WO2023273494A1 - 透镜装置、电子设备及制备该透镜装置的方法和掩模版 - Google Patents

透镜装置、电子设备及制备该透镜装置的方法和掩模版 Download PDF

Info

Publication number
WO2023273494A1
WO2023273494A1 PCT/CN2022/085432 CN2022085432W WO2023273494A1 WO 2023273494 A1 WO2023273494 A1 WO 2023273494A1 CN 2022085432 W CN2022085432 W CN 2022085432W WO 2023273494 A1 WO2023273494 A1 WO 2023273494A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
film body
light
modulus
array
Prior art date
Application number
PCT/CN2022/085432
Other languages
English (en)
French (fr)
Inventor
杨柏儒
秦宗
陈俊伟
吴梓毅
刘俊彦
陈英杰
刘至哲
吴欣凯
刘云飞
程泰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023273494A1 publication Critical patent/WO2023273494A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/10Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Definitions

  • the embodiments of the present application relate to the field of computer hardware, and in particular to a variable-focus flexible lens device and a manufacturing method thereof, a reticle for preparing the lens device, and electronic equipment using the lens device.
  • the flexible zoom lens can be divided into a force-induced deformation drive zoom lens and an electro-deformation drive zoom lens.
  • the zoom lens driven by mechanical deformation uses lateral pressure to compress the rubber film to generate deformation.
  • Embodiments of the present application provide a lens device, electronic equipment, a method for preparing the lens device, and a reticle. By optimizing the structure of the variable-focus flexible lens device, a larger focusing range is obtained to support different application scene configurations.
  • the first aspect of the embodiment of the present application provides a variable focus flexible lens device, which includes a transparent film body made of a light-induced modulation modulus material, the film body has a lens part for forming a lens, and the elasticity of the lens part
  • the modulus is configured to increase or decrease from the center to the periphery; the lens part can produce corresponding deformation to form a lens.
  • the application range of the flexible zoom lens is expanded; at the same time, the self-structure of the film body of the deformable lens part is simple, making full use of the characteristics of the light-induced modulation modulus material, and the lens position and focal length can be defined based on the exposure intensity, and the process is simple and convenient. low cost.
  • the flexible lens is deformed significantly under the action of the actuation force, and a wide range of focal length changes can be achieved, and a large focal length can also be obtained under the condition of small deformation.
  • the change of the focal length can effectively reduce the space occupation of the lens device in the actual application scene, and the structural compatibility is good.
  • the lens portion produces the deformation by applying an actuation force to the film body, and the application direction of the actuation force is perpendicular to the optical axis of the lens to apply the actuation force to the film body, and the application direction of the actuation force is the same as The optical axis of the lens is vertical.
  • a stretching actuation force can be applied to the film body, and the lens portion will undergo tensile deformation to form a lens; or, a compressive actuation force can be applied to the film body, and the lens portion will undergo compression deformation to form a lens.
  • the focal length change from infinity to tens of millimeters can be realized.
  • the thickness of the film body is 1um ⁇ 1cm. Adaptive selection can be made according to the functional requirements of different application scenarios.
  • the embodiment of the present application also provides the first implementation manner of the first aspect: the modulus of elasticity of the lens portion can also be configured to increase or decrease gradually in the thickness direction of the film body.
  • the upper and lower surfaces of the deformed lens have a curvature difference, and further have the ability to adjust the overall diopter of the deformed lens.
  • this embodiment of the present application also provides a second implementation manner of the first aspect: the modulus of elasticity of the lens part is configured to increase or decrease from the center to the periphery, Wherein the ratio of the maximum elastic modulus to the minimum elastic modulus is 1-50. In this way, the deformation of the flexible lens during the application of an actuation force is further made more obvious.
  • the deformation ratio of the lens portion is not greater than 60%.
  • the light-induced modulation modulus material can be a prepolymer added with a photosensitive component.
  • the prepolymer can be a PDMS prepolymer, a PP prepolymer or a PET prepolymer
  • the photosensitive component can be a photoaccelerator or a photoinhibitor.
  • the light-induced modulus modulus material can also be organically modified ceramics with thermal crosslinking and UV crosslinking groups.
  • the embodiment of the present application also provides a third implementation manner of the first aspect: the lens part is one, And the deformed lens is a convex lens or a concave lens. It can be widely used in application scenarios such as compact imaging lenses, optical sensors, mobile communication equipment, or imaging angle compensation, and conforms to the design trend of thinner and thinner products.
  • the embodiment of the present application also provides a fourth implementation manner of the first aspect: the lens part is arranged in an array
  • the plurality of deformed lenses may all be convex lenses or all concave lenses; or, some of the deformed multiple lenses may be convex lenses and the other part may be concave lenses. It can be widely used in application scenarios such as pixel pitch supplement, optical fingerprint sensor, backlight uniformity compensation of display device, or chromatic aberration compensation of imaging system.
  • this The embodiment of the application also provides a fifth implementation of the first aspect: the ratio of the lens diameter d of the convex lens to the lens focal length f is: 0 ⁇ d/f ⁇ 0.3, and the ratio of the lens diameter d of the concave lens to the lens focal length f is: -0.3 ⁇ d/f>0.
  • the ratio of the lens diameter d of the convex lens to the lens focal length f is: 0 ⁇ d/f ⁇ 0.3
  • the ratio of the lens diameter d of the concave lens to the lens focal length f is: -0.3 ⁇ d/f>0.
  • the size of the lens is 1um-1cm.
  • the second aspect of the embodiment of the present application provides a reticle for preparing the aforementioned variable focus flexible lens device, the reticle has a light transmission control part, and the light transmission control part is used to control the exposure degree for forming the lens part, the reticle
  • the light transmittance of the light transmission control part is configured to increase or decrease gradually from the center to the periphery. In this way, by controlling the relationship between the modulus of the center and the modulus of other parts of the periphery, a reticle can be used to provide different exposure levels for different regions of the same lens part, so as to reliably realize the effect of convex lens/concave lens, that is, to realize the patterned mold.
  • Quantity control It has the characteristics of simple process and low cost.
  • the gray scale of the light transmission control portion increases or decreases stepwise, so as to form a light transmittance that decreases or increases from the center to the periphery.
  • the gray scale of the light transmission control portion is gradually increased or decreased to form a light transmittance that decreases or increases from the center to the periphery, which can better subdivide the gray scale gradient, so that the lens portion on the film body
  • the modulus varies continuously, allowing fine control over the curvature of the lens. In actual application, it can be selected according to the needs of different lens functions.
  • the third aspect of the embodiment of the present application provides a method for preparing the aforementioned variable focus flexible lens device, comprising the following steps: using a light-induced modulation modulus material to prepare the base material of the film body; exposing the base material of the film body processing, and using the aforementioned mask to control the exposure intensity to form the lens portion on the film body.
  • a light-induced modulation modulus material to prepare the base material of the film body
  • exposing the base material of the film body processing and using the aforementioned mask to control the exposure intensity to form the lens portion on the film body.
  • the above-mentioned preparation of the base material of the film body by using the light-induced modulation modulus material includes the following steps: coating a photo-induced modulation modulus material layer on the glass substrate; annealing in an air atmosphere of 60°C to 150°C, and curing the coated photomodulation modulus material layer to form a base material.
  • the fourth aspect of the embodiment of the present application provides an electronic device, including the aforementioned variable focus flexible lens device.
  • the embodiment of the present application also provides the first implementation manner of the fourth aspect: further comprising an actuation component, the actuation component is used to apply an actuation force to the film body of the variable focus flexible lens device, so that the The lens portion on the film body forms a lens with adjustable focal length according to the magnitude of the actuating force.
  • the electronic device is an image acquisition device, and the image acquisition device includes an image sensor and an imaging lens system; the film body has a lens portion that can form a convex lens, and the formed convex lens can be an imaging lens system. Convex lens; the image sensor is used to sense the light signal transmitted from the imaging lens system and convert the light signal into an electrical signal; wherein the actuating part is a biaxial stretching frame or a multi-axis stretching frame to provide stretching actuation force.
  • the flexible variable focus lens is used as the zoom lens in the optical imaging system, and the free zoom within a predefined range can be realized by stretching the control film body through the mechanical structure, without adjusting the lenses in the lens group along the optical axis direction distance to change the imaging focal length.
  • the modulus is adjusted based on the change of the spatial position.
  • the embodiment of the present application can make the focal length control of the zoom lens more accurate; , which can effectively reduce the total length of the optical imaging system, which is in line with the design trend of thinner and lighter products.
  • the stretchable zoom lens can be used as a zoom lens in an imaging system.
  • part or all of an indefinite number of stretchable zoom lenses are used as lens groups in the optical imaging system.
  • multiple zoom lenses in an imaging system are used as multiple zoom lenses in an imaging system.
  • the electronic device is a stretchable display device
  • the stretchable display device includes an elastic substrate on which there is a light-emitting pixel array composed of a plurality of light-emitting pixels; the film body has a Form a plurality of lens parts of the lens array, and the film body is located on the light-emitting side relative to the elastic substrate; wherein, the actuating part is constructed by the elastic substrate, that is, when in use, the stretched deformation part of the elastic substrate can stretch the lens part synchronously Form a lens.
  • the pitch of the light-emitting pixels on the elastic substrate will change correspondingly, and the lens part covering the elastic substrate will be stretched synchronously and deformed to form a lens, so as to reduce the The dark area formed between the pixels plays a role in compensating for the stretched display.
  • compensation of different angles can be realized with the change of the stretch ratio, that is, the compensation lens is directly coupled with the stretch ratio of the display device, without additional IC control and energy consumption requirements. It has the characteristics of simple structure and low cost.
  • the lens array may be a convex lens array, which is arranged opposite to the light-emitting pixel array, and forms a convex lens whose focal length decreases as the stretching ratio increases in the front projection area of the light-emitting pixels; or, the lens array is a concave lens Array, the concave lens array and the luminescent pixel array are arranged alternately, forming a concave lens whose absolute value of the focal length decreases as the stretching ratio increases in the orthographic projection area between the luminous pixel gaps. Both methods reduce the dark areas formed between pixels after stretching.
  • the embodiment of the present application also provides a second implementation manner of the fourth aspect: the film body of the variable focus flexible lens device is configured to be applied with an actuation force, and the lens portion on the film body forms a lens with a fixed focal length . That is to say, the application scenario in which the flexible adjustable focus lens is molded and assembled by one stretch.
  • the electronic device can be an optical sensor, and the optical sensor includes an image-side lens device and an image sensor; the film body has a plurality of lens parts that can form a convex lens array, and the formed convex lens array with a fixed focal length is an image sensor.
  • the film body can be re-exposed through the patterned lighting process, that is, the modulus of different regions of the lens part can be adjusted again, so that the convex lens array
  • the stretched focal length can accurately focus the light emitted from the image side onto the light receiving part of the image sensor.
  • the embodiment of the present application can greatly reduce the manufacturing cost of the lens array.
  • the electronic device may be a display device, which includes a display panel and a backlight device, the backlight device is arranged on the opposite side of the display side of the display panel, the backlight device includes a backlight cavity and a plurality of light sources, and the plurality of light sources It is arranged in the backlight cavity; the film body has a plurality of lens parts that can form a lens array, and the formed lens array with a fixed focal length is a lens array arranged in the backlight cavity, and the lens array is arranged opposite to a plurality of light sources .
  • the lens array when configured as a concave lens array in the backlight cavity, the light mixing height of the display device can be reduced, thereby realizing backlight compensation, and making the display structure more compact on the basis of improving the uniformity of the backlight; when the lens array
  • the convex lens array configured in the backlight cavity can reduce the light output angle of the light source, so as to improve the effect of peak brightness of the display device.
  • the embodiment of the present application adjusts the modulus lens characteristics based on the change of the spatial position, and fixes the lens array after one-time stretching, so that the ultra-thinning of the backlight module can be realized, and the cost is low.
  • the electronic device may be a light emitting device, and the light emitting device includes a reflection sheet, a diffuser plate, and a plurality of light sources arranged on the reflection sheet; the film body has a plurality of lens parts that can form a lens array, and the formed The lens array is a lens array arranged on the light emitting side of the reflection sheet, and the lens is arranged opposite to a plurality of light sources.
  • the light-emitting device constructed can obtain backlight uniformity compensation, and the structure is more compact; at the same time, the lens formed by adjusting the modulus stretching based on the spatial position change can reduce the cost on the basis of reliably reducing the light mixing height.
  • FIG. 1 is a front view of a variable focus flexible lens device provided in an embodiment of the present application
  • Fig. 2 is the central sectional view of Fig. 1;
  • Fig. 3 is a schematic diagram of a concave lens formed when stretching is applied to the film body shown in Fig. 1;
  • Figure 4 shows the simulation results of the concave lens shown in Figure 1 based on COMSOL finite element simulation
  • Fig. 5 is the sectional view of simulation result shown in Fig. 4;
  • Fig. 6 is a front view of a variable focus flexible lens device provided by another embodiment of the present application.
  • Fig. 7 is a central sectional view of Fig. 6;
  • Fig. 8 is a schematic diagram of a convex lens deformed when stretching is applied to the film body shown in Fig. 6;
  • Figure 9 shows the simulation results of the convex lens shown in Figure 6 based on COMSOL finite element simulation
  • Figure 10 shows the surface fitting results of the lens shown in Figure 6 formed based on LightTools ray tracing simulation
  • Figure 11 shows the optical simulation results of the lens shown in Figure 6 formed based on LightTools ray tracing simulation
  • FIG. 12 is a schematic diagram of a concave lens array provided by an embodiment of the present application.
  • Figure 13 shows the simulation results of the concave lens array formed by biaxial stretching based on COMSOL finite element simulation
  • FIG. 14 is a schematic diagram of a mask plate provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of a mask provided by another embodiment of the present application.
  • Fig. 16 is a schematic diagram of a mask provided by another embodiment of the present application.
  • Fig. 17 is a schematic diagram of a mask plate provided by another embodiment of the present application.
  • Fig. 18 is a schematic diagram of a mask plate provided by another embodiment of the present application.
  • Fig. 19 is a schematic diagram of a mask provided by another embodiment of the present application.
  • FIG. 20 is a schematic diagram of a mask provided by another embodiment of the present application.
  • FIG. 21 is a schematic diagram of an imaging lens system of an image acquisition device provided by an embodiment of the present application.
  • FIG. 22 and FIG. 23 respectively show two schematic diagrams of focal length changes of the imaging lens system shown in FIG. 21;
  • Fig. 24 is a schematic diagram of a display device of a stretchable display device provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of the stretched state of the display device shown in FIG. 24;
  • Fig. 26 is a schematic diagram of a display device of a stretchable display device provided by an embodiment of the present application.
  • FIG. 27 is a schematic diagram of the stretched state of the display device shown in FIG. 26;
  • FIG. 28 is a schematic diagram of a front-illuminated optical sensor provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram of a back-illuminated optical sensor provided in an embodiment of the present application.
  • FIG. 30 is a schematic diagram of a display device provided by an embodiment of the present application.
  • Fig. 31 is a schematic diagram of a variable focus flexible lens device provided by an embodiment of the present application.
  • Fig. 32 is a schematic diagram of the stretched lens state of the zoomable flexible lens device shown in Fig. 31;
  • Fig. 33 is a schematic diagram of a variable focus flexible lens device provided by an embodiment of the present application.
  • FIG. 34 is a schematic diagram of the stretched lens state of the zoomable flexible lens device shown in FIG. 33 .
  • the embodiment of the present application provides a variable-focus flexible lens device with uniform material, which can support the function of adjusting the focal length of the lens in different application scenarios by adjusting the elastic modulus distribution of the same layer structure, and can realize from infinity to tens of millimeters The range of focal length changes, and a large focal length change can be achieved with a small degree of deformation.
  • variable focus flexible lens device includes a transparent film body made of a light-induced modulation modulus material, and the film body has a lens portion for forming a lens.
  • the modulus of elasticity of the lens part can be configured to increase or decrease from the center to the periphery; when the actuation force is applied to the film body, the lens part can produce corresponding deformation to form a lens; the direction of the actuation force is consistent with the optical axis of the lens vertical.
  • transparent film body means that the material of the film body allows the transmission of light, including not only allowing light transmission, but also allowing images to form transparent media; also including translucent media that only allow light transmission. It should be understood that as long as the functional requirements of the corresponding polar lenses in different application scenarios are satisfied.
  • the applied actuation force may cause the membrane body to be pulled or compressed, that is, the lens portion on the membrane body may be stretched or compressed accordingly.
  • the elastic modulus is configured to increase or decrease from the center to the periphery, the surfaces on both sides of the deformed lens part will form a certain curved surface shape.
  • Young's modulus is a physical quantity that defines the ability of a solid material to resist deformation.
  • the Young's modulus of the ratio of uniaxial stress and uniaxial deformation is used as a physical quantity describing the corresponding distribution of the above-mentioned elastic modulus in space, and on this basis, different lens (convex lens, concave lens) forms The specific arrangement of the lens unit will be described in detail.
  • the Young's modulus of the lens part is configured to decrease gradually from the center to the periphery, and the lens part can be stretched to form a convex lens by applying a stretching actuation force to the film body.
  • the Young's modulus of the lens part is configured to increase from the center to the periphery, and the lens part can be compressed to form a convex lens by applying a compressive force to the film body.
  • the Young's modulus of the lens part is configured to increase from the center to the periphery, and the lens part can be stretched to form a concave lens by applying a stretching actuation force to the film body.
  • the Young's modulus of the lens part is configured to decrease gradually from the center to the periphery, and the lens part can be compressed to form a concave lens by applying a compressive actuation force to the film body.
  • this embodiment describes the scheme based on stretching deformation, and the stretching process can be realized by biaxial or multi-axial stretching frame ,
  • the internal tensile stress of the film produced by stretching is about 0-50MPa.
  • the lens can achieve different focal length changes.
  • the light-induced modulus modulus material used to prepare the film body may be a translucent/transparent modulus-adjustable material that can regulate the modulus of the film material region through patterned light as required.
  • the light-induced modulation modulus material can be a prepolymer added with a photosensitive component, and the prepolymer can be a PDMS (Polydimethylsiloxane, polydimethylsiloxane) prepolymer, PP (Plyprpylene , polypropylene) prepolymer or PET (Polyethylene terephthalate, polyester resin) prepolymer, specifically, a cross-linking agent can be mixed in the main material to form a corresponding prepolymer; the photosensitive component can be a photoaccelerator or a photocatalyst Inhibitor.
  • the light-induced modulation modulus material can also be organically modified ceramics with both thermal crosslinking and UV crosslinking groups, such as those produced by Fraunhofer institutions. products etc.
  • Fig. 1 is a front view of the variable focus flexible lens device according to an embodiment of the present application
  • Fig. 2 is a central sectional view of Fig. 1
  • Fig. 3 is an application of stretching actuation Schematic diagram of the concave lens formed when the film body is deformed.
  • the film body 10 of the variable-focus flexible lens device is made of light-induced modulation modulus material.
  • the film body 10 has a lens portion 1a for forming a concave lens.
  • the lens portion 1a shown in the figure is circular.
  • the Young's modulus of the lens part 1a can be configured to increase gradually from the center to the periphery as shown in Figure 1, which are respectively the low modulus region 11a, the middle modulus region 12a and the high modulus region 13a.
  • Figure 1 which is a film body 10 with a flat surface before stretching.
  • the lens part 1a can produce corresponding deformation, and the absolute value of the radius of the arc surfaces on both sides decreases, forming a concave lens as shown in Figure 3; of course, the actuation force The direction of the force is perpendicular to the optical axis of the concave lens.
  • the thickness of the membrane body 10 may be 1um ⁇ 1cm.
  • the ratio of the maximum elastic modulus to the minimum elastic modulus can be 1 to 50 to support large-scale (centimeter-level lenses, up to 1cm) and small-scale (micron) Level lens, the minimum can be 1um), which can be selected according to the functional needs of different products.
  • the deformation ratio of the lens part is not greater than 60%, and the "deformation ratio" here refers to the ratio of the area of the lens part before deformation to the format size change of the lens formed by deformation.
  • the optical simulation of the shape change is carried out in a configuration situation in which the ratio of the maximum modulus to the minimum modulus in the incremental modulus change is 10.
  • Fig. 4 shows the simulation result of the concave lens formed by biaxial stretching obtained based on COMSOL (simulation software) finite element simulation
  • Fig. 5 is a cross-sectional view of the simulation result shown in Fig. 4 . It can be seen from this that it is enough to design the Young's modulus configuration of the lens part 1a according to the required range of focal length variation.
  • the ratio of the lens diameter d of the concave lens to the lens focal length f is: -0.3 ⁇ d/f>0, that is It can meet the needs of different application scenarios.
  • Fig. 6 is a front view of the variable focus flexible lens device according to another embodiment of the present application
  • Fig. 7 is a central sectional view of Fig. Schematic diagram of the convex lens deformed when moving on the film body.
  • the film body of the variable-focus flexible lens device is made of light-induced modulation modulus material, and the film body 10 has a lens portion for forming a convex lens, and the lens portion 1b shown in the figure is circular.
  • the Young's modulus of the lens part 1b can be configured to decrease from the center to the periphery as shown in FIG. , which is also a film body 10 with a flat surface before stretching. In this way, when a stretching force is applied to the film body 10 in both directions, the lens portion 1b can be deformed accordingly, and the absolute value of the radius of the arc surfaces on both sides decreases, forming a convex lens as shown in FIG. 6 .
  • the configuration range of the Young's modulus of the lens part 1b can be the same as that of the previous embodiment, and can be selected according to the functional requirements of different products.
  • the optical simulation of the shape change is carried out in a configuration situation in which the ratio of the maximum modulus to the minimum modulus in the incremental modulus change is 10.
  • Figure 9 shows the simulation results of convex lenses formed by biaxial stretching based on COMSOL finite element simulation
  • Figure 10 shows the results based on LightTools (optical modeling software) The fitting results of the lens surface formed by ray tracing simulation
  • Figure 11 shows the optical simulation results based on LightTools ray tracing simulation. It can be seen that the focal length of the convex lens can be adjusted according to different stretching actuation forces to form different light transmission.
  • the ratio of the lens diameter d of the convex lens to the lens focal length f is: 0 ⁇ d/f ⁇ 0.3, which can meet the needs of different application scenarios.
  • variable-focus flexible lens devices provided in the above two embodiments are all in the form of a single lens, and a lens array can also be formed according to the concept of the present invention.
  • FIG. 12 shows a schematic diagram of a concave lens array provided by an embodiment of the present application. This figure shows a part of the concave lens array.
  • the film body of the variable-focus flexible lens device is made of photomodulation modulus material.
  • the film body 1 has a plurality of lens parts 1c for forming concave lenses.
  • the lens part 1a shown in the figure is circular.
  • the Young's modulus of each lens portion 1c can be configured to increase from the center to the periphery, which is the same as the schematic diagram of the embodiment shown in FIG. 1 . In this way, when a stretching actuation force is applied to the film body 10 in two directions or in multiple directions, each lens portion 1c can be deformed accordingly, forming a concave lens array as shown in FIG. 12 .
  • each lens part 1c is configured in a configuration where the ratio of the maximum modulus to the minimum modulus in the incremental modulus change is 10, and the optical simulation of the shape change is performed.
  • FIG. 13 shows the simulation results of the concave lens array formed by biaxial stretching based on COMSOL (simulation software) finite element simulation.
  • each lens periodically forms the same stretch ratio-focal length relationship; in some specific applications, different focal length relationships and polar permanent lens arrangement (not shown in the figure).
  • all the lenses deformed and formed in the lens array may be convex lenses, that is, deformed to form a convex lens array.
  • some may be convex lenses and the other part may be concave lenses; that is to say, the deformed lens array is not limited to lenses of the same polarity.
  • This embodiment provides a process method for preparing the aforementioned variable focus flexible lens device, which mainly includes the following steps:
  • the PP-PDMS prepolymer is coated on the glass substrate, and the thickness of the prepolymer is controlled to be 1 ⁇ m to 1cm; in addition, scrape coating can also be selected according to the actual process conditions , spray coating, spin coating or slot coating process;
  • the shape of the lens part is changed based on the biaxially stretched film at its edge, and the surface thereof forms a lens arc along with the above-mentioned modulus difference to form an optical lens.
  • the optical lens prepared by using this embodiment can change its focal length with the change of stretching ratio, that is, In other words, the focal length adjustment is only limited by the stretch ratio of the lens part on the film body, which has the advantages of good precision controllability and simple structure.
  • the UV light is preferably a collimated light source.
  • the light absorption of the exposure light source by the film material of the film body is negligible, curved surfaces on both sides that meet the precision requirements can be obtained.
  • the embodiment of the present application also provides another process method for preparing the foregoing variable focus flexible lens device. Compared with the foregoing embodiments, the main difference lies in the use of different prepolymer main materials and photosensitive components.
  • the modulus of the corresponding position when the photoinhibitor is used, the modulus of the corresponding position will be reduced by increasing the exposure degree; when the photoaccelerator is added, the modulus of the corresponding position will be increased by increasing the exposure degree.
  • the photosensitive component added in the prepolymer can be a variety of photosensitive materials that respond to differences in light wavelengths.
  • photosensitive materials which can include both photoaccelerators and photoinhibitors
  • different photosensitive materials can be activated by exposure to different wavelengths in batches, so that different reticles can be used to independently increase or decrease the modulus of different regions of the film.
  • Such setting can further increase the modulus range of the film and expand the focal length adjustment range of the lens.
  • the temperature range of the thermal curing process of the film body substrate can be 60 ° C ⁇ 150 ° C
  • the curing atmosphere can be
  • the specific annealing curing time range can be 10 min ⁇ 144 h
  • the wavelength of the light source in the exposure process can be 100nm-400nm; in practical applications, the specific exposure degree can be realized by controlling the exposure time and/or exposure intensity;
  • step S55 Peeling off the film body formed in step S54 from the glass substrate.
  • the film body can be stretched by uniaxial/multiaxial stretching or multi-point fixed stretching to form a lens.
  • an embodiment of the present application provides a schematic diagram of a mask.
  • the reticle 20 has a light transmission control portion 2 a for controlling the exposure degree for forming the lens portion.
  • the transmittance of the transmittance control part 2a is configured to decrease from the center to the periphery, and is suitable for preparing a gray-scale mask of a circular concave lens by using a light-induced modulus modulus material added with a photoinhibitor in the prepolymer.
  • the light transmittance is used to indicate the ability of light to pass through the medium, which is the percentage of the luminous flux passing through a transparent or translucent body and its incident luminous flux, that is, it can represent the efficiency of the light passing through the mask.
  • variable focus flexible lens device For example, but not limited to, it is used to prepare the variable focus flexible lens device described in the first embodiment.
  • different grayscales correspond to different optical transmittance ranges in the wavelength range of the exposure light source, that is, the smaller the grayscale, the higher the transmittance.
  • the exposure intensity at the center of the concentric circle of the mask 20 is the highest, and the exposure intensity at the periphery is the lowest.
  • the light transmittance of different gray-scale areas from the center to the edge of the mask plate 20 for the exposure light source is 100% (grayscale is 0), 50% (grayscale is 128), 25% (grayscale 191) and 0% (grayscale 255).
  • the "gray level” here is a linearly coded gray level to represent the corresponding light transmittance; it can be understood that taking the "gray level" in a nonlinear space such as sRGB as a physical quantity can also be used to represent light transmittance.
  • the gray scale of the light transmission control portion 2 a increases stepwise to form a light transmittance that decreases from the center to the periphery.
  • FIG. 15 For a schematic diagram of another mask plate provided in the embodiment of the present application, please refer to FIG. 15 .
  • the reticle 20 has a light transmission control portion 2b for controlling the degree of exposure for forming the lens portion.
  • the light transmittance of the light transmission control part 2b is configured to increase from the center to the periphery, and is suitable for preparing a grayscale mask of a circular convex lens by using a photomodulated modulus material added with a photoinhibitor in the prepolymer. For example but not limited to, it is used to prepare the variable focus flexible lens device described in Embodiment 2.
  • the exposure intensity at the center of the concentric circle of the mask 20 is the lowest, and the exposure intensity at the periphery is the highest.
  • the light transmittance of different gray-scale areas from the center to the edge of the mask for the exposure light source is 0% (grayscale 255), 25% (grayscale 191), 50% (grayscale 128 ) and 100% (grayscale of 0).
  • the gray scale of the light transmission control portion 2b decreases stepwise to form a light transmittance that increases from the center to the periphery.
  • the light transmission control part is used to form a circular lens.
  • non-circular special-shaped lenses can also be prepared based on the pattern shape of the mask.
  • FIG. 16 shows a schematic diagram of another mask plate provided by this embodiment.
  • the reticle 20 has a light transmission control portion 2c for controlling the degree of exposure for forming the hexagonal lens portion.
  • the light transmittance of the light transmission control part 2c is configured to decrease gradually from its center to the periphery, and is suitable for preparing a grayscale mask plate of a hexagonal concave lens by using a photoinduced modulus modulus material added with a photoinhibitor in the prepolymer. .
  • the exposure intensity at the center of the concentric hexagon of the mask plate 20 is the highest, and the exposure intensity at the periphery is the lowest.
  • the light transmittance of the different gray scale areas from the center to the edge of the mask for the exposure light source is 100% (gray level is 0), 75% (gray level is 64), 50% (gray level is 128), 25% (grayscale 191), and 0% (grayscale 255).
  • FIG. 17 shows a schematic diagram of another mask plate provided by this embodiment.
  • the reticle 20 has a light transmission control portion 2d for controlling the degree of exposure for forming the hexagonal lens portion.
  • the light transmittance of the light transmission control part 2c is configured to decrease gradually from its center to the periphery, and is suitable for preparing a grayscale mask plate of a hexagonal convex lens by using a photoinduced modulus modulus material added with a photoinhibitor in the prepolymer. .
  • the exposure intensity at the center of the concentric hexagon of the mask plate 20 is the lowest, and the exposure intensity at the periphery is the highest.
  • the light transmittance of different gray-scale areas from the center to the edge of the mask for the exposure light source is 0% (grayscale 255), 25% (grayscale 191), 50% (grayscale 128 ), 75% (with a grayscale of 64), and 100% (with a grayscale of 0).
  • FIG. 18 shows a schematic diagram of another mask plate provided by this embodiment.
  • the reticle 20 has a light transmission control portion 2e for controlling the degree of exposure of the lens portion forming the free-form surface.
  • the light transmittance of the light transmission control part 2e is configured to increase from the center to the periphery, and is suitable for preparing a gray-scale mask of a free-form convex lens by using a light-induced modulus modulus material added with a photoinhibitor in the prepolymer. As shown in the figure, the exposure intensity at the center of the mask plate 20 is the lowest, and the exposure intensity at the periphery is the highest.
  • the gray scale of the light transmission control part increases or decreases stepwise.
  • the gray scale of the light transmission control part can also increase or decrease gradually in a gradual manner, so as to form a light transmittance that decreases or increases from the center to the periphery.
  • FIG. 19 shows a schematic diagram of another mask plate provided by this embodiment.
  • the reticle 20 has a light transmission control portion 2f for controlling the degree of exposure for forming the lens portion.
  • the transmittance of the transmittance control portion 2f is configured to increase from the center to the periphery, and is suitable for preparing a grayscale mask of a circular convex lens by using a photomodulated modulus material added with a photoinhibitor in the prepolymer.
  • the exposure intensity at the center of the concentric circle of the mask 20 is the lowest, and the exposure intensity at the periphery is the highest.
  • the gray scale from the center to the edge of the mask plate decreases gradually, and correspondingly, the light transmittance of the exposure light source increases gradually.
  • a Halftone scheme may be used to control local illumination intensity.
  • the black dots with a grayscale of 0 are arranged in an arrangement, and the larger the volume of the black dots or the denser the arrangement, the lower the exposure intensity of the corresponding area.
  • the gray scale provided by this embodiment increases or decreases gradually, which can better subdivide the gray scale gradient, so that the modulus of the lens part on the film body Continuous variation, resulting in fine control over the curvature of the lens.
  • FIG. 20 shows a schematic diagram of another mask plate provided by this embodiment.
  • the reticle 20 has a plurality of light transmission control portions 2g for controlling the degree of exposure for forming the plurality of lens portions.
  • the gray scale of each light transmission control portion 2g decreases stepwise, that is, the light transmittance of the light transmission control portion 2g is configured to increase from the center to the periphery, which is suitable for the use of prepolymers with photoinhibitors.
  • the modulus material is adjusted to prepare the grayscale mask of the convex lens array.
  • a plurality of light transmission control parts 2g form a pattern of circular-hexagonal-circular in sequence, so that convex lens arrays of different shapes can be prepared.
  • multiple light transmission control parts may adopt the same shape, or may adopt other combinations of different shapes, so as to be selected and assembled according to the needs of specific application scenarios.
  • the masks provided in the above embodiments shown in FIGS. 14 to 20 all use a photoinhibitor added to the prepolymer as a light-induced modulus modulus material.
  • the polarity of the formed lens is opposite.
  • more complex optical lens shapes can be formed by adding more than one photosensitive modulus material.
  • photosensitive materials which may include both photoaccelerators and photoinhibitors
  • different photosensitive materials can be activated by exposure at different wavelengths, thereby using different reticles to independently enhance Or reduce the modulus of different regions of the film, which can expand the focal length adjustment range of the lens.
  • FIG. 21 shows a schematic diagram of an imaging lens system of an image acquisition device according to an embodiment of the present application.
  • the image acquisition device includes an image sensor 211 and an imaging lens system.
  • the variable focus flexible lens device provided by the embodiment shown in FIG. 6 is used as the composition of the imaging lens system. That is to say, the film body 212 of the variable focus flexible lens device has a lens portion, and the formed convex lens together with other optical elements 213 constitutes an imaging lens system.
  • the image sensor 211 is used for sensing the optical signal transmitted from the imaging lens system, and converting the optical signal into an electrical signal.
  • the actuating component is used to apply an actuating force to the film body 212 of the variable-focus flexible lens device, so that the lens portion on the film body forms a lens with adjustable focal length according to the magnitude of the actuating force, such as but not limited to FIG. 22 and FIG. 23 respectively show the two focal length changes.
  • the actuating part (not shown in the figure) can be a biaxial stretching frame or a multi-axial stretching frame, which can be realized by using different mechanical structures, such as but not limited to, using a shape memory alloy or a rigid structure as a tensioning frame.
  • the structure of the stretching actuating part can be controlled as long as the film body 212 can be stretched to achieve free zooming within a predefined range.
  • variable-focus flexible lens device in the imaging lens system is not limited to the single-layer stretchable lens shown in the figure.
  • a plurality of stretchable lenses can be used to partially or completely replace the lens groups in the traditional optical imaging system.
  • Imaging lens system Based on the imaging lens system provided by the embodiment shown in Figure 21, it can be applied to cameras, smart phones, tablet computers, notebook computers, smart display screens and AR (Augmented Reality, Augmented Reality)/VR (Virtual Reality, Virtual Reality)/MR (Mixed Reality, Mixed Reality) products and other electronic equipment.
  • AR Augmented Reality
  • VR Virtual Reality, Virtual Reality
  • the AR/VR/MR head-mounted display controls the diopter of the eyepiece system through the zoom component, thereby adjusting the depth of the virtual image.
  • This embodiment is used for the zoom assembly of the adaptive zoom head-mounted display, which is combined with a traditional fixed-curvature optical lens, and the adjustment of the optical depth of the image is realized through the stretching of the zoom assembly.
  • FIG. 24 shows a schematic diagram of a display device of a stretchable display device provided by an embodiment of the present application.
  • the stretchable display device includes an elastic substrate 241 and a film body 242 integrated with the elastic substrate 241 to form a display device.
  • the convex lens array described in the embodiment shown in FIG. 12 is used as the dark area compensation lens of the display device.
  • the film body 242 is located on the light emitting side relative to the elastic substrate 241 .
  • the elastic substrate 241 has a light-emitting pixel array composed of a plurality of light-emitting pixels 243
  • the film body 241 has a plurality of lens parts that can form a convex lens array
  • the convex lens array is opposite to the light-emitting pixel array, that is, the convex lens and the light-emitting pixel 243
  • the distance between the light-emitting pixels 243 is the preset distance shown in FIG. Convex lens 244 that shrinks compared to increasing the focal length, and one-to-one correspondence as shown in FIG. 25 , thereby reducing the dark area formed between pixels after stretching.
  • the actuation force for forming the convex lens array is provided by the deformed elastic substrate 241 or a structure that is stretched synchronously with the elastic substrate 241, that is, the actuation component in this embodiment is constructed by the self-stretching structure of the display device.
  • the actuation component in this embodiment is constructed by the self-stretching structure of the display device. For example, but not limited to, it is applied to flexible display devices with folding and stretching screens.
  • FIG. 26 shows a schematic diagram of a display device of a stretchable display device according to another embodiment of the present application.
  • the difference of this embodiment is that the film body 262 has a plurality of lens parts that can form a concave lens array.
  • the stretchable display device includes an elastic substrate 261 and a film body 262 integrated with the elastic substrate 261 to form a display device.
  • the concave lens array described in the embodiment shown in FIG. 12 is used as the dark area compensation lens of the display device.
  • the film body 262 is located at the light exit side relative to the elastic substrate 261 .
  • the elastic substrate 261 has a light-emitting pixel array composed of a plurality of light-emitting pixels 263, the film body 261 has a plurality of lens parts that can form a concave lens array, and the concave lens array and the light-emitting pixel array are alternately arranged, that is, the concave lens and the light-emitting pixel 263 There is a one-to-one correspondence between interval areas.
  • the distance between the light-emitting pixels 243 is the preset distance shown in FIG.
  • the reduced concave lenses 264 correspond one-to-one as shown in FIG. 27 , so as to reduce the dark area formed between pixels after stretching.
  • the actuation force for forming the concave lens array is provided by the deformed elastic substrate 261 or a structure stretched synchronously with the elastic substrate 261, that is, the actuation component in this embodiment is constructed by the self-stretched structure of the display device.
  • variable focus flexible lens device used is a lens that can adjust the focal length as its shape changes, and realizes its lens function based on the dynamic actuation force provided .
  • a variable-focus flexible lens device with a fixed focal length after deformation can also be used.
  • FIG. 28 shows a schematic diagram of a front-illuminated optical sensor according to an embodiment of the present application.
  • the optical sensor is a front-illuminated optical sensor that collects incident light information through a microlens, and includes an image-side lens device 281 and an image sensor 282 .
  • the convex lens array described in the embodiment shown in FIG. 12 is used as the image-side lens device 281 of the optical sensor.
  • the film body of the image-side lens device 281 has a plurality of lens parts that can form a convex lens array, and is stretched and then fixed.
  • the membrane body When assembled, the membrane body is configured to be actuated, and the lens portions thereon are all deformed to form convex lenses with fixed focal lengths.
  • the film body is covered on the medium layer 284 of the image sensor 282, the base layer 285 is located inside the medium layer, and a plurality of metal electrodes 283 are embedded in the medium layer and the base layer to form a plurality of light-receiving parts, and the light-receiving parts and the base layer Convex lenses correspond one-to-one.
  • it can be used as an under-screen optical fingerprint sensor.
  • FIG. 29 shows a schematic diagram of a back-illuminated optical sensor provided by an embodiment of the present application.
  • the optical sensor is a back-illuminated optical sensor that collects incident light information with a microlens, and includes an image-side lens device 291 and an image sensor 292 .
  • the convex lens array described in the embodiment shown in FIG. 12 is used as the image-side lens device 291 of the optical sensor.
  • the film body of the image-side lens device 291 is stretched and fixed on the base layer 294 of the image sensor 292, the dielectric layer 295 is located inside the base layer 294, and a plurality of metal electrodes 293 are embedded in the dielectric layer and the base layer.
  • a plurality of light receiving parts are formed, and the light receiving parts correspond to the convex lenses one by one.
  • FIG. 30 shows a schematic diagram of a display device according to an embodiment of the present application.
  • the display device includes a metal electrode 301 and a backlight device 302 , wherein the backlight device 302 is arranged on the side opposite to the display side of the metal electrode 301 .
  • the "display side” refers to the side of the metal electrode 301 facing the user
  • the “opposite side” refers to the rear side away from the user.
  • the backlight device 302 includes a backlight cavity 303 and a plurality of light sources 304 , the plurality of light sources 304 are arranged in the backlight cavity 303 , and the backlight cavity 303 is formed by a reflection sheet 308 .
  • the concave lens array 305 described in the embodiment shown in FIG. 12 is used as the backlight uniformity compensation lens of the display device.
  • the film body is fixed after being stretched, and the lens parts on it are all deformed to form a concave lens 309 with a fixed focal length.
  • the lens parts on it are all deformed to form a concave lens 309 with a fixed focal length.
  • the metal electrode 301 may be a liquid crystal panel
  • the light source 304 may be an LED.
  • the concave lens array 305 by setting the concave lens array 305, the light mixing height of the LED can be reduced, thereby making the structure of the display device more compact.
  • the direct-lit LED backlight shown in the figure is only a preferred illustration, and a panel using an edge-lit backlight can also use the concave lens array as a backlight uniformity compensation lens.
  • the concave lens array can be replaced with a convex lens array (not shown in the figure), so as to reduce the light emitting angle of the LED and increase the peak brightness of the display device.
  • a convex lens array not shown in the figure
  • it is applied in the LCD backlight module of the vehicle head-up display.
  • the display device can further improve the uniformity of the backlight by using the diffusion plate 306 and the diffusion sheet 307 shown in the figure.
  • the display panel shown in FIG. 30 can be removed to obtain a light-emitting device with uniform light output, such as but not limited to an LED panel.
  • variable-focus flexible lens device provided in this embodiment has good structural compatibility, and can repeatedly adjust the modulus configuration as required.
  • it can reduce the space occupied in the direction of the optical axis during the focusing process, and on the other hand, it can effectively control the manufacturing cost of the product in the process of adjusting the aggregation error.
  • FIG. 31 shows a schematic diagram of a variable focus flexible lens device provided by the embodiment shown in FIG. 13 of the present application.
  • the Young's modulus of the lens part on the film body is also configured to increase gradually in the thickness direction of the film body.
  • the variable focus flexible lens device is formed by exposure under the irradiation of a collimated light source, and taking the light absorption rate of the film body material for the collimated light source as 50% as an example, it shows that the lens part has a thickness A change in the light transmittance of the exposure light source in the direction, thereby forming the Young's modulus of the lens portion changes incrementally in the thickness direction.
  • the upper and lower surfaces of the formed convex lens have a curvature difference, as shown in FIG. 32 , which has the ability to adjust the overall diopter of the deformed lens.
  • FIG. 33 shows a schematic diagram of a variable focus flexible lens device provided by another embodiment of the present application.
  • variable focus flexible lens device provided in this embodiment, as shown in FIG. Due to the larger gradient of modulus distribution in the near light source area (upper part of the schematic diagram), the smaller modulus distribution gradient in the far light source area (lower part of the schematic diagram), the Young's modulus of the lens part changes gradually in the thickness direction.
  • the upper and lower surfaces of the formed convex lens After stretching and deformation, the upper and lower surfaces of the formed convex lens have a curvature difference, as shown in FIG. 34 .
  • the specific realization of the incremental change of the Young's modulus of the lens part in the thickness direction can also use the absorption effect of the film body material on the exposure light source and the non-collimation of the exposure light source. properties (including but not limited to Lambert light sources) combined to form.
  • the lens formed based on the incremental change of the Young's modulus of the lens part in the thickness direction is not limited to the convex lens shown in Figure 32 and Figure 34, and the formed lens can also be concave lens.
  • the specific implementation principle is the same as that described above, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种透镜装置、电子设备及制备透镜装置的方法和掩模版(20),可以应用于不同应用场景的电子设备,可变焦柔性透镜装置包括由光致调控模量材料制成的透明的膜本体(10),膜本体(10)具有用于形成透镜的透镜部(1a),透镜部(1a)的弹性模量配置为自其中心向外周递增或递减;透镜部(1a)可产生相应的变形,形成具有较好结构兼容性的透镜。实际应用中,在不影响现行电子设备主体结构的基础上,一方面可降低调焦过程中在光轴方向的空间占用,且在调整焦距误差的过程中有效控制产品制造成本。

Description

透镜装置、电子设备及制备该透镜装置的方法和掩模版
本申请要求于2021年06月28日提交中国专利局的申请号为202110721133.8、发明名称为“透镜装置、电子设备及制备该透镜装置的方法和掩模版”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及计算机硬件领域,尤其涉及一种可变焦柔性透镜装置及其制备方法、制备该透镜装置的掩模版,以及应用该透镜装置的电子设备。
背景技术
传统光学变焦成像系统,存在结构复杂、体积笨重、机械磨损严重、加工难度大等缺点,无法满足智能光学设备对自动化、智能化及微型化光学变焦系统的要求。现有技术针对该现状提出了柔性变焦系统。其中,柔性变焦透镜备受关注。
现有的柔性变焦透镜,通常由透明弹性薄膜和透明流体介质等组成,无需沿光轴机械移动即能实现焦距的调节,具有结构紧凑、控制灵活、制造成本低、无机械磨损、易于集成等诸多优点。依据变焦驱动机制,柔性变焦透镜可分为力致变形驱动变焦透镜和电致变形驱动变焦透镜。其中的力致变形驱动的变焦透镜,利用侧向压力使橡胶薄膜受到压缩作用产生形变。
然而,该方案结构实现较为复杂,且受其自身结构的限制,在一定的拉伸程度下产生的焦距变化较小,因而应用场景有限。
发明内容
本申请实施例提供了一种透镜装置、电子设备及制备该透镜装置的方法和掩模版,通过优化该可变焦柔性透镜装置的结构获得较大的调焦范围,以支持不同的应用场景配置。
本申请实施例第一方面提供了一种可变焦柔性透镜装置,包括由光致调控模量材料制成的透明的膜本体,该膜本体具有用于形成透镜的透镜部,其透镜部的弹性模量配置为自其中心向外周递增或递减;该透镜部可产生相应的变形,形成透镜。如此设置,通过对模量随空间位置变化的调控,即可实现不同面型的凹/凸透镜,其变焦方式的可操作性降低了柔性变焦透镜在可变形态光电子器件中的应用难度,由此拓展了柔性变焦透镜的应用范围;同时,该可变形透镜部的膜本体的自体结构简单,充分利用了光致调控模量材料的特性,基于曝光强度即可定义透镜位置和焦距,工艺简单、成本低。另外,通过在同层结构形成不同弹性模量的方式,使得柔性透镜在致动力的作用下变形明显,可实现较大范围的焦距变化,且在形变较小的情况下亦可获得较大的焦距改变,能够有效减小该透镜装置在实际应用场景下的空间占用,结构兼容性好。
示例性的,通过施加至膜本体的致动力,该透镜部产生所述变形,且该致动力的施力方向与透镜的光轴垂直施加致动力于膜本体,,致动力的施力方向与透镜的光轴 垂直。在具体应用中,可施加拉伸致动力于膜本体,该透镜部将产生拉伸变形形成透镜;或者,可施加压缩致动力于膜本体,该透镜部将产生压缩变形形成透镜。
在一些实际应用中,基于对模量随空间位置变化的调控,可实现从无穷远到几十毫米范围的焦距变化。
在另一些实际应用中,该膜本体的厚度为1um~1cm。可根据不同应用场景的功能需要,进行适应性选择。
基于第一方面,本申请实施例还提供了第一方面的第一种实施方式:该透镜部的弹性模量还可配置为在膜本体的厚度方向上递增或递减。这样,使得形变后所形成的透镜上下表面具有曲率差,进一步具有调节形变后透镜的整体屈光度的能力。
基于第一方面,或第一方面的第一种实施方式,本申请实施例还提供了第一方面的第二种实施方式:透镜部的弹性模量配置为自其中心向外周递增或递减,其中最大弹性模量和最小弹性模量的比值为1~50。这样,进一步使得柔性透镜其在被施加致动力的过程中变形更明显。
示例性的,透镜部的变形比不大于60%。
在一些实际应用中,该光致调控模量材料可以为添加有光感组分的预聚物,示例性的,预聚物可以为PDMS预聚物、PP预聚物或PET预聚物,光感组分可以为光促进剂或者光抑制剂。
在另一些实际应用中,该光致调控模量材料还可以为具有热交联和UV交联两种基团的有机改性陶瓷。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,本申请实施例还提供了第一方面的第三种实施方式:该透镜部为一个,且变形形成的透镜为凸透镜或凹透镜。可广泛适用于紧凑式成像透镜、光学传感器、移动通讯设备或者成像角度补偿等应用场景,符合产品轻薄化的设计趋势。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,本申请实施例还提供了第一方面的第四种实施方式:该透镜部为阵列设置的多个,变形形成的多个透镜可以均为凸透镜,或者均为凹透镜;又或者,变形形成的多个透镜中的一部分为凸透镜、另一部分为凹透镜。可广泛适用于像素间距补充、光学指纹传感器、显示装置背光均一性补偿或者成像系统的色差补偿等应用场景。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,本申请实施例还提供了第一方面的第五种实施方式:凸透镜的透镜直径d与透镜焦距f的比值为:0<d/f≤0.3,凹透镜的透镜直径d与透镜焦距f的比值为:-0.3≥d/f>0。这样,通过对透镜部的弹性模量递增或递减的配置方式,在合理控制透镜尺寸的基础上,能够最大限度地兼顾较大焦距改变的应用需求。
示例的,该透镜的大小为1um~1cm。
本申请实施例第二方面提供了一种用于制备前述可变焦柔性透镜装置的掩膜版,该掩膜版具有透光控制部,透光控制部用于控制形成透镜部的曝光程度,该透光控制部的透光率配置为自其中心向外周递增或递减。如此设置,通过控制中心模量和外周 其他部分模量的关系,利用一张掩模版针对同一透镜部的不同区域提供不同曝光程度,从而可靠实现凸透镜/凹透镜的效果,也即实现图案化的模量调控。具有工艺简单、成本较低的特点。
示例性的,该透光控制部的灰阶为阶梯状递增或递减,以形成自其中心向外周递减或递增的透光率。或者,该透光控制部的灰阶为渐变状递增或递减,以形成自其中心向外周递减或递增的透光率,可以更好的细分灰阶梯度,得以使得膜本体上透镜部的模量连续变化,形成对透镜曲率的精细控制。在实际应用时,可根据不同透镜功能需要进行选择。
本申请实施例第三方面提供了一种制备前述可变焦柔性透镜装置的方法,包括下述步骤:采用光致调控模量材料制备膜本体的基材;对所述膜本体的基材进行曝光处理,并利用前述的掩膜版控制曝光强度,以形成所述膜本体上的透镜部。这样,在合理控制透镜材料成本的基础上,可进一步降低产品制造成本。
示例性的,上述采用光致调控模量材料制备膜本体的基材,包括下述步骤:在玻璃基底上涂布光致调控模量材料层;在60℃~150℃的空气气氛下退火,以使涂布光致调控模量材料层固化形成基材。
本申请实施例第四方面提供了一种电子设备,包括前述的可变焦柔性透镜装置。
基于第四方面,本申请实施例还提供了第四方面的第一种实施方式:还包括致动部件,该致动部件用于施加致动力至可变焦柔性透镜装置的膜本体,以使该膜本体上的透镜部根据致动力的大小形成可调节焦距的透镜。
在一些实际应用中,该可电子设备为图像获取设备,该图像获取设备包括图像传感器和成像透镜系统;该膜本体具有可形成一个凸透镜的透镜部,所形成的凸透镜可以为成像透镜系统中的凸透镜;图像传感器用于感侧自成像透镜系统透射出的光信号,并将该光信号转换为电信号;其中,致动部件为双轴拉伸架或多轴拉伸架,以提供拉伸致动力。这样,该柔性可变焦透镜作为光学成像系统中的变焦镜头使用,通过机械结构拉伸控制膜本体,即可实现在预定义范围内的自由变焦,而无需沿光轴方向调节透镜组中各透镜距离来改变成像焦距。相比于传统的液体变焦透镜,基于空间位置变化调控模量的特点,一方面,本申请实施例能够使得变焦透镜焦距控制更加准确;另外,调节焦距不需要占用透镜组长度方向上的空间方,可以有效降低光学成像系统的总长度,符合产品轻薄化的设计趋势。
例如但不限于,该可拉伸变焦透镜可作为成像系统中的一个变焦镜头。或者采用不定数量的可拉伸变焦透镜部分或全部作为光学成像系统中的透镜组。作为成像系统中的多个变焦镜头。
在另一些实际应用中,该电子设备为可拉伸显示设备,该可拉伸显示设备包括弹性衬底,该弹性衬底上具有由多个发光像素构成的发光像素阵列;该膜本体具有可形成透镜阵列的多个透镜部,且膜本体相对于弹性衬底位于出光侧;其中,致动部件由弹性衬底构建,也即使用时,弹性衬底的拉伸变形部位可同步拉伸透镜部形成透镜。这样,当可拉伸显示设备拉伸时,其弹性衬底上的发光像素间距将相应产生变化,覆于弹性衬底上的透镜部同步受拉伸产生形变形成透镜,以减小拉伸后像素间形成的暗 区,起到了补偿拉伸显示的作用。本申请实施例中,可随拉伸比的变化实现不同角度的补偿,也即补偿透镜直接与显示器件拉伸比耦合,无额外IC控制和能耗需求。具有结构简单且成本较低的特点。
示例性的,该透镜阵列可以为凸透镜阵列,该凸透镜阵列与发光像素阵列相对设置,在发光像素的正投影区域形成一个随拉伸比增大而焦距缩小的凸透镜;或者,该透镜阵列为凹透镜阵列,该凹透镜阵列与发光像素阵列交错设置,在发光像素间隙的正投影区域形成一个随拉伸比增大而焦距绝对值缩小的凹透镜。两种方式均可减小拉伸后像素间形成的暗区。
基于第四方面,本申请实施例还提供了第四方面的第二种实施方式:该可变焦柔性透镜装置的膜本体配置为被施加致动力,膜本体上的透镜部形成具有固定焦距的透镜。也即柔性可调焦透镜通过一次拉伸成型并组装使用的应用场景。
在一些实际应用中,该电子设备可以为光学传感器,光学传感器包括像侧透镜装置和图像传感器;该膜本体具有可形成凸透镜阵列的多个透镜部,所形成的具有固定焦距的凸透镜阵列为像侧透镜装置的凸透镜阵列;相应地,图像传感器包括多个受光部,且多个受光部与凸透镜阵列相对设置。这样,基于空间位置变化调控模量透镜的特点,若该凸透镜阵列出现聚集偏差,可通过图案化光照工艺将该膜本体重新曝光,也即再次调整透镜部不同区域的模量,使得该凸透镜阵列拉伸成型后的焦距,能够将像侧发出的光精准地聚焦到图像传感器的受光部。相比于传统的透镜加工工艺,一旦透镜阵列出现聚焦误差,则制作透镜的模具将完全无法再次利用的情况,本申请实施例可大大降低透镜阵列的制造成本。
在另一些实际应用中,电子设备可以为显示设备,该显示设备包括显示面板和背光装置,背光装置设置在显示面板的显示侧的相反侧,背光装置包括背光腔和多个光源,多个光源设置在背光腔中;该膜本体具有可形成透镜阵列的多个所述透镜部,所形成的具有固定焦距的透镜阵列为设置在背光腔中的透镜阵列,且透镜阵列与多个光源相对设置。如此设置,当该透镜阵列配置为在背光腔中设置的凹透镜阵列,可以降低显示设备的混光高度,从而实现背光补偿,在提高背光均一性的基础上使得显示结构更加紧凑;当该透镜阵列配置为在背光腔中设置的凸透镜阵列,可以减小光源的出光角,以提高显示设备的峰值亮度的效果。本申请实施例基于空间位置变化调控模量透镜的特点,一次拉伸成型后固定形成透镜阵列,使背光模组的超薄化可以实现,并且成本较低。
在又一些实际应用中,该电子设备可以为发光设备,发光设备包括反射片、扩散板和设置在反射片上的多个光源;该膜本体具有可形成透镜阵列的多个透镜部,所形成的透镜阵列为设置在反射片的出光侧的透镜阵列,该透镜与多个光源相对设置。如此设置,所构建的发光设备得以获得背光均一性补偿,结构更加紧凑;同时,基于空间位置变化调控模量拉伸形成的透镜,在可靠降低混光高度的基础上,可降低成本。
附图说明
图1为本申请实施例提供的可变焦柔性透镜装置的主视图;
图2为图1的中心剖面图;
图3为施加拉伸致动于图1所示膜本体时变形形成的凹透镜示意图;
图4所示为基于COMSOL有限元仿真获得的图1所示凹透镜的模拟结果;
图5为图4所示模拟结果的剖视图;
图6为本申请另一实施例提供的可变焦柔性透镜装置的主视图;
图7为图6的中心剖面图;
图8为施加拉伸致动于图6所示膜本体时变形形成的凸透镜示意图;
图9所示为基于COMSOL有限元仿真获得的图6所示凸透镜的模拟结果;
图10所示为基于LightTools光线追迹仿真形成的图6所示透镜的面型拟合结果;
图11所示为基于LightTools光线追迹仿真形成的图6所示透镜的光学模拟结果;
图12为本申请实施例提供的一种凹透镜阵列示意图;
图13所示为基于COMSOL有限元仿真获得的双轴拉伸形成的凹透镜阵列模拟结果;
图14为本申请实施例提供的一种掩膜版的示意图;
图15为本申请另一实施例提供的一种掩膜版的示意图;
图16为本申请又一实施例提供的一种掩膜版的示意图;
图17为本申请又一实施例提供的一种掩膜版的示意图;
图18为本申请又一实施例提供的一种掩膜版的示意图;
图19为本申请又一实施例提供的一种掩膜版的示意图;
图20为本申请又一实施例提供的一种掩膜版的示意图;
图21为本申请实施例提供的图像获取设备的成像透镜系统的示意图;
图22和图23分别示出了图21所示成像透镜系统的两种焦距变化示意图;
图24为本申请实施例提供的可拉伸显示设备的显示器件的示意图;
图25为图24中所示显示器件拉伸后的状态示意图;
图26为本申请实施例提供的可拉伸显示设备的显示器件的示意图;
图27为图26中所示显示器件拉伸后的状态示意图;
图28为本申请实施例提供的前照式光学传感器的示意图;
图29为本申请实施例提供的背照式光学传感器的示意图;
图30为本申请实施例提供的显示设备的示意图;
图31为本申请实施例提供的一种可变焦柔性透镜装置的示意图;
图32为图31中所示可变焦柔性透镜装置拉伸后的透镜状态示意图;
图33为本申请实施例提供的一种可变焦柔性透镜装置的示意图;
图34为图33中所示可变焦柔性透镜装置拉伸后的透镜状态示意图。
具体实施方式
本申请实施例提供了一种材质均一的可变焦柔性透镜装置,能够通过调控同层结构的弹性模量分布,支持不同应用场景下调节透镜焦距的功能需要,可实现从无穷远到几十毫米范围的焦距变化,且变形度较小的情况下即可实现较大的焦距改变。
不失一般性,该可变焦柔性透镜装置包括由光致调控模量材料制成的透明的膜本体,该膜本体具有用于形成透镜的透镜部,基于光致调控模量材料的特性,该透镜部的弹性模量可配置为自其中心向外周递增或递减;施加致动力于膜本体时,该透镜部可产生相应的变形,形成透镜;该致动力的施力方向与透镜的光轴垂直。
这里,“透明的膜本体”是指,该膜本体的材质允许光的传输,包括不仅允许光的传输,而且允许图像形成透明介质;也包括只允许光的传输半透明介质。应当理解,只要满足不同应用场景下相应极性透镜的功能需要均可。
其中,所施加的致动力可以致使膜本体受拉或受压,也就是说,膜本体上的透镜部可随之产生拉伸变形或者压缩变形。基于其弹性模量配置为自其中心向外周递增或递减的分布特点,变形的透镜部两侧表面将形成一定的曲面形状,通过对弹性模量随空间位置变化的调控,即可实现不同面型的凹/凸透镜,由此形成不同焦距的透镜。
需要说明的是,杨氏模量是定义固体材料抵抗形变能力的物理量。本实施例中,以表征单轴应力和单轴形变之比的杨氏模量,作为描述在空间内上述弹性模量相应分布的物理量,并在此基础上针对不同透镜(凸透镜、凹透镜)形式详细说明透镜部的具体配置。
针对产生变形后形成凸透镜的透镜部。
该透镜部的杨氏模量配置为自其中心向外周递减,可通过施加拉伸致动力于膜本体,则透镜部被拉伸后形成凸透镜。该透镜部的杨氏模量配置为自其中心向外周递增,可通过施加压缩致动力于膜本体,则透镜部被压缩后形成凸透镜。
针对产生变形后形成凹透镜的透镜部。
该透镜部的杨氏模量配置为自其中心向外周递增,可通过施加拉伸致动力于膜本体,则透镜部被拉伸后形成凹透镜。该透镜部的杨氏模量配置为自其中心向外周递减,可通过施加压缩致动力于膜本体,则透镜部被压缩后形成凹透镜。
基于上述透镜形式与透镜部的杨氏模量配置和拉伸、压缩变形方式的关系,本实施例以拉伸变形为基础进行方案描述,拉伸过程可通过双轴或多轴拉伸架实现,拉伸产生的薄膜内拉应力约0~50MPa。通过控制拉伸程度,该透镜即可实现不同的焦距变化。
本实施例中,用于制备膜本体的光致调控模量材料,可根据需要选择能够通过图案化光照调控膜材区域模量的半透明/透明弹性模量可调控材料。
例如但不限于,光致调控模量材料可以为添加有光感组分的预聚物,其中的预聚物可为PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)预聚物、PP(Plyprpylene,聚丙烯)预聚物或PET(Polyethylene terephthalate,涤纶树脂)预聚物,具体可以在主材中混合交联剂形成相应的预聚物;其中的光感组分可为光促进剂或者光抑制剂。或者,该光致调控模量材料也可以为具有热交联和UV交联两种基团的有机改性陶瓷,例如Fraunhofer机构生产的
Figure PCTCN2022085432-appb-000001
产品等。
请参见图1、图2和图3,其中,图1为本申请一实施例所述可变焦柔性透镜装置的主视图,图2为图1的中心剖面图,图3为施加拉伸致动于膜本体时变形形成的凹透镜示意图。
该可变焦柔性透镜装置的膜本体10由光致调控模量材料制成,该膜本体10具有一个用于形成凹透镜的透镜部1a,图中所示的透镜部1a为圆形。本实用例中,该透镜部1a的杨氏模量可配置为如图1所示的自其中心向外周递增,分别依次为低模量区域11a、中模量区域12a和高模量区域13a,在拉伸前为一表面平整的膜本体10。这样,双向施加拉伸致动力于膜本体10时,该透镜部1a可产生相应的变形,两侧弧面的半径绝对值减小,形成如图3所示的凹透镜;当然,该致动力的施力方向与凹透镜的光轴垂直。
在具体应用中,膜本体10的厚度可以为1um~1cm。其中,透镜部1a的杨氏模量配置中,最大弹性模量和最小弹性模量的比值可以为1~50,以支持支持大尺度(厘米级别透镜,最大可为1cm)和小尺度(微米级别透镜,最小可为1um)的制造,具体可根据不同产品功能需要进行选择。其中,透镜部的变形比不大于60%,这里的“变形比”是指,变形前透镜部区域与变形所形成透镜的幅面尺寸变化之比。
例如但不限于,以递增模量变化中最大模量与最小模量的比值为10的配置情形,进行形貌变化光学仿真。请一并参见图4和图5,其中,图4所示为基于COMSOL(仿真软件)有限元仿真获得的双轴拉伸形成的凹透镜模拟结果,图5为图4所示模拟结果的剖视图。由此可知,根据要求的焦距变化范围设计透镜部1a的杨氏模量配置即可,具体地,该凹透镜的透镜直径d与透镜焦距f的比值为:-0.3≥d/f>0,即可满足不同应用场景的需要。
其中,基于口径为368mm的凹透镜,分别针对三种透镜部的杨氏模量配置方式进行模拟,模拟结果如下表一所示:
Figure PCTCN2022085432-appb-000002
请参见图6、图7和图8,其中,图6为本申请另一实施例所述可变焦柔性透镜装置的主视图,图7为图6的中心剖面图,图8为施加拉伸致动于膜本体时变形形成的凸透镜示意图。
该可变焦柔性透镜装置的膜本体由光致调控模量材料制成,该膜本体10具有一个用于形成凸透镜的透镜部,图中所示的透镜部1b为圆形。本实用例中,该透镜部1b的杨氏模量可配置为如图6所示的自其中心向外周递减,分别依次为高模量区域13b、中模量区域12b和低模量区域11b,在拉伸前同样为一表面平整的膜本体10。这样,双向施加拉伸致动力于膜本体10时,该透镜部1b可产生相应的变形,两侧弧面的半径绝对值减小,形成如图6所示的凸透镜。
在具体应用中,该透镜部1b的杨氏模量配置范围可与前一实施例相同,具体可根据不同产品功能需要进行选择。
例如但不限于,以递增模量变化中最大模量与最小模量的比值为10的配置情形, 进行形貌变化光学仿真。请一并参见图9、图10和图11,其中,图9所示为基于COMSOL有限元仿真获得的双轴拉伸形成的凸透镜模拟结果,图10所示为基于LightTools(光学建模软件)光线追迹仿真形成的透镜面型拟合结果,图11所示为基于LightTools光线追迹仿真形成的光学模拟结果,由此可知,根据不同拉伸致动力可调节该凸透镜的焦距,以形成不同光线传输。具体地,该凸透镜的透镜直径d与透镜焦距f的比值为:0<d/f≤0.3,即可满足不同应用场景的需要。
上述两个实施例所提供的可变焦柔性透镜装置均为单一透镜方式,根据本发明构思还可以形成透镜阵列。
其中,基于口径为368mm的凸透镜,分别针对三种透镜部的杨氏模量配置方式进行模拟,模拟结果如下表二所示:
Figure PCTCN2022085432-appb-000003
请参见图12,该图示出了本申请实施例所提供的一种凹透镜阵列示意图。该图示出的是凹透镜阵列局部。
该可变焦柔性透镜装置的膜本体由光致调控模量材料制成,该膜本体1具有多个用于形成凹透镜的透镜部1c,图中所示的透镜部1a为圆形。本实用例中,每个透镜部1c的杨氏模量可配置为自其中心向外周递增,具体与图1所示实施例的原理性示意相同。这样,双向或多向施加拉伸致动力于膜本体10时,每个透镜部1c均可产生相应的变形,形成如图12所示的凹透镜阵列。
例如但不限于,每个透镜部1c以递增模量变化中最大模量与最小模量的比值为10的配置情形,进行形貌变化光学仿真。请一并参见图13,该图所示为基于COMSOL(仿真软件)有限元仿真获得的双轴拉伸形成的凹透镜阵列模拟结果。
可以理解的是,图12中所示变形形成的凹透镜阵列中,各透镜周期性形成相同拉伸比-焦距关系;在一些具体应用中,也可以以非周期的分布形式形成不同焦距关系和极性的透镜排列(图中未示出)。
在另一些具体应用中,透镜阵列中变形形成的多个透镜可全部为凸透镜,也即变形形成凸透镜阵列。或者,变形形成的多个透镜中,可一部分为凸透镜、另一部分为凹透镜;也就是说变形形成的透镜阵列,非局限于相同极性的透镜。
本实施例提供了一种制备前述可变焦柔性透镜装置的工艺方法,主要包括下述步骤:
S41.在PDMS中添加对应的光感成分,例如但不限于,具有光抑制能力的二苯基甲酮(Benzophenone),形成PP-PDMS预聚物;
S42.玻璃基底进行硅烷化处理和清洗后,将PP-PDMS预聚物涂布在玻璃基底上,通过控制预聚物的厚度为1μm~1cm;此外,还可以根据实际工艺条件,选用刮涂、喷涂、旋涂或狭缝涂布工艺;
S43.在60℃~150℃的空气气氛下,退火10min~144h,使得预聚物固化形成PP-PDMS膜本体基材;
S44.对置于玻璃基板上的PP-PDMS膜本体基材进行曝光,例如但不限于,采用380nm的UV光(紫外光)照射进行曝光,在其他具体应用中,可采用其他光照进行曝光。在照射过程中,通过掩模版控制膜本体的曝光位置,其中照射到UV光的区域引起光抑制效果,模量降低,且与曝光程度负相关,使得不同区域的模量大小不同,从而实现图案化的模量调控,形成具有杨氏模量递增或递减的透镜部;
S45.将PP-PDMS膜本体从玻璃基板上剥离。
这样,基于其边缘双轴拉伸薄膜使得透镜部形貌变化,其表面随着上述模量差形成透镜弧面,形成光学透镜。
相比于现有可变焦透镜方案结构复杂、焦距控制不精准,且易受外部环境影响的现状,利用本实施例制备的光学透镜,可以随着拉伸比例的变化而改变其焦距,也就是说,焦距调节仅受膜本体上透镜部的拉伸比限制,具有精度可控性较好,且结构简单的优势。
需要说明的是,该UV光优选为准直光源。这样,膜本体膜材对于该曝光光源的光吸收可忽略不计的情形,能够获得满足精度要求的两侧弧面。
本申请实施例还提供另一种制备前述可变焦柔性透镜装置的工艺方法,与前述实施例相比,主要区别在于采用了不同的预聚物主材和光感组分。
S51.将PP或PET等聚合物单体与交联剂混合,形成相应的预聚物;除二苯基甲酮外,还可以采用其他添加剂作为光促进剂或者光抑制剂,包括但不限于用于引发己二醇二丙烯酸酯(HDDA)发生聚合的2,4,6-三甲基苯甲酰基-二苯基氧化膦(TPO);用于引发2-乙基己基丙烯酸酯(2-EHA)、丙烯酸(AA)和丙烯酸丁酯(BA)发生聚合的2’-羟基-4’,5’-二甲基乙酰苯(HP-8)。
其中,当采用光抑制剂时,通过增加曝光程度来降低对应位置的模量;当添加光促进剂时,通过增加曝光程度将提高对应位置的模量。
在具体应用中,预聚物中添加的光感组件,可以为响应光波长具有差异的多种光感材料,当采用多种光感材料(可以同时包括光促进剂和光抑制剂)作为添加剂时,可以通过分次不同波长曝光来激活不同光感材料,从而使用不同掩模版独立提升或降低薄膜不同区域的模量。如此设置,可进一步提高薄膜的模量区间,扩大透镜的焦距调节范围。
S52.除涂布外,还可以采用旋涂、刮涂、喷墨打印、丝网印刷等工艺制备预聚物薄膜层;
S53.根据不同聚合物材料不同,膜本体基材的热固化工艺的温度范围可以为60℃~150℃,固化气氛可为,具体退火固化时间范围可以为10min~144h;
S54.曝光工艺的光源波长可以为100nm~400nm;在实际应用中,具体曝光程度可以通过控制曝光时间和/或曝光强度的控制实现;
S55.将步骤S54形成的膜本体从玻璃基板上剥离。
根据薄膜的形状和具体需求,可以采用单轴/多轴拉伸或多点固定拉伸方式拉伸膜 本体,形成透镜。
针对上述工艺方法,本申请一实施例提供了一种掩膜版的示意图。
请参见图14,该掩膜版20具有透光控制部2a,用于控制形成透镜部的曝光程度。该透光控制部2a的透光率配置为自其中心向外周递减,适用于利用在预聚物中添加光抑制剂的光致调控模量材料,制备圆形凹透镜的灰度掩膜版。这里,透光率用于表示光线透过介质的能力,是透过透明或半透明体的光通量与其入射光通量的百分率,也即可以表示掩膜版的透过光的效率。例如但不限于,用于制备实施一所述的可变焦柔性透镜装置。其中,不同灰度对应于曝光光源波长范围的不同光学透过率范围,也即,灰度越小的部分,其透过率越高。
图中所示,该掩膜版20的同心圆中心位置曝光强度最高,外围曝光强度最低。掩模板20上从中心到边缘不同灰阶区域对于曝光光源(如380nm波长光源)的透光率依次为100%(灰度为0)、50%(灰度为128)、25%(灰度为191)和0%(灰度255)。这里的“灰度”为线性编码灰度,以表征相应的透光度;可以理解的是,以sRGB等非线性空间中的“灰度”为物理量,同样可以用来表征透光度。
由此,利用一张掩模版可同时实现透光控制部2a的不同区域的不同曝光程度。也就是说,透光控制部2a的灰阶为阶梯状递增,以形成自其中心向外周递减的透光率。
本申请实施例还提供的另一种掩膜版的示意图,请参见图15。
该掩膜版20具有透光控制部2b,用于控制形成透镜部的曝光程度。该透光控制部2b的透光率配置为自其中心向外周递增,适用于利用在预聚物中添加光抑制剂的光致调控模量材料,制备圆形凸透镜的灰度掩膜版。例如但不限于,用于制备实施二所述的可变焦柔性透镜装置。
图中所示,该掩膜版20的同心圆中心位置曝光强度最低,外围曝光强度最高。掩模板上从中心到边缘不同灰阶区域对于曝光光源(如380nm波长光源)的透光率依次为0%(灰度255)、25%(灰度为191)、50%(灰度为128)和100%(灰度为0)。
这样,利用一张掩模版同时实现透光控制部2b的不同区域的不同曝光程度。也就是说,透光控制部2b的灰阶为阶梯状递减,以形成自其中心向外周递增的透光率。
上述两个实施例提供的掩膜版,其透光控制部均用于形成圆形透镜。在具体应用中,基于掩膜版的图案形状,还可以制备非圆形的异形透镜。
请参见图16,该图示出了本实施例提供的又一种掩膜版的示意图。
该掩膜版20具有透光控制部2c,用于控制形成六边形透镜部的曝光程度。该透光控制部2c的透光率配置为自其中心向外周递减,适用于利用在预聚物中添加光抑制剂的光致调控模量材料,制备六边形凹透镜的灰度掩膜版。
图中所示,该掩膜版20的同心六边形中心位置曝光强度最高,外围曝光强度最低。掩模板上从中心到边缘不同灰阶区域对于曝光光源(如380nm波长光源)的透光率依次为100%(灰度为0)、75%(灰度为64)、50%(灰度为128)、25%(灰度为191)和0%(灰度255)。
请参见图17,该图示出了本实施例提供的又一种掩膜版的示意图。
该掩膜版20具有透光控制部2d,用于控制形成六边形透镜部的曝光程度。该透光 控制部2c的透光率配置为自其中心向外周递减,适用于利用在预聚物中添加光抑制剂的光致调控模量材料,制备六边形凸透镜的灰度掩膜版。
图中所示,该掩膜版20的同心六边形中心位置曝光强度最低,外围曝光强度最高。掩模板上从中心到边缘不同灰阶区域对于曝光光源(如380nm波长光源)的透光率依次为0%(灰度255)、25%(灰度为191)、50%(灰度为128)、75%(灰度为64)和100%(灰度为0)。
请参见图18,该图示出了本实施例提供的又一种掩膜版的示意图。
该掩膜版20具有透光控制部2e,用于控制形成自由曲面透镜部的曝光程度。该透光控制部2e的透光率配置为自其中心向外周递增,适用于利用在预聚物中添加光抑制剂的光致调控模量材料,制备自由曲面凸透镜的灰度掩膜版。图中所示,该掩膜版20的中心位置曝光强度最低,外围曝光强度最高。
上述图14至图18所示实施例提供的掩膜版,其透光控制部的灰阶呈阶梯状递增或递减。在具体应用中,透光控制部的灰阶还可以为渐变状递增或递减,以形成自其中心向外周递减或递增的透光率。
请参见图19,该图示出了本实施例提供的又一种掩膜版的示意图。
该掩膜版20具有透光控制部2f,用于控制形成透镜部的曝光程度。该透光控制部2f的透光率配置为自其中心向外周递增,适用于利用在预聚物中添加光抑制剂的光致调控模量材料,制备圆形凸透镜的灰度掩膜版。
图中所示,该掩膜版20的同心圆中心位置曝光强度最低,外围曝光强度最高。掩模板上从中心到边缘的灰阶为渐变状递减,相应地对于曝光光源的透光率呈渐变状递增。
具体地,可采用Halftone半色调方案来控制局部的光照强度。其中,以灰度为0的黑点排列组成,黑点体积越大或排列越密,则对应区域的曝光强度越低。相比于前述灰阶呈阶梯状递增或递减的实现方式,本实施例提供的灰阶呈渐变状递增或递减,可以更好的细分灰阶梯度,得以使得膜本体上透镜部的模量连续变化,形成对透镜曲率的精细控制。
请参见图20,该图示出了本实施例提供的又一种掩膜版的示意图。
该掩膜版20具有多个透光控制部2g,用于控制形成多个透镜部的曝光程度。每个透光控制部2g的灰阶呈阶梯状递减,也即,透光控制部2g透光率配置为自其中心向外周递增,适用于利用在预聚物中添加光抑制剂的光致调控模量材料,制备凸透镜阵列的灰度掩膜版。
图中所示,多个透光控制部2g形成了圆形-六边形-圆形依次排列的模式,由此可制备不同形状凸透镜排列。在具体应用中,多个透光控制部可采用相同形状,或者可采用其他不同形状的组合,以根据具体应用场景的需要进行选择组配。
需要说明的是,上述图14至图20所示实施例提供的掩膜版,均是以预聚物中加入光抑制剂作为光致调控模量材料。对于以预聚物中添加光促进剂作为光致调控模量材料的具体应用,则形成的透镜极性相反。
此外,若通过添加超过一种光感成分的光致调控模量材料,则可以形成更为复杂 的光学透镜形貌。如前述实施例所述,当采用多种光感材料(可以同时包括光促进剂和光抑制剂)作为添加剂时,可以通过分次不同波长曝光来激活不同光感材料,从而使用不同掩模版独立提升或降低薄膜不同区域的模量,能够扩大透镜的焦距调节范围。
请参见图21,该图示出了本申请一实施例所述图像获取设备的成像透镜系统的示意图。
该图像获取设备包括图像传感器211和成像透镜系统,本实施例中,采用图6所示实施例提供的可变焦柔性透镜装置作为成像透镜系统的构成。也就是说,该可变焦柔性透镜装置的膜本体212具有一个透镜部,所形成的凸透镜与其他光学元件213共同组成成像透镜系统。
其中,图像传感器211用于感侧自成像透镜系统透射出的光信号,并将光信号转换为电信号。
其中,致动部件用于施加致动力至可变焦柔性透镜装置的膜本体212,以使该膜本体上的透镜部根据致动力的大小形成可调节焦距的透镜,例如但不限于图22和图23分别示出的两种焦距变化。该致动部件(图中未示出)可以为双轴拉伸架或多轴拉伸架,具体可以采用不同的机械机构结构实现,例如但不限于,采用形状记忆合金或者刚性结构件作为拉伸致动部件的构成,只要能够控制拉伸该膜本体212,实现在预定义范围内的自由变焦均可。
可以理解的是,可变焦柔性透镜装置在成像透镜系统中的应用,非局限于图中所示的单层可拉伸透镜。在具体应用中,可以采用多个可拉伸透镜部分或者全部替代传统光学成像系统中的透镜组。
基于图21所示实施例提供的成像透镜系统,可应用于相机、智能手机、平板电脑、笔记本电脑、智能显示屏及AR(Augmented Reality,增强现实)/VR(Virtual Reality,虚拟现实)/MR(Mixed Reality,混合现实)产品等电子设备。
其中的AR/VR/MR头戴显示器,通过变焦组件控制目镜系统的屈光度,从而调控虚像所在的深度。本实施例用于此种自适应变焦头戴显示器的变焦组件,与传统固定曲率的光学镜片组合,通过该片变焦组件的拉伸,实现图像光学深度的调控。
请参见图24,该图示出了本申请一实施例提供的可拉伸显示设备的显示器件示意图。
该可拉伸显示设备包括弹性衬底241和与弹性衬底241集成的膜本体242,构成显示器件。本实施例中,采用图12所示实施例中所述的凸透镜阵列作为显示器件的暗区补偿透镜。
图中所示,膜本体242相对于弹性衬底241位于出光侧。其中。弹性衬底241上具有由多个发光像素243构成的发光像素阵列,膜本体241具有可形成凸透镜阵列的多个透镜部,且凸透镜阵列与发光像素阵列相对设置,也即,凸透镜与发光像素243一一对应。拉伸前,发光像素243之间间距为图24所示的预设距离,此时发光无明显暗区;当该显示器件受到拉伸后,在发光像素的正投影区域可形成一个随拉伸比增大焦距缩小的凸透镜244,且如图25所示一一对应,从而减小拉伸后像素间形成的暗区。
这里,形成凸透镜阵列的致动力由形变的弹性衬底241或与弹性衬底241同步拉 伸的结构提供,也即,本实施例中致动部件由该显示器件的自体拉伸结构构建。例如但不限于,应用于具有折叠拉伸屏的柔性显示设备。
请参见图26,该图示出了本申请另一实施例所述可拉伸显示设备的显示器件示意图。与图24所示实施例相比,本实施例的区别在于:膜本体262具有可形成凹透镜阵列的多个透镜部。
该可拉伸显示设备包括弹性衬底261和与弹性衬底261集成的膜本体262,构成显示器件。本实施例中,采用图12所示实施例中所述的凹透镜阵列作为显示器件的暗区补偿透镜。
同样地,膜本体262相对于弹性衬底261位于出光侧。其中。弹性衬底261上具有由多个发光像素263构成的发光像素阵列,膜本体261具有可形成凹透镜阵列的多个透镜部,且凹透镜阵列与发光像素阵列交错设置,也即,凹透镜与发光像素263之间间隔区域一一对应。
拉伸前,发光像素243之间间距为图26所示的预设距离,此当该显示器件受到拉伸后,在发光像素间隔的正投影区域形成一个随拉伸比增大而焦距绝对值缩小的凹透镜264,且如图27所示一一对应,从而减小拉伸后像素间形成的暗区。
同样地,形成凹透镜阵列的致动力由形变的弹性衬底261或与弹性衬底261同步拉伸的结构提供,也即,本实施例中致动部件由该显示器件的自体拉伸结构构建。
上述图21、图24和图26所示实施例提供的电子设备中,所采用的可变焦柔性透镜装置为可随其形态变化而调整焦距的透镜,均基于提供的动态致动力实现其透镜功能。在其他具体应用中,也可以采用形变后具有固定焦距的可变焦柔性透镜装置。
请参见图28,该图示出了本申请一实施例所述前照式光学传感器的示意图。
该光学传感器是以微透镜收集入射光信息的前照式光学传感器,包括像侧透镜装置281和图像传感器282。本实施例中,采用图12所示实施例中所述的凸透镜阵列作为光学传感器的像侧透镜装置281。
图中所示,像侧透镜装置281的膜本体具有可形成凸透镜阵列的多个透镜部,拉伸后固定。组装时,膜本体配置为被施加致动力,其上的透镜部均变形形成具有固定焦距的凸透镜。
该膜本体覆于图像传感器282的介质层284上,其基底层285位于介质层的内侧,多个金属电极283嵌装在介质层和基底层中,以形成多个受光部,且受光部与凸透镜一一对应。例如但不限于,可以作为屏下光学指纹传感器使用。
请参见图29,该图示出了本申请一实施例提供的背照式光学传感器的示意图。
与图28所示实施例相比,该光学传感器是以微透镜收集入射光信息的背照式光学传感器,包括像侧透镜装置291和图像传感器292。本实施例中,采用图12所示实施例中所述的凸透镜阵列作为光学传感器的像侧透镜装置291。
图中所示,像侧透镜装置291的膜本体拉伸后固定于图像传感器292的基底层294上,其介质层295位于基底层294的内侧,多个金属电极293嵌装在介质层和基底层中,以形成多个受光部,且受光部与凸透镜一一对应。
需要说明的是,前照式、背照式光学传感器的主体作用基理非本发明的核心发明 点所在,故本文不再赘述。
请参见图30,该图示出了本申请一实施例所述显示设备的示意图。
该显示设备包括金属电极301和背光装置302,其中,背光装置302设置在金属电极301的显示侧的相反侧。这里,“显示侧”是指金属电极301朝向用户的一侧,“相反侧”是指远离用户的后侧。应当理解,上述方位词的使用仅用于清楚描述技术方案的构成或结构之间的位置关系,而非构成对本方案的实质性限制。
该背光装置302包括背光腔303和多个光源304,多个光源304设置在背光腔303中,该背光腔303由反射片308围合形成。本实施例中,采用采用图12所示实施例中所述的凹透镜阵列305作为该显示设备的背光均一性补偿透镜。
图中所示,膜本体拉伸后固定,其上的透镜部均变形形成具有固定焦距的凹透镜309,所形成的凹透镜阵列305为设置在背光腔303中的凹透镜阵列,且凹透镜与光源304一一对应。
例如但不限于,金属电极301可以为液晶面板,光源304可以为LED。本实施例中,通过设置凹透镜阵列305,可以降低LED的混光高度,从而使得显示设备的结构更加紧凑。
应当理解,图中所示的直下式LED背光仅为优选示意,采用侧入式背光的面板,同样可以采用该凹透镜阵列作为背光均一性补偿透镜使用。
另外,基于图30所示的显示设备,可以将其中的凹透镜阵列替换为凸透镜阵列(图中未示出),以实现减小LED的出光角,提高显示设备的峰值亮度。例如但不限于,应用在车载抬头显示器中的LCD背光模组中。
此外,该显示设备可采用图中所示的扩散板306和扩散片307进一步提高背光均一性。在具体应用中,在该显示设备的基础上,去除图30中所示的显示面板,即可获得均匀出光的发光设备使用,例如但不限于LED面板。
可以确定的是,本实施例提供的可变焦柔性透镜装置,具有较好的结构兼容性,且可根据需要重复进行模量配置调控。实际应用中,在不影响现行电子设备主体结构的基础上,一方面可降低调焦过程中在光轴方向的空间占用,另外在调整聚集误差的过程中有效控制产品制造成本。
请参见图31,该图示出了本申请图13所示实施例提供的一种可变焦柔性透镜装置的示意图。
与图6所示实施例相比,本实施例提供的可变焦柔性透镜装置,其膜本体上透镜部的杨氏模量还配置为在膜本体的厚度方向上递增。如图31所示,该可变焦柔性透镜装置在准直光源的照射下曝光形成,并以膜本体材料对于所述准直光源的光吸收率为50%为例,示出了透镜部在厚度方向上对曝光光源的透光率的变化,由此形成该透镜部的杨氏模量在厚度方向上递增变化。
这样,拉伸形变后,所形成的凸透镜上下表面具有曲率差,如图32所示,具有调节形变后透镜的整体屈光度的能力。
请参见图33,该图示出了本申请另一实施例提供的可变焦柔性透镜装置的示意图。
与图6所示实施例相比,本实施例提供的可变焦柔性透镜装置,如图33所示,该 可变焦柔性透镜装置在朗伯光源的照射下曝光形成,且未使用掩模版,且光由于近光源区(示意图的上部)模量分布梯度较大,远光源区(示意图的下部)模量分布梯度较小,由此形成该透镜部的杨氏模量在厚度方向上递增变化。
拉伸形变后,所形成的凸透镜上下表面具有曲率差,如图34所示。
另外,基于图31和图33所示实施例,透镜部的杨氏模量在厚度方向上递增变化的具体实现方式,还可以采用膜本体材料对曝光光源的吸收效应与曝光光源的非准直性(包括但不限于朗博光源)组合而形成。
需要说明的是,本发明实施例中,基于透镜部的杨氏模量在厚度方向上递增变化而形成的透镜,非局限于图32和图34所示的凸透镜,所形成的透镜亦可为凹透镜。具体实现基理与前述相同,在此不再赘述。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (26)

  1. 一种可变焦柔性透镜装置,其特征在于,包括由光致调控模量材料制成的透明的膜本体,所述膜本体具有用于形成透镜的透镜部;
    所述透镜部的弹性模量配置为自其中心向外周递增或递减;所述透镜部可产生相应的变形,形成透镜。
  2. 根据权利要求1所述的可变焦柔性透镜装置,其特征在于,通过施加至所述膜本体的致动力,所述透镜部产生所述变形,且所述致动力的施力方向与所述透镜的光轴垂直。
  3. 根据权利要求1或2所述的可变焦柔性透镜装置,其特征在于,所述透镜部的弹性模量还配置为在所述膜本体的厚度方向上递增或递减。
  4. 根据权利要求2或3所述的可变焦柔性透镜装置,其特征在于,
    施加拉伸致动力于所述膜本体,所述透镜部产生拉伸变形形成所述透镜;
    或者,施加压缩致动力于所述膜本体,所述透镜部产生压缩变形形成所述透镜。
  5. 根据权利要求1至4中任一项所述的可变焦柔性透镜装置,其特征在于,所述透镜部的弹性模量配置为自其中心向外周递增或递减,其中,最大弹性模量和最小弹性模量的比值为1~50。
  6. 根据权利要求5所述的可变焦柔性透镜装置,其特征在于,所述膜本体的厚度为1um~1cm。
  7. 根据权利要求1至6中任一项所述的可变焦柔性透镜装置,其特征在于,所述光致调控模量材料为添加有光感组分的预聚物,或者,所述光致调控模量材料为具有热交联和UV交联两种基团的有机改性陶瓷。
  8. 根据权利要求7所述的可变焦柔性透镜装置,其特征在于,所述预聚物为PDMS预聚物、PP预聚物或PET预聚物,所述光感组分为光促进剂或者光抑制剂。
  9. 根据权利要求1至8中任一项所述的可变焦柔性透镜装置,其特征在于,所述透镜部为一个,且变形形成的所述透镜为凸透镜或凹透镜。
  10. 根据权利要求1至8中任一项所述的可变焦柔性透镜装置,其特征在于,所述透镜部为阵列设置的多个,
    变形形成的多个所述透镜均为凸透镜或凹透镜;
    或者,变形形成的多个所述透镜中一部分为凸透镜、另一部分为凹透镜。
  11. 根据权利要求9或10所述的可变焦柔性透镜装置,其特征在于,所述凸透镜的透镜直径d与透镜焦距f的比值为:0<d/f≤0.3,所述凹透镜的透镜直径d与透镜焦距f的比值为:-0.3≥d/f>0。
  12. 一种用于制备权利要求1至11中任一项所述可变焦柔性透镜装置的掩膜版,其特征在于,所述掩膜版具有透光控制部,所述透光控制部用于控制形成所述透镜部的曝光程度,且所述透光控制部的透光率配置为自其中心向外周递增或递减。
  13. 根据权利要求12所述的掩膜版,其特征在于,所述透光控制部的灰阶为阶梯状递增或递减,以形成自其中心向外周递减或递增的透光率。
  14. 根据权利要求12所述的掩膜版,其特征在于,所述透光控制部的灰阶为渐变状 递增或递减,以形成自其中心向外周递减或递增的透光率。
  15. 一种制备权利要求1至11中任一项所述可变焦柔性透镜装置的方法,其特征在于,包括下述步骤:
    采用光致调控模量材料制备膜本体的基材;
    对所述膜本体的基材进行曝光处理,并利用权利要求12至14中任一项所述的掩膜版控制曝光强度,以形成所述膜本体上的透镜部。
  16. 根据权利要求15所述的制备可变焦柔性透镜装置的方法,其特征在于,所述采用光致调控模量材料制备膜本体的基材,包括下述步骤:
    在玻璃基底上涂布光致调控模量材料层;
    在60℃~150℃的空气气氛下退火,以使所述涂布光致调控模量材料层固化形成所述基材。
  17. 一种电子设备,其特征在于,包括权利要求1所述的可变焦柔性透镜装置。
  18. 根据权利要求17所述的电子设备,其特征在于,还包括致动部件,所述致动部件用于施加致动力至所述可变焦柔性透镜装置的膜本体,以使所述膜本体上的透镜部根据所述致动力的大小形成可调节焦距的透镜。
  19. 根据权利要求18所述的电子设备,其特征在于,所述电子设备为图像获取设备,所述图像获取设备包括图像传感器和成像透镜系统;
    所述膜本体具有可形成一个凸透镜的透镜部,所形成的所述凸透镜为所述成像透镜系统中的凸透镜;
    所述图像传感器用于感侧自所述成像透镜系统透射出的光信号,并将所述光信号转换为电信号;
    所述致动部件为双轴拉伸架或多轴拉伸架。
  20. 根据权利要求18所述的电子设备,其特征在于,所述电子设备为可拉伸显示设备,所述可拉伸显示设备包括弹性衬底,所述弹性衬底上具有由多个发光像素构成的发光像素阵列;
    所述膜本体具有可形成透镜阵列的多个所述透镜部,且所述膜本体相对于所述弹性衬底位于出光侧;
    所述致动部件由所述弹性衬底构建。
  21. 根据权利要求20所述的电子设备,其特征在于,所述透镜阵列为凸透镜阵列,所述凸透镜阵列与所述发光像素阵列相对设置;
    或者,所述透镜阵列为凹透镜阵列,所述凹透镜阵列与所述发光像素阵列交错设置。
  22. 根据权利要求17所述的电子设备,其特征在于,所述可变焦柔性透镜装置的膜本体配置为被施加致动力,所述膜本体上的透镜部形成具有固定焦距的透镜。
  23. 根据权利要求22所述的电子设备,其特征在于,所述电子设备为光学传感器,所述光学传感器包括像侧透镜装置和图像传感器;
    所述膜本体具有可形成凸透镜阵列的多个所述透镜部,所形成的所述凸透镜阵列为所述像侧透镜装置的凸透镜阵列;
    所述图像传感器包括多个受光部,多个所述受光部与所述凸透镜阵列相对设置。
  24. 根据权利要求22所述的电子设备,其特征在于,所述电子设备为显示设备,所述显示设备包括显示面板和背光装置,所述背光装置设置在所述显示面板的显示侧的相反侧,所述背光装置包括背光腔和多个光源,多个所述光源设置在所述背光腔中;
    所述膜本体具有可形成透镜阵列的多个所述透镜部,所形成的所述透镜阵列为设置在所述背光腔中的透镜阵列,所述透镜阵列与多个所述光源相对设置。
  25. 根据权利要求23所述的电子设备,其特征在于,所述透镜阵列为凸透镜阵列或者凹透镜阵列。
  26. 根据权利要求21所述的电子设备,其特征在于,所述电子设备为发光设备,所述发光设备包括反射片、扩散板和设置在所述反射片上的多个光源;
    所述膜本体具有可形成透镜阵列的多个透镜部,所形成的所述透镜阵列为设置在所述反射片的出光侧的透镜阵列,所述透镜阵列与多个所述光源相对设置。
PCT/CN2022/085432 2021-06-28 2022-04-07 透镜装置、电子设备及制备该透镜装置的方法和掩模版 WO2023273494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110721133.8A CN115598788A (zh) 2021-06-28 2021-06-28 透镜装置、电子设备及制备该透镜装置的方法和掩模版
CN202110721133.8 2021-06-28

Publications (1)

Publication Number Publication Date
WO2023273494A1 true WO2023273494A1 (zh) 2023-01-05

Family

ID=84692449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085432 WO2023273494A1 (zh) 2021-06-28 2022-04-07 透镜装置、电子设备及制备该透镜装置的方法和掩模版

Country Status (2)

Country Link
CN (1) CN115598788A (zh)
WO (1) WO2023273494A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070263293A1 (en) * 2000-10-20 2007-11-15 Holochip Corporation Fluidic lens with electrostatic actuation
US20080112059A1 (en) * 2006-11-13 2008-05-15 Samsung Electronics Co., Ltd. Optical lens and method of manufacturing the same
US20100208357A1 (en) * 2005-05-14 2010-08-19 Holochip Corporation Fluidic lens with reduced optical aberration
CN104880746A (zh) * 2015-06-19 2015-09-02 西安交通大学 一种可变焦光学透镜系统及其制备
CN105223635A (zh) * 2015-10-21 2016-01-06 苏州大学 一种利用非均匀薄膜设计和制作非球面液体透镜的方法
CN110336950A (zh) * 2019-08-12 2019-10-15 珠海格力电器股份有限公司 一种变焦辅助装置及摄像装置
CN112166361A (zh) * 2018-05-24 2021-01-01 珀莱特股份有限公司 具有应力分布支撑结构的光学元件
CN112162338A (zh) * 2020-11-20 2021-01-01 太原师范学院 一种基于ipmc驱动的全固态可调焦微透镜
US20210026045A1 (en) * 2018-03-29 2021-01-28 Adlens Ltd Improvements in or relating to variable focusing power optical devices
CN112731572A (zh) * 2021-01-13 2021-04-30 北京理工大学 一种基于透明导电液体的介电弹性体液体透镜
CN112771415A (zh) * 2018-08-22 2021-05-07 奥普托图尼股份公司 与取向无关的彗差补偿液体透镜

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070263293A1 (en) * 2000-10-20 2007-11-15 Holochip Corporation Fluidic lens with electrostatic actuation
US20100208357A1 (en) * 2005-05-14 2010-08-19 Holochip Corporation Fluidic lens with reduced optical aberration
US20080112059A1 (en) * 2006-11-13 2008-05-15 Samsung Electronics Co., Ltd. Optical lens and method of manufacturing the same
CN104880746A (zh) * 2015-06-19 2015-09-02 西安交通大学 一种可变焦光学透镜系统及其制备
CN105223635A (zh) * 2015-10-21 2016-01-06 苏州大学 一种利用非均匀薄膜设计和制作非球面液体透镜的方法
US20210026045A1 (en) * 2018-03-29 2021-01-28 Adlens Ltd Improvements in or relating to variable focusing power optical devices
CN112166361A (zh) * 2018-05-24 2021-01-01 珀莱特股份有限公司 具有应力分布支撑结构的光学元件
CN112771415A (zh) * 2018-08-22 2021-05-07 奥普托图尼股份公司 与取向无关的彗差补偿液体透镜
CN110336950A (zh) * 2019-08-12 2019-10-15 珠海格力电器股份有限公司 一种变焦辅助装置及摄像装置
CN112162338A (zh) * 2020-11-20 2021-01-01 太原师范学院 一种基于ipmc驱动的全固态可调焦微透镜
CN112731572A (zh) * 2021-01-13 2021-04-30 北京理工大学 一种基于透明导电液体的介电弹性体液体透镜

Also Published As

Publication number Publication date
CN115598788A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
KR100972017B1 (ko) 마이크로렌즈 시트, 백라이트 및 표시 장치
KR100959403B1 (ko) 양면 렌즈 시트 및 프로젝션 스크린
TW561278B (en) Optical sheet and display device having the optical sheet
US20170261651A1 (en) Array-based camera lens system
US9612367B2 (en) Method of producing optical device, optical device, optical system, and imaging device
CN1906503A (zh) 非球面微透镜阵列及其制造方法以及使用所述非球面微透镜阵列的应用
EP2361754A2 (en) Lens array
KR20120136206A (ko) 마스크리스 가공 장치
WO2023273494A1 (zh) 透镜装置、电子设备及制备该透镜装置的方法和掩模版
TWI507786B (zh) 顯示裝置及其側光式背光模組
JP2009086031A (ja) 光学シート、バックライトユニット及びディスプレイ装置
JPH1039118A (ja) 光線指向性化シートおよびそれを用いた指向性面状光源
KR20050079384A (ko) 액정표시장치용 반투과 시트 및 그 제조방법
Zhong et al. Fabrication of high fill-factor aspheric microlens array by digital maskless lithography
JPH10253808A (ja) 光学シートおよびその製造方法と指向性面状光源
JPH10261309A (ja) 光学シートおよび指向性面状光源
US20070218372A1 (en) Method For Production Of Micro-Optics Structures
WO2020262426A1 (ja) 光学素子、マイクロレンズアレイ、及びマイクロレンズアレイを用いた表示システム
JP2000314876A (ja) 液晶表示素子および液晶表示装置
EP2380721A1 (en) Method for fabricating a master
JP2837533B2 (ja) 液晶光学装置
JP2009075219A (ja) 光学素子、及びこれを用いたバックライトユニット、表示装置
CN111399092B (zh) 微透镜阵列结构的制备方法和保护膜
TWI325080B (zh)
TWI397723B (zh) 光學薄板及其製作方法與使用之背光模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE