WO2023273541A1 - 一种可穿戴设备 - Google Patents

一种可穿戴设备 Download PDF

Info

Publication number
WO2023273541A1
WO2023273541A1 PCT/CN2022/088234 CN2022088234W WO2023273541A1 WO 2023273541 A1 WO2023273541 A1 WO 2023273541A1 CN 2022088234 W CN2022088234 W CN 2022088234W WO 2023273541 A1 WO2023273541 A1 WO 2023273541A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
ecg electrode
circuit board
detection
electrically connected
Prior art date
Application number
PCT/CN2022/088234
Other languages
English (en)
French (fr)
Inventor
赵梦龙
刘晓刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22831370.6A priority Critical patent/EP4349252A1/en
Publication of WO2023273541A1 publication Critical patent/WO2023273541A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a wearable equipment.
  • Smart wearable products (such as smart watches or smart bracelets, etc.) have been favored by consumers in recent years due to their advantages of being easy to wear and having more and more functions.
  • more and more functional modules are integrated in current smart wearable products.
  • the sophistication and wearing comfort of smart wearable products will be affected.
  • This application provides a wearable device, which can monitor the user's electrocardiogram, body temperature and other physical signs in real time, and realize the miniaturization design of the wearable device by integrating the electrocardiogram and body temperature detection functions, so as to improve Wearing comfort.
  • the wearable device provided by the present application may include a casing, the casing includes a first casing and a second casing, and the first casing and the second casing are interlocked so that the first casing and the second casing An accommodating space is formed between them, and each module of the wearable device for realizing its function is arranged in the accommodating space.
  • the first housing may include a first surface, a second surface and a first via hole, wherein the first surface and the second surface are disposed opposite to each other, and the second surface faces the accommodation space.
  • the first via hole may pass through the first casing along a direction from the first surface to the second surface.
  • the wearable device may further include a first ECG electrode, and the first ECG electrode includes a first detection terminal, a second detection terminal and a connection part, wherein the first detection terminal is arranged on the first
  • the second detecting end is arranged on the second surface of the first housing, the connecting portion penetrates into the first via hole, and the first detecting end and the second detecting end are connected through the connecting portion.
  • a circuit board is also provided in the accommodation space of the wearable device, and a contact is provided on the circuit board, and the contact can be electrically connected with each functional module on the circuit board, and the second detection end of the first ECG electrode can be connected with the contact Electrical connection, so that the electrical signal collected by the first ECG electrode can be transmitted to the corresponding functional module on the circuit board through the contact, so as to realize the corresponding function.
  • a temperature sensor may also be arranged on the circuit board, and the second detection end of the first ECG electrode is also in thermal contact with the temperature sensor. In this way, the body temperature can be collected through the first ECG electrode, and the body temperature can be transmitted to the temperature sensor, thereby realizing the measurement of the body temperature by the wearable device.
  • the collection and transmission of electrical signals and temperature signals can be realized through the first ECG electrode, which can integrate various functions of the wearable device to effectively save the cost for realizing the corresponding functions.
  • the setting space for the module Therefore, it is beneficial to realize the miniaturization and thinning design of the wearable device.
  • space can be reserved for the setting of more functional modules of the wearable device, which is conducive to the realization of the multifunctional design of the wearable device, so as to improve the user experience. experience.
  • the first ECG electrode may include a substrate, and a filler having thermal and electrical conductivity doped on the substrate.
  • the substrate may be, but not limited to, a resin material substrate
  • the filler may be, but not limited to, silicon carbide or silver.
  • a heat-conducting and electrically-conductive glue may also be provided between the second detecting end of the first ECG electrode and the circuit board, so that the second detecting end can be electrically connected to contacts on the circuit board through the heat-conducting and electrically-conducting glue.
  • the second detection terminal may also be in thermal contact with the temperature sensor through thermally conductive adhesive, thereby simplifying the structure of the wearable device.
  • the contacts on the circuit board can be electrically connected with the functional modules on the circuit board, so as to realize corresponding functions.
  • the contacts may be first-type contacts, and an ECG module is provided on the circuit board, and the first-type contacts are electrically connected to the ECG module. In this way, when the second detection end of the first ECG electrode is electrically connected to the first type of contact, the electrocardiogram detection function of the wearable device can be realized.
  • the contacts may also be contacts of the second type
  • an antenna module may be further arranged on the circuit board, and the contacts of the second type may be electrically connected to the antenna module.
  • a charging pin can also be provided on the circuit board, and the charging pin can be electrically connected to the second detection terminal.
  • the circuit board can also be arranged on the charging module, and the charging pin can be electrically connected to the charging module. In this way, the charging function of the wearable device can be realized by electrically connecting the first ECG electrode to the external charging device, and transferring the charging current to the charging module through the charging pin.
  • the material of the first housing may be, but not limited to, glass, ceramics or plastic.
  • the first housing may be integrally formed to improve the aesthetic appearance of the wearable device.
  • the first housing can also be an assembled structure.
  • the first housing can include a fixing part and a detection part, the fixing part is provided with a mounting hole, and the detection part is installed in the mounting hole , and the detection part is fixedly connected.
  • the first ECG electrode can be arranged on the detection part.
  • the detection part can also be a convex structure facing away from the accommodating space relative to the fixed part, so as to realize stable contact between the first ECG electrode and the detection part. .
  • the second casing may be provided with second ECG electrodes.
  • the second housing includes a display screen, the display screen has a first surface and a second surface, the first surface and the second surface are arranged opposite to each other, and the second surface faces the accommodation space. Then the second ECG electrode can be arranged on the display screen, and the second via hole along the first surface to the second surface can be provided on the display screen, and then the second ECG electrode can pass through the via hole from the first surface of the display screen. Extending to the second side, and the portion of the second ECG electrode on the first side of the display screen is electrically connected to the portion of the second ECG electrode on the second side of the display screen.
  • the part of the second ECG electrodes on the display screen located on the second surface can also contact the circuit board in the accommodation space. Click on the electrical connection.
  • the contacts may also include the second type of contacts
  • the circuit board is provided with an antenna module
  • the second type of contacts can be electrically connected to the antenna module
  • the second ECG electrode can be is electrically connected to the second type of contact. In this way, the antenna signal can be received or transmitted through the part of the second ECG electrode disposed on the first surface of the display screen, so as to realize the antenna function of the wearable device.
  • the part of the second ECG electrode on the second surface can also be in thermal contact with the temperature sensor on the circuit board, or can be electrically connected to the charging pin on the circuit board, and through reasonable setting, the Electrocardiogram detection, body temperature detection, charging functions, and antenna functions are integrated through the second ECG electrodes on the display.
  • the second housing may also include a support frame, which is located on a side of the display screen facing the accommodation space, and the display screen can be fixed to the support frame, so that the support frame can support the display screen.
  • the supporting frame has a side wall, which can be used to connect the first housing and the display screen, so that the side wall, the first housing and the display screen jointly enclose an accommodating space.
  • the support frame may be provided with a third ECG electrode, and the third ECG electrode may be provided on a side wall of the support frame.
  • the side wall may include a first surface and a second surface, the first surface and the second surface are disposed opposite to each other, and the second surface faces the accommodating space.
  • a third via hole penetrating from the first surface to the second surface may be provided on the side wall, so that the third ECG electrode may extend from the first surface to the second surface of the side wall.
  • the part of the third ECG electrode on the side wall located on the second surface can also contact the circuit board in the accommodation space Point electrical connection, and thermal contact with the temperature sensor.
  • the electrocardiogram detection, body temperature detection, charging function and antenna function are integrated through the third ECG electrode on the side wall of the support frame.
  • FIG. 1 is a schematic structural diagram of a wearable device provided by an embodiment of the present application
  • FIG. 2 is an exploded view of a first housing of a wearable device provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a first housing of a wearable device provided in another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a wearable device provided by another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of the second surface of the first casing of the wearable device provided by an embodiment of the present application.
  • FIG. 6 is an exploded view of a partial structure of a wearable device provided by an embodiment of the present application.
  • Fig. 7 is the sectional view of A-A place in Fig. 4;
  • FIG. 8 is an exploded view of a partial structure of a wearable device provided by another embodiment of the present application.
  • Fig. 9 is the sectional view of B-B place in Fig. 4.
  • Figure 10 is an enlarged view of the local structure at C in Figure 9;
  • Fig. 11 is an exploded view of the first casing of the wearable device provided by another embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a wearable device provided by another embodiment of the present application.
  • Fig. 13 is an exploded view of a wearable device provided by another embodiment of the present application.
  • Fig. 14 is a schematic diagram of a partial structure of a wearable device provided by an embodiment of the present application.
  • Fig. 15 is a perspective view of a wearable device provided by an embodiment of the present application.
  • 7-charging pin 8-second housing; 81-display screen; 81a-the first side of the display screen; 81b-the second side of the display screen;
  • the wearable device provided by this application can be used for human health monitoring.
  • Wearable devices such as smart watches or smart bracelets with the function of monitoring human health are one of the important products for mobile and online health monitoring, and are widely praised by users. Therefore, the wearable device provided in this application may be, but not limited to, portable electronic devices such as smart watches and smart bracelets.
  • a smart watch it can usually be worn on a user's wrist.
  • the detection of the human body's electrocardiogram can be realized conveniently by setting an electrocardiograph (ECG) on the smart watch.
  • ECG electrocardiograph
  • human body indicators such as heart rate, heart rate variability (heart rate variability, HRV), and blood pressure can be obtained. Therefore, the prediction of the state of the body can be realized, so as to effectively avoid the conduction system disorder of the heart or the pathological changes of the myocardium.
  • body temperature is also an important health indicator of the human body. The measurement of body temperature can also be used to predict the health status of the body, thereby effectively reducing the risk of dangerous diseases.
  • an ECG module and a body temperature measurement module are usually provided at the same time. Since the detection of electrocardiogram and body temperature usually needs to be in contact with human skin, the ECG module and body temperature measurement module can be arranged on the side of the wearable device that is in contact with the human body.
  • FIG. 1 shows a schematic structural diagram of a wearable device provided by an embodiment of the present application.
  • a wearable device may include a housing having a first shell 1 and a second shell. Wherein, the first casing 1 is set opposite to the second casing. In addition, the first housing 1 and the second housing are fastened together to form an accommodating space for accommodating functional modules of the wearable device between the first housing 1 and the second housing.
  • the first casing 1 when the wearable device is worn, the first casing 1 can be in contact with the human body, and the ECG module and the body temperature measurement module can be arranged close to the first casing 1 .
  • FIG. 2 is an exploded view of a first casing 1 of an existing wearable device provided by an embodiment of the present application.
  • the side surface of the first housing 1 that is used to contact the human body can be defined as the first surface 1a of the first housing 1, and the first surface 1a of the first housing 1 facing the accommodating space can be defined as The side surface is defined as the second surface 1b of the first housing 1, and the first surface 1a and the second surface 1b are disposed opposite to each other.
  • the connecting surface of the first casing 1 for connecting the first surface 1 a and the second surface 1 b can also be defined as a side surface 1 c of the first casing 1 .
  • the first housing 1 includes a fixing part 101 and a detecting part 102 .
  • the fixing part 101 may be provided with an installation hole 1011, for example, the fixing part 101 may be a ring structure.
  • the detecting part 102 can be installed in the mounting hole 1011 of the fixing part 101 , and the detecting part 102 is fixedly connected with the fixing part 101 .
  • the material of the fixing part 101 can be plastic, ceramics or glass, etc.
  • the material of the detection part 102 can be plastic, ceramics or glass, etc.
  • the materials of the fixing part 101 and the detection part 102 can be the same, or can be different.
  • the ECG module generally includes ECG electrodes 2a.
  • the ECG electrodes 2a can be disposed on the first surface 1a of the first casing 1, and the ECG electrodes 2a are disposed along the edge of the first surface 1a.
  • the ECG electrodes 2a provided on the first surface 1a can be led to the second surface by wiring on the side 1c of the first housing 1, so that the ECG electrodes 2a and the ECG module can be arranged in the accommodation space. part of the electrical connection.
  • structures such as heat conduction pillars (not shown in the figure) can be embedded in the fixed part 101, so as to conduct the detected body temperature to the
  • the body temperature measurement module is located in the part of the accommodation space, so as to realize the measurement of body temperature.
  • FIG. 3 is a schematic structural diagram of a first housing 1 of an existing wearable device provided by another embodiment of the present application.
  • the ECG electrode 2 a can be embedded in the fixing part 101 , and the ECG electrode 2 a can extend to the receiving space and be electrically connected with other parts of the ECG module.
  • the detection part 102 can be made of sapphire glass with high thermal conductivity, and the temperature of the human body detected by the sapphire glass can be transmitted to the body temperature measurement module located in the accommodating space. Part, in order to realize the measurement of body temperature.
  • the wearable device provided by this application aims to solve the above problems, so as to save the installation space of the modules used to realize the electrocardiogram and body temperature detection functions by integrating the ECG module and the body temperature measurement module. It is conducive to realizing the miniaturization and thinning design of wearable devices. In addition, a space may also be reserved for the setting of other functional modules, so as to increase the diversification of functions of the wearable device.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • FIG. 4 is a schematic structural diagram of a wearable device provided in a possible embodiment of the present application.
  • the first casing 1 of the wearable device may be an integrally formed structure.
  • the material of the first housing 1 can be, but not limited to, ceramics, glass or plastic.
  • the structural reliability of the first housing 1 can be effectively improved, thereby improving the structural stability of the entire wearable device.
  • the degree of integration of the wearable device can be improved, thereby improving the aesthetic appearance of the wearable device.
  • the wearable device is provided with an ECG electrode 2 a, and the ECG electrode 2 a may be provided on the first surface 1 a of the first casing 1 .
  • the ECG electrode 2a may, but is not limited to, contain materials with thermal and electrical conductivity such as silicon carbide or silver.
  • the ECG electrode 2a may include a resinous material base, and fillers such as silicon carbide or silver doped on the resinous material base with thermal and electrical conductivity, so that the ECG electrode 2a can be used In addition to transmitting electrical signals, it can also realize the transmission of temperature signals.
  • the ECG electrodes 2a can be formed on the first surface 1a of the first shell 1 by, but not limited to, physical vapor deposition (physical vapor deposition, PVD), printing, and paste sintering.
  • the shape of the ECG electrode 2a is not specifically limited. For example, it can be set as an arc as shown in FIG. , or set to some possible irregular shape.
  • the number of ECG electrodes 2a can be one or more. Exemplarily, when there are two ECG electrodes 2a, the two ECG electrodes 2a can be arranged in an arc shape as shown in FIG. The arrangement is symmetrical to improve the aesthetics of the arrangement of the ECG electrodes 2a. In some other possible embodiments of the present application, when there are multiple ECG electrodes 2a, the shapes of the multiple ECG electrodes 2a can be different, which can be used to set the ECG electrodes 2a according to the first surface 1a of the first housing 1.
  • the ECG electrode 2a can be arranged at any position on the first surface 1a, for example, it can be arranged at the central area of the first surface 1a.
  • the wearable device provided by this solution, there is no requirement for the position of the ECG electrode 2a on the first surface 1a, which can effectively reduce the difficulty of process control of the ECG electrode 2a.
  • the area of the first surface 1a where the ECG electrode 2a is disposed may also protrude in a direction away from the accommodating space, so as to realize reliable contact between the ECG electrode 2a and the human body.
  • the first housing 1 is further provided with a via hole 103 , which penetrates the first housing 1 along a direction from the first surface 1 a to the second surface.
  • the via hole 103 may be formed by, but not limited to, numerical control (computerized numerical control, CNC), laser drilling, or directly formed through a mold forming process.
  • the ECG electrode 2a covers the via hole 103. It can be understood from the description of the formation process of the ECG electrode 2a in the above-mentioned embodiment that in the process of forming the ECG electrode 2a by PVD, part of the material used to form the ECG electrode 2a can pass through the via hole. 103 extends to the second surface of the first casing 1 .
  • the specific shape of the via hole 103 is not limited. Exemplarily, it may be a hole with a regular shape such as a circle, a square, or a triangle, and may also be a hole with some possible irregular shapes.
  • the diameter of the via hole 103 is too small, which is unfavorable for the material used to form the ECG electrode 2 a to pass through the via hole 103 .
  • the diameter of the via hole 103 may be 0.1 mm ⁇ 5 mm, for example, it may be 0.2 mm, 0.5 mm, 0.7 mm, 1.0 mm or 3 mm. Therefore, on the basis of satisfying the appearance effect of the first casing 1 , it is easy to realize the waterproof design of the first casing 1 .
  • FIG. 5 shows a schematic structural diagram of the second surface 1b of the first housing 1 according to an embodiment of the present application.
  • the material of the ECG electrode 2 a can fill the entire via hole 103 to seal the via hole 103 ; it can also be formed only on the hole wall of the via hole 103 . What is necessary is just to be able to connect the part of ECG electrode 2a formed in the 1st surface 1a and the part formed in the 2nd surface 1b.
  • the part of the ECG electrode 2a located on the first surface 1a may be referred to as the first detection terminal 201
  • the part of the ECG electrode 2a located on the second surface 1b may be referred to as the second detection terminal 202
  • the portion of the ECG electrode 2 a penetrating into the via hole 103 is referred to as a connection portion. It can be understood that the first detection end 201 and the second detection end 202 are connected through a connection part.
  • the present application does not specifically limit the shape of the second detection end 202 , for example, it may be a circle as shown in FIG. 5 . In some other embodiments, regular shapes such as ellipse, triangle, and rectangle may also be used, or some possible irregular shapes.
  • the present application does not limit the size of the second detection end 202, for example, the area of the second detection end 202 can be made larger than the cross-sectional area of the via hole 103, so as to realize the connection between the second detection end 202 and the wearable Other devices in the receiving space of the device are electrically connected, so as to realize the electrical connection of the entire ECG electrode 2 a with other devices in the receiving space of the wearable device.
  • the via hole 103 can be set separately, so as to realize the connection between each ECG electrode 2a and the wearable device.
  • the electrical connection of other devices in the accommodation space may be the same or different, and it may be set according to the connection relationship between the ECG electrode 2a and the devices in the accommodating space of the wearable device.
  • the wearable device provided in this application may further include a circuit board 3 .
  • FIG. 6 is an exploded view of a partial structure of a wearable device provided by an embodiment of the present application.
  • the circuit board 3 can be disposed in the accommodation space of the wearable device.
  • the circuit board 3 can be, for example, a printed circuit board (printed circuit board, PCB) or a flexible circuit board (flexible printed circuit, FPC).
  • the circuit board 3 can be integrated with an ECG module and a body temperature measurement module such as a functional module for realizing electrocardiogram and body temperature detection, a control module, a processing module, or a storage module.
  • the circuit board 3 is usually provided with metal traces, and each metal trace can be electrically connected to the above-mentioned various modules integrated in the circuit board 3 .
  • the circuit board 3 is further provided with contacts 4 , and in a possible embodiment of the present application, the part of the metal trace formed on the surface of the circuit board 3 may be used as the contacts 4 .
  • the covering on the surface of the circuit board 3 is etched away to expose the corresponding metal wiring, so that the exposed part of the metal wiring is used as the contact 4 . In order to realize the electrical connection between the contact 4 and the metal wiring, and then realize the electrical connection between the contact 4 and various modules.
  • the above-mentioned contact 4 can be electrically connected to the ECG module in the circuit board 3, so that the second detection terminal 202 of the ECG electrode 2a shown in FIG. 5 can be electrically connected to the contact 4 to The electrical connection between the entire ECG electrode 2a and the circuit board 3 is realized.
  • FIG. 7 is a cross-sectional view at A-A in FIG. 4 .
  • thermally conductive glue 5 can be provided between the second detecting end 202 of the ECG electrode 2 a and the contact 4 , so as to electrically connect the second detecting end 202 to the contact 4 through the thermally conductive glue 5 .
  • thermally conductive adhesive 5 can also be used to seal the via hole 103, so as to realize the sealing of the via hole 103, so as to realize the whole The waterproof effect of the first casing 1 .
  • the second detection end 202 may also be electrically connected to the contact 4 through a lead wire, an elastic piece, or other possible structures having thermal and electrical conduction properties.
  • the via hole 103 may also be waterproofed and sealed by dispensing waterproof glue.
  • the thermally conductive adhesive 5 Since the thermally conductive adhesive 5 has good thermal and electrical conductivity, it can not only transmit the electrical signal collected by the ECG electrode 2a to the contact 4, but also conduct the temperature collected by the ECG electrode 2a to the circuit board 3. . And because the ECG electrode 2a is also formed by a material with thermal and electrical conductivity, in some possible embodiments of the present application, the ECG electrode 2a and the thermal and conductive adhesive 5 may contain the same material with thermal and electrical conductivity, so as to improve the performance of the ECG electrode. 2a Efficiency of electrical signal transmission and temperature conduction through thermally conductive adhesive 5 . In some other embodiments of the present application, the ECG electrode 2a is different from the thermally conductive material in the thermally conductive adhesive 5, as long as the ECG electrode 2a can conduct electrical signal transmission and temperature conduction through the thermally conductive adhesive 5. .
  • a temperature sensor 6 may also be provided on the circuit board 3 , and the temperature sensor 6 is electrically connected to the circuit board 3 .
  • the electrical connection between the temperature sensor 6 and the circuit board 3 can be realized through the electrical connection between the temperature sensor 6 and the metal wiring in the circuit board 3 .
  • the temperature sensor 6 can be fixed on the circuit board 3 , and the fixing method can be but not limited to welding or bonding.
  • the second detection end 202 of the ECG electrode 2 a may also be in thermal contact with the temperature sensor 6 , and the contact method may be direct contact or indirect contact.
  • the thermally conductive glue 5 can also be arranged between the temperature sensor 6 and the second detection terminal 202, and the second detection terminal 202 and the temperature sensor 6 are connected through the thermally conductive glue 5. It can be understood that the thermally conductive adhesive 5 can also have adhesive properties, so that the temperature sensor 6 can be bonded and fixed to the circuit board 3 through the thermally conductive adhesive 5 .
  • the ECG electrodes 2 a can extend from the first surface 1 a of the first casing 1 to the second surface 1 b through the via holes 103 penetrating through the first casing 1 .
  • the ECG electrode 2 a is formed of a material with thermal and electrical conductivity, and the second detection end 202 of the ECG electrode 2 a is electrically connected to the contact 4 on the circuit board 3 through the thermal and conductive glue 5 .
  • the electrocardiogram electrical signal detected by the ECG electrode 2a can be transmitted to the contact 4 through the thermally conductive adhesive 5, and the electrocardiogram electrical signal is analyzed and processed through the ECG module connected to the contact 4, thereby obtaining the corresponding electrocardiogram data, In order to realize the detection of the electrocardiogram of the human body.
  • the second detection end 202 of the ECG electrode 2a is connected to the temperature sensor 6 on the circuit board 3 through the thermally conductive adhesive 5, and the temperature signal collected by the first detection end 201 of the ECG electrode 2a can be passed through the via hole 103.
  • connection part 203 conducts to the second detection terminal 202, and conducts to the temperature sensor 6 through the thermally conductive glue 5, and then analyzes and processes the temperature signal through the body temperature measurement module integrated in the circuit board 3 for realizing temperature detection, to obtain Human body temperature data, so as to realize the detection of human body temperature.
  • the functions of electrocardiogram detection and body temperature detection can be integrated through the ECG electrode 2a with thermal and conductive properties, which can effectively save the configuration of modules used to realize the functions of electrocardiogram detection and body temperature detection space. Therefore, it is beneficial to realize the miniaturization and thinning design of the wearable device.
  • space can be reserved for the setting of other functional modules of the wearable device, thereby facilitating the realization of a multifunctional design of the wearable device to improve user experience.
  • the ECG electrode 2a is formed of a material having thermal and electrical conductivity.
  • the charging function of the wearable device can also be integrated into the ECG electrode 2a.
  • FIG. 8 shows an exploded view of a partial structure of a wearable device implemented in the present application.
  • a charging pin 7 may also be provided on the circuit board 3 , and the charging pin 7 is electrically connected to the circuit board 3 .
  • the electrical connection between the charging pin 7 and the circuit board 3 can be realized through the electrical connection between the charging pin 7 and the metal wiring in the circuit board 3 .
  • the metal wiring in the circuit board 3 electrically connected to the charging pin 7 may also be electrically connected to a charging module, and the charging module may be provided on the circuit board 3 but not limited to. In this way, the charging of the wearable device can be realized through the electrical connection between the external charging device and the charging pin 7 .
  • FIG. 9 is a cross-sectional view at B-B in FIG. 4.
  • the charging pin 7 can be fixed to the circuit board 3, and the fixing method can be but not limited to welding or bonding.
  • FIG. 10 is an enlarged view of the local structure at point C in FIG. 9 .
  • the length of the charging pin 7 can be designed so that it can be in direct contact with the second detection end 202 of the ECG electrode 2a, thereby effectively reducing the charging resistance of the wearable device. Improve charging efficiency.
  • the charging pin 7 can be set as a shrapnel, or the charging pin 7 can be made of elastic material, so that the charging pin 7 can be connected to the second detection terminal 202. Stable contact is achieved between the detection ends 202 through elastic abutting force.
  • the charging pin 7 can also be electrically connected to the second detection terminal 202 of the ECG electrode 2a through a lead wire, and the parameters such as the material and thickness of the lead wire can be adjusted to reduce the purpose of resistance.
  • the thermally conductive glue 5 may also be disposed between the charging pin 7 and the second detection terminal 202 , and the second detecting terminal 202 is connected to the charging pin 7 through the thermally conductive glue 5 .
  • the thermally conductive adhesive 5 can also have adhesive properties, so that the charging pin 7 can be bonded and fixed to the circuit board 3 through the thermally conductive adhesive 5, so as to improve the reliability of the connection between the charging pin 7 and the circuit board 3 .
  • connection mode between the charging pin 7 and the second detection terminal 202 provided in the above embodiment is only some exemplary descriptions given in this application. In some other possible embodiments of the present application, other possible connection methods can also be used between the two, which are not listed here, as long as a stable connection between the charging pin 7 and the second detection terminal 202 can be achieved. Electrical connection is sufficient, and all of them should be understood as falling within the protection scope of the present application.
  • the ECG electrode 2 a is formed of a material with thermal and electrical conductivity, and the second detection end 202 of the ECG electrode 2 a is electrically connected to the charging pin 7 on the circuit board 3 .
  • the first detection terminal 201 of the ECG electrode 2a can be electrically connected to the external charging device, so that the current generated by the external charging device enters the ECG electrode 2a through the first detection terminal 201, and passes through the second detection terminal of the ECG electrode 2a.
  • 202 is transmitted to the charging pin 7, and then the wearable device is charged through the charging module electrically connected to the charging pin 7 in the circuit board 3.
  • Some current wearable devices may also be provided with an antenna module (not shown in the figure), so as to realize wireless communication between the wearable device and other external terminal devices.
  • the antenna module and components in the wearable device can be electrically connected to realize the function of the antenna.
  • the antenna module can be arranged on the circuit board 3 .
  • the antenna module can be electrically connected to contacts exposed on the surface of the circuit board 3 through the metal traces in the circuit board 3 .
  • the contacts electrically connected to the ECG module may be referred to as first-type contacts, and the contacts electrically connected to the antenna module may be referred to as second-type contacts.
  • the antenna function can be integrated into the ECG electrode 2a by electrically connecting the ECG electrode 2a with the second type of contact on the circuit board 3, so that the antenna function can be integrated on the first surface 1a of the first casing 1
  • the first detecting end 201 of the ECG electrode 2a receives or transmits antenna signals.
  • the electrical connection between the ECG electrode 2 a and the second type of contacts may be, but not limited to, conducted through thermally and electrically conductive glue 5 , lead wires or shrapnel, and other structures with thermally and electrically conductive properties.
  • the electrocardiogram detection, body temperature detection, charging function and antenna function can be integrated through the ECG electrode 2a, which can effectively save the electrocardiogram detection, body temperature detection, charging function and antenna.
  • the setting space for the module of the function Therefore, it is beneficial to realize the miniaturization and thinning design of the wearable device.
  • space can be reserved for the setting of other functional modules of the wearable device, which is conducive to the realization of the multifunctional design of the wearable device to improve user experience.
  • the via hole 103 can be opened separately for the realization of each function, so that the circuit board 3
  • the corresponding contact 4 , temperature sensor 6 or charging pin 7 is electrically connected to the corresponding via hole 103 .
  • at least two functions can also be realized by opening a via hole 103.
  • the area of the second detection end 202 of the ECG electrode 2a corresponding to the via hole 103 can be set to larger.
  • FIG. 11 is an exploded view of the first casing 1 of the wearable device provided in another possible embodiment of the present application.
  • the first housing 1 includes a fixing part 101 and a detecting part 102, wherein the fixing part 101 may be provided with a mounting hole 1011, and for example, the fixing part 101 may be a ring structure.
  • the detecting part 102 can be installed in the mounting hole 1011 of the fixing part 101 , and the detecting part 102 is fixedly connected with the fixing part 101 .
  • the materials of the fixing part 101 and the detection part 102 can be the same or different.
  • the material of the fixing part 101 can be plastic, ceramics or glass, etc.
  • the material of the detection part 102 can be plastic , ceramics or glass.
  • the ECG electrode 2a is arranged on the detection part 102, and the detection part 102 can protrude from the fixed part 101 toward the direction away from the accommodation space of the wearable device, so as to realize reliable contact between the ECG electrode 2a and the human body , thereby improving the detection accuracy.
  • FIG. 12 shows the structure of the second housing 8 side of the wearable device according to the embodiment of the present application.
  • ECG electrodes 2b may be provided on the second housing 8 of the housing of the wearable device. Still taking the wearable device as a smart watch as an example, when the smart watch is worn on the left hand of the human body, the ECG electrode 2a set on the first housing 1 can be in contact with the left hand, and the right hand of the human body can be in contact with the second housing 8 The ECG electrode 2b is in contact with each other, so as to form an electrocardiogram detection path.
  • the second housing 8 of the wearable device can include a display screen 81, which can be used to display the detection results of the electrocardiogram, body temperature, etc., as well as the power or signal status of the wearable device, so that the user can intuitively know his own health status, and the working status of the wearable device.
  • the ECG electrode 2b may be provided in the display area of the display screen 81 of the second casing 8, and at this time, the ECG electrode 2b may be formed of a material that is transparent and has thermal and electrical conductivity.
  • the ECG electrode 2b can also be arranged in the non-display area of the display screen 81 of the second housing 8. At this time, there is no requirement for the transparency of the material of the ECG electrode 2b, as long as it has a relatively Good thermal and electrical conductivity is enough.
  • FIG. 13 shows an exploded view of the wearable device shown in FIG. 12 .
  • the side surface of the display screen 81 of the second casing 8 used for display can be defined as the first surface 81a of the display screen 81, and the side of the display screen 81 facing the accommodating space
  • the surface of is defined as the second surface 81b of the display screen 81 .
  • the display screen 81 is also provided with a via hole 8101, and the via hole 8101 runs through the display screen 81 along the direction from the first surface 81a to the second surface 81b, so that the ECG electrode 2b can pass through the via hole 8101 from the first surface of the display screen 81.
  • 81a extends to the second surface 81b of the display screen 81, so as to realize the connection between the ECG electrode 2b and the circuit board located in the receiving space.
  • connection between the ECG electrode 2b and the circuit board of the display screen 81 of the second casing 8 can refer to the ECG electrode 2a and the circuit of the first casing 1 in the embodiment shown in FIG. 7 above, for example.
  • the contacts 4 and the like may be formed on the circuit board, which will not be described in detail here.
  • the ECG electrodes 2b on the display screen 81 and the ECG electrodes 2a on the first housing 1 can be electrically connected to the same circuit board 3, or can be electrically connected to different circuit boards 3, which can be based on the accommodation of the wearable device.
  • the specific layout method in the space is designed.
  • the ECG electrodes 2 b provided on the display screen 81 can also be formed of thermally and electrically conductive materials.
  • the ECG electrode 2b can also be connected to the temperature sensor provided on the circuit board through a thermally conductive structure such as thermally conductive glue, a lead wire, or a shrapnel, so as to detect the ambient temperature through the ECG electrode 2b.
  • a thermally conductive structure such as thermally conductive glue, a lead wire, or a shrapnel
  • the functions of electrocardiogram detection and ambient temperature detection can be integrated through the ECG electrode 2b provided on the second housing 8, which can avoid excessive occupation while adding the ambient temperature detection function to the wearable device.
  • the space of the wearable device has less impact on the miniaturization design of the wearable device, and can improve the user experience.
  • the body temperature detected by the ECG electrode 2a of the first housing 1 can also be calibrated by the ambient temperature detected by the ECG electrode 2b, so as to improve the accuracy of body temperature detection.
  • FIG. 14 is a schematic partial structural diagram of a wearable device according to a possible embodiment of the present application.
  • the ECG electrodes 2b extend from the first side 81a of the display screen 81 to the second side 81b (refer to Fig. 13), and the contacts 4 on the circuit board 3 include the second type of contacts.
  • an antenna module (not shown in the figure) is arranged on the circuit board 3, and the second type of contact is electrically connected to the antenna module.
  • the part of the ECG electrode 2b located on the second surface 81b can also be electrically connected to the second type of contact through the thermally conductive glue 5, so that the ECG electrode 2b can be arranged on the first surface 81a of the display screen.
  • the part of the antenna receives or transmits antenna signals to realize the antenna function of the wearable device.
  • the part of the ECG electrode 2b located on the second surface 81b and the second type of contact can also be electrically connected through a structure having thermal and electrical conductivity such as a lead wire or a shrapnel.
  • the charging function of the wearable device can also be integrated into the ECG electrode 2b by setting charging pins on the circuit board 3, etc.
  • the specific setting method can refer to the above-mentioned embodiment. No further details are given here.
  • the second housing 8 may further include a support frame 82 , the support frame 82 is located on the side of the display screen 81 facing the accommodating space, and the display screen 81 may be fixed to the support frame 82 , so that the supporting frame 82 supports the display screen 81 .
  • the material of the support frame 82 can be, but not limited to, metal or plastic.
  • the wearable device in order to realize the fixing of the first housing 1, may further include a fixing frame 9, which may be located on the side of the first housing 1 facing the accommodating space of the wearable device, and The first casing 1 is fixed on the fixing frame 9 .
  • the material of the fixing frame 9 may be, but not limited to, metal or plastic, so as to reliably support the first housing 1 .
  • the support frame 82 and the fixing frame 9 may be but not limited to be fastened and connected by fasteners.
  • the support frame 82 can be arranged in a ring structure, so that the support frame 82 can be used as a part of the shell of the wearable device.
  • the support frame 82 has a side wall, which can be used to connect the first casing 1 and the display screen 81 , so that the side wall together with the first casing 1 and the display screen 81 encloses a closed accommodation space.
  • the side wall also has an area that can be touched, in some possible embodiments of the present application, the area that can be touched on the side wall of the support frame 82 also ECG electrodes may be provided.
  • FIG. 15 is a perspective view of the wearable device shown in FIG. 13 .
  • the side surface of the side wall of the support frame 82 that can be seen by the user can be defined as the first surface 82a of the side wall, and the surface of the side wall facing the side of the accommodating space can be defined as the side wall The second side 82b of.
  • the side wall can also be provided with a via hole 8201, and the via hole 8201 runs through the side wall of the support frame 82 along the direction from the first surface 82a of the side wall to the second surface 82b, so that the ECG electrode 2c can pass through the via hole 8201
  • the first surface 82a of the side wall of the support frame 82 extends to the second surface 82b, so as to realize the electrical connection between the ECG electrode 2c and the circuit board located in the receiving space.
  • the specific location and shape of the ECG electrodes 2c on the side wall of the support frame 82 are not limited, and can be adaptively adjusted according to the side wall structure of the support frame 82 .
  • the ECG electrodes 2c disposed on the side walls of the support frame 82 can also be made of transparent materials with thermal and electrical conductivity, so as to improve the appearance of the wearable device.
  • connection between the ECG electrode 2c disposed on the side wall of the support frame 82 and the circuit board can refer to the ECG electrode 2a and the circuit board of the first casing 1 in any of the above-mentioned embodiments. 3 to set the connection method.
  • contacts 4 and the like may be formed on the circuit board 3 , which will not be described in detail here.
  • the ECG electrodes 2 c disposed on the side walls of the support frame 82 can also be formed of thermally and electrically conductive materials. In this way, the ECG electrode 2c can also be connected to the temperature sensor provided on the circuit board through the thermally conductive adhesive, so as to realize the detection of the ambient temperature through the ECG electrode 2c.
  • the functions of electrocardiogram detection and ambient temperature detection can be integrated through the ECG electrodes 2c arranged on the side wall of the support frame 82, which can avoid excessive Occupying the space of the wearable device has less impact on the miniaturization design of the wearable device, and can improve user experience.
  • the body temperature detected by the ECG electrode 2a of the first casing 1 can also be calibrated by the ambient temperature detected by the ECG electrode 2c, so as to improve the accuracy of body temperature detection.
  • the charging function and antenna function of the wearable device can also be integrated on the ECG electrode 2c on the side wall of the support frame 82, so as to provide more choices for the user .
  • the detection of the electrocardiogram can be realized by setting the ECG electrodes in any two structures of the first housing 1 , the display screen 81 and the support frame 82 .
  • ECG electrodes are provided on the three structures of the first housing 1, the display screen 81 and the support frame 82, a plurality of electrocardiogram detection channels can be formed through reasonable design, and the plurality of electrocardiogram detection channels can be calibrated with each other to Improve the accuracy of wearable devices for ECG detection.
  • the wearable device provided by this application can be provided with ECG electrodes on the first housing 1, the display screen 81 and the support frame 82, etc., and the ECG electrodes are formed of thermally and electrically conductive materials, so that the electrocardiogram detection, body temperature, etc. Detection, charging functions, and antenna functions are integrated to realize the miniaturization and thinner design of wearable devices.
  • via holes are provided on the structure provided with ECG electrodes, so that the ECG electrodes formed on one side surface of the structure extend to the side surface of the structure located in the accommodation space through the via holes, thereby facilitating the realization of ECG
  • the electrical connection between the electrodes and other devices in the accommodating space of the wearable device can effectively improve the aesthetics of the region where the ECG electrode is disposed on the wearable device.
  • ECG electrodes can be used in other possible electronic devices besides being provided in wearable devices.
  • it can be used in mobile phones, stereos, TVs, sweeping robots or routers, etc., to set ECG electrodes in the above-mentioned way on the casings of these electronic devices, and use ECG electrodes to detect electrocardiograms, body temperature detection, charging functions and antenna functions are integrated. It can realize miniaturization and thinning design of electronic equipment. And the space can be reserved for setting of other functional modules, so as to realize the diversification of functions of the electronic equipment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种可穿戴设备,设备包括外壳、第一ECG电极(2a)、电路板(3)和温度传感器(6)。外壳包括第一壳体(1)和第二壳体(8),第一壳体(1)和第二壳体(8)形成容纳空间。电路板(3)设置于容纳空间,电路板(3)设置有触点(4),温度传感器(6)设置于电路板(3)。第一壳体(1)包括第一面(1a)、第二面(1b)和第一过孔(103),第二面(1b)朝向容纳空间,第一面(1a)和第二面(1b)相背设置,第一过孔(103)贯穿第一壳体(1)。第一ECG电极(2a)包括第一检测端(201)、第二检测端(202)和连接部,第一检测端(201)设置于第一面(1a),第二检测端(202)设置于第二面(1b),连接部穿入第一过孔(103),且第一检测端(201)与第二检测端(202)通过连接部连接。第二检测端(202)与触点(4)电连接,且和温度传感器(6)导热接触。通过第一ECG电极(2a)可将心电图和体温检测进行集成,以实现可穿戴设备的小型化。

Description

一种可穿戴设备
相关申请的交叉引用
本申请要求在2021年06月30日提交中国专利局、申请号为202110731338.4、申请名称为“一种可穿戴设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到电子设备技术领域,尤其涉及到一种可穿戴设备。
背景技术
当今人们越来越重视自身及家人的健康情况,并希望能够在运动、睡眠、工作以及日常生活等各种场景下,都可以进行健康指标的监测。随着科技的发展,心率、血氧饱和度、心电图以及体温监测等功能开始集成于一些常用的电子设备中。
智能穿戴产品(例如智能手表或者智能手环等),由于其佩戴方便,且功能越来越丰富等优点,近年来受到了广大消费者的喜爱。而为了顺应消费者对于健康指标监测的需求,目前的智能穿戴产品中集成的功能模块越来越多。但是,随着功能模块的增加,智能穿戴产品的精致度以及佩戴舒适性等会受到影响。
因此,如何在实现智能穿戴产品的功能多样化的基础上,还能够满足智能穿戴产品的佩戴舒适性要求,已成为本领域技术人员亟待解决的技术难题。
发明内容
本申请提供了一种可穿戴设备,该可穿戴设备可对用户的心电图、体温等身体体征进行实时监测,且通过将心电图和体温检测功能进行集成,实现可穿戴设备的小型化设计,以提高佩戴舒适性。
本申请提供的可穿戴设备可以包括外壳,该外壳包括第一壳体和第二壳体,该第一壳体和第二壳体相扣合设置,以在第一壳体和第二壳体之间形成一容纳空间,可穿戴设备的用于实现其功能的各模块设置于该容纳空间。第一壳体可包括第一面、第二面和第一过孔,其中,第一面和第二面相背设置,且第二面朝向容纳空间。第一过孔可沿由第一面到第二面的方向贯穿第一壳体。
在本申请中,可穿戴设备还可以包括第一ECG电极,该第一ECG电极包括第一检测端、第二检测端和连接部,其中,第一检测端设置于第一壳体的第一面,第二检测端设置于第一壳体的第二面,连接部穿入第一过孔,且第一检测端和第二检测端通过连接部连接。在可穿戴设备的容纳空间中还设置有电路板,电路板上设置有触点,该触点可与电路板上的各功能模块电连接,第一ECG电极的第二检测端可与触点电连接,以使第一ECG电极采集到的电信号可通过触点传输给电路板上对应的功能模块,从而实现相应的功能。
另外,电路板上还可以设置有温度传感器,第一ECG电极的第二检测端还与该温度传感器导热接触。这样,可通过第一ECG电极对体温进行采集,并可将该体温传导至温度传感器,从而实现可穿戴设备对于体温的测量。
采用本申请提供的可穿戴设备,可通过第一ECG电极实现对电信号和温度信号的采集以及传输,其可对可穿戴设备的多种功能进行集成,以有效的节省用于实现对应功能的模块的设置空间。从而有利于实现可穿戴设备的小型化、薄型化设计。另外,通过将多种功能的实现通过第一ECG电极进行集成,可为可穿戴设备的更多功能模块的设置预留空间,从而有利于实现可穿戴设备的功能多样化的设计,以提升用户体验。
为了实现第一ECG电极对于电信号和温度信号的采集,在本申请一个可能的实现方式中,第一ECG电极可以包括基底,以及掺杂于基底的具有导热导电性能的填料。其中,基底可以但不限于为树脂类材料基底,填料可以但不限于为碳化硅或银等。
另外,在第一ECG电极的第二检测端和电路板之间还可以设置有导热导电胶,以使第二检测端可通过该导热导电胶与电路板上的触点电连接。在本申请一个可能的实现方式中,第二检测端还可以通过导热导电胶与温度传感器导热接触,从而简化可穿戴设备的结构。
由上述的介绍可以知道,电路板上的触点可与电路板上的各功能模块电连接,从而可实现对应的功能。在本申请一个可能的实现方式中,可使触点为第一类触点,另外,在电路板上设置有ECG模块,该第一类触点与ECG模块电连接。这样,在第一ECG电极的第二检测端与该第一类触点电连接时,可实现可穿戴设备的心电图检测功能。
在本申请另一个可能的实现方式中,触点还可以为第二类触点,在电路板上还可以设置有天线模块,该第二类触点可与天线模块电连接。通过第一ECG电极的第二检测端与该第二类触点的电连接,可通过第一ECG电极进行无线信号的发射以及接收,从而实现可穿戴设备与外部终端设备的无线通信功能。
在电路板上还可以设置有充电引脚,该充电引脚可与第二检测端电连接。另外,电路板上还可以设置于充电模块,充电引脚可与充电模块电连接。这样,可通过第一ECG电极与外部充电设备的电连接,并将充电电流通过充电引脚传递给充电模块,从而实现可穿设备的充电功能。
在本申请中,第一壳体的材质可以但不限于为玻璃、陶瓷或者塑胶等。在一个可能的实现方式中,第一壳体可为一体成型结构,以提高可穿戴设备的外观美观性。
在本申请另外一个可能的实现方式中,第一壳体也可以为组装结构,具体实施时,第一壳体可以包括固定部和检测部,固定部设置有安装孔,检测部安装于安装孔,且检测部固定连接。在该实现方式中,第一ECG电极可设置于检测部,另外,该检测部还可以为相对于固定部朝向背离容纳空间的凸起结构,以便于实现第一ECG电极与检测部位的稳定接触。
在本申请一个可能的实现方式中,第二壳体可以设置有第二ECG电极。第二壳体包括显示屏,该显示屏具有第一面和第二面,第一面和第二面相背设置,且第二面朝向容纳空间。则第二ECG电极可设置于显示屏,在显示屏上可以设置有沿第一面到第二面贯穿的第二过孔,则第二ECG电极可穿过过孔由显示屏的第一面延伸至第二面,且第二ECG电极的位于显示屏的第一面的部分与其位于显示屏的第二面的部分电连接。基于上述对第一壳体侧通过第一ECG电极对多种功能的实现进行集成的介绍,显示屏上的第二ECG电极的位于第二面的部分也可与容纳空间中的电路板上触点电连接。另外,触点除了可包括上述的第一类触点外,还可以包括第二类触点,电路板上设置有天线模块,第二类触点可与天线模块电连接,第二ECG电极可与第二类触点电连接。这样,可通过第二ECG电极 设置于显示屏的第一面的部分接收或者发射天线信号,以实现可穿戴设备的天线功能。
另外,在本申请中,第二ECG电极的位于第二面的部分还可以与电路板上的温度传感器导热接触,也可以与电路板上的充电引脚电连接,并通过合理设置,从而将心电图检测、体温检测、充电功能以及天线功能等通过显示屏上的第二ECG电极进行集成。
第二壳体除了包括上述结构外,还可以包括支撑架,支撑架位于显示屏的朝向容纳空间的一侧,显示屏可固定于支撑架,从而使支撑架对显示屏起到支撑的作用。支撑架具有侧壁,该侧壁可用于连接第一壳体和显示屏,以使该侧壁与第一壳体和显示屏共同围成容纳空间。在本申请一个可能的实现方式中,支撑架可以设置有第三ECG电极,该第三ECG电极可设置于支撑架的侧壁。其中,侧壁可以包括第一面和第二面,第一面和第二面相背设置,且第二面朝向容纳空间。在侧壁上可以设置有沿第一面到第二面贯穿的第三过孔,则第三ECG电极可由侧壁的第一面延伸至第二面。基于上述对第一壳体侧通过第一ECG电极对多种功能的实现进行集成的介绍,侧壁上的第三ECG电极的位于第二面的部分也可与容纳空间中的电路板上触点电连接,以及和温度传感器导热接触。并通过合理设置,将心电图检测、体温检测、充电功能以及天线功能等通过支撑架的侧壁上的第三ECG电极进行集成。
附图说明
图1为本申请一实施例提供的可穿戴设备的结构示意图;
图2为本申请一实施例提供的可穿戴设备的第一壳体的爆炸图;
图3为本申请另一实施例提供的可穿戴设备的第一壳体的结构示意图;
图4为本申请另一实施例提供的可穿戴设备的结构示意图;
图5为本申请一实施例提供的可穿戴设备的第一壳体的第二面的结构示意图;
图6为本申请一实施例提供的可穿戴设备的局部结构的爆炸图;
图7为图4中A-A处的剖面图;
图8为本申请另一实施例提供的可穿戴设备的局部结构的爆炸图;
图9为图4中B-B处的剖面图;
图10为图9中C处的局部结构放大图;
图11为本申请另一实施例提供的可穿戴设备的第一壳体的爆炸图;
图12为本申请另一实施例提供的可穿戴设备的结构示意图;
图13为本申请另一实施例提供的可穿戴设备的爆炸图;
图14为本申请一实施例提供的可穿戴设备的局部结构示意图;
图15为本申请一实施例提供的可穿戴设备的立体图。
附图标记:
1-第一壳体;1a-第一壳体的第一面;1b-第一壳体的第二面;1c-侧面;101-固定部;
1011-安装孔;102-检测部;103-过孔;2a,2b,2c-ECG电极;201-第一检测端;
202-第二检测端;203-连接部;3-电路板;4-触点;5-导热导电胶;6-温度传感器;
7-充电引脚;8-第二壳体;81-显示屏;81a-显示屏的第一面;81b-显示屏的第二面;
8101-过孔;82-支撑架;82a-支撑架的第一面;82b-支撑架的第二面;8201-过孔;
9-固定架。
具体实施方式
为了方便理解本申请实施例提供的可穿戴设备,下面首先说明一下其应用场景。本申请提供的可穿戴设备可用于人体健康监测。而智能手表或者智能手环等带有对人体健康进行监测功能的可穿戴设备是移动、在线健康监测的重要产品之一,并广受用户的好评。因此,本申请提供的可穿戴设备可以但不限于为智能手表、智能手环等便携性的电子设备。
以智能手表为例,其通常可以佩戴于用户的腕部。这样,可以通过在智能手表上设置心电描记器(electrocardiograph,ECG),来方便的实现对人体心电图的检测。而通过对ECG测量得到的心电图进行计算可以得到心率、心率变异率(heart rate variability,HRV)、血压等人体指标。从而可实现对身体状态的预知,以有效的避免心脏的传导系统障碍或者心肌发生病变。另外,体温也是人体的一项重要的健康指标,通过对人体体温的测量也可以实现对身体健康状态的预知,从而可有效的降低危险病症发生的风险。
在目前的智能手表等可穿戴设备中,通常会同时设置有ECG模块和体温测量模块。由于心电图和体温的检测通常需要与人体皮肤进行接触,则ECG模块和体温测量模块可设置于可穿戴设备的与人体接触的一侧。
参照图1,图1展示了本申请一实施例提供的可穿戴设备的结构示意图。可穿戴设备可以包括外壳,该外壳具有第一壳体1和第二壳体。其中,第一壳体1与第二壳体相背设置。另外,第一壳体1和第二壳体相扣合,以在第一壳体1与第二壳体之间形成用于容置可穿戴设备的功能模块的容纳空间。在本申请中,可穿戴设备在佩戴时,可使第一壳体1与人体接触,ECG模块和体温测量模块可靠近第一壳体1设置。
参照图2,图2为本申请一实施例提供的一种现有的可穿戴设备的第一壳体1的爆炸图。在本申请中,为了便于描述,可将第一壳体1的用于与人体接触的一侧表面定义为第一壳体1的第一面1a,将第一壳体1的朝向容纳空间一侧的表面定义为第一壳体1的第二面1b,第一面1a和第二面1b相背设置。另外,还可以将第一壳体1的用于连接第一面1a和第二面1b的连接面定义为第一壳体1的侧面1c。
继续参照图2,在该实施例中,第一壳体1包括固定部101以及检测部102。其中,固定部101可设置有安装孔1011,示例性的,固定部101可以为一环形结构。检测部102可安装于固定部101的安装孔1011,且检测部102与固定部101固定连接。在本申请该实施例中,固定部101的材质可以为塑胶、陶瓷或者玻璃等,检测部102的材质可以为塑胶、陶瓷或者玻璃等,固定部101和检测部102的材质可以相同,也可以不同。
ECG模块通常可包括ECG电极2a,在图2所示的实施例中,ECG电极2a可设置于第一壳体1的第一面1a,且ECG电极2a沿着第一面1a的边缘设置。另外,可通过在第一壳体1的侧面1c进行走线,以将设置于第一面1a的ECG电极2a引至第二面,从而可实现ECG电极2a与ECG模块的设置于容纳空间的部分的电连接。
另外,在图2所示的实施例中,具体设置体温测量模块时,可以在固定部101嵌设导热柱等结构(图中未示出),以通过导热柱将检测到的人体温度传导至体温测量模块位于容纳空间的部分,从而实现体温的测量。
参照图3,图3为本申请另一个实施例提供的一种现有的可穿戴设备的第一壳体1的结构示意图。在该实施例中,ECG电极2a可嵌设于固定部101,且ECG电极2a可延伸至容纳空间,并与ECG模块的其它部分进行电连接。与上述实施例不同的是,在图3所示的实施例中,检测部102可采用导热系数较高的蓝宝石玻璃制成,蓝宝石玻璃检测到的人体温度可传导 至体温测量模块位于容纳空间的部分,以实现体温的测量。
由上述图2和图3所示的实施例可以知道,在现有的同时带有心电图和体温检测功能的可穿戴设备中,ECG模块和体温测量模块需要分别进行设置,其在可穿戴设备中占用的空间较大。从而影响可穿戴设备的小型化、薄型化的设计要求。
本申请提供的可穿戴设备旨在解决上述问题,以通过将ECG模块和体温测量模块进行集成,节省用于实现心电图和体温检测功能的模块的设置空间。其有利于实现可穿戴设备的小型化、薄型化设计。另外,还可以为其它功能模块的设置预留空间,以增加可穿戴设备的功能多样化。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参照图4,图4为本申请一个可能的实施例提供的可穿戴设备的结构示意图。在该实施例中,可穿戴设备的第一壳体1可为一体成型结构。该第一壳体1的材质可以但不限于为陶瓷、玻璃或者塑胶等。通过将第一壳体1设置为一体成型的结构,可有效的提高第一壳体1的结构可靠性,从而提高整个可穿戴设备的结构稳定性。另外,通过将第一壳体1设置进行一体化设置,还可以提高可穿戴设备的一体化程度,从而提高可穿戴设备的外观美观性。
在图4所示的实施例中,可穿戴设备设置有ECG电极2a,该ECG电极2a可设置于第一壳体1的第一面1a。在本申请中,ECG电极2a可以但不限于包含碳化硅或银等具有导热导电性的材料。在本申请一种可能的实施例中,ECG电极2a可包括树脂类材料基底,以及掺杂于树脂类材料基底的碳化硅或银等具有导热导电性的填料,以使ECG电极2a既可以用于对电信号进行传输,又可以实现对温度信号的传输。另外,ECG电极2a可以但不限于通过物理气相沉积(physical vapor deposition,PVD)、印刷以及浆料烧结等方式形成于第一壳体1的第一面1a。
可继续参照图4,在本申请中,不对ECG电极2a的形状进行具体限定,示例性的,可以设置为如图4所示的弧形,也可以设置为圆形、方形等其它的规则形状,或者设置为一些可能的非规则形状。另外,ECG电极2a的数量可为一个或者多个,示例性的,当ECG电极2a为两个时,该两个ECG电极2a可以均设置为图4所示的弧形,且两个弧形对称设 置,以提高ECG电极2a设置的美观性。在本申请另一些可能的实施例中,ECG电极2a为多个时,该多个ECG电极2a的形状可以不同,其可根据第一壳体1的第一面1a的可用于设置ECG电极2a的空间进行设计。可以理解的是,通过在第一壳体1的第一面1a设置多个ECG电极2a,可以实现多点测量,其可有效的提高对于心电图和体温检测的稳定性和可靠性,从而有利于提高心电图和体温检测的准确性。
另外,ECG电极2a可以设置于第一面1a的任意位置,示例性的,可以设置于第一面1a的中心区域。采用本方案提供的可穿戴设备,对于ECG电极2a在第一面1a上的设置位置没有要求,其可以有效的降低ECG电极2a的工艺管控难度。在本申请一个可能的实施例中,还可以使第一面1a的用于设置ECG电极2a的区域向背离容纳空间的方向凸起,以便于实现ECG电极2a与人体的可靠接触。
可继续参照图4,第一壳体1还设置有过孔103,该过孔103沿由第一面1a到第二面的方向贯穿于第一壳体1。在本申请中,过孔103的形成方式可以但不限于为数控加工(computerized numerical control,CNC)、激光打孔,或者通过模具成型工艺直接形成。ECG电极2a覆盖过孔103,由上述实施例的对于ECG电极2a的形成工艺的介绍可以理解,在通过PVD形成ECG电极2a的过程中,部分用于形成ECG电极2a的材料可穿过过孔103蔓延至第一壳体1的第二面。
在本申请中不对过孔103的具体形状进行限制,示例性的,可为圆形、方形或者三角形等规则形状的孔,也可以为一些可能的非规则形状的孔。另外,可以理解,过孔103的孔径越小其对于第一壳体1的外观效果的影响越小,且较容易满足第一壳体1的防水性能要求。但是,过孔103的孔径过小,不利于用于形成ECG电极2a的材料穿过过孔103。在本申请一个可能的实施例中,可使过孔103的孔径为0.1mm~5mm,示例性的,可为0.2mm、0.5mm、0.7mm、1.0mm或3mm等。从而在满足第一壳体1的外观效果的基础上,容易实现第一壳体1的防水设计。
参照图5,图5展示了本申请一种实施例的第一壳体1的第二面1b的结构示意图。可以理解的是,在本申请中,ECG电极2a的材料可以填充整个过孔103,以将过孔103进行封堵;也可以只形成于过孔103的孔壁。只要能够将ECG电极2a形成于第一面1a的部分和形成于第二面1b的部分进行连接即可。为便于描述,在本申请中,可将ECG电极2a的位于第一面1a的部分称为第一检测端201,将ECG电极2a的位于第二面1b的部分称为第二检测端202,并将ECG电极2a的穿入过孔103中的部分称为连接部。可以理解的是,第一检测端201和第二检测端202通过连接部连接。
可继续参照图5,本申请不对第二检测端202的形状进行具体限定,示例性的,可为图5中所示的圆形。在另外一些实施例中,也可以为椭圆形、三角形、矩形等规则的形状,或者为一些可能的非规则形状。另外,本申请不对第二检测端202的面积大小进行限定,示例性的,可使第二检测端202的面积大于过孔103的截面积,以便于实现该第二检测端202与位于可穿戴设备的容纳空间的其它器件进行电连接,从而实现整个ECG电极2a与位于可穿戴设备的容纳空间的其它器件的电连接。
由上述实施例的介绍可以知道,在本申请中,ECG电极2a可为多个,而对应每个ECG电极2a可分别进行过孔103的设置,以实现每个ECG电极2a与位于可穿戴设备的容纳空间的其它器件的电连接。另外,对应每个ECG电极2a设置的过孔103的数量可以相同也可不同,其具体可根据ECG电极2a与可穿戴设备的容纳空间内的器件的连接关系进行设 置。
为了实现可穿戴设备的心电图和体温检测的功能,本申请提供的可穿戴设备还可以包括电路板3。参照图6,图6为本申请一种实施例提供的可穿戴设备的局部结构的爆炸图。在该实施例中,电路板3可设置于可穿戴设备的容纳空间内。该电路板3示例性的可为印制电路板(printed circuit board,PCB)或者柔性电路板(flexible printed circuit,FPC)。电路板3中可以集成用于实现心电图和体温检测的功能模块、控制模块、处理模块或者存储模块等的ECG模块和体温测量模块。
电路板3中通常会设置有金属走线,各金属走线可与电路板3中所集成的上述各类模块进行对应的电连接。可继续参照图6,电路板3还设置有触点4,在本申请一个可能的实施例中,可以将金属走线形成于电路板3的表面的部分作为触点4。又或者,通过将电路板3的表面的覆盖物刻蚀掉,以将对应的金属走线露出,从而将该金属走线露出的部分作为触点4。以能够实现触点4与金属走线的电连接,进而实现触点4与各类模块的电连接。
可以理解的是,上述触点4的设置方式只是本申请一些可能的实施例给出的示例性的说明,在本申请另外一些实施例中,触点4还可以采用其它可能的方式进行设置,在此不进行一一列举。
在本申请中,上述触点4可与电路板3中的ECG模块进行电连接,这样可通过将ECG电极2a的如图5所示的第二检测端202与触点4进行电连接,以实现整个ECG电极2a与电路板3之间的电连接。具体实施时,可参照图7,图7为图4中A-A处的剖面图。在该实施例中,可在ECG电极2a的第二检测端202与触点4之间设置导热导电胶5,以通过导热导电胶5将第二检测端202与触点4进行电连接。可以理解的是,采用导热导电胶5对第二检测端202和接触点4进行连接的同时,还可以使导热导电胶5封堵过孔103,从而实现对过孔103的密封,以实现整个第一壳体1的防水效果。
上述实施例对于第二检测端202与触点4的电连接方式,只是本申请给出的一种示例性的说明。在本申请另外一些可能的实施例中,还可以通过引线、弹片或者其它可能的具有导热导电性能的结构将第二检测端202与触点4进行电连接。另外,还可以通过点涂防水胶的方式对过孔103进行防水密封。
由于导热导电胶5具有较好的导热导电性能,因此,其除了可用于将ECG电极2a采集到的电信号传输至触点4,也可以将ECG电极2a采集到的温度传导至电路板3处。又由于ECG电极2a也采用具有导热导电性能的材料形成,在本申请一些可能的实施例中,可使ECG电极2a与导热导电胶5中包含相同的具有导热导电性能的材料,以提高ECG电极2a通过导热导电胶5进行电信号传输和温度传导的效率。在本申请另外一些实施例中,ECG电极2a与导热导电胶5中的具有导热导电性能的材料不同,只要能够使ECG电极2a可通过导热导电胶5进行电信号的传输和温度的传导即可。
可一并参照图6和图7,在本申请中,电路板3上还可以设置有温度传感器6,温度传感器6与电路板3电连接。在本申请中,温度传感器6与电路板3的电连接,可通过温度传感器6与电路板3中的金属走线的电连接来实现。另外,温度传感器6可固定于电路板3,其固定方式可以但不限于为焊接或者粘接等。
可继续参照图7,在本申请中,ECG电极2a的第二检测端202还可以与温度传感器6导热接触,其接触方式可为直接接触或者间接接触。在本申请一个可能的实施例中,导热 导电胶5还可设置于温度传感器6与第二检测端202之间,且第二检测端202与温度传感器6通过导热导电胶5连接。可以理解的是,导热导电胶5还可以具有粘接性能,这样可通过导热导电胶5将温度传感器6粘接固定于电路板3。
在本申请提供的可穿戴设备中,ECG电极2a可由贯穿于第一壳体1的过孔103,从第一壳体1的第一面1a延伸至第二面1b。另外,由于ECG电极2a采用具有导热导电性能的材料形成,且ECG电极2a的第二检测端202通过导热导电胶5与电路板3上的触点4电连接。这样,ECG电极2a检测到的心电图电信号可通过导热导电胶5传输至触点4,并通过与触点4连接的ECG模块对该心电图电信号进行分析处理,从而得到相对应的心电图数据,以实现对人体的心电图的检测。又ECG电极2a的第二检测端202通过导热导电胶5与电路板3上的温度传感器6连接,则ECG电极2a的第一检测端201采集到的温度信号可通过设置于过孔103内的连接部203传导到第二检测端202,并通过导热导电胶5传导到温度传感器6,然后通过电路板3中集成的用于实现温度检测的体温测量模块对该温度信号进行分析处理,以得到人体的温度数据,从而实现对人体的体温的检测。
采用本申请实施例提供的可穿戴设备,可将心电图检测和体温检测的功能通过具有导热导电性能的ECG电极2a进行集成,其可以有效的节省用于实现心电图检测和体温检测功能的模块的设置空间。从而有利于实现可穿戴设备的小型化、薄型化设计。另外,通过将心电图检测和体温检测功能进行集成,可为可穿戴设备的其它功能模块的设置预留空间,从而有利于实现可穿戴设备的功能多样化的设计,以提升用户体验。
由上述实施例的介绍可以知道,ECG电极2a采用具有导热导电性能的材质形成。在本申请一个可能的实施例中,还可将可穿戴设备的充电功能集成于该ECG电极2a。在具体实施时,可参照图8,图8展示了本申请一种实施的可穿戴设备的局部结构的爆炸图。在该实施例中,电路板3上还可以设置充电引脚7,该充电引脚7与电路板3电连接。在本申请中,充电引脚7与电路板3的电连接,可通过充电引脚7与电路板3中的金属走线的电连接来实现。另外,电路板3中与充电引脚7电连接的金属走线还可以与充电模块电连接,该充电模块可以但不限于设置于电路板3。这样,可通过外部充电设备与充电引脚7的电连接,来实现对可穿戴设备的充电。
可参照图9,图9为图4中B-B处的剖面图,在本申请中,充电引脚7可固定于电路板3,其固定方式可以但不限于为焊接或者粘接等。参照图10,图10为图9中C处的局部结构放大图。在本申请该实施例中,可通过对充电引脚7的长度进行设计,以使其能够与ECG电极2a的第二检测端202直接接触,从而可有效的减小可穿戴设备的充电电阻,提高充电效率。另外,为了提高充电引脚7与第二检测端202接触的可靠性,可将充电引脚7设置为弹片,或者使充电引脚7采用弹性材料制成,以使充电引脚7与第二检测端202之间通过弹性抵接力实现稳定的接触。
在本申请一个可能的实施例中,还可将充电引脚7通过引线与ECG电极2a的第二检测端202进行电连接,并可通过对引线的材质、粗细等参数进行调整,来达到降低阻抗的目的。在本申请另外一些实施例中,导热导电胶5还可设置于充电引脚7与第二检测端202之间,且第二检测端202与充电引脚7通过导热导电胶5连接。可以理解的是,导热导电胶5还可以具有粘接性能,这样可通过导热导电胶5将充电引脚7粘接固定于电路板3,以提高充电引脚7与电路板3连接的可靠性。
可以理解的是,上述实施例提供的充电引脚7与第二检测端202的连接方式,只是本 申请给出的一些示例性的说明。在本申请另一些可能的实施例中,二者之间还可以采用其它可能的连接方式,在此不进行一一列举,只要能够实现充电引脚7与第二检测端202之间的稳定的电连接即可,其均应理解为落在本申请的保护范围之内。
在本申请中,由于ECG电极2a采用具有导热导电性能的材料形成,且ECG电极2a的第二检测端202与电路板3上的充电引脚7电连接。这样,可通过ECG电极2a的第一检测端201与外部充电设备进行电连接,以使外部充电设备产生的电流经第一检测端201进入ECG电极2a,并经ECG电极2a的第二检测端202传输至充电引脚7,然后通过电路板3中与充电引脚7电连接的充电模块来实现对可穿戴设备的充电。
目前的一些可穿戴设备还可以设置有天线模块(图中未示出),以实现该可穿戴设备与外部其它终端设备之间的无线通信。而天线模块与可穿戴设备中的器件可通过电连接的方式,来实现天线的功能。又由于ECG电极2a具有导电性能,则在本申请一些可能的实施例中,可将天线模块设置于电路板3。另外,天线模块可通过电路板3中的金属走线与露出于电路板3表面的触点电连接。为便于区分,在本申请该实施例中,可将与ECG模块电连接的触点称为第一类触点,将与天线模块电连接的触点称为第二类触点。
在该实施例中,可通过将ECG电极2a与电路板3上的第二类触点电连接,以将天线功能集成于ECG电极2a,从而通过设置于第一壳体1的第一面1a的ECG电极2a的第一检测端201接收或者发射天线信号。可以理解的是,ECG电极2a与第二类触点之间可以但不限于通过导热导电胶5、引线或者弹片等具有导热导电性能的结构进行电连接。
采用本申请该实施例提供的可穿戴设备,可将心电图检测、体温检测、充电功能以及天线功能通过ECG电极2a进行集成,其可以有效的节省用于实现心电图检测、体温检测、充电功能以及天线功能的模块的设置空间。从而有利于实现可穿戴设备的小型化、薄型化设计。另外,通过将心电图检测、体温检测以及充电功能进行集成,可为可穿戴设备的其它功能模块的设置预留空间,从而有利于实现可穿戴设备的功能多样化的设计,以提升用户体验。
由本申请上述实施例对过孔103的设置方式的介绍可以理解,在本申请一种可能的实施中,对应每种功能的实现可分别进行过孔103的开设,以便于将电路板3上的对应的触点4、温度传感器6或者充电引脚7与对应的过孔103进行电连接。在本申请另外一些实施例中,还可以使至少两种功能通过一个过孔103的开设来实现,此时,可使对应该过孔103的ECG电极2a的第二检测端202的面积设置的较大。
参照图11,图11为本申请另一种可能的实施例提供的可穿戴设备的第一壳体1的爆炸图。在该实施例中,第一壳体1包括固定部101和检测部102,其中,固定部101可设置有安装孔1011,示例性的,固定部101可以为一环形结构。检测部102可安装于固定部101的安装孔1011,且检测部102与固定部101固定连接。在本申请该实施例中,固定部101和检测部102的材质可以相同,也可以不同,示例性的,固定部101的材质可以为塑胶、陶瓷或者玻璃等,检测部102的材质可以为塑胶、陶瓷或者玻璃等。
在本申请该实施例中,ECG电极2a设置于检测部102,检测部102可自固定部101朝向背离可穿戴设备的容纳空间的方向的凸起,以便于实现ECG电极2a与人体的可靠接触,从而提高检测的准确性。
可以理解的是,采用图11所示的第一壳体1的可穿戴设备的其它结构的具体设置方式,以及实现心电图检测、体温检测、充电功能以及天线功能的过程均可以参照上述任一实施 例,在此不进行赘述。
本申请上述实施例提供的通过在第一壳体1上开过孔103,以使ECG电极2a由第一面1a延伸至第二面1b的设置方式除了可以用于第一壳体1外,还可以用于可穿戴设备的其它结构的设置。示例性的,我们知道心电图的检测通常需要在人体中形成途经心脏的循环回路,因此,除了在第一壳体1设置ECG电极2a外,还可以在可穿戴设备佩戴于人体后,其仍可被触碰到的区域设置ECG电极。例如,参照图12,图12展示了本申请实施例的可穿戴设备的第二壳体8侧的结构。在该实施例中,可在可穿戴设备的外壳的第二壳体8上设置ECG电极2b。仍以可穿戴设备为智能手表为例,当智能手表佩戴于人体的左手时,设置于第一壳体1的ECG电极2a可与左手进行接触,人体的右手可与设置于第二壳体8的ECG电极2b接触,从而可形成一路心电图检测通路。
可穿戴设备的第二壳体8可包括显示屏81,其可用于对心电图、体温等检测结果,以及可穿戴设备的电量或者信号状态等进行显示,以使用户可直观的获知自身健康状况,以及可穿戴设备的工作状态。在本申请一个可能的实施例中,可在第二壳体8的显示屏81的显示区设置ECG电极2b,此时ECG电极2b可选用透明,且具有导热导电性能的材质形成。在本申请另外一些可能的实施例中,ECG电极2b还可以设置于第二壳体8的显示屏81的非显示区,此时,对于ECG电极2b的材质的透明度没有要求,只要其具有较好的导热导电性能即可。
参照图13,图13展示了图12中所示的可穿戴设备的爆炸图。在本申请一个可能的实施例中,可将第二壳体8的显示屏81的用于显示的一侧表面定义为显示屏81的第一面81a,将显示屏81的朝向容纳空间一侧的表面定义为显示屏81的第二面81b。显示屏81也设置有过孔8101,该过孔8101沿由第一面81a向第二面81b的方向贯穿显示屏81,则ECG电极2b可通过该过孔8101由显示屏81的第一面81a延伸至显示屏81的第二面81b,从而实现ECG电极2b与位于容纳空间的电路板的连接。
可以理解的是,设置于第二壳体8的显示屏81的ECG电极2b与电路板之间的连接,可参照上述例如图7所示实施例中第一壳体1的ECG电极2a与电路板3的连接方式进行设置。示例性的,可在电路板上形成触点4等,在此不进行赘述。另外,显示屏81上的ECG电极2b与第一壳体1上的ECG电极2a可与同一个电路板3电连接,也可与不同的电路板3电连接,其可根据可穿戴设备的容纳空间内的具体布局方式进行设计。
与第一壳体1侧相类似,显示屏81上设置的ECG电极2b也可以采用导热导电材料形成。这样,也可将ECG电极2b通过导热导电胶、引线或者弹片等具有导热导电性能的结构与设置于电路板的温度传感器进行连接,以通过ECG电极2b实现环境温度的检测。采用该方案,可以将心电图检测和环境温度检测功能通过设置于第二壳体8上的ECG电极2b进行集成,其在使可穿戴设备增加环境温度检测功能的同时,还可以避免过多的占用可穿戴设备的空间,其对于可穿戴设备的小型化设计的影响较小,且可提升用户使用体验。另外,还可以通过ECG电极2b检测的环境温度,对第一壳体1的ECG电极2a检测的体温进行校准,以提高体温检测的准确性。
可以理解的是,由于可穿戴设备在佩戴于用户时,显示屏81可始终暴露在外。基于此,在本申请中,也可以将可穿戴设备的天线功能集成在显示屏81的ECG电极2b上,以为用户提供更多的选择。具体实施时,可参照图14,图14为本申请一种可能的实施例的可穿戴设备的局部结构示意图。在图14中,ECG电极2b由显示屏81的第一面81a延 伸至第二面81b(可参照图13),电路板3上的触点4包括第二类触点。另外,在电路板3上设置有天线模块(图中未示出),第二类触点和天线模块电连接。在本申请该实施例中,也可以使ECG电极2b位于第二面81b的部分通过导热导电胶5与第二类触点电连接,从而可通过ECG电极2b设置于显示屏的第一面81a的部分接收或者发射天线信号,以实现可穿戴设备的天线功能。
值得一提的是,ECG电极2b位于第二面81b的部分与第二类触点还可以通过引线或者弹片等具有导热导电性能的结构进行电连接。另外,在图14所示的实施例中,还可通过在电路板3上设置充电引脚等方式,将可穿戴设备的充电功能集成于ECG电极2b,其具体设置方式可参照上述实施例,在此不进行赘述。
可继续参照图13,在本申请该实施例中,第二壳体8还可以包括支撑架82,支撑架82位于显示屏81的朝向容纳空间的一侧,显示屏81可固定于支撑架82,从而使支撑架82对显示屏81起到支撑的作用。支撑架82的材质可以但不限于为金属或者塑胶等。另外,在本申请中,为了实现第一壳体1的固定,可穿戴设备还可以包括固定架9,固定架9可位于第一壳体1的朝向可穿戴设备的容纳空间的一侧,且第一壳体1固定于固定架9。固定架9的材质可以但不限于为金属或者塑胶等,以对第一壳体1起到可靠的支撑的作用。另外,支撑架82与固定架9之间可以但不限通过紧固件紧固连接。
在本申请中,支撑架82可呈环状结构设置,以使支撑架82作为可穿戴设备的外壳的一部分。支撑架82具有侧壁,该侧壁可用于连接第一壳体1和显示屏81,以使侧壁与第一壳体1和显示屏81共同围成封闭的容纳空间。在可穿戴设备佩戴于人体时,由于该侧壁也具有能够被触碰到的区域,因此,在本申请一些可能的实施例中,支撑架82的侧壁的能够被触碰到的区域也可以设置有ECG电极。
参照图15,图15为图13中所示的可穿戴设备的立体图。在本申请该实施例中,可将支撑架82的侧壁可以被用户看到的一侧表面定义为侧壁的第一面82a,将侧壁的朝向容纳空间一侧的表面定义为侧壁的第二面82b。另外,侧壁也可以设置有过孔8201,该过孔8201沿由侧壁的第一面82a向第二面82b的方向贯穿支撑架82的侧壁,则ECG电极2c可通过该过孔8201由支撑架82的侧壁的第一面82a延伸至第二面82b,从而实现ECG电极2c与位于容纳空间的电路板的电连接。
可以理解的是,在该实施例中,不对ECG电极2c在支撑架82的侧壁上的具体设置位置以及形状等进行限定,其可根据支撑架82的侧壁结构进行适应性调整。另外,设置于支撑架82的侧壁的ECG电极2c也可采用透明,且具有导热导电性能的材质形成,以提高可穿戴设备的外观美观性。
在图15所示的实施例中,设置于支撑架82的侧壁的ECG电极2c与电路板之间的连接,可参照上述任一实施例中第一壳体1的ECG电极2a与电路板3的连接方式进行设置。示例性的,可在电路板3上形成触点4等,在此不进行赘述。
与第一壳体1侧相类似,支撑架82的侧壁上设置的ECG电极2c也可以采用导热导电材料形成。这样,也可将ECG电极2c通过导热导电胶与设置于电路板的温度传感器进行连接,以通过ECG电极2c实现环境温度的检测。采用该方案,可以将心电图检测和环境温度检测功能通过设置于支撑架82的侧壁上的ECG电极2c进行集成,其在使可穿戴设备增加环境温度检测功能的同时,还可以避免过多的占用可穿戴设备的空间,其对于可穿戴设备的小型化设计的影响较小,且可提升用户使用体验。另外,还可以通过ECG电极2c 检测的环境温度,对第一壳体1的ECG电极2a检测的体温进行校准,以提高体温检测的准确性。
可以理解的是,在上述实施例的基础上,通过合理设计,也可以将可穿戴设备的充电功能以及天线功能集成在支撑架82的侧壁的ECG电极2c上,以为用户提供更多的选择。
值得一提的是,采用本申请提供的可穿戴设备,可通过在第一壳体1、显示屏81和支撑架82中的任意两个结构进行ECG电极的设置来实现心电图的检测。另外,当在第一壳体1、显示屏81和支撑架82三个结构上均设置有ECG电极时,可通过合理设计形成多条心电图检测通道,该多条心电图检测通道可相互校准,以提高可穿戴设备对于心电图检测的准确性。
本申请提供的可穿戴设备,可以通过在第一壳体1、显示屏81和支撑架82等结构上设置ECG电极,且ECG电极采用导热导电的材料形成,从而通过ECG电极将心电图检测、体温检测、充电功能以及天线功能等进行集成,以实现可穿戴设备的结构小型化以及薄型化设计。另外,通过在设置有ECG电极的结构上设置过孔,以使形成于该结构的一侧表面的ECG电极,通过该过孔延伸至该结构位于容纳空间内的一侧表面,从而便于实现ECG电极与可穿戴设备的容纳空间内的其它器件之间的电连接,并可有效的提高可穿戴设备设置有ECG电极区域的美观性。
可以理解的是,本申请提供的通过ECG电极将多种功能进行集成的方案,除了可以设置于可穿戴设备外,还可以用于其它可能的电子设备中。示例性的,可用在手机、音响、电视、扫地机器人或路由器等中,以通过在这些电子设备的壳体上采用上述方式进行ECG电极的设置,并通过ECG电极将心电图检测、体温检测、充电功能以及天线功能等进行集成。其可实现电子设备的小型化、薄型化设计。并可为其它功能模块的设置预留空间,从而实现电子设备的功能多样化。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种可穿戴设备,其特征在于,包括外壳、第一ECG电极、电路板和温度传感器,其中:
    所述外壳包括第一壳体和第二壳体,所述第一壳体和所述第二壳体相扣合设置,以在第一壳体和第二壳体之间形成容纳空间;
    所述第一壳体包括第一面、第二面和第一过孔,所述第二面朝向所述容纳空间,所述第一面和所述第二面相背设置;所述第一过孔沿所述第一面到所述第二面的方向贯穿所述第一壳体;
    所述第一ECG电极包括第一检测端、第二检测端和连接部,所述第一检测端设置于所述第一壳体的所述第一面,所述第二检测端设置于所述第一壳体的所述第二面,所述连接部穿入所述第一过孔,且所述第一检测端与所述第二检测端通过所述连接部连接;
    所述电路板设置于所述容纳空间,所述电路板设置有触点和所述温度传感器,所述第二检测端与所述触点电连接,且所述第二检测端和所述温度传感器导热接触。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,所述第一ECG电极包括基底,以及掺杂于所述基底的碳化硅或银。
  3. 根据权利要求1或2所述的可穿戴设备,其特征在于,所述电路板和所述第二检测端之间设置有导热导电胶,所述第二检测端通过所述导热导电胶与所述触点电连接,且所述第二检测端通过所述导热导电胶与所述温度传感器导热接触。
  4. 根据权利要求1~3任一项所述的可穿戴设备,其特征在于,所述触点包括第一类触点,所述电路板设置有ECG模块,所述第一类触点和所述ECG模块电连接。
  5. 根据权利要求1~4任一项所述的可穿戴设备,其特征在于,所述电路板还设置有充电引脚,所述充电引脚与所述第二检测端电连接。
  6. 根据权利要求5所述的可穿戴设备,其特征在于,所述电路板还设置有充电模块,所述充电引脚与所述充电模块电连接。
  7. 根据权利要求1~6任一项所述的可穿戴设备,其特征在于,所述第一壳体为一体成型结构。
  8. 根据权利要求1~7任一项所述的可穿戴设备,其特征在于,所述第一壳体包括固定部和检测部,所述固定部设置有安装孔,所述检测部安装于所述安装孔,且所述检测部与所述固定部固定连接;所述第一ECG电极设置于所述检测部。
  9. 根据权利要求1~8任一项所述的可穿戴设备,其特征在于,所述第一壳体的材质为陶瓷、玻璃或者塑胶。
  10. 根据权利要求1~9任一项所述的可穿戴设备,其特征在于,所述第二壳体包括显示屏,所述显示屏具有第一面、第二面和第二过孔,所述显示屏的所述第一面和所述第二面相背设置,所述显示屏的所述第二面朝向所述容纳空间;所述第二过孔沿所述第一面到所述第二面的方向贯穿所述显示屏;
    所述显示屏设置有第二ECG电极,所述第二ECG电极穿过所述第二过孔由所述第一面延伸至所述第二面;所述第二ECG电极的位于所述第一面的部分,与位于所述第二面的部分电连接,且所述第二ECG电极的位于所述第二面的部分与所述电路板电连接。
  11. 根据权利要求10所述的可穿戴设备,其特征在于,所述触点包括第二类触点,所 述电路板设置有天线模块,所述第二类触点和所述天线模块电连接;且所述第二ECG电极与所述第二类触点电连接。
  12. 根据权利要求1~10任一项所述的可穿戴设备,其特征在于,所述第二壳体还包括支撑架,所述支撑架位于所述显示屏的朝向所述容纳空间的一侧;所述支撑架具有用于连接所述第一壳体和所述显示屏的侧壁,所述侧壁包括第一面、第二面和第三过孔,所述侧壁的所述第一面和所述第二面相背设置,所述侧壁的所述第二面朝向所述容纳空间;所述第三过孔沿所述第一面到所述第二面的方向贯穿所述侧壁;
    所述支撑架的所述侧壁设置有第三ECG电极,所述第三ECG电极穿过所述第三过孔由所述第一面延伸至所述第二面;所述第三ECG电极的位于所述第一面的部分,与位于所述第二面的部分电连接,且所述第三ECG电极的位于所述第二面的部分与所述电路板电连接。
  13. 根据权利要求12所述的可穿戴设备,其特征在于,所述触点包括第二类触点,所述电路板设置有天线模块,所述第二类触点和所述天线模块电连接;且所述第三ECG电极与所述第二类触点电连接。
PCT/CN2022/088234 2021-06-30 2022-04-21 一种可穿戴设备 WO2023273541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831370.6A EP4349252A1 (en) 2021-06-30 2022-04-21 Wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110731338.4A CN115530769A (zh) 2021-06-30 2021-06-30 一种可穿戴设备
CN202110731338.4 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273541A1 true WO2023273541A1 (zh) 2023-01-05

Family

ID=84690221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088234 WO2023273541A1 (zh) 2021-06-30 2022-04-21 一种可穿戴设备

Country Status (3)

Country Link
EP (1) EP4349252A1 (zh)
CN (1) CN115530769A (zh)
WO (1) WO2023273541A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220485A1 (en) * 2003-04-17 2004-11-04 Polar Electro Oy Method and device for measuring heart rate, and method for manufacturing the device
CN107920742A (zh) * 2015-07-02 2018-04-17 威里利生命科学有限责任公司 具有集成电子元件的手腕式设备
CN207870890U (zh) * 2017-07-30 2018-09-18 北京蓝木科技有限公司 一种同步检测心电和体温的可穿戴传感器
CN111631706A (zh) * 2020-06-19 2020-09-08 青岛歌尔智能传感器有限公司 心电体温监测模组和可穿戴设备
CN111657929A (zh) * 2020-07-21 2020-09-15 广东高驰运动科技有限公司 可穿戴设备及使用方法
CN111973174A (zh) * 2019-05-23 2020-11-24 华为技术有限公司 一种心电图检测装置
CN212694262U (zh) * 2020-07-03 2021-03-12 Oppo广东移动通信有限公司 可穿戴设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040220485A1 (en) * 2003-04-17 2004-11-04 Polar Electro Oy Method and device for measuring heart rate, and method for manufacturing the device
CN107920742A (zh) * 2015-07-02 2018-04-17 威里利生命科学有限责任公司 具有集成电子元件的手腕式设备
CN207870890U (zh) * 2017-07-30 2018-09-18 北京蓝木科技有限公司 一种同步检测心电和体温的可穿戴传感器
CN111973174A (zh) * 2019-05-23 2020-11-24 华为技术有限公司 一种心电图检测装置
CN111631706A (zh) * 2020-06-19 2020-09-08 青岛歌尔智能传感器有限公司 心电体温监测模组和可穿戴设备
CN212694262U (zh) * 2020-07-03 2021-03-12 Oppo广东移动通信有限公司 可穿戴设备
CN111657929A (zh) * 2020-07-21 2020-09-15 广东高驰运动科技有限公司 可穿戴设备及使用方法

Also Published As

Publication number Publication date
CN115530769A (zh) 2022-12-30
EP4349252A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP5811387B2 (ja) フィルム型温度センサ
WO2021135613A1 (zh) 一种可穿戴设备
CN210960664U (zh) 一种智能可穿戴设备
CN217566091U (zh) 可穿戴设备
CN111973174B (zh) 一种心电图检测装置
CN211122641U (zh) 一种用于智能可穿戴设备的汗液检测装置
US20230157608A1 (en) Electronic device
CN110943732A (zh) 一种腕戴设备及其按键
CN112535482A (zh) 电子设备及可穿戴设备
CN114631672A (zh) 一种智能戒指及其控制方法
CN211478890U (zh) 一种可穿戴设备
WO2023273541A1 (zh) 一种可穿戴设备
CN217408024U (zh) 一种智能戒指
CN210609112U (zh) 一种腕戴设备及其按键
WO2021098589A1 (zh) 可穿戴设备及其绑带
CN212755614U (zh) 一种电子设备
CN216417153U (zh) 智能穿戴设备
CN115696793A (zh) 弹性导电件、电子设备及可穿戴设备
CN216960382U (zh) 设备主体以及智能穿戴设备
CN111631706A (zh) 心电体温监测模组和可穿戴设备
CN215677352U (zh) 温度传感设备和系统
CN212229439U (zh) 智能穿戴设备
CN216907074U (zh) 智能穿戴设备
CN215582118U (zh) 弹性导电件、电子设备及可穿戴设备
CN219557317U (zh) 一种复用电极的多功能手环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831370

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022831370

Country of ref document: EP

Effective date: 20240103

NENP Non-entry into the national phase

Ref country code: DE