多孔材料应用于对流体进行杀菌消毒;所述杀菌消毒是在所述纳米结构与流动流体接触过程中,通过流体产生的流场力和纳米结构对微生物的粘附力对微生物形成撕扯而使微生物被物理破碎来实现。
进一步地,将所述多孔材料置于流动的流体中,使流体以过滤式的流态从所述纳米结构阵列的缝隙中穿梭流过,在穿梭流动的过程中实现所述杀菌消毒。
本发明通过对纳米结构阵列进行表面修饰来达到对微生物比如细菌的短暂粘附,在粘附力作用于细菌的同时,通过流体流动产生的流场力对细菌的高曲率表面施加外向的拉应力来达到对细菌的撕扯,使细菌细胞膜发生不可逆的物理破碎,进而达到消毒杀菌的效果。与传统的基于纳米材料的机械抑菌效应进行消毒的方式相比,本发明的这种利用具有表面修饰纳米结构阵列的多孔材料进行消毒杀菌的方式具有如下优势:
1)可在不外加化学试剂的情况下,仅借助温和的水力能实现对细菌的有效灭活,相比原始的纳米尖锥阵列刺破细胞壁的方式,灭活效率提升5log以上;2)接触时间短:本发明经过修饰的纳米结构阵列在数秒的接触时间内即可对细菌造成不可逆的物理损伤,进而导致细菌灭活,且后续无复活现象;3)本发明利用具有表面修饰纳米结构阵列的多孔材料的抑菌方法对细菌灭活具有广谱性,对水体中典型的革兰氏阴性菌及阳性菌均能实现有效灭活;4)本发明利用具有表面修饰纳米结构阵列的多孔材料的抑菌方法具有普适性,对于不同化学成分的纳米结构阵列,经表面修饰后,均能显著提升其抑菌效果。
附图说明
图1是本发明实施例利用具有表面修饰纳米结构阵列的多孔材料进行杀菌消毒的原理示意图;
图2是经表面修饰的氢氧化铜纳米线阵列与原始氢氧化铜纳米线阵列对大肠埃希氏菌的灭活特性;
图3a-3d是经过消毒处理后和未经处理的四种革兰氏阴性及阳性菌的储存曲线(圆形表示处理后,三角形表示处理前);
图4是经过表面修饰处理的氧化锌纳米棒阵列和原始的氧化锌纳米棒对大肠埃希氏菌的灭活特性;
图5是经过表面修饰处理的钴锰纳米线阵列和原始的钴锰纳米线阵列对大肠埃希氏菌的灭活特性;
图6是经过表面修饰处理的钛酸盐纳米线阵列和原始的钛酸盐纳米线阵列对大肠埃希氏菌的灭活特性。
具体实施方式
下面结合附图和具体的实施方式对本发明作进一步说明。
本发明的具体实施方式提供一种利用具有表面修饰纳米结构阵列的多孔材料进行高效杀菌消毒的方法。所述的具有表面修饰纳米结构阵列的多孔材料包括多孔材料基底,以及于多孔材料基底上原位构筑的纳米结构阵列。其中,在所述纳米结构阵列的纳米结构表面设置表面修饰层,所述表面修饰层用于增加所述纳米结构对微生物(比如细菌)的粘附力。将所述具有表面修饰纳米结构阵列的多孔材料应用于消毒,其作用过程可参考图1,包括:将所述具有表面修饰纳米结构阵列的多孔材料置于流动的流体中,使流体以过滤式的流态从所述纳米结构阵列的缝隙中穿梭流过,在穿梭流动的过程中,纳米结构20与流动流体接触,通过流体产生的流场力(外向拉力)和纳米结构20对细菌10的粘附力对细菌产生撕扯而使细菌被物理破碎来实现实现杀菌消毒。
构成纳米结构阵列的纳米结构呈细长状,其轴向高度为5~10μm,径向尺寸为100~200nm。在一些实施例中,可在多孔材料基底上原位构筑出密集的纳米尖锥阵列,纳米线阵列或者纳米柱阵列。优选地,本发明实施例采用纳米尖锥 阵列来进行杀菌消毒。在形成纳米结构阵列之后,需对纳米结构进行表面修饰处理以加强纳米结构对细菌的粘附力,具体而言,可以在纳米结构的表面包覆一层粘附层,该粘附层的厚度为5-15nm,因此该粘附层的包覆不改变纳米结构的形貌。所述粘附层可为一层碳膜,或者采用明胶、多聚赖氨酸等具有粘附力的材料来形成皆可。
在以多孔泡沫铜作为多孔材料基底的实施例中,采用化学氧化法在多孔泡沫铜表面原位生长出密集的氢氧化铜纳米线阵列。对氢氧化铜纳米线阵列进行表面修饰,具体地,在氢氧化铜纳米线表面包覆一层碳膜,以强化与细菌细胞膜的粘附力。使用时,将含有细菌的待处理水样垂直流过氢氧化铜纳米线阵列,控制细菌在纳米线阵列的水力停留时间。
另外,对于形成于多孔泡沫铜基底的氧化锌纳米棒阵列、形成于多孔泡沫镍基底的钴锰纳米线阵列和形成于多孔泡沫钛基底的钛酸盐纳米线阵列,或者其它采用任意多孔材料基底形成的任意化学组成的纳米尖锥阵列、纳米柱阵列或纳米线阵列等,均可通过表面修饰粘附层的方法实现高效消毒。
下面通过实施例和对比例来验证本发明的有效性。
实施例1
制备经表面修饰的氢氧化铜纳米线阵列,并置于密闭管路中,如图1所示。将含有10 6~10 7CFU/mL大肠埃希氏菌(CGMCC 1.3373)的水样通过水泵导入管路。当水样通过纳米线阵列流出后即完成处理。用平板计数法确定待处理水样及处理后水样中的活菌浓度,细菌灭活效率采用对数灭活率进行评价,其计算方式为-log 10(N/N 0),其中N 0为进水细菌浓度,N为出水细菌浓度。经表面修饰的氢氧化铜纳米线对大肠埃希氏菌的灭活率如图2中的柱状图Modified NWs所示,出水细菌完全灭活,灭活率可达6log以上。
对比例1
将原始的未经修饰氢氧化铜纳米线阵列置于密闭管路中。将含有10 6~10 7CFU/mL大肠埃希氏菌(CGMCC 1.3373)的水样通过水泵导入管路,控制与实施例1相同的水流速度以保证细菌在纳米线阵列的停留时间相同。当水样通过纳米线阵列流出后即完成处理。本对比例中氢氧化铜纳米线对大肠埃希氏菌的灭活率如图2中的柱状图Cu(OH) 2NWs所示,出水细菌灭活率约1log。
实施例2
采用经表面修饰的氢氧化铜纳米线阵列对水体中四种典型细菌进行处理,将处理后水样在25℃,模拟光照条件下进行储存,在储存0、1、5、10、24h时间节点取样通过平板计数法测定处理后水样中活菌浓度。储存曲线如图3a-3d所示,经本发明的水力学抑菌处理后,革兰氏阴性的大肠埃希氏菌(E.coli,CGMCC 1.3373)、铜绿假单胞菌(P.Aeruginosa,CGMCC 1.12483),以及革兰氏阳性的粪肠球菌(E.faecalis,CGMCC 1.2135)、金黄色葡萄球菌(S.aureus,CGMCC 1.12409)在储存过程中均可全部灭活,灭活率均在6log以上,且无复活现象。
实施例3
制备原位生长于泡沫铜的氧化锌纳米棒阵列,采用同样的表面修饰方法对氧化锌纳米棒阵列进行处理。采用经表面修饰的和原始未经修饰的氧化锌纳米棒阵列对大肠埃希氏菌进行处理。其他操作步骤与实施例1相同。对处理出水,在储存0、1、5、10h时间节点取样通过平板计数法测定处理后水样中活菌浓度。结果如图4所示,经表面修饰的氧化锌纳米棒阵列(Modified-ZnO nanorods)处理大肠埃希氏菌后能达到4log的灭活率,而原始的氧化锌纳米棒阵列没有显著的抑菌效果。
实施例4
本实施例与实施例3不同之处在于采用原位生长于泡沫镍的钴锰纳米线阵列,其他步骤及参数与实施例3相同。结果如图5所示,经表面修饰的钴锰纳米线阵列(Modified-Co,Mn LDH)处理大肠埃希氏菌后能达到5log的灭活率,而原始的钴锰纳米线阵列没有显著的抑菌效果。
实施例5
本实施例与实施例3不同之处在于采用原位生长于泡沫钛的钛酸盐纳米线阵列,其他步骤及参数与实施例3相同。结果如图6所示,经表面修饰的钛酸盐纳米线阵列(Modified-TiNWs)处理大肠埃希氏菌后能达到6log的灭活率,而原始的钛酸盐纳米线阵列没有显著的抑菌效果。
综上可以验证利用本发明具有表面修饰纳米结构阵列的多孔材料进行水样杀菌是有效的,且能达到高效灭活细菌。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (9)

  1. 一种具有表面修饰纳米结构阵列的多孔材料,其特征在于,包括:多孔材料基底,以及于所述多孔材料基底上原位构筑的纳米结构阵列;其中,在所述纳米结构阵列的纳米结构表面设置表面修饰层,所述表面修饰层用于增加所述纳米结构对微生物的粘附力。
  2. 如权利要求1所述的具有表面修饰纳米结构阵列的多孔材料,其特征在于:所述纳米结构呈细长状。
  3. 如权利要求1或2所述的具有表面修饰纳米结构阵列的多孔材料,其特征在于:所述纳米结构阵列为纳米尖锥阵列、纳米线阵列或纳米柱阵列。
  4. 如权利要求1或2所述的具有表面修饰纳米结构阵列的多孔材料,其特征在于:所述纳米结构的轴向高度为5~10μm,径向尺寸为100~200nm。
  5. 如权利要求1所述的具有表面修饰纳米结构阵列的多孔材料,其特征在于:所述表面修饰层为包覆在所述纳米结构表面,且不改变纳米结构形貌的一粘附层。
  6. 如权利要求5所述的具有表面修饰纳米结构阵列的多孔材料,其特征在于:所述粘附层的厚度为5-15nm。
  7. 如权利要求5所述的具有表面修饰纳米结构阵列的多孔材料,其特征在于:所述粘附层为碳膜、明胶或多聚赖氨酸。
  8. 一种具有表面修饰纳米结构阵列的多孔材料的应用,其特征在于:所述应用是将权利要求1至7任一项所述的具有表面修饰纳米结构阵列的多孔材料应用于对流体进行杀菌消毒;所述杀菌消毒是在所述纳米结构与流动流体接触过程中,通过流体产生的流场力和纳米结构对微生物的粘附力对微生物形成撕扯而使微生物被物理破碎来实现。
  9. 如权利要求8所述的具有表面修饰纳米结构阵列的多孔材料的应用,其特征在于:将所述多孔材料置于流动的流体中,使流体以过滤式的流态从所述纳米结构阵列的缝隙中穿梭流过,在穿梭流动的过程中实现所述杀菌消毒。
PCT/CN2022/095419 2021-06-28 2022-05-27 一种具有表面修饰纳米结构阵列的多孔材料及其应用 WO2023273733A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/056,607 US20230113859A1 (en) 2021-06-28 2022-11-17 Porous material with surface-modified nanoarrays and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110717533.1A CN113331182B (zh) 2021-06-28 2021-06-28 一种具有表面修饰纳米结构阵列的多孔材料及其应用
CN202110717533.1 2021-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/056,607 Continuation US20230113859A1 (en) 2021-06-28 2022-11-17 Porous material with surface-modified nanoarrays and application thereof

Publications (1)

Publication Number Publication Date
WO2023273733A1 true WO2023273733A1 (zh) 2023-01-05

Family

ID=77479106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095419 WO2023273733A1 (zh) 2021-06-28 2022-05-27 一种具有表面修饰纳米结构阵列的多孔材料及其应用

Country Status (3)

Country Link
US (1) US20230113859A1 (zh)
CN (1) CN113331182B (zh)
WO (1) WO2023273733A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113331182B (zh) * 2021-06-28 2022-02-01 清华大学深圳国际研究生院 一种具有表面修饰纳米结构阵列的多孔材料及其应用
CN114933370B (zh) * 2022-05-16 2023-05-05 清华大学深圳国际研究生院 一种用于水处理的过滤式消毒方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790403A (zh) * 2016-09-20 2019-05-21 新加坡科技研究局 涂有金属氧化物纳米阵列的基于细胞破裂的抗微生物表面
CN110407302A (zh) * 2019-08-28 2019-11-05 中国海洋大学 一种3D C/氧化亚铜-AgNPs水消毒纳米复合材料及其制备方法
CN113321234A (zh) * 2021-05-21 2021-08-31 中国海洋大学 一种纳米复合材料、其制备方法及应用
CN113331182A (zh) * 2021-06-28 2021-09-03 清华大学深圳国际研究生院 一种具有表面修饰纳米结构阵列的多孔材料及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011181B (zh) * 2012-12-14 2014-08-13 中国科学院合肥物质科学研究院 二氧化硅纳米线阵列的剥离-移植方法
CN104616910B (zh) * 2015-01-09 2018-03-20 东南大学 碳包覆钛基纳米阵列材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790403A (zh) * 2016-09-20 2019-05-21 新加坡科技研究局 涂有金属氧化物纳米阵列的基于细胞破裂的抗微生物表面
CN110407302A (zh) * 2019-08-28 2019-11-05 中国海洋大学 一种3D C/氧化亚铜-AgNPs水消毒纳米复合材料及其制备方法
CN113321234A (zh) * 2021-05-21 2021-08-31 中国海洋大学 一种纳米复合材料、其制备方法及应用
CN113331182A (zh) * 2021-06-28 2021-09-03 清华大学深圳国际研究生院 一种具有表面修饰纳米结构阵列的多孔材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIVYA, M. ET AL.: "Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity", JOURNAL OF PHOTOCHEMISTRY & PHOTOBIOLOGY, B: BIOLOGY, vol. 178, 10 November 2017 (2017-11-10), XP085337325, ISSN: 1011-1344, DOI: 10.1016/j.jphotobiol.2017.11.008 *
SHIMADA TAISUKE, YASUI TAKAO, YONESE AKIHIRO, YANAGIDA TAKESHI, KAJI NORITADA, KANAI MASAKI, NAGASHIMA KAZUKI, KAWAI TOMOJI, BABA : "Mechanical Rupture-Based Antibacterial and Cell-Compatible ZnO/SiO2 Nanowire Structures Formed by Bottom-Up Approaches", MICROMACHINES, vol. 11, no. 6, pages 610, XP093018340, DOI: 10.3390/mi11060610 *

Also Published As

Publication number Publication date
US20230113859A1 (en) 2023-04-13
CN113331182A (zh) 2021-09-03
CN113331182B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2023273733A1 (zh) 一种具有表面修饰纳米结构阵列的多孔材料及其应用
Shao et al. Layer-by-layer self-assembly TiO2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability
Taghizadeh et al. ZnO, AgCl and AgCl/ZnO nanocomposites incorporated chitosan in the form of hydrogel beads for photocatalytic degradation of MB, E. coli and S. aureus
Cheriyamundath et al. Nanotechnology‐based wastewater treatment
Ma et al. Spray-and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane for biofouling mitigation
Fan et al. Improvement of antifouling and antimicrobial abilities on silver–carbon nanotube based membranes under electrochemical assistance
Bojarska et al. Growth of ZnO nanowires on polypropylene membrane surface—characterization and reactivity
Yu et al. Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges
Kim et al. Modification strategies of membranes with enhanced Anti-biofouling properties for wastewater Treatment: A review
Giraud et al. Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: a review
Ni et al. Improved anti-biofouling performance of CdS/g-C3N4/rGO modified membranes based on in situ visible light photocatalysis in anammox membrane bioreactor
JP7085487B2 (ja) 抗菌性パターン化表面及びその製造方法
Wang et al. Selective decorating Ag and MnOx nanoparticles on halloysite and used as micromotor for bacterial killing
Abdel Maksoud et al. Gamma-rays induced synthesis of Ag-decorated ZnCo2O4–MoS2 heterostructure as novel photocatalyst and effective antimicrobial agent for wastewater treatment application
Sheet et al. The antibacterial activity of graphite oxide, silver, impregnated graphite oxide with silver and GO-coated sand nanoparticles against waterborne pathogenic E. coli BL21
Hussain et al. Nanocomposites for pollution control
Nazerah et al. Incorporation of bactericidal nanomaterials in development of antibacterial membrane for biofouling mitigation: A mini review
Budimir et al. Nanoscale materials for the treatment of water contaminated by bacteria and viruses
KR102278469B1 (ko) 살균공기정화기
CN209775745U (zh) 一种抗菌净化涂层布
Tamfu et al. Antibiofilm and Anti-Quorum Sensing Potential of Safely-Synthesized Hydrated Zirconium Oxide-Coated Alginate Beads against Some Pathogenic Bacteria
TW201041800A (en) Porosity carbon material having long durable nano-antibacterial and catalyst effects and preparation method thereof
Zheng et al. Graphene-Based Nanomaterials for Water Remediation Applications
Moses Nanotechnology-As antibacterial and heavy metal removal in waste water treatment-A review
Leo et al. Disinfection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE