WO2023273435A1 - 投影显示设备、方法及系统 - Google Patents

投影显示设备、方法及系统 Download PDF

Info

Publication number
WO2023273435A1
WO2023273435A1 PCT/CN2022/082625 CN2022082625W WO2023273435A1 WO 2023273435 A1 WO2023273435 A1 WO 2023273435A1 CN 2022082625 W CN2022082625 W CN 2022082625W WO 2023273435 A1 WO2023273435 A1 WO 2023273435A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sub
display
displayed
module
Prior art date
Application number
PCT/CN2022/082625
Other languages
English (en)
French (fr)
Inventor
梁倩
肖纪臣
吴超
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280047122.9A priority Critical patent/CN117597917A/zh
Publication of WO2023273435A1 publication Critical patent/WO2023273435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence

Definitions

  • the present application relates to the field of electronic technology, and in particular to a projection display device, method and system.
  • Laser projection refers to the image transmitted by the laser light source, which is enlarged and displayed on the projection screen by using an image display module in the projection display device.
  • an embodiment of the present application provides a projection display device, including: an image processing module, a plurality of display control modules, a plurality of digital micromirror devices, a plurality of lenses, and a composite prism; wherein, the plurality of display control modules and the plurality of digital micromirror devices are connected in one-to-one correspondence; the plurality of lenses are located between the synthesis prism and the plurality of digital micromirror devices, and are arranged in one-to-one correspondence with the plurality of digital micromirror devices;
  • the synthesis prism is set corresponding to the plurality of lenses;
  • the image processing module is configured to decompose the image data of the image to be displayed, and send the image data of the plurality of sub-images obtained by the decomposition to the plurality of display controllers respectively modules; wherein, the number of sub-images is consistent with the number of display control modules;
  • the plurality of display control modules are all connected to the image processing module for converting the received image data of the sub-image into control signals;
  • the digital micromirror device is connected to the corresponding display control module for Outputting the display signal of the sub-image according to the control signal output by the corresponding display control module;
  • the lens is used to transmit the display signal of the sub-image output by the corresponding digital micromirror device to the synthesis prism; the synthesis prism is used to transmit the multiple images transmitted through the multiple lenses
  • the display signal of the sub-image is synthesized into the display signal of the image to be displayed, and the display signal of the image to be displayed is used for projection display of the image to be displayed.
  • an embodiment of the present application provides a projection display system, including the projection display device and a screen as described in the first aspect.
  • the embodiment of the present application provides a projection display method, which is applied to a projection display device, and the projection display device includes: an image processing module, a plurality of display control modules, a plurality of digital micromirror devices, a plurality of lenses, and a synthesis Prism; wherein, the plurality of display control modules and the plurality of digital micromirror devices are connected in one-to-one correspondence; the plurality of lenses are located between the synthesis prism and the plurality of digital micromirror devices, and the A plurality of digital micromirror devices are arranged in one-to-one correspondence; the synthesis prism is arranged corresponding to the plurality of lenses;
  • the methods include:
  • the image processing module decomposes the image data of the image to be displayed, and sends the image data of a plurality of sub-images obtained by decomposing to the plurality of display control modules respectively;
  • the data is converted into a control signal; each digital micromirror device outputs the display signal of the sub-image according to the control signal output by the display control module connected to it;
  • the lens transmits the display signal of the sub-image output by the corresponding digital micromirror device After that, it is transmitted to the synthesis prism;
  • the synthesis prism synthesizes the display signals of the image to be displayed with the display signals of the multiple sub-images transmitted by the multiple lenses, and the display signal of the image to be displayed is used for Projecting and displaying the image to be displayed.
  • Fig. 1 is a schematic diagram illustrating an operation scene between a laser TV and a control device according to an exemplary embodiment
  • Fig. 2 is a configuration block diagram of a control device 100 according to an exemplary embodiment
  • FIG. 3 is a schematic diagram showing a hardware structure of a laser TV 200 according to an exemplary embodiment
  • FIG. 4 is a schematic structural diagram of a projection display device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an optical path for synthesizing a display signal of an image to be displayed provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of another projection display device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of framing processing provided by an embodiment of the present application.
  • FIG. 8(a) is a schematic diagram of an image of a sub-display signal corresponding to a sub-image provided in an embodiment of the present application;
  • FIG. 8(b) is a schematic diagram of an image of a sub-display signal corresponding to a sub-image provided in an embodiment of the present application;
  • FIG. 8(c) is a schematic diagram of an image of a sub-display signal corresponding to a sub-image provided in an embodiment of the present application.
  • FIG. 8(d) is a schematic diagram of an image of a sub-display signal corresponding to a sub-image provided in an embodiment of the present application.
  • FIG. 9(a) is a schematic diagram of an image of a sub-display signal of an image to be displayed provided by an embodiment of the present application.
  • FIG. 9(b) is a schematic diagram of an image of a sub-display signal of an image to be displayed provided by an embodiment of the present application.
  • FIG. 9(c) is a schematic diagram of an image of a sub-display signal of an image to be displayed provided in an embodiment of the present application.
  • Fig. 9(d) is a schematic diagram of an image of a sub-display signal of an image to be displayed provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a visually presented image to be displayed provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the vibration processing of the galvanometer module provided by the embodiment of the present application.
  • Figure 12(a) is a schematic diagram of the image data decomposition processing results provided by the embodiment of the present application.
  • Figure 12(b) is a schematic diagram of the image data decomposition processing results provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of the image data splicing results provided by the embodiment of the present application.
  • FIG. 14 is a projection display system provided by an embodiment of the present application.
  • FIG. 15 is a flowchart of a projection display method provided by an embodiment of the present application.
  • Laser projection uses a projection display device such as a laser TV to project a display on a screen.
  • the most important working module in the projection display device is the image display module, which includes a digital micromirror device.
  • the image display module includes a digital micromirror device.
  • the light source is reflected on the screen through these mirrors to directly form an image, wherein one mirror represents a pixel, that is, the light reflected by one mirror is a pixel of the final image.
  • the more pixels of the image the higher the resolution of the image (the number of pixels per unit area), and the better the image quality of the projection display.
  • the projection display device in the related art is used for projection, and the number of pixels of the image remains unchanged, but the number of pixels per unit area, that is, the resolution becomes lower. Therefore, the image quality of the projection display cannot meet the display requirement.
  • the projection display device, method and system provided in the present application aim to solve the above technical problems of related technologies.
  • remote controller used in various embodiments of the present application refers to a component of an electronic device (such as the display device disclosed in this application), which can usually control the electronic device wirelessly within a relatively short distance.
  • the component can generally use infrared and/or radio frequency (RF) signals and/or Bluetooth to connect with electronic devices, and can also include functional modules such as WiFi, wireless USB, Bluetooth, and motion sensors.
  • RF radio frequency
  • a hand-held touch remote control replaces most of the physical built-in hardware in a general remote control device with a user interface in a touch screen.
  • Fig. 1 exemplarily shows a schematic diagram of an operation scene between a laser TV and a control device according to an exemplary embodiment. As shown in FIG. 1 , the user can operate the laser TV 200 through the control device 100 .
  • the control device 100 can be a remote controller 100A, which can communicate with the laser TV 200 through infrared protocol communication, Bluetooth protocol communication, ZigBee protocol communication or other short-distance communication methods, for wireless or other Wired way to control laser TV 200.
  • the user can control the laser TV 200 by inputting user instructions through buttons on the remote control 100A, voice input, control panel input, etc.
  • the user can input corresponding control commands through the screen up and down keys, volume up and down keys, channel control keys, up/down/left/right movement keys, voice input keys, menu keys, power on and off keys, etc. on the remote control 100A, To realize the function of controlling the laser TV 200.
  • the control device 100 can also be a smart device, such as a mobile terminal 100B, a tablet computer, a computer, a notebook computer, etc., which can be connected via a local network (LAN, Local Area Network), a wide area network (WAN, Wide Area Network), a wireless local area network (WLAN, Wireless Local Area Network) or other networks communicate with the laser TV 200, and realize the control of the laser TV 200 through the application program corresponding to the laser TV 200.
  • the laser TV 200 is controlled using an application running on a smart device.
  • the application can provide users with various controls through an intuitive user interface (UI, User Interface) on the screen associated with the smart device.
  • UI User Interface
  • both the mobile terminal 100B and the laser TV 200 can install software applications, so that the connection and communication between the two can be realized through the network communication protocol, and then the purpose of one-to-one control operation and data communication can be realized.
  • the mobile terminal 100B can establish a control command protocol with the laser TV 200
  • the remote control keyboard can be synchronized to the mobile terminal 100B
  • the function of controlling the laser TV 200 can be realized by controlling the user interface on the mobile terminal 100B
  • the audio and video content displayed on the TV is transmitted to the laser TV 200 to realize the synchronous display function.
  • the laser TV 200 can also perform data communication with the server 300 through various communication methods.
  • the laser TV 200 may be allowed to perform a wired communication connection or a wireless communication connection with the server 300 through a local area network, a wireless local area network or other networks.
  • the server 300 can provide various contents and interactions to the laser TV 200 .
  • the laser TV 200 interacts with an electronic program guide (EPG, Electronic Program Guide) by sending and receiving information, receiving software program updates, or accessing a digital media library stored remotely.
  • EPG Electronic Program Guide
  • the servers 300 may be one group or multiple groups, and may be one or more types of servers. Other network service contents such as video on demand and advertisement service are provided through the server 300 .
  • the laser TV 200 includes a screen 201 and a projection device 202 (that is, a projection display device).
  • the projection device 202 acquires the content to be displayed, and projects the content to be displayed to the screen 201 by means of optical projection and imaging, so that the screen 201 displays the content to be displayed.
  • the specific type, size and resolution of the laser TV are not limited. Those skilled in the art can understand that the performance and configuration of the laser TV 200 can be changed as required.
  • Laser TV 200 in addition to providing the TV function of broadcasting reception, can additionally provide the function of intelligent network TV with computer support function. Examples include, IPTV, SmartTV, Internet Protocol Television (IPTV), and the like. In some embodiments, the laser TV may not have broadcast receiving TV functionality.
  • IPTV Internet Protocol Television
  • Fig. 2 exemplarily shows a configuration block diagram of the control device 100 according to the exemplary embodiment.
  • the control device 100 includes a controller 110 , a communicator 130 , a user input/output interface 140 , a memory 190 , and a power supply 180 .
  • the control device 100 is configured to control the laser TV 200, and to receive the user's input operation instructions, and convert the operation instructions into instructions that the laser TV 200 can recognize and respond to, and serve as an interactive intermediary between the user and the laser TV 200 effect.
  • the user operates the channel addition and subtraction keys on the control device 100, and the laser TV 200 responds to the channel addition and subtraction operations.
  • the user operates the screen lift key on the control device 100, and the laser TV 200 responds to control the screen to rise or fall.
  • the "rise” or “fall” mentioned in this application is relative to the installation position of the screen. It can be understood that the directions of "rise” or “fall” are different based on different installation positions of the screen.
  • control device 100 can be a smart device.
  • control device 100 can install various applications for controlling the laser TV 200 according to user requirements.
  • the mobile terminal 100 or other smart electronic devices can function similarly to the control device 100 after installing the application for controlling the laser TV 200 .
  • the user can realize the functions of the physical buttons of the control device 100 by installing the application, various function keys or virtual buttons of the GUI provided on the mobile terminal 100B or other intelligent electronic devices.
  • the controller 110 includes a processor 112, RAM 113 and ROM 114, a communication interface, and a communication bus.
  • the controller 110 is used to control the operation and operation of the control device 100 , as well as the communication and cooperation between internal components and external and internal data processing functions.
  • the communicator 130 realizes the communication of control signals and data signals with the laser TV 200 under the control of the controller 110 . For example: sending the received user input signal to the laser TV 200 .
  • the communicator 130 may include at least one of communication modules such as a WIFI module 131 , a Bluetooth module 132 , and an NFC module 133 .
  • the user input/output interface 140 wherein the input interface includes at least one of input interfaces such as a microphone 141 , a touch panel 142 , a sensor 143 , a key 144 , and a camera 145 .
  • the user can realize the user command input function through actions such as voice, touch, gesture, and press, and the input interface converts the received analog signal into a digital signal, and converts the digital signal into a corresponding command signal, and sends it to the laser TV 200 .
  • the output interface includes an interface for transmitting received user instructions to the laser TV 200 .
  • it may be an infrared interface or a radio frequency interface.
  • an infrared signal interface user input instructions need to be converted into infrared control signals according to the infrared control protocol, and sent to the laser TV 200 through the infrared sending module.
  • the radio frequency signal interface when the radio frequency signal interface is used, the user input command needs to be converted into a digital signal, and then modulated according to the radio frequency control signal modulation protocol, and then sent to the laser TV 200 by the radio frequency sending terminal.
  • control device 100 includes at least one of a communicator 130 and an output interface.
  • the control device 100 is equipped with a communicator 130 , such as WIFI, Bluetooth, NFC and other modules, which can encode user input commands to the laser TV 200 through WIFI protocol, Bluetooth protocol, or NFC protocol.
  • a communicator 130 such as WIFI, Bluetooth, NFC and other modules, which can encode user input commands to the laser TV 200 through WIFI protocol, Bluetooth protocol, or NFC protocol.
  • the memory 190 is used to store various operating programs, data and applications for driving and controlling the control device 100 under the control of the controller 110 .
  • the memory 190 can store various control signal instructions input by the user.
  • the power supply 180 is used to provide operating power support for each electrical component of the control device 100 under the control of the controller 110 .
  • the power supply 180 can be powered by a battery and related control circuits.
  • FIG. 3 exemplarily shows a schematic diagram of a hardware structure of a laser TV 200 according to an exemplary embodiment.
  • the laser TV 200 in FIG. 3 is illustrated by taking the laser projection device and the liftable screen separately as an example.
  • the laser TV in the laser TV 200 includes: a laser projection device 1 and a liftable screen 2 .
  • the laser projection device 1 is used to obtain the video to be played.
  • the laser projection device can analyze the video signal to be played into an image signal, and project it onto a liftable screen to form an image.
  • the liftable screen 2 is used to present images to the user.
  • the laser projection device 1 and the liftable screen 2 are integrated.
  • the laser TV 200 integrates a laser projection device and a liftable screen into a TV cabinet.
  • Fig. 4 is a schematic structural diagram of a projection display device provided by an embodiment of the present application.
  • the projection display device provided by this embodiment includes an image processing module 11, a plurality of display control modules 12, and a plurality of digital micromirrors A device 13 , a plurality of lenses 14 and a synthesis prism 15 .
  • a plurality of display control modules 12 and a plurality of digital micromirror devices 13 are connected in one-to-one correspondence.
  • a plurality of lenses 14 are located between the synthesis prism 15 and the plurality of digital micromirror devices 13 , and are arranged in one-to-one correspondence with the plurality of digital micromirror devices 13 .
  • the synthesis prism 15 is provided corresponding to the plurality of lenses 14 .
  • the image processing module 11 may decompose the image data of the image to be displayed, and send the decomposed image data of multiple sub-images to the multiple display control modules 12 respectively.
  • the number of sub-images is consistent with the number of display control modules 12.
  • the image processing module 11 may include a Field Programmable Gate Array (Field Programmable Gate Array, FPGA for short). Due to the special hardware structure of FPGA, the internal structure can be adjusted by using the pre-edited logic structure file, the connection and position of different logic units can be adjusted by using the constraint file, and the data line path can be properly handled, which has good flexibility and adaptability. It is easy to develop and apply. Especially when processing image data, FPGA can effectively guarantee the decomposition speed of data.
  • FPGA Field Programmable Gate Array
  • a plurality of display control modules 12 are all connected to the image processing module 11, and can convert the image data of the received sub-images into control signals, and send the control signals to the digital micromirror devices 13 correspondingly connected thereto, thereby The digital micromirror device 13 can control the lens to flip according to the control signal output by the corresponding display control module 12, and output the display signal of the sub-image.
  • the display signal may be an optical signal used for projection display.
  • a display signal consists of multiple pixels.
  • the display control module 12 may be an Application Specific Integrated Circuit (ASIC for short). It is small in size, high in reliability, and can realize rapid data conversion.
  • ASIC Application Specific Integrated Circuit
  • the lens 14 can transmit the corresponding display signal of the sub-image output by the digital micromirror device 13 to the synthesizing prism 15 .
  • the synthesizing prism 15 synthesizes the display signals of the image to be displayed from the display signals of the multiple sub-images transmitted by the multiple lenses 14 .
  • the display signal of the image to be displayed is used for projecting and displaying the image to be displayed.
  • the display signal of the sub-image that can be output by each digital micromirror device contains 2048 ⁇ 2192 pixels, that is, the number of pixels in each sub-image is 2048 ⁇ 2192
  • the digital micromirror device The number of mirror devices is n
  • the display signal of the finally synthesized image to be displayed contains n ⁇ 2048 ⁇ 2192 pixels, that is, the number of pixels of the image to be displayed is n ⁇ 2048 ⁇ 2192.
  • the unit area The number of pixels, that is, the resolution, is n times higher than when only one image display module is used.
  • Fig. 5 is the schematic diagram of the optical path of the display signal for synthesizing the image to be displayed provided by the embodiment of the present application, as shown in Fig.
  • the mirror devices 13 are provided in one-to-one correspondence.
  • the synthesis prism 15 is provided corresponding to the plurality of lenses 14 .
  • the lens 14 can transmit the display signal of the corresponding sub-image output by the digital micromirror device 13 to the synthesizing prism 15 .
  • the synthesis prism 15 can adjust the optical transmission path of the display signals of the multiple sub-images transmitted through the plurality of lenses 14, as shown in Figure 5, when there are two display signals of the sub-images, the synthesis prism 15 can keep The light transmission path of one of the display signals remains unchanged, and the other display signal is adjusted through a reflective interface to make it consistent with the light transmission path of the one display signal that remains unchanged, so that the two sub- The display signal of the image is synthesized into the display signal of the image to be displayed.
  • the lens 14 may be a total internal reflection (Total Internal Reflection, TIR for short) lens
  • the synthesis prism 15 may be a polarization beam splitter prism (Polarization Beam Splitter, PBS for short).
  • TIR lens adopts the principle of total reflection and can collect light, so the display signal of the sub-image can be better transmitted to the synthesis prism, effectively avoiding transmission loss.
  • PBS is an optical element used to separate the horizontal polarization and vertical polarization of light. It has the characteristics of small stress, high extinction ratio, good imaging quality, and small beam deflection angle, so it can be well applied in the embodiment of this application. Optical transmission path adjustment.
  • Fig. 6 is a schematic structural diagram of another projection display device provided by the embodiment of the present application. As shown in Fig. 6, on the basis of the first embodiment above, the projection display device provided by this embodiment further includes a signal receiving module 16 and a programming Decoding module 17.
  • the content to be projected and displayed is video. Based on the basic principle of projection display, it is necessary to convert the video data of the video to be displayed into the image data of the image to be displayed frame by frame.
  • the signal receiving module 16 can be used to receive the video data of the video to be displayed sent by the signal source, and send it to the codec module 17 connected to it, and the codec module 16 can encode and decode the video data to obtain
  • the image data of the image to be displayed, the image data of the image to be displayed can be a differential signal, and the image data of the image to be displayed is sent to the image processing module 11 connected to it, so as to prepare the image of the image to be displayed by the image processing module 11
  • the data is disaggregated.
  • the codec module 16 may be a system-on-chip (System on Chip, SOC for short).
  • SOC System on Chip
  • the SOC is an integrated controller with small size and fast processing speed, so that it can quickly realize the encoding and decoding processing of video data.
  • the projection display device provided in this embodiment includes an image processing module, multiple display control modules, multiple digital micromirror devices, multiple lenses, and a composite prism.
  • the image processing module can decompose the image data of the image to be displayed, and send the image data of multiple sub-images obtained by the decomposition to multiple display control modules, and the display control module converts the received image data of the sub-images into control signals so that the digital micromirror device outputs a display signal of a sub-image based on the control signal.
  • the synthesizing prism synthesizes the display signal of a plurality of sub-images into a display signal for projecting and displaying the image to be displayed. That is to say, the embodiment of the present application adopts a plurality of digital micromirror devices to output display signals of a plurality of sub-images, and then uses a synthesizing prism to synthesize the display signals of the image to be displayed for projection display. Since the resolution of projection display is determined by The digital micromirror device is determined, so the resolution of the projection display can be improved by using multiple digital micromirror devices, so as to realize high-resolution display and effectively improve the image quality of the projection display.
  • the display control module may include a framing module and a processing module.
  • the frame division module is connected with the image processing module, and can perform frame division processing on the received image data of each sub-image to obtain multi-frame image data corresponding to the sub-image.
  • FIG. 7 is a schematic diagram of the frame division processing provided by the embodiment of the present application. As shown in FIG. 7, the left side is the sub-image before the frame division processing. During processing, each pixel will be divided into multiple sub-pixels, such as A, B, C, and D, and the multi-frame image corresponding to the sub-image shown in the figure on the right can be obtained.
  • the multi-frame image includes a sub-image composed of all A pixels, a sub-image composed of all B pixels, a sub-image composed of all C pixels, and a sub-image composed of all D pixels . That is to say, the resolution can be increased by 4 times through the frame processing as shown in the figure.
  • the processing module is connected with the framing module, and can convert multiple frames of image data corresponding to the sub-image into corresponding control signals for each frame of sub-image, and send the multiple control signals to To the digital micromirror device connected to it, the digital micromirror device can output the display signal of the sub-image according to the predetermined output timing according to the plurality of control signals.
  • the display signal of the sub-image includes a plurality of sub-display signals corresponding to the sub-image. That is, the sub-display signal corresponding to the sub-image composed of all A pixels, the sub-display signal corresponding to the sub-image composed of all B pixels, and the sub-display signal corresponding to the sub-image composed of all C pixels , and a sub-display signal corresponding to a sub-image composed of all D pixels.
  • FIG. 8(a), FIG. 8(b), FIG. 8(c), and FIG. 8(d) are schematic diagrams of images of sub-display signals corresponding to sub-images provided in the embodiment of the present application, according to the predetermined output Sequentially output the sub-display signal corresponding to the sub-image composed of all A pixels, the sub-display signal corresponding to the sub-image composed of all B pixels, and the sub-display signal corresponding to the sub-image composed of all C pixels signal, and the sub-display signal corresponding to the sub-image composed of all D pixels, you can obtain the Four image schematics.
  • the synthesizing prism can adjust the optical transmission path of the display signals of the multiple sub-images transmitted through the multiple lenses, and synthesize the display signals of the image to be displayed.
  • the display signal of the image to be displayed includes a plurality of sub-display signals corresponding to the image to be displayed, and each sub-display signal corresponding to the image to be displayed is obtained by synthesizing the sub-display signals corresponding to the sub-images output by a plurality of digital micromirror devices at the same time .
  • Figure 9(a), Figure 9(b), Figure 9(c), and Figure 9(d) are schematic diagrams of images of sub-display signals of the image to be displayed provided by the embodiment of the present application, as shown in Figure 9(a), Figure 9(d) 9 (b), Fig. 9 (c), and Fig.
  • each sub-display signal corresponding to the image to be displayed is generated by the two digital micromirror devices in the same
  • the sub-display signals corresponding to the sub-images output at the moment are synthesized, that is, the sub-display signals corresponding to the sub-images composed of all A or B or C or D pixels output by the two digital micromirror devices are obtained by synthesizing,
  • the image diagrams shown in FIG. 9( a ), FIG. 9( b ), FIG. 9( c ), and FIG. 9( d ) can be obtained.
  • FIG. 10 is a schematic diagram of visually presented images to be displayed provided by the embodiment of the present application.
  • the sub-display signals used to synthesize the display signals of the images to be displayed are output according to a predetermined output timing
  • the displayed image will also be displayed according to the predetermined timing, but because the entire output process is continuous and fast, and because the human eye has visual persistence, the final visually presented image to be displayed contains all the pixels of A, B, C, and D
  • the to-be-displayed image displayed by superposition of dots is shown in Figure 10.
  • each pixel in the sub-image is divided into When there are four sub-pixels A, B, C, and D, the positions of each sub-pixel are different. As shown in Figure 7, the position of the A pixel is in the upper left corner, the position of the B pixel is in the upper right corner, and the position of the C pixel is in the upper right corner. The position of the dot is in the lower right corner, and the position of the D pixel is in the lower left corner.
  • the relative positions of the sub-images respectively composed of all A, B, C, and D pixels will also be different.
  • the sub-image composed of all B pixels is on the right side of the sub-image composed of all A pixels
  • the sub-image composed of all C pixels is opposite to the sub-image composed of all B pixels.
  • the sub-image composed of pixels the position below it.
  • the relative positions of the synthesized images to be displayed will also be different. Therefore, in order to ensure that all pixels of each image to be displayed can be projected and displayed, it is necessary to set up a galvanometer module corresponding to the synthesis prism.
  • the galvanometer module can perform corresponding angle rotation based on the output timing of the display signal of each frame of the image to be displayed, so that the multiple sub-display signals corresponding to the sub-image transmit and output the dithered multiple sub-images corresponding to the sub-image via the galvanometer module. Show signal.
  • the galvanometer module may be a 4-way galvanometer, and the 4-way galvanometer can be rotated so that each frame of the image to be displayed is changed in relative position from left to right, up and down, that is, shake processing.
  • Fig. 11 is a schematic diagram of the vibration processing of the galvanometer module provided by the embodiment of the present application.
  • the output timing of the display signal of each frame of the image to be displayed is The sub-display signal of the image to be displayed composed of all B pixels, the sub-display signal of the image to be displayed composed of all C pixels, and the sub-display signal of the image to be displayed composed of all D pixels sub-display signal, then the vibrating mirror module 18 can perform the corresponding angle rotation after outputting the sub-display signal corresponding to the sub-image composed of all A pixels according to the output timing, so that the sub-image composed of all B pixels
  • the sub-display signal corresponding to the image is dithered and output through transmission, and the position of the sub-display signal changes to the right relative to the sub-display signal corresponding to the sub-image composed of all the A pixels.
  • the vibrating mirror module 18 After outputting the sub-display signal corresponding to the sub-image composed of all B pixels, the vibrating mirror module 18 performs a corresponding angular rotation, so that the sub-display signal corresponding to the sub-image composed of all C pixels passes through Dithering processing, transmission output, the sub-display signal whose position changes downward relative to the sub-display signal corresponding to the sub-image composed of all B pixels.
  • the corresponding dithering process is also performed on the sub-display signal corresponding to the sub-image composed of all D pixels.
  • the output direction can be determined based on the relative positions between the sub-pixels.
  • the B sub-pixel in the above example is relatively on the right side of the A sub-pixel, so when performing dithering processing, the B The sub-display signal corresponding to the sub-pixel is shifted to the right.
  • the sub-image is divided into frames by using the frame division module, which further improves the resolution of the projection display.
  • the vibrating mirror module is used to perform dithering processing on the sub-display signal of the sub-image, thereby ensuring All pixels of each image to be displayed can be projected and displayed, ensuring the integrity and normal display of the image.
  • the image processing module performs decomposition processing on the image data of the image to be displayed, including: the image processing module may perform decomposition processing on the image data of the image to be displayed according to the first strategy.
  • Figure 12(a) and Figure 12(b) are schematic diagrams of the image data decomposition processing results provided by the embodiment of the present application, as shown in Figure 12(a) and Figure 12(b), the first strategy may include horizontal average division or vertical Evenly divided.
  • Figure 12(a) shows the horizontal average division, which is divided into upper 10 and lower 20 parts
  • Figure 12(b) shows the vertical average division, which is divided into left 10 and right 20 parts respectively.
  • the average division can ensure that the number of image data of sub-images received by each image display module is consistent, the processing speed of projection display can be guaranteed.
  • the image processing module decomposes the image data of the image to be displayed, including: the image processing module can determine the boundary line of the image to be displayed, and decompose the image data of the image to be displayed according to the boundary line to obtain Image data for multiple sub-images.
  • the image data of adjacent sub-images all include the image data at the corresponding boundary.
  • the synthesizing prism can combine the display signals of sub-images output by multiple image display modules based on the boundary line to obtain the display signal of the image to be displayed, and the display signals of adjacent sub-images at the corresponding boundary lines overlap.
  • FIG. 13 is a schematic diagram of the stitching result of the image data provided by the embodiment of the present application. As shown in FIG. 13 , the black shaded part in the middle is the overlapped part of the displayed signals.
  • the projection display device ensures the processing speed of projection display by performing horizontal average division or vertical average division of the image data of the image to be displayed.
  • the adjacent sub-images All the image data include the image data at the corresponding boundary, which avoids the lack of image data to be displayed when the image to be displayed is synthesized, and effectively ensures the effect of projection display.
  • FIG. 14 is a projection display system provided by an embodiment of the present application.
  • the projection display system provided by the embodiment of the present application includes a projection display device and a screen 19 as provided in any other embodiment of the present application.
  • the image processing module 11 is connected to the two display control modules 12 respectively, and the image data of the image to be displayed can be decomposed and processed. It has been described in the foregoing embodiments, and details are not repeated here.
  • the image processing module 11 may send the image data of the two sub-images obtained through decomposition to the two display control modules 12 respectively.
  • Each display control module 12 can convert the image data of the received sub-image into a control signal, so that the digital micromirror device 13 outputs the display signal of the sub-image according to the control signal output by the corresponding display control module 12, and sends it to Lens 14, the lens 14 can transmit the display signal of the sub-image output by the corresponding digital micromirror device 13, and then transmit it to the synthesis prism 15, so that the synthesis prism 15 will transmit the display signals of the multiple sub-images after multiple lenses, Synthesize the display signal of the image to be displayed. Outputting the display signal of the image to be displayed to the screen 19 can realize the projection display of the image to be displayed.
  • the screen is a liftable screen, so that the projected display effect can be better ensured.
  • Fig. 15 is a flow chart of the projection display method provided in the embodiment of the present application.
  • the projection display method provided in the embodiment of the present application is applied to the projection display device provided in any other embodiment of the present application, and the projection The display device includes: an image processing module, a plurality of display control modules, a plurality of digital micromirror devices, a plurality of lenses, and a composite prism; wherein, the plurality of display control modules and the plurality of digital micromirror devices are connected in one-to-one correspondence
  • the plurality of lenses are located between the synthesis prism and the plurality of digital micromirror devices, and are arranged in one-to-one correspondence with the plurality of digital micromirror devices; the synthesis prism is arranged corresponding to the plurality of lenses.
  • the method includes the following steps:
  • Step 101 The image processing module decomposes the image data of the image to be displayed, and sends the decomposed image data of a plurality of sub-images to the plurality of display control modules respectively.
  • each display control module converts the received image data of the sub-image into a control signal.
  • each digital micromirror device outputs a display signal of a sub-image according to a control signal output by a display control module connected to it.
  • Step 104 the lens transmits the display signal of the sub-image output by the corresponding digital micromirror device to the synthesis prism.
  • Step 105 The synthesizing prism synthesizes the display signals of the image to be displayed with the display signals of the plurality of sub-images transmitted by the plurality of lenses, and the display signal of the image to be displayed is used to project and display the display signal of the image to be displayed image.
  • the image processing module may decompose the image data of the image to be displayed, and send the decomposed image data of multiple sub-images to multiple display control modules respectively.
  • the number of sub-images is consistent with the number of display control modules.
  • each display control module can convert the received image data of the sub-image into a control signal, and send the control signal to the correspondingly connected digital micromirror device, so that each digital micromirror device can
  • the control signal output by the control module is used to control the flipping of the lens and output the display signal of the sub-image.
  • the lens can transmit the display signal of the sub-image output by the corresponding digital micromirror device to the synthesis prism.
  • the synthesizing prism synthesizes the display signals of the image to be displayed from the display signals of the multiple sub-images transmitted by the multiple lenses.
  • the display signal of the image to be displayed is used for projecting and displaying the image to be displayed.
  • the projection display device further includes: a signal receiving module and a codec module.
  • the method further includes: the signal receiving module receiving video data of the video to be displayed sent by the signal source; the codec module encoding and decoding the video data to obtain image data of the video to be displayed.
  • the content to be displayed by projection is video, and based on the basic principle of projection display, it is necessary to convert video data of the video to be displayed into image data of images to be displayed frame by frame.
  • the signal receiving module can be used to receive the video data of the video to be displayed sent by the signal source, and send it to the codec module connected to it, and the codec module can encode and decode the video data to obtain the image to be displayed
  • the image data of the image to be displayed can be a differential signal, and the image data of the image to be displayed is sent to the image processing module connected to it, so that the image processing module can decompose the image data of the image to be displayed.
  • the projection display method provided in this embodiment is applied to a projection display device.
  • the image processing module can decompose the image data of the image to be displayed, and send the image data of multiple sub-images obtained by decomposing to multiple display control modules respectively.
  • the control module converts the image data of the received sub-image into a control signal, so that the digital micromirror device outputs a display signal of the sub-image based on the control signal, and then, the synthesis prism synthesizes the display signals of multiple sub-images for A display signal of the image to be displayed is projected to display the image to be displayed.
  • the embodiment of the present application adopts a plurality of digital micromirror devices to output display signals of a plurality of sub-images, and then uses a synthesizing prism to synthesize the display signals of the image to be displayed for projection display. Since the resolution of projection display is determined by The digital micromirror device is determined, so the resolution of the projection display can be improved by using multiple digital micromirror devices, so as to realize high-resolution display and effectively improve the image quality of the projection display.
  • the display control module includes a frame division module and a processing module.
  • Step 102 includes: The data is divided into frames to obtain multiple frames of image data corresponding to the sub-image; the processing module converts the multiple frames of image data corresponding to the sub-image into corresponding control signals for each frame of sub-image.
  • Step 103 including: the digital micromirror device outputs a sub-image display signal according to a predetermined output timing according to a plurality of control signals corresponding to each sub-image, wherein the sub-image display signal includes the sub-image corresponding Multiple sub-display signals.
  • Step 105 including: adjusting the optical transmission path of the display signals of the multiple sub-images transmitted by the multiple lenses through a synthesizing prism, so as to synthesize the display signals of the image to be displayed, and the display signal of the image to be displayed includes A plurality of sub-display signals corresponding to the image to be displayed, each sub-display signal corresponding to the image to be displayed is obtained by synthesizing sub-display signals corresponding to sub-images output by the plurality of digital micromirror devices at the same time.
  • each frame of sub-images may be further divided into frames.
  • the display control module may include a framing module and a processing module.
  • the frame division module is connected with the image processing module, and can perform frame division processing on the received image data of each sub-image to obtain multi-frame image data corresponding to the sub-image.
  • the processing module is connected with the framing module, and can convert multiple frames of image data corresponding to the sub-image into corresponding control signals for each frame of sub-image, and send the multiple control signals to To the digital micromirror device connected to it, the digital micromirror device can output the display signal of the sub-image according to the predetermined output timing according to the plurality of control signals.
  • the display signal of the sub-image includes a plurality of sub-display signals corresponding to the sub-image.
  • the synthesizing prism can adjust the optical transmission path of the display signals of the multiple sub-images transmitted through the multiple lenses, and synthesize the display signals of the image to be displayed.
  • the display signal of the image to be displayed includes a plurality of sub-display signals corresponding to the image to be displayed, and each sub-display signal corresponding to the image to be displayed is obtained by synthesizing the sub-display signals corresponding to the sub-images output by a plurality of digital micromirror devices at the same time .
  • the galvanometer module can perform corresponding angle rotation based on the output timing of the display signal of each frame of the image to be displayed, so that the multiple sub-display signals corresponding to the sub-image can be transmitted through the galvanometer module and output corresponding to the sub-image after dithering processing Multiple subdisplay signals of .
  • the sub-image is processed by frame division by using the frame division module, which further improves the resolution of projection display.
  • the vibrating mirror module is used to dither the sub-display signal of the sub-image, thereby ensuring All pixels of each image to be displayed can be projected and displayed, ensuring the integrity and normal display of the image.
  • the image processing module decomposes the image data of the image to be displayed, including: the image processing module decomposes the image data of the image to be displayed according to a first strategy; wherein, the first Strategies include horizontal average division or vertical average division.
  • the average division can ensure that the number of image data of sub-images received by each image display module is consistent, the processing speed of projection display can be guaranteed.
  • the image processing module decomposes and processes the image data of the image to be displayed, including: the image processing module can determine the boundary line of the image to be displayed, and process the image data of the image to be displayed according to the boundary line Decomposing and processing to obtain image data of multiple sub-images.
  • the image data of adjacent sub-images all include the image data at the corresponding boundary.
  • the synthesizing prism can combine the display signals of sub-images output by multiple image display modules based on the boundary line to obtain the display signal of the image to be displayed, and the display signals of adjacent sub-images at the corresponding boundary lines overlap.
  • the projection display method provided in this embodiment ensures the processing speed of projection display by performing horizontal average division or vertical average division of the image data of the image to be displayed.
  • the adjacent sub-images All the image data include the image data at the corresponding boundary, which avoids the lack of image data to be displayed when the image to be displayed is synthesized, and effectively ensures the effect of projection display.
  • the device embodiments described above are only illustrative, for example, the division of modules is only a logical function division, and there may be additional The manner in which multiple modules or components can be combined or can be integrated into another system, or some features can be omitted, or not implemented, for example.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • a module described as a separate component may or may not be physically separated, and a component shown as a module may or may not be a physical module, that is, it may be located in one place, or may also be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or in the form of hardware plus software function modules.

Abstract

本申请提供一种投影显示设备、方法及系统,设备包括:图像处理模块、多个显示控制模块、多个数字微镜器件、多个透镜以及合成棱镜。图像处理模块可以对待显示图像的图像数据进行分解,并将获得的多个子图像的图像数据分别发送给多个显示控制模块,以使其将接收到的据转化为控制信号,数字微镜器件基于该控制信号,输出子图像的显示信号,合成棱镜将多个子图像的显示信号,合成待显示图像的显示信号。本申请的设备采用多个数字微镜器件,输出多个子图像的显示信号,再采用合成棱镜将其合成待显示图像的显示信号,用于投影显示,采用多个数字微镜器件可以提升投影显示的分辨率,从而实现高分辨率显示,进而有效提高投影显示画质。

Description

投影显示设备、方法及系统
相关申请的交叉引用
本申请要求在2021年6月30日提交中国专利局、申请号为202110738300.X,发明名称为投影显示设备、方法及系统的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种投影显示设备、方法及系统。
背景技术
随着显示技术的发展,激光投影在日常生活中的应用越来越广泛。激光投影指的是将激光光源透射出的图像,利用投影显示设备中的一个图像显示模块,放大并显示在投影屏幕上。
但是,随着人们对投影屏幕的尺寸的需求不断提高,采用相关技术中的投影显示设备进行投影,其画质无法满足显示需求,因此,如何提高投影显示画质成为亟待解决的问题。
发明内容
第一方面,本申请实施例提供一种投影显示设备,包括:图像处理模块、多个显示控制模块、多个数字微镜器件、多个透镜以及合成棱镜;其中,所述多个显示控制模块和所述多个数字微镜器件一一对应连接;所述多个透镜位于所述合成棱镜和所述多个数字微镜器件之间,和所述多个数字微镜器件一一对应设置;所述合成棱镜对应所述多个透镜设置;所述图像处理模块,用于对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给所述多个显示控制模块;其中,子图像的数量与显示控制模块的数量一致;
所述多个显示控制模块,均与所述图像处理模块连接,用于将接收到的子图像的图像数据转化为控制信号;所述数字微镜器件,与对应的显示控制模块连接,用于根据对应的显示控制模块输出的控制信号,输出子图像的显示信号;
所述透镜,用于将对应的数字微镜器件输出的所述子图像的显示信号透射后,传输至所述合成棱镜;所述合成棱镜,用于将经所述多个透镜透射后的多个子图像的显示信号,合成所述待显示图像的显示信号,所述待显示图像的显示信号用于投影显示所述待显示图像。
第二方面,本申请实施例提供一种投影显示系统,包括如第一方面所述的投影显示设 备以及屏幕。
第三方面,本申请实施例提供一种投影显示方法,应用于投影显示设备,所述投影显示设备包括:图像处理模块、多个显示控制模块、多个数字微镜器件、多个透镜以及合成棱镜;其中,所述多个显示控制模块和所述多个数字微镜器件一一对应连接;所述多个透镜位于所述合成棱镜和所述多个数字微镜器件之间,和所述多个数字微镜器件一一对应设置;所述合成棱镜对应所述多个透镜设置;
所述方法包括:
所述图像处理模块对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给所述多个显示控制模块;每个显示控制模块将接收到的子图像的图像数据转化为控制信号;每个数字微镜器件根据与其连接显示控制模块输出的控制信号,输出子图像的显示信号;所述透镜将对应的数字微镜器件输出的所述子图像的显示信号透射后,传输至所述合成棱镜;所述合成棱镜将经所述多个透镜透射后的多个子图像的显示信号,合成所述待显示图像的显示信号,所述待显示图像的显示信号用于投影显示所述待显示图像。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为示例性示出的根据示例性实施例中激光电视与控制装置之间操作场景的示意图;
图2为示例性示出的根据示例性实施例中控制装置100的配置框图;
图3为示例性示出的根据示例性实施例中激光电视200的硬件结构示意图;
图4为本申请实施例提供的一种投影显示设备的结构示意图;
图5为本申请实施例提供的合成待显示图像的显示信号的光路示意图;
图6为本申请实施例提供的又一种投影显示设备的结构示意图;
图7为本申请实施例提供的分帧处理的示意图;
图8(a)为本申请实施例提供的子图像对应的子显示信号的图像示意图;
图8(b)为本申请实施例提供的子图像对应的子显示信号的图像示意图;
图8(c)为本申请实施例提供的子图像对应的子显示信号的图像示意图;
图8(d)为本申请实施例提供的子图像对应的子显示信号的图像示意图;
图9(a)为本申请实施例提供的待显示图像的子显示信号的图像示意图;
图9(b)为本申请实施例提供的待显示图像的子显示信号的图像示意图;
图9(c)为本申请实施例提供的待显示图像的子显示信号的图像示意图;
图9(d)为本申请实施例提供的待显示图像的子显示信号的图像示意图;
图10为本申请实施例提供的视觉呈现的待显示图像的示意图;
图11为本申请实施例提供的振镜模块抖动处理的示意图;
图12(a)为本申请实施例提供的图像数据分解处理结果示意图;
图12(b)为本申请实施例提供的图像数据分解处理结果示意图;
图13为本申请实施例提供的图像数据拼接结果示意图;
图14为本申请实施例提供的一种投影显示系统;
图15为本申请实施例提供的投影显示方法的流程图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
随着显示技术的发展,激光投影被广泛应用于商业、教学等领域。激光投影使用投影显示设备实现在屏幕上的投影显示,例如激光电视。投影显示设备中最主要的工作模块为图像显示模块,该模块包括数字微镜器件,数字微镜器件上紧密排列了80万至100万个镜片,每个镜片都可以独立向正负方向翻转,光源通过这些镜片反射到屏幕上直接形成图像,其中,一个镜片表示一个像素,也即一个镜片反射的光即为最终形成的图像的一个像素点。在屏幕尺寸固定的情况下,图像的像素点越多,图像的分辨率(单位面积中的像素点数量)越高,投影显示的画质也就越好。
但是,随着人们对投影屏幕的尺寸的需求不断提高,采用相关技术中的投影显示设备进行投影,图像的像素点数量不变,但是单位面积中的像素点数量,也即分辨率变低,因此导致投影显示的画质无法满足显示需求。
本申请提供的投影显示设备、方法及系统,旨在解决相关技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
本申请各实施例中使用的术语“遥控器”,是指电子设备(如本申请中公开的显示装置)的一个组件,该组件通常可在较短的距离范围内无线控制电子设备。该组件一般可以使用红外线和/或射频(RF)信号和/或蓝牙与电子设备连接,也可以包括WiFi、无线USB、蓝牙、 动作传感器等功能模块。例如:手持式触摸遥控器,是以触摸屏中用户界面取代一般遥控装置中的大部分物理内置硬件。
图1中示例性示出了根据示例性实施例中激光电视与控制装置之间操作场景的示意图。如图1所示,用户可通过控制装置100来操作激光电视200。
其中,控制装置100可以是遥控器100A,其可与激光电视200之间通过红外协议通信、蓝牙协议通信、紫蜂(ZigBee)协议通信或其他短距离通信方式进行通信,用于通过无线或其他有线方式来控制激光电视200。用户可以通过遥控器100A上按键、语音输入、控制面板输入等输入用户指令,来控制激光电视200。如:用户可以通过遥控器100A上屏幕上升下降键、音量加减键、频道控制键、上/下/左/右的移动按键、语音输入按键、菜单键、开关机按键等输入相应控制指令,来实现控制激光电视200的功能。
控制装置100也可以是智能设备,如移动终端100B、平板电脑、计算机、笔记本电脑等,其可以通过本地网(LAN,Local Area Network)、广域网(WAN,Wide Area Network)、无线局域网(WLAN,Wireless Local Area Network)或其他网络与激光电视200之间通信,并通过与激光电视200相应的应用程序实现对激光电视200的控制。例如,使用在智能设备上运行的应用程序控制激光电视200。该应用程序可以在与智能设备关联的屏幕上通过直观的用户界面(UI,User Interface)为用户提供各种控制。
示例的,移动终端100B与激光电视200均可安装软件应用,从而可通过网络通信协议实现二者之间的连接通信,进而实现一对一控制操作的和数据通信的目的。如:可以使移动终端100B与激光电视200建立控制指令协议,将遥控控制键盘同步到移动终端100B上,通过控制移动终端100B上用户界面,实现控制激光电视200的功能;也可以将移动终端100B上显示的音视频内容传输到激光电视200上,实现同步显示功能。
如图1所示,激光电视200还可与服务器300通过多种通信方式进行数据通信。在本申请各个实施例中,可允许激光电视200通过局域网、无线局域网或其他网络与服务器300进行有线通信连接或无线通信连接。服务器300可以向激光电视200提供各种内容和互动。示例的,激光电视200通过发送和接收信息,以及电子节目指南(EPG,Electronic Program Guide)互动,接收软件程序更新,或访问远程储存的数字媒体库。服务器300可以是一组,也可以是多组,可以是一类或多类服务器。通过服务器300提供视频点播和广告服务等其他网络服务内容。
激光电视200包括屏幕201与投影设备202(即投影显示设备)。其中,投影设备202获取待显示内容,并将待显示内容采用光学投射成像方式投影至屏幕201,使得屏幕201显示待显示内容。具体激光电视类型,尺寸大小和分辨率等不作限定,本领技术人员可以理解的是,激光电视200可以根据需要做性能和配置上的一些改变。
激光电视200除了提供广播接收电视功能之外,还可以附加提供计算机支持功能的智能网 络电视功能。示例的包括,网络电视、智能电视、互联网协议电视(IPTV)等。在一些实施例中,激光电视可以不具备广播接收电视功能。
在另一些示例中,还可以再增加更多功能或减少上述功能。本申请对该激光电视的功能不作具体限定。
图2中示例性示出了根据示例性实施例中控制装置100的配置框图。如图2所示,控制装置100包括控制器110、通信器130、用户输入/输出接口140、存储器190、供电电源180。
控制装置100被配置为可控制所述激光电视200,以及可接收用户的输入操作指令,且将操作指令转换为激光电视200可识别和响应的指令,起到用户与激光电视200之间交互中介作用。如:用户通过操作控制装置100上频道加减键,激光电视200响应频道加减的操作。再如:用户通过操作控制装置100上屏幕升降键,激光电视200响应控制屏幕上升或下降。需要说明的是,本申请中所说的“上升”或“下降”是相对于屏幕的安装位置来讲,可以理解,基于屏幕的不同安装位置,“上升”或“下降”所在的方向不同。例如,对于安装在天花板上的屏幕,其“上升”和“下降”指屏幕在高度方向的变化,而对于安装在竖直侧墙上的屏幕,这里所说的“上升”和“下降”的方向则为沿水平方向的变化。
在一些实施例中,控制装置100可是一种智能设备。如:控制装置100可根据用户需求安装控制激光电视200的各种应用。
在一些实施例中,如图1所示,移动终端100或其他智能电子设备,可在安装操控激光电视200的应用之后,起到控制装置100类似功能。如:用户可以通过安装应用,在移动终端100B或其他智能电子设备上可提供的图形用户界面的各种功能键或虚拟按钮,以实现控制装置100实体按键的功能。
控制器110包括处理器112、RAM 113和ROM 114、通信接口以及通信总线。控制器110用于控制控制装置100的运行和操作,以及内部各部件之间通信协作以及外部和内部的数据处理功能。
通信器130在控制器110的控制下,实现与激光电视200之间控制信号和数据信号的通信。如:将接收到的用户输入信号发送至激光电视200上。通信器130可包括WIFI模块131、蓝牙模块132、NFC模块133等通信模块中至少一种。
用户输入/输出接口140,其中,输入接口包括麦克风141、触摸板142、传感器143、按键144、摄像头145等输入接口中至少一者。如:用户可以通过语音、触摸、手势、按压等动作实现用户指令输入功能,输入接口通过将接收的模拟信号转换为数字信号,以及数字信号转换为相应指令信号,发送至激光电视200。
输出接口包括将接收的用户指令发送至激光电视200的接口。在一些实施例中,可以 是红外接口,也可以是射频接口。如:红外信号接口时,需要将用户输入指令按照红外控制协议转化为红外控制信号,经红外发送模块进行发送至激光电视200。再如:射频信号接口时,需将用户输入指令转化为数字信号,然后按照射频控制信号调制协议进行调制后,由射频发送端子发送至激光电视200。
在一些实施例中,控制装置100包括通信器130和输出接口中至少一者。控制装置100中配置通信器130,如:WIFI、蓝牙、NFC等模块,可将用户输入指令通过WIFI协议、或蓝牙协议、或NFC协议编码,发送至激光电视200。
存储器190,用于在控制器110的控制下存储驱动和控制控制装置100的各种运行程序、数据和应用。存储器190,可以存储用户输入的各类控制信号指令。
供电电源180,用于在控制器110的控制下为控制装置100各电器元件提供运行电力支持。供电电源180可以采用电池及相关控制电路实现供电。
图3中示例性示出了根据示例性实施例中激光电视200的硬件结构示意图。为了便于说明,图3中激光电视200以激光投影设备和可升降屏幕分离设置为例进行示意。
图3所示,激光电视200中的激光电视包括:激光投影设备1和可升降屏幕2。其中,激光投影设备1用于获取待播放的视频,具体的,激光投影设备可以将待播放的视频信号解析为图像信号,投影到可升降屏幕上形成图像。可升降屏幕2用于给用户呈现画面。
本申请中,除了激光投影设备和可升降屏幕分离设置的方式,为了减小占用空间,另一种设置方式中,将激光投影设备1和可升降屏幕2做成一体。作为示例,激光电视200将激光投影设备和可升降屏幕集成在电视柜体中。
实施例一
在投影屏幕的尺寸增大时,为了提高投影显示画质,需要提高图像的分辨率,因此可以在投影显示设备中设置多个数字微镜器件。图4为本申请实施例提供的一种投影显示设备的结构示意图,如图4所示,本实施例提供的投影显示设备包括图像处理模块11、多个显示控制模块12、多个数字微镜器件13、多个透镜14以及合成棱镜15。其中,多个显示控制模块12和多个数字微镜器件13一一对应连接。多个透镜14位于合成棱镜15和多个数字微镜器件13之间,和多个数字微镜器件13一一对应设置。合成棱镜15对应多个透镜14设置。
在本实施例中,由于设置了多个数字微镜器件13以及与其一一对应连接的多个显示控制模块12,因此,相应地,需要对待显示图像的图像数据进行分解,并分别发送给多个显示控制模块12。
具体地,图像处理模块11可以对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给多个显示控制模块12。其中,子图像的数量与显示控 制模块12的数量一致。
在一个示例中,图像处理模块11可以包括现场可编程逻辑门阵列(Field Programmable Gate Array,简称FPGA)。由于FPGA的硬件结构比较特殊,因此可以利用事先编辑的逻辑结构文件调整内部结构,利用约束的文件来调整不同逻辑单元的连接和位置,妥善处理好数据线路径,具有很好的灵活性和适应性,方便开发和应用。尤其在处理图像数据时,FPGA可以有效保证数据的分解速度。
接下来,为了输出子图像的显示信号,需要控制数字微镜器件13的镜片进行翻转,因此需要将子图像的图像数据转化为控制信号。
具体地,多个显示控制模块12,均与图像处理模块11连接,可以将接收到的子图像的图像数据转化为控制信号,并将控制信号发送给与其对应连接的数字微镜器件13,从而数字微镜器件13可以根据对应的显示控制模块12输出的控制信号,控制镜片进行翻转,输出子图像的显示信号。
其中,显示信号可以为用于投影显示的光信号。一个显示信号中包含多个像素。
在一个示例中,显示控制模块12可以为专用集成电路(Application Specific Integrated Circuit,简称ASIC)。其体积小、可靠性高,能够实现数据的快速转化。
最后,透镜14可以将对应的数字微镜器件13输出的子图像的显示信号透射后,传输至合成棱镜15。合成棱镜15将经多个透镜14透射后的多个子图像的显示信号,合成待显示图像的显示信号。其中,待显示图像的显示信号用于投影显示待显示图像。
举例来说,在实际应用中,若每个数字微镜器件可以输出的子图像的显示信号包含的像素为2048×2192个,也即每个子图像的像素点为2048×2192个,若数字微镜器件的数量为n个,则最终合成的待显示图像的显示信号包含的像素为n×2048×2192个,也即待显示图像的像素点为n×2048×2192个,相应地,单位面积的像素点数量,也即分辨率,相比于只使用一个图像显示模块时提升了n倍。
图5为本申请实施例提供的合成待显示图像的显示信号的光路示意图,如图5所示,多个透镜14位于合成棱镜15和多个数字微镜器件13之间,和多个数字微镜器件13一一对应设置。合成棱镜15对应多个透镜14设置。
实际应用中,透镜14可以将对应的数字微镜器件13输出的子图像的显示信号透射后,传输至合成棱镜15。然后,合成棱镜15可以对经多个透镜14透射后的多个子图像的显示信号的光传输路径进行调节,如图5所示,当子图像的显示信号为两个时,合成棱镜15可以保持其中一个显示信号的光传输路径不变,而将另一个显示信号通过一个反射界面对光传输路径进行调节,使其与保持不变的一个显示信号的光传输路径相一致,从而可以将两个子图像的显示信号,合成为待显示图像的显示信号。
在一个示例中,透镜14可以为全内反射(Total Internal Reflection,简称TIR)透镜, 合成棱镜15可以为偏振分光棱镜(Polarization Beam Splitter,简称PBS)。TIR透镜采用全反射原理,可以对光进行收集,因此可以将子图像的显示信号更好地传输给合成棱镜,有效避免透射损失。PBS是一种用于分离光线的水平偏振和垂直偏振的光学元件,具有应力小、消光比高、成像质量好、光束偏转角小等特点,因此可以很好地应用于本申请实施例中的光传输路径调节。
图6为本申请实施例提供的又一种投影显示设备的结构示意图,如图6所示,在上述实施例一的基础上,本实施例提供的投影显示设备还包括信号接收模块16和编解码模块17。
在一种可能的应用场景中,待投影显示的内容为视频,基于投影显示的基本原理,需要将待显示视频的视频数据,转化为一帧帧的待显示图像的图像数据。
具体地,可以使用信号接收模块16接收信号源发送的待显示视频的视频数据,并将其发送给与其相连接的编解码模块17,编解码模块16可以对视频数据进行编码和解码处理,获得待显示图像的图像数据,该待显示图像的图像数据可以为差分信号,并将该待显示图像的图像数据发送给与其相连接的图像处理模块11,以备图像处理模块11对待显示图像的图像数据进行分解处理。
在一个示例中,编解码模块16可以为系统级芯片(System on Chip,简称SOC)。SOC为一体化的控制器,体积小、处理速度快,从而能够快速实现对视频数据的编解码处理。本实施例提供的投影显示设备,包括图像处理模块、多个显示控制模块、多个数字微镜器件、多个透镜以及合成棱镜。图像处理模块可以对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给多个显示控制模块,显示控制模块将接收到的子图像的图像数据转化为控制信号,以使数字微镜器件基于该控制信号,输出子图像的显示信号,接下来,合成棱镜将多个子图像的显示信号,合成用于投影显示待显示图像的,待显示图像的显示信号。也就是说,本申请实施例采用多个数字微镜器件,输出多个子图像的显示信号,再采用合成棱镜将其合成待显示图像的显示信号,用于投影显示,由于投影显示的分辨率由数字微镜器件决定,因此采用多个数字微镜器件可以提升投影显示的分辨率,从而实现高分辨率显示,进而有效提高投影显示画质。
实施例二
在上述实施例一的基础上,在一种实施方式中,为了进一步提高投影显示的分辨率,还可以对每帧子图像进一步做分帧处理。相应地,显示控制模块可以包括分帧模块和处理模块。
其中,分帧模块与图像处理模块连接,可以对接收到的每帧子图像的图像数据进行分帧处理,获得子图像对应的多帧图像数据。举例来说,图7为本申请实施例提供的分帧处 理的示意图,如图7所示,左侧为分帧处理前的子图像,子图像中每个小格代表一个像素点,分帧处理时,会将每个像素点分为多个子像素点,例如A、B、C、D,即可获得右侧图所示的子图像对应的多帧图像。该多帧图像包含了由全部的A像素点构成的子图像,由全部的B像素点构成的子图像,由全部的C像素点构成的子图像,以及由全部的D像素点构成的子图像。也就是说,通过如图所示的分帧处理,可以将分辨率提高4倍。
相应地,为了输出子图像的显示信号,处理模块与分帧模块连接,可以针对每帧子图像,将子图像对应的多帧图像数据转化为对应的控制信号,并将该多个控制信号发送给与其相连接的数字微镜器件,数字微镜器件可以根据该多个控制信号,按照预定的输出时序,输出子图像的显示信号。
其中,子图像的显示信号包括子图像对应的多个子显示信号。也即,由全部的A像素点构成的子图像对应的子显示信号,由全部的B像素点构成的子图像对应的子显示信号,由全部的C像素点构成的子图像对应的子显示信号,以及由全部的D像素点构成的子图像对应的子显示信号。
举例来说,图8(a)、图8(b)、图8(c)、以及图8(d)为本申请实施例提供的子图像对应的子显示信号的图像示意图,按照预定的输出时序,先后输出由全部的A像素点构成的子图像对应的子显示信号,由全部的B像素点构成的子图像对应的子显示信号,由全部的C像素点构成的子图像对应的子显示信号,以及由全部的D像素点构成的子图像对应的子显示信号,即可获得如图8(a)、图8(b)、图8(c)、以及图8(d)所示的四个图像示意图。
接下来,合成棱镜可以对经多个透镜透射后的多个子图像的显示信号的光传输路径进行调节,合成待显示图像的显示信号。其中,待显示图像的显示信号包括待显示图像对应的多个子显示信号,待显示图像对应的每个子显示信号由多个数字微镜器件在同一时刻下输出的子图像对应的子显示信号合成获得。
图9(a)、图9(b)、图9(c)、以及图9(d)为本申请实施例提供的待显示图像的子显示信号的图像示意图,如图9(a)、图9(b)、图9(c)、以及图9(d)所示,若数字微镜器件为两个,则待显示图像对应的每个子显示信号,由该两个数字微镜器件在同一时刻下输出的子图像对应的子显示信号合成获得,也即由该两个数字微镜器件输出的由全部的A或B或C或D像素点构成的子图像对应的子显示信号合成获得,相应地,即可获得如图9(a)、图9(b)、图9(c)、以及图9(d)所示的图像示意图。
需要说明的是,图10为本申请实施例提供的视觉呈现的待显示图像的示意图,虽然用于合成待显示图像的显示信号的子显示信号是按照预定的输出时序进行输出的,获得的待显示图像也会按照预定的时序进行显示,但由于整个输出过程是连续且快速的,由于人眼具有视觉暂留,因此最终视觉呈现出的待显示图像为包含A、B、C、D全部像素点的叠加 显示的待显示图像,如图10所示。
通过上述方式,进一步提高了投影显示的分辨率。
在上述实施例的基础上,由于进行分帧处理后,在子图像对应的多帧图像中,每帧图像的像素点的位置有所不同,举例来说,将子图像中每个像素点分为A、B、C、D四个子像素点时,每个子像素点的位置有所不同,如图7所示,A像素点的位置在左上角,B像素点的位置在右上角、C像素点的位置在右下角、D像素点的位置在左下角。
因此,分别由全部的A、B、C、D像素点构成的子图像之间的相对位置也会有所不同。例如,由全部的B像素点构成的子图像,相对于由全部的A像素点构成的子图像,在其右侧的位置,由全部的C像素点构成的子图像,相对于由全部的B像素点构成的子图像,在其下方的位置。相应地,合成获得的各待显示图像之间的相对位置也会有所不同。因此,为了保证每个待显示图像的全部像素点均能被投影显示,需要对应合成棱镜设置振镜模块。振镜模块可以基于每帧待显示图像的显示信号的输出时序,执行对应的角度旋转,以使子图像对应的多个子显示信号,经由振镜模块透射输出子图像对应的经过抖动处理的多个子显示信号。
在一个示例中,振镜模块可以为4-way振镜,该4-way振镜可以通过旋转,使每帧待显示图像产生左右、上下的相对位置的变化,也即抖动处理。
图11为本申请实施例提供的振镜模块抖动处理的示意图,如图11所示,若每帧待显示图像的显示信号的输出时序为,先后输出由全部的A像素点构成的待显示图像的子显示信号,由全部的B像素点构成的待显示图像的子显示信号,由全部的C像素点构成的待显示图像的子显示信号,以及由全部的D像素点构成的待显示图像的子显示信号,则振镜模块18可以根据该输出时序,在输出由全部的A像素点构成的子图像对应的子显示信号之后,执行对应的角度旋转,使由全部的B像素点构成的子图像对应的子显示信号,经过抖动处理,透射输出,位置相对于由全部的A像素点构成的子图像对应的子显示信号向右变化的子显示信号。
相应地,在输出由全部的B像素点构成的子图像对应的子显示信号之后,振镜模块18执行对应的角度旋转,使由全部的C像素点构成的子图像对应的子显示信号,经过抖动处理,透射输出,位置相对于由全部的B像素点构成的子图像对应的子显示信号向下变化的子显示信号。相应地,对由全部的D像素点构成的子图像对应的子显示信号,也进行相应的抖动处理。需要说明的是,针对不同子显示信号,其输出方向可以基于子像素之间的相对位置确定,例如,上述举例的B子像素相对位于A子像素的右侧,故做抖动处理时,将B子像素对应的子显示信号向右平移。
本实施例提供的投影显示设备,采用分帧模块对子图像进行分帧处理,进一步提高了投影显示的分辨率,此外,采用振镜模块对子图像的子显示信号进行抖动处理,从而可以 保证每个待显示图像的全部像素点均能被投影显示,保证了图像的完整且显示正常。
实施例三
在上述实施例一的基础上,在一种可能的实施方式中,显示控制模块或数字微镜器件的数量为两个。相应地,图像处理模块对待显示图像的图像数据进行分解处理,包括:图像处理模块可以按照第一策略,对待显示图像的图像数据进行分解处理。
图12(a)和图12(b)为本申请实施例提供的图像数据分解处理结果示意图,如图12(a)和图12(b)所示,第一策略可以包括水平平均划分或者垂直平均划分。其中,图12(a)所示的为水平平均划分,分别划分为上10下20两部分,图12(b)所示的为垂直平均划分,分别划分为左10右20两部分。
通过上述方法,由于平均划分可以保证,每个图像显示模块接收到的子图像的图像数据的数量是一致的,因此可以保证投影显示的处理速度。
在一种实施方式中,图像处理模块对待显示图像的图像数据进行分解处理,包括:图像处理模块可以确定待显示图像的分界线,并按照分界线,对待显示图像的图像数据进行分解处理,获得多个子图像的图像数据。
其中,为了避免合成待显示图像时,造成待显示图像数据缺失,因此,相邻子图像的图像数据均包括对应分界线处的图像数据。
相应地,合成棱镜可以基于分界线,将多个图像显示模块输出的子图像的显示信号,拼接获得待显示图像的显示信号,且相邻子图像在对应分界线处的显示信号重合。图13为本申请实施例提供的图像数据拼接结果示意图,如图13所示,中间黑色阴影部分为即为显示信号重合部分。
本实施例提供的投影显示设备,通过对待显示图像的图像数据进行水平平均划分或者垂直平均划分,保证投影显示的处理速度,此外,在对待显示图像的图像数据进行分解处理时,相邻子图像的图像数据均包括对应分界线处的图像数据,避免了合成待显示图像时,造成的待显示图像数据缺失,有效保证了投影显示的效果。
实施例四
图14为本申请实施例提供的一种投影显示系统,如图14所示,本申请实施例提供的投影显示系统,包括如本申请其他任一实施例提供的投影显示设备以及屏幕19。实际应用中,当显示控制模块12或数字微镜器件13为两个时,图像处理模块11分别与两个显示控制模块12连接,可以对待显示图像的图像数据进行分解处理,具体分解处理的方法已在上述实施例中进行说明,在此不做赘述。接下来,图像处理模块11可以将分解获得的两个子图像的图像数据分别发送给两个显示控制模块12。
每个显示控制模块12可以将接收到的子图像的图像数据转化为控制信号,以使数字微镜器件13根据对应的显示控制模块12输出的控制信号,输出子图像的显示信号,并发送给透镜14,透镜14可以将对应的数字微镜器件13输出的子图像的显示信号透射后,传输至合成棱镜15,以使合成棱镜15将经多个透镜透射后的多个子图像的显示信号,合成待显示图像的显示信号。将该待显示图像的显示信号输出到屏幕19上,即可实现待显示图像的投影显示。
在一个示例中,屏幕为可升降屏幕,从而可以更好地保证投影显示效果。
实施例五
图15为本申请实施例提供的投影显示方法的流程图,如图15所示,本申请实施例提供的投影显示方法,应用于本申请其他任一实施例提供的投影显示设备,所述投影显示设备包括:图像处理模块、多个显示控制模块、多个数字微镜器件、多个透镜以及合成棱镜;其中,所述多个显示控制模块和所述多个数字微镜器件一一对应连接;所述多个透镜位于所述合成棱镜和所述多个数字微镜器件之间,和所述多个数字微镜器件一一对应设置;所述合成棱镜对应所述多个透镜设置。
相应地,所述方法包括以下步骤:
步骤101、所述图像处理模块对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给所述多个显示控制模块。
步骤102、每个显示控制模块将接收到的子图像的图像数据转化为控制信号。
步骤103、每个数字微镜器件根据与其连接显示控制模块输出的控制信号,输出子图像的显示信号。
步骤104、所述透镜将对应的数字微镜器件输出的所述子图像的显示信号透射后,传输至所述合成棱镜。
步骤105、所述合成棱镜将经所述多个透镜透射后的多个子图像的显示信号,合成所述待显示图像的显示信号,所述待显示图像的显示信号用于投影显示所述待显示图像。
在本实施例中,图像处理模块可以对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给多个显示控制模块。其中,子图像的数量与显示控制模块的数量一致。
接下来,每个显示控制模块可以将接收到的子图像的图像数据转化为控制信号,并将控制信号发送给与其对应连接的数字微镜器件,从而每个数字微镜器件可以根据对应的显示控制模块输出的控制信号,控制镜片进行翻转,输出子图像的显示信号。
最后,透镜可以将对应的数字微镜器件输出的子图像的显示信号透射后,传输至合成棱镜。合成棱镜将经多个透镜透射后的多个子图像的显示信号,合成待显示图像的显示信号。其 中,待显示图像的显示信号用于投影显示待显示图像。
在上述实施例一的基础上,所述投影显示设备还包括:信号接收模块和编解码模块。相应地,所述方法还包括:所述信号接收模块接收信号源发送的待显示视频的视频数据;所述编解码模块对所述视频数据进行编码和解码处理,获得待显示图像的图像数据。
在一个示例中,待投影显示的内容为视频,基于投影显示的基本原理,需要将待显示视频的视频数据,转化为一帧帧的待显示图像的图像数据。
具体地,可以使用信号接收模块接收信号源发送的待显示视频的视频数据,并将其发送给与其相连接的编解码模块,编解码模块可以对视频数据进行编码和解码处理,获得待显示图像的图像数据,该待显示图像的图像数据可以为差分信号,并将该待显示图像的图像数据发送给与其相连接的图像处理模块,以备图像处理模块对待显示图像的图像数据进行分解处理。
本实施例提供的投影显示方法,应用于投影显示设备,图像处理模块可以对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给多个显示控制模块,显示控制模块将接收到的子图像的图像数据转化为控制信号,以使数字微镜器件基于该控制信号,输出子图像的显示信号,接下来,合成棱镜将多个子图像的显示信号,合成用于投影显示待显示图像的,待显示图像的显示信号。也就是说,本申请实施例采用多个数字微镜器件,输出多个子图像的显示信号,再采用合成棱镜将其合成待显示图像的显示信号,用于投影显示,由于投影显示的分辨率由数字微镜器件决定,因此采用多个数字微镜器件可以提升投影显示的分辨率,从而实现高分辨率显示,进而有效提高投影显示画质。
实施例六
在上述实施例五的基础上,为了进一步说明本申请的投影显示方法,所述显示控制模块包括分帧模块和处理模块,步骤102,包括:分帧模块对接收到的每帧子图像的图像数据进行分帧处理,获得所述子图像对应的多帧图像数据;处理模块针对每帧子图像,将所述子图像对应的多帧图像数据转化为对应的控制信号。
步骤103,包括:数字微镜器件根据每帧子图像对应的多个控制信号,按照预定的输出时序,输出子图像的显示信号,其中,所述子图像的显示信号包括所述子图像对应的多个子显示信号。
步骤105,包括:合成棱镜对经所述多个透镜透射后的多个子图像的显示信号的光传输路径进行调节,以合成所述待显示图像的显示信号,所述待显示图像的显示信号包括所述待显示图像对应的多个子显示信号,所述待显示图像对应的每个子显示信号由所述多个数字微镜器件在同一时刻下输出的子图像对应的子显示信号合成获得。
在本实施例中,为了进一步提高投影显示的分辨率,还可以对每帧子图像进一步做分帧处理。相应地,显示控制模块可以包括分帧模块和处理模块。
具体地,分帧模块与图像处理模块连接,可以对接收到的每帧子图像的图像数据进行分帧处理,获得子图像对应的多帧图像数据。
相应地,为了输出子图像的显示信号,处理模块与分帧模块连接,可以针对每帧子图像,将子图像对应的多帧图像数据转化为对应的控制信号,并将该多个控制信号发送给与其相连接的数字微镜器件,数字微镜器件可以根据该多个控制信号,按照预定的输出时序,输出子图像的显示信号。
其中,子图像的显示信号包括子图像对应的多个子显示信号。
接下来,合成棱镜可以对经多个透镜透射后的多个子图像的显示信号的光传输路径进行调节,合成待显示图像的显示信号。其中,待显示图像的显示信号包括待显示图像对应的多个子显示信号,待显示图像对应的每个子显示信号由多个数字微镜器件在同一时刻下输出的子图像对应的子显示信号合成获得。
通过上述方式,进一步提高了投影显示的分辨率。
在上述实施例的基础上,由于进行分帧处理后,在子图像对应的多帧图像中,每帧图像的像素点的位置有所不同,因此,为了保证每个待显示图像的全部像素点均能被投影显示,需要对应合成棱镜设置振镜模块。
相应地,振镜模块可以基于每帧待显示图像的显示信号的输出时序,执行对应的角度旋转,以使子图像对应的多个子显示信号,经由振镜模块透射输出子图像对应的经过抖动处理的多个子显示信号。
本实施例提供的投影显示方法,采用分帧模块对子图像进行分帧处理,进一步提高了投影显示的分辨率,此外,采用振镜模块对子图像的子显示信号进行抖动处理,从而可以保证每个待显示图像的全部像素点均能被投影显示,保证了图像的完整且显示正常。
实施例七
在上述实施例一的基础上,在一种可能的实施方式中,显示控制模块或数字微镜器件的数量为两个。相应地,步骤101中,所述图像处理模块对待显示图像的图像数据进行分解处理,包括:所述图像处理模块按照第一策略,对待显示图像的图像数据进行分解处理;其中,所述第一策略包括水平平均划分或者垂直平均划分。
通过上述方法,由于平均划分可以保证,每个图像显示模块接收到的子图像的图像数据的数量是一致的,因此可以保证投影显示的处理速度。
在一种实施方式中,步骤101中,图像处理模块对待显示图像的图像数据进行分解处理,包括:图像处理模块可以确定待显示图像的分界线,并按照分界线,对待显示图像的 图像数据进行分解处理,获得多个子图像的图像数据。
其中,为了避免合成待显示图像时,造成待显示图像数据缺失,因此,相邻子图像的图像数据均包括对应分界线处的图像数据。
相应地,合成棱镜可以基于分界线,将多个图像显示模块输出的子图像的显示信号,拼接获得待显示图像的显示信号,且相邻子图像在对应分界线处的显示信号重合。
本实施例提供的投影显示方法,通过对待显示图像的图像数据进行水平平均划分或者垂直平均划分,保证投影显示的处理速度,此外,在对待显示图像的图像数据进行分解处理时,相邻子图像的图像数据均包括对应分界线处的图像数据,避免了合成待显示图像时,造成的待显示图像数据缺失,有效保证了投影显示的效果。
在本申请所提供的几个实施例中,应该理解到,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本申请的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (14)

  1. 一种投影显示设备,其特征在于,包括:图像处理模块、多个显示控制模块、多个数字微镜器件、多个透镜以及合成棱镜;其中,所述多个显示控制模块和所述多个数字微镜器件一一对应连接;所述多个透镜位于所述合成棱镜和所述多个数字微镜器件之间,和所述多个数字微镜器件一一对应设置;所述合成棱镜对应所述多个透镜设置;
    所述图像处理模块,用于对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给所述多个显示控制模块;其中,子图像的数量与显示控制模块的数量一致;
    所述多个显示控制模块,均与所述图像处理模块连接,用于将接收到的子图像的图像数据转化为控制信号;所述数字微镜器件,与对应的显示控制模块连接,用于根据对应的显示控制模块输出的控制信号,输出子图像的显示信号;
    所述透镜,用于将对应的数字微镜器件输出的所述子图像的显示信号透射后,传输至所述合成棱镜;所述合成棱镜,用于将经所述多个透镜透射后的多个子图像的显示信号,合成所述待显示图像的显示信号,所述待显示图像的显示信号用于投影显示所述待显示图像。
  2. 根据权利要求1所述的设备,其特征在于,所述显示控制模块包括分帧模块和处理模块;其中,
    所述分帧模块,与所述图像处理模块连接,用于对接收到的每帧子图像的图像数据进行分帧处理,获得所述子图像对应的多帧图像数据;
    所述处理模块,与所述分帧模块连接,用于针对每帧子图像,将所述子图像对应的多帧图像数据转化为对应的控制信号;
    所述数字微镜器件,与所述处理模块连接,具体用于根据每帧子图像对应的多个控制信号,按照预定的输出时序,输出子图像的显示信号,其中,所述子图像的显示信号包括所述子图像对应的多个子显示信号;
    所述合成棱镜,具体用于对经所述多个透镜透射后的多个子图像的显示信号的光传输路径进行调节,以合成所述待显示图像的显示信号,所述待显示图像的显示信号包括所述待显示图像对应的多个子显示信号,所述待显示图像对应的每个子显示信号由所述多个数字微镜器件在同一时刻下输出的子图像对应的子显示信号合成获得。
  3. 根据权利要求2所述的设备,其特征在于,所述投影显示设备还包括:对应所述合成棱镜设置的振镜模块;
    所述振镜模块,用于基于每帧待显示图像的显示信号的输出时序,执行对应的角度旋转,以使所述子图像对应的多个子显示信号,经由所述振镜模块透射输出所述子图像对应的经过抖动处理的多个子显示信号。
  4. 根据权利要求1所述的设备,其特征在于,所述投影显示设备还包括:信号接收模块和编解码模块;
    所述信号接收模块,用于接收信号源发送的待显示视频的视频数据;
    所述编解码模块,用于对所述视频数据进行编码和解码处理,获得待显示图像的图像数据。
  5. 根据权利要求1所述的设备,其特征在于,所述显示控制模块或所述数字微镜器件的数量为两个;所述图像处理模块对待显示图像的图像数据进行分解处理,包括:
    所述图像处理模块,具体用于按照第一策略,对待显示图像的图像数据进行分解处理;其中,所述第一策略包括水平平均划分或者垂直平均划分。
  6. 根据权利要求1所述的设备,其特征在于,所述图像处理模块对待显示图像的图像数据进行分解处理,包括:
    所述图像处理模块,具体用于确定所述待显示图像的分界线;
    所述图像处理模块,还具体用于按照所述分界线,对待显示图像的图像数据进行分解处理,获得多个子图像的图像数据;其中相邻子图像的图像数据均包括对应分界线处的图像数据;
    所述合成棱镜,具体用于基于所述分界线,将所述多个图像显示模块输出的子图像的显示信号,拼接获得所述待显示图像的显示信号,且相邻子图像在对应分界线处的显示信号重合。
  7. 一种投影显示系统,其特征在于,包括如权利要求1-6中任一项所述的投影显示设备,以及,还包括屏幕。
  8. 根据权利要求7所述的系统,其特征在于,所述屏幕为可升降屏幕。
  9. 一种投影显示方法,应用于投影显示设备,其特征在于,所述投影显示设备包括:图像处理模块、多个显示控制模块、多个数字微镜器件、多个透镜以及合成棱镜;其中,所述多个显示控制模块和所述多个数字微镜器件一一对应连接;所述多个透镜位于所述合成棱镜和所述多个数字微镜器件之间,和所述多个数字微镜器件一一对应设置;所述合成棱镜对应所述多个透镜设置;
    所述方法包括:
    所述图像处理模块对待显示图像的图像数据进行分解处理,并将分解获得的多个子图像的图像数据分别发送给所述多个显示控制模块;每个显示控制模块将接收到的子图像的图像数据转化为控制信号;每个数字微镜器件根据与其连接显示控制模块输出的控制信号, 输出子图像的显示信号;所述透镜将对应的数字微镜器件输出的所述子图像的显示信号透射后,传输至所述合成棱镜;所述合成棱镜将经所述多个透镜透射后的多个子图像的显示信号,合成所述待显示图像的显示信号,所述待显示图像的显示信号用于投影显示所述待显示图像。
  10. 根据权利要求9所述的方法,其特征在于,所述显示控制模块包括分帧模块和处理模块;所述每个显示控制模块将接收到的子图像的图像数据转化为控制信号,包括:
    分帧模块对接收到的每帧子图像的图像数据进行分帧处理,获得所述子图像对应的多帧图像数据;处理模块针对每帧子图像,将所述子图像对应的多帧图像数据转化为对应的控制信号;
    所述每个数字微镜器件根据该图像显示模块的显示控制模块输出的控制信号,输出子图像的显示信号,包括:
    数字微镜器件根据每帧子图像对应的多个控制信号,按照预定的输出时序,输出子图像的显示信号,其中,所述子图像的显示信号包括所述子图像对应的多个子显示信号;
    所述合成棱镜将经所述多个透镜透射后的多个子图像的显示信号,合成所述待显示图像的显示信号,包括:
    合成棱镜对经所述多个透镜透射后的多个子图像的显示信号的光传输路径进行调节,以合成所述待显示图像的显示信号,所述待显示图像的显示信号包括所述待显示图像对应的多个子显示信号,所述待显示图像对应的每个子显示信号由所述多个数字微镜器件在同一时刻下输出的子图像对应的子显示信号合成获得。
  11. 根据权利要求10所述的方法,其特征在于,所述投影显示设备还包括:对应所述合成棱镜设置的振镜模块;
    所述方法还包括:
    所述振镜模块基于每帧待显示图像的显示信号的输出时序,执行对应的角度旋转,以使所述子图像对应的多个子显示信号,经由所述振镜模块透射输出所述子图像对应的经过抖动处理的多个子显示信号。
  12. 根据权利要求9所述的方法,其特征在于,所述投影显示设备还包括:信号接收模块和编解码模块;
    所述方法还包括:
    所述信号接收模块接收信号源发送的待显示视频的视频数据;所述编解码模块对所述视频数据进行编码和解码处理,获得待显示图像的图像数据。
  13. 根据权利要求9所述的方法,其特征在于,所述显示控制模块或所述数字微镜器件的数量为两个;所述图像处理模块对待显示图像的图像数据进行分解处理,包括:
    所述图像处理模块按照第一策略,对待显示图像的图像数据进行分解处理;其中,所述第一策略包括水平平均划分或者垂直平均划分。
  14. 根据权利要求9所述的方法,其特征在于,所述图像处理模块对待显示图像的图像数据进行分解处理,包括:
    所述图像处理模块确定所述待显示图像的分界线,并按照所述分界线,对待显示图像的图像数据进行分解处理,获得多个子图像的图像数据;其中相邻子图像的图像数据均包括对应分界线处的图像数据;所述合成棱镜基于所述分界线,将所述多个图像显示模块输出的子图像的显示信号,拼接获得所述待显示图像的显示信号,且相邻子图像在对应分界线处的显示信号重合。
PCT/CN2022/082625 2021-06-30 2022-03-24 投影显示设备、方法及系统 WO2023273435A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280047122.9A CN117597917A (zh) 2021-06-30 2022-03-24 投影显示设备、方法及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110738300.XA CN113489960A (zh) 2021-06-30 2021-06-30 投影显示设备、方法及系统
CN202110738300.X 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273435A1 true WO2023273435A1 (zh) 2023-01-05

Family

ID=77936854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082625 WO2023273435A1 (zh) 2021-06-30 2022-03-24 投影显示设备、方法及系统

Country Status (2)

Country Link
CN (2) CN113489960A (zh)
WO (1) WO2023273435A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489960A (zh) * 2021-06-30 2021-10-08 青岛海信激光显示股份有限公司 投影显示设备、方法及系统
CN115909913A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 一种显示模组及成像控制方法
CN114371557B (zh) * 2022-01-17 2024-02-09 惠州Tcl移动通信有限公司 一种vr光学系统
CN114979593A (zh) * 2022-04-07 2022-08-30 华东师范大学 一种基于新型高速4k数字微镜芯片的视频显示驱动系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088800A1 (en) * 2006-10-11 2008-04-17 Bellis Matthew W Spatially offset multi-imager-panel architecture for projecting an image
CN104570331A (zh) * 2015-01-31 2015-04-29 哈尔滨工业大学 一种基于光学拼接手段实现dmd的分辨率提高的方法
CN105573024A (zh) * 2015-12-18 2016-05-11 深圳市帅映科技有限公司 一种4k投影机
CN106412536A (zh) * 2016-09-29 2017-02-15 西安中科晶像光电科技有限公司 一种通过dmd芯片拼接实现高分辨率投影显示的系统
CN106507075A (zh) * 2016-11-18 2017-03-15 海信集团有限公司 一种投影图像处理方法、装置及投影显示系统
CN113489960A (zh) * 2021-06-30 2021-10-08 青岛海信激光显示股份有限公司 投影显示设备、方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080088800A1 (en) * 2006-10-11 2008-04-17 Bellis Matthew W Spatially offset multi-imager-panel architecture for projecting an image
CN104570331A (zh) * 2015-01-31 2015-04-29 哈尔滨工业大学 一种基于光学拼接手段实现dmd的分辨率提高的方法
CN105573024A (zh) * 2015-12-18 2016-05-11 深圳市帅映科技有限公司 一种4k投影机
CN106412536A (zh) * 2016-09-29 2017-02-15 西安中科晶像光电科技有限公司 一种通过dmd芯片拼接实现高分辨率投影显示的系统
CN106507075A (zh) * 2016-11-18 2017-03-15 海信集团有限公司 一种投影图像处理方法、装置及投影显示系统
CN113489960A (zh) * 2021-06-30 2021-10-08 青岛海信激光显示股份有限公司 投影显示设备、方法及系统

Also Published As

Publication number Publication date
CN117597917A (zh) 2024-02-23
CN113489960A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2023273435A1 (zh) 投影显示设备、方法及系统
US11856322B2 (en) Display apparatus for image processing and image processing method
JP4245632B2 (ja) 画面同期制御装置
CN104104709A (zh) 可与多个显示设备进行通讯的方法及使用该方法的电子设备
CN111899680B (zh) 一种显示设备及其设置方法
CN102609232A (zh) 拼接显示墙、显示方法、系统及智能显示装置
US20110285908A1 (en) O/s application based multiple device access windowing display
CN101727810B (zh) 显示面板的驱动电路/方法、显示面板模块、显示设备
CN201191892Y (zh) 一种移动终端
CN113938730B (zh) 显示设备的投影组件校正方法和显示设备
CN109753259B (zh) 一种投屏系统及控制方法
CN103905668A (zh) 具有视讯功能的电话机及其视讯会谈的方法
JP2013242357A (ja) 情報処理装置、情報処理方法、およびプログラム
CN102340585A (zh) 双屏幕电子装置及其显示方法和显示芯片
JP3483465B2 (ja) 画像表示システム
CN114245090A (zh) 图像投影方法、激光投影设备及计算机可读存储介质
CN113824940A (zh) 投影显示设备、方法及系统
CN113824941A (zh) 投影显示设备、方法及系统
CN112598589A (zh) 激光投影系统及图像校正方法
CN202533928U (zh) 拼接显示墙、拼接显示墙系统及智能显示装置
CN211654269U (zh) 双屏led一体机的显示控制电路及双屏led一体机
CN115396642A (zh) 激光投影显示方法、三色激光投影设备及可读性存储介质
KR20160134134A (ko) 터치스크린 기반의 서브 디스플레이를 이용한 대화면 디스플레이 제어장치 및 그 방법
CN113109987B (zh) 激光投影设备、可升降屏幕及激光电视
US20140181657A1 (en) Portable device and audio controlling method for portable device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE