WO2023273332A1 - 飞行时间深度测量发射装置及电子设备 - Google Patents

飞行时间深度测量发射装置及电子设备 Download PDF

Info

Publication number
WO2023273332A1
WO2023273332A1 PCT/CN2022/074030 CN2022074030W WO2023273332A1 WO 2023273332 A1 WO2023273332 A1 WO 2023273332A1 CN 2022074030 W CN2022074030 W CN 2022074030W WO 2023273332 A1 WO2023273332 A1 WO 2023273332A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
collimating mirror
target object
beams
speckle
Prior art date
Application number
PCT/CN2022/074030
Other languages
English (en)
French (fr)
Inventor
陈华
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2023273332A1 publication Critical patent/WO2023273332A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters

Definitions

  • the present application relates to the technical field of depth measurement, and more specifically, to a time-of-flight depth measurement transmitting device and electronic equipment.
  • 3D TOF Time of flight, TOF
  • the TOF depth detection device consists of a transmitting device and a receiving device.
  • the transmitting device modulates the light to form a modulated optical signal on the surface of the target object.
  • the receiving device receives the depth optical signal carrying depth information returned by the target object, and according to the phase of the two optical signals
  • the depth information of the target object is calculated using parameters such as difference or time difference.
  • VR virtual reality
  • the TOF depth detection device can be divided into flood TOF (Flood TOF) and speckle light TOF (Spot TOF).
  • flood TOF has a relatively uniform distribution of emitted light energy in the entire field of view, so the resolution of the captured depth image is high, but because the energy distribution is scattered, the measurement distance is limited. If you want to take into account the measurement distance of more than 3 meters It requires a very large transmission power and consumes a lot of power.
  • Spot ToF decomposes the emission energy into several beams with very concentrated energy, the measurement distance can reach more than 5m, and can achieve high accuracy at a very low power consumption level, but because the beams are relatively sparse, the depth map resolution The rate is lower.
  • the embodiment of the present application provides a time-of-flight depth measurement transmitting device and electronic equipment, which can have both high resolution and long measurement distance under the condition of low power consumption.
  • a time-of-flight depth detection emission device includes: a light source, the light source includes N light-emitting units, the N light-emitting units are arranged at intervals from each other, and are used to emit N beams of light; collimation mirror, the collimating mirror is used to collimate the N beams of light; the adjusting device, the collimating mirror is arranged on the adjusting device, the optical axis of the light source and the optical axis of the collimating mirror are parallel to each other , the adjusting device is used to adjust the position of the collimating mirror on the optical axis of the collimating mirror; the driving device is used to drive the adjusting device to adjust the position of the collimating mirror to The first position enables the N beams of light to form the speckle light signal on the surface of the target object, and drives the adjustment device to adjust the collimating mirror to the second position so that the N beams of light are on the surface of the target object.
  • the driving adjustment device adjusts the position of the collimating mirror to different positions, so that the emitting device can emit the speckle light signal when the collimating mirror is at the first position, and can emit the speckle light signal when the collimating mirror is at the second position.
  • Light-to-optical signal realize a depth detection and emission device only through a set of optical path system, can emit two different optical signals without switching the optical path, which has the advantages of Spot TOF and Flood TOF, simplifies the optical path of the depth detection device, and improves Improve the working efficiency of the depth detection device.
  • the driving device drives the adjusting device according to the position information of the target object to adjust the position of the collimating mirror to the first position so that the N beams of light are The surface of the target object forms the speckle light signal; the driving device drives the adjusting device according to the position information of the target object to adjust the position of the collimating mirror to the second position so that the The N beams of light form the speckle light signal on the surface of the target object.
  • the transmitting device can adjust the position of the collimating mirror according to the position information of the target object, so as to transmit an optical signal suitable for the current position to the target object.
  • the driving device adjusts the collimating mirror to the first position to emit a speckle light signal to the target object; when the target object is relatively close to the emitting device, for example , the distance is within 5 meters, and the driving device adjusts the collimating mirror to the second position to emit a flood light signal to the target object.
  • the transmitting device emits different light signals according to the position information of the target object, which helps to improve the performance of the depth detection device.
  • the collimating mirror includes a light incident surface and a light exit surface opposite to the light incident surface, and the collimating mirror is used for collimating The N beams of light emitted from the light emitting surface.
  • the adjusting device adjusts the collimating mirror to the first position
  • the N beams of light emitted through the light emitting surface are first speckle light
  • the The first speckle light is projected onto the target object to form the speckle light signal
  • the adjusting device adjusts the collimating mirror to the second position
  • the The N beams of light are flood lights
  • the flood lights are projected onto the target object to form the flood light signal.
  • the adjusting device when the adjusting device adjusts the collimating mirror to the first position, the N beams of light emitted through the light emitting surface are first speckle light, and the The first speckle light is projected onto the target object to form the speckle light signal, and when the adjusting device adjusts the collimating mirror to the second position, the The N beams of light are second speckle lights, and the second speckle lights are projected onto the target object to form the flood light signal.
  • the light emitted from the light exit surface of the collimating mirror can be flood light, and the flood light is projected to the target object to form a flood light signal;
  • the light may also be speckle light, and the speckle light is projected onto the target object. Since the speckle light is speckle light when the collimator is at the second position, and there is a certain distance between the emitting device and the target object, the speckle light The speckle light has a diffusion effect after passing through this distance, and can be connected into one piece on the surface of the target object to form a flood light signal. Projected to the target object to form a flood light signal.
  • the first position is such that the spot diameter of the speckle light signal that reaches the target object after the N beams of light pass through the collimating mirror is 5- 7mm, wherein the first distance is less than or equal to 1m.
  • the beam divergence angle of the N beams of light passing through the collimating mirror is less than or equal to 0.3 degrees; when the adjustment device adjusts the collimating mirror to the second position, the beam divergence angle of the N beams of light passing through the collimating mirror is larger than the 0.3 degree.
  • the first position is a position where a focal point of the collimating mirror coincides with a beam waist of the N beams of light.
  • the focus of the collimating mirror when the collimating mirror is at the first position, the focus of the collimating mirror is located at the best focus position in the optical path of the emitting device, so that the divergence angle of the N beams of light emitted by the light source after passing through the collimating mirror is less than or equal to 0.3 Therefore, the N beams of light projected to the target object can form N light spots on the target object, forming the effect of the speckle light field.
  • the object emits speckle light.
  • the N beams of light emitted from the collimating mirror have N beam waist positions, and the N beam waist positions coincide.
  • the second position is a position such that the focal position after the N beams of light pass through the collimating mirror deviates from the focal point of the collimating mirror by greater than or equal to 150 ⁇ m.
  • the focal length of the collimating mirror deviates from the best focus position in the optical path of the emitting device, and the deviation is greater than or equal to 150 ⁇ m, so that the N beams of light emitted by the light source are collimated
  • the divergence angle after the straight mirror is greater than 0.3 degrees, and the beam diffuses to produce a "virtual focus" effect.
  • the size of the spot projected to the target object is large, and N larger spots are connected together to form an effect similar to floodlight. At this time, the emitting device Blooms the target object.
  • the second position is a position such that the deviation between the focus position of the N beams of light passing through the collimating mirror and the focal point of the collimating mirror is less than or equal to 400 ⁇ m.
  • the focusing position of the N beams of light after passing through the collimating mirror is the best focusing position in the optical path of the emitting device.
  • the offset between the focal length of the collimating mirror and the best focusing position of the optical path of the emitting device is limited , can control the maximum value of the spot size projected to the target object, avoid excessive deviation, the spot size is too large, so that there are more overlapping parts between the spots, and the brightness of the overlapping part is higher than the brightness of the non-overlapping part, resulting in flooding
  • the uneven brightness of the light signal improves the uniformity of the flood light emitted by the depth detection emitting device.
  • the speckle optical signal is a matrix composed of N speckles that are uniformly distributed.
  • the speckle light signal is a pattern composed of uniformly distributed N speckles.
  • the speckle light signal is a pattern composed of randomly distributed N speckles.
  • the designable structured light is used as a detection light signal, so that the emitting device can emit modulated structured light and flood light to the target object using only one set of optical path system, which helps to improve the efficiency of the emitting device.
  • the versatility improves the efficiency of depth detection.
  • the adjustment device includes: a stator, the stator is arranged on the carrier of the light source; a mover, the mover is connected to the carrier, and the collimator It is arranged on the mover, and the mover moves to make the collimating mirror move relative to the stator along the optical axis direction of the collimating mirror.
  • the adjustment device adopts a structure composed of a stator and a mover, the collimator is fixed on the mover, and the position of the collimator is adjusted by adjusting the position of the mover, thereby changing the emission of the depth detection and emitting device.
  • the optical signal, the structure of the adjustment device is simple, and the adjustment operation is convenient.
  • the mover moves so that the collimator mirror moves relative to the stator along a direction having a first included angle with an optical axis direction of the collimator mirror.
  • the stator includes a first bracket and a first driver;
  • the mover includes a second bracket, a second driver, and a lifting element;
  • the first bracket is fixed on the carrier plate above, the first driver is connected to the first bracket;
  • the collimator is fixed on the second bracket, and the second bracket is connected to the carrier plate through the lifting element, so
  • the second driver is installed in the second bracket; the first driver and the second driver cooperate with each other and drive the second bracket away from the carrier relative to the first bracket. direction movement.
  • the first driving member and the second driving member are used to cooperate with each other to generate a driving force, and the mover moves along the direction of the optical axis away from the carrier plate with the help of the driving force, and adjusts the collimation according to the position information of the target object
  • the distance between the mirror and the light source can be changed by intelligently adjusting the position of the collimating mirror to change the size of the spot projected on the target object, so that the luminous effect of speckle light field and floodlight square can be realized in one optical path system.
  • the driving device is configured to control the first driving member and the second driving member to work with the first current according to the position information of the target object so as to adjust the collimating mirror to the first position; or control the first driving member and the second driving member to work with a second current to adjust the collimating mirror to the second position.
  • the first driving member includes a coil, the coil is arranged between the first bracket and the second bracket, the driving device is electrically connected to the coil, and the
  • the second driving member includes a permanent magnet, the permanent magnet is arranged on the surface of the second bracket facing the coil, and the coil is energized to generate a magnetic force along the optical axis direction to push the permanent magnet to move;
  • the second driver includes a coil, the coil is arranged between the first bracket and the second bracket, the driving device is electrically connected to the coil, the first driver includes a permanent magnet, the The permanent magnet is arranged on the surface of the first bracket facing the coil, and the coil is energized to generate a magnetic force along the optical axis direction of the collimating mirror to push the permanent magnet to move.
  • the structure of the coil and the permanent magnet is used to generate the magnetic force, and the mover moves along the direction of the optical axis away from the carrier with the help of the magnetic force, and the driving circuit can control the magnitude of the coil current, that is, the magnitude of the magnetic force can be controlled, that is, The displacement of the mover relative to the stator can be controlled, so that the precise control of the position of the collimating mirror can be realized.
  • the first bracket has a support part and a suspension part, the support part extends from the carrier board in a direction away from the carrier board along the optical axis, and the suspension part extends from the The inner wall of the support portion facing the second bracket extends toward the second bracket, and the first driving member is fixedly connected to the lower surface of the suspension portion facing the carrier plate.
  • the first driving member is placed around the optical axis of the light-emitting element, so that the first driving member and the second
  • the direction of the driving force generated when the driving parts cooperate with each other can be parallel to the optical axis, so that the displacement of the lens can basically move along the optical axis.
  • the collimating mirror is made of plastic material.
  • the collimating mirror made of plastic material can reduce the weight of the device while reducing the cost of the device.
  • the collimating mirror includes a plurality of lenses arranged one after another along the optical axis direction, and the plurality of lenses are used to collimate the N beams of light.
  • the device further includes: an optical diffraction element, configured to replicate the N beams of light passing through the collimator to obtain N*M beams of light, and convert the N*M beams of light Cast to said target object.
  • an optical diffraction element configured to replicate the N beams of light passing through the collimator to obtain N*M beams of light, and convert the N*M beams of light Cast to said target object.
  • the emitting device may not include an optical diffraction element, and the N beams of light emitted by the collimating mirror are directly projected to the target object, which can greatly reduce the cost of the depth detection device; the emitting device may also include an optical diffraction element The N beams of light emitted by the collimator are diffracted by the optical diffraction element and then copied M times to obtain N*M beams of light, which are then projected to the target object, which can improve the detection range of the depth detection device.
  • the relative displacement makes the collimating mirror closer to the light source when it is at the first position than when it is at the second position.
  • an electronic device including: the depth detection emission device according to any possible implementation manner of the first aspect, the emission device is used to emit speckle light and flood light to a target object to The speckle light signal and the flood light signal are formed on the surface of the target object; the depth detection receiving device is used to receive the speckle light signal and the flood light signal, and convert the light signal into a corresponding electrical signal a control unit, configured to acquire the position information of the target object and send the position information to the depth detection transmitter; and calculate the depth information according to the electrical signal, and send the electronic equipment according to the depth information to operate and/or control.
  • Fig. 1 is a schematic structural diagram of a Spot TOF depth detection and emission device of the present application.
  • Fig. 2 is a schematic structural diagram of a Flood TOF depth detection and emission device of the present application.
  • FIG. 3 is a schematic structural diagram of a depth detection and emission device of the present application.
  • FIG. 4 is a schematic diagram of an optical signal effect of a depth detection and emission device of the present application.
  • FIG. 5 is another schematic structural diagram of the depth detection and emission device of the present application.
  • FIG. 6 is another schematic structural diagram of the depth detection and emission device of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device of the present application.
  • three-dimensional depth detection is generally divided into: time of flight (Time of flight, TOF), structured light (Structure light, SL) and binocular stereo vision method.
  • TOF Time of flight
  • Structure light Structure light
  • SL Structure light
  • binocular stereo vision method adopts the active light detection method, and obtains the distance of the target object by detecting the flight (round-trip) time of the light signal.
  • the time-of-flight depth detection device is generally composed of a light source, optical components, sensors, control circuits, and processing circuits.
  • the time-of-flight depth detection transmitter can be divided into Flood TOF and Spot TOF.
  • FIG. 1 and Figure 2 they are a Spot TOF deep detection transmitter and a Flood TOF deep detection transmitter according to the embodiments of the present application, respectively.
  • the N beams of light emitted by the light source 101 in the Spot TOF deep detection emission device 100 pass through the collimator mirror or the projection lens 102 and are projected to the target object to form a speckle light signal.
  • the light projected on the target object is a point composed of N speckle spots Light.
  • the light emitted by the light source 201 in the Flood TOF depth detection and emission device 200 is projected to the target object through the light diffusion element 202 to form a flood light signal, and the light projected on the target object is uniformly distributed surface light.
  • the signal light projected by the light source in the Flood TOF to the surface of the detection target after passing through the optical element is relatively uniform flood light
  • the signal light in the Spot TOF that reaches the surface of the detection target after the light source passes through the optical element is speckle light, that is, a series of An array of light spots, or spot light.
  • Flood TOF has a uniform distribution of emitted light, which can obtain higher depth image resolution, but its measurement distance is limited. To take into account the long-distance measurement distance, it is necessary to increase the transmission power of the device, which requires high energy consumption and high cost.
  • Spot TOF supports a longer measurement distance, but due to the sparser beam, the resolution is lower compared to FloodTOF.
  • This application provides a depth detection emission device, based on the existing optical path of Spot TOF, which can take into account the long-distance measurement and high resolution of Spot ToF and Flood TOF under the condition of a certain light source emission power.
  • Using one optical system only one driver chip is needed to drive, so that a device can emit both speckle light and flood light.
  • a depth detection emission device 300 includes:
  • the light source 301 includes N light emitting units, and the N light emitting units are arranged at intervals to emit N beams of light;
  • the adjusting device 303, the collimating mirror 302 is arranged on the adjusting device 303, the optical axis of the light source 301 and the optical axis of the collimating mirror 302 are parallel to each other, for adjusting the position of the collimating mirror 302 on the optical axis of the collimating mirror 302, ;
  • the driving device 304 is used to drive the adjusting device 303 to adjust the position of the collimating mirror 302 to the first position so that the N beams of light form a speckle light signal on the surface of the target object, and drive the adjusting device 303 to adjust the collimating mirror 302 to the second position so that the N beams of light form a flood light signal on the surface of the target object, wherein the first position and the second position have a relative displacement on the optical axis of the collimating mirror.
  • the collimating mirror at the first position is closer to the light source 301 than the collimating mirror at the second position.
  • the light source 301 is a vertical cavity surface emitting laser (Vertical cavity surface emitting laser, VCSEL).
  • VCSEL is a semiconductor diode laser.
  • the emitted laser beam generally leaves the device from the top surface and in a substantially vertical manner.
  • the VCSEL light source has many advantages such as small size, high power, small beam divergence angle, and stable operation. It is a depth detection system.
  • the embodiment of this application uses VCSEL as an example for illustration.
  • the light source may be a VCSEL chip with multiple light emitting points on a single chip, and the multiple light emitting points are arranged in a two-dimensional matrix, correspondingly emitting multiple laser signals to form a matrix laser signal array.
  • the light source 301 is an edge emitting laser (Edge emitting laser, EEL) or a light emitting diode (Light emitting diodes, LED).
  • EEL edge emitting laser
  • LED Light emitting diodes
  • the light source 301 may be one type of light source, or may be a combination of the above-mentioned multiple light sources.
  • the optical signal can be an optical signal carrying a spatial optical pattern that has been optically modulated, processed, or controlled, it can be an optical signal that has been optically modulated, processed, or controlled for sub-area illumination, or it can be a periodic optical signal that has been optically modulated, processed, or controlled.
  • the optical axis of the light source 301 is located at the geometric center of the light emitting plane and is perpendicular to the light emitting plane.
  • the collimating mirror 302 is a glass or plastic lens or a glass/plastic combination.
  • the collimating mirror can change the beam diameter and divergence angle of the optical signal emitted by the light source 301, so that the beam becomes a collimated parallel beam with more concentrated energy, and obtains a small high-density light spot.
  • the collimating mirror 302 described in the embodiment of the present application may also be other single optical elements or a combination of multiple optical elements capable of collimating light beams.
  • the collimating mirror 302 includes a plurality of lenses arranged back and forth along the optical axis direction, the plurality of lenses are used to collimate the N beams of light, and the incident surface of the lens closest to the light source 301 among the plurality of lenses is a collimating mirror The light incident surface of 302 and the light exit surface of the lens farthest from the light source 301 among the plurality of lenses are used as the light exit surface of the collimating mirror 302 .
  • the driving device 304 drives the adjusting device 303 according to the position information of the target object to adjust the position of the collimating mirror 302 to the first position so that the N beams of light form a speckle light signal on the surface of the target object; the driving device 304 according to The position information of the target object drives the adjusting device 303 to adjust the position of the collimating mirror 302 to the second position so that the N beams of light form speckle light signals on the surface of the target object.
  • the driving device 304 can drive the adjusting device 303 according to the position information of the target object. For example, when the target object is far away from the emitting device 300, for example, the distance reaches more than 5 meters, and the current scene is suitable for spot light. field, the driving device 304 can drive the adjusting device 303 to adjust the collimating mirror 302 to the first position according to the position information of the target object, and the emitting device 300 emits speckle light, and the speckle light is projected to the target object at a far distance.
  • the surface of the object forms a speckle light signal; when the distance between the target object and the emitting device 300 is relatively close, for example, within 5 meters, the current scene is suitable for a flood light field, and the driving device 304 can drive the target object according to the position information of the target object.
  • the adjusting device 303 adjusts the collimating mirror 302 to the second position, and the emitting device 300 emits flood light at this time, and the flood light is projected to a target object with a relatively short distance to form a flood light signal on the surface of the target object.
  • the depth detection emitting device is adjusted to emit detection light suitable for the current scene according to the position information of the target object, which can improve the performance of the depth detection device and increase the flexibility of depth detection.
  • the driving device 304 drives the adjusting device 303 to adjust the collimating mirror 302 to the first position or the second position within different time periods according to a preset time period.
  • the driving device 304 drives the adjusting device 303 to adjust the collimating mirror 302 to the first position according to the preset period in the first period, so that the emitting device 300 emits speckle light in the first period;
  • the adjusting device 303 is driven to adjust the collimating mirror 302 to the second position, so that the emitting device 300 emits flood light during the second period.
  • the collimating mirror 302 includes a light incident surface and a light exit surface opposite to the light incident surface, and the collimating mirror is used to collimate the N beams of light passing through the light incident surface and exiting through the light exit surface.
  • the adjusting device 303 adjusts the collimating mirror 302 to the first position, the N beams of light emitted through the light exit surface are the first speckle light, and the first speckle light is projected onto the target object to form speckle light signal, when the adjusting device 303 adjusts the collimating mirror 302 to the second position, the N beams of light emitted through the light exit surface are flood lights, and the flood lights are projected to the target object to form a flood light signal.
  • the adjusting device 303 adjusts the collimating mirror 302 to the first position, the N beams of light emitted through the light exit surface are the first speckle light, and the first speckle light is projected onto the target object to form speckle light signal, when the adjusting device adjusts the collimating mirror 302 to the second position, the N beams of light emitted through the light exit surface are the second speckle light, and the second speckle light is projected to the target object to form a flood light signal.
  • the collimating mirror when the collimating mirror is at the second position, since the focal length of the collimating mirror 302 deviates from the best focus position of the entire emitting device at this time, after the N beams of light pass through the collimating mirror 302, due to the large divergence angle, the collimating mirror If the focal length of 302 deviates far from the best focus position, the light emitted from the light exit surface of collimating mirror 302 can be flood light, and the flood light is projected to the target object to form a flood light signal; if the focal length of collimating mirror 302 deviates from the maximum The best position is relatively close, and the light emitted from the light exit surface of the collimating mirror 302 can also be speckle light, which is projected to the target object, because the speckle light is the speckle when the collimating mirror 302 is in the second position Light, and there is a certain distance between the emitting device and the target object, the speckle light has a diffusion effect after passing through the distance, and can be connected on
  • the flood light or speckle light emitted from the light exit surface of the collimating mirror 302 will form a flood light signal after reaching the surface of the target object, in other words , when the collimating mirror 302 is located at the second position, the emitting device 300 emits flood light.
  • the first position is a position where the spot diameter of the speckle light signal of the target object is 5-7 mm after the N beams of light pass through the collimating mirror 302 and reach the target object after the first distance, wherein the first distance is less than or equal to 1 m.
  • the driving device 304 drives the adjusting device 303 to adjust the collimating mirror 302 to the first position
  • the diameter of the spot formed by the N beams of light emitted by the collimating mirror 302 and projected on the target object after passing 1m is controlled at 5- 7mm, so that the speckle light reaching the target object can achieve the effect of a spotlight light field.
  • the beam divergence angle of the N beams of light passing through the collimating mirror 302 is less than or equal to 0.3 degrees; when the adjusting device 303 adjusts the collimating mirror 302 to the second position , the beam divergence angle of the N beams of light passing through the collimating mirror 302 is greater than 0.3 degrees.
  • the light beam passing through the lens has a certain divergence angle, and the smaller the divergence angle is, the lower the divergence degree of the light beam is, and the smaller the spot size formed by projecting to the target object is.
  • the larger the divergence angle the greater the divergence of the beam, and the larger the diameter of the spot formed by projecting to the target object, which can reach the effect of a flood light field across the city.
  • the collimating mirror 302 is located at the first position, the divergence angle of the light beam is less than or equal to 0.3 degrees, and the degree of divergence of the light beam is low.
  • a speckle light signal can be formed on the surface of the target object.
  • the divergence angle of the light beam is greater than 0.3 degrees, the degree of divergence of the light beam is high, and when projected to the target object, a flood light signal can be formed on the surface of the target object.
  • the first position is a position where the focus of the collimating mirror 302 coincides with the beam waist of the N beams.
  • the N beams of light emitted from the collimating mirror 302 have N beam waist positions, and the N beam waist positions coincide.
  • the focus of the collimating mirror 302 when the collimating mirror 302 is located at the first position, the focus of the collimating mirror 302 is located at the best focus position in the optical path of the emitting device, so that the divergence of the N beams of light emitted by the light source 301 after passing through the collimating mirror 302
  • the angle is less than or equal to 0.3 degrees, so the N beams of light projected to the target object can form the effect of a point light field on the target object.
  • the focus of the collimating mirror 302 coincides with the beam waist position of the N beams of light, and the emitting device 300
  • the target object emits speckle light.
  • the second position is a position where the deviation between the focus position of the N beams of light passing through the collimating mirror 302 and the focal point of the collimating mirror 302 is greater than or equal to 150 ⁇ m.
  • the focal length of the collimating mirror 302 when the collimating mirror 302 is adjusted to the second position, the focal length of the collimating mirror 302 will deviate from the best focus position in the optical path of the emitting device, and the deviation is greater than or equal to 150 ⁇ m, so that the N emitted by the light source 301 After the beam passes through the collimating mirror 302, the divergence angle is greater than 0.3 degrees. After the beam diverges, a "virtual focus" effect is produced. The diameter of the spot projected to the target object is relatively large, and N larger spots are connected together to form a flood-like effect. , at this moment, the emitting device 300 emits flood light to the target object.
  • FIG. 4 it is a schematic diagram of an optical signal effect of a depth detection and emission device 300 of the present application.
  • the emitting device 300 When the collimating mirror 302 is at the first position, if the emitting device 300 is 1m away from the target object, the emitting device 300 can emit speckle light with a spot diameter of 5-7mm as shown in 401; when the collimating mirror 302 is at the second position, The emitting device 300 is capable of emitting flood light signals, as indicated by 402 , whose light spots have a larger diameter and thus are connected to each other.
  • the second position is a position where the deviation between the focusing position of the N beams of light passing through the collimating mirror 302 and the focal point of the collimating mirror is less than or equal to 400 ⁇ m.
  • the emission device of this embodiment limits the offset between the focal length of the collimating mirror and the best focus position of the optical path of the emission device by setting an upper limit, and can control the maximum value of the spot size projected to the target object, avoiding excessive deviation, and avoiding the spot If the size is too large, there are more overlapping parts between the spots, and the brightness of the overlapping parts is higher than that of the non-overlapping parts, resulting in uneven brightness of the flood light signal, which can help improve the uniformity of the flood light signal.
  • the speckle optical signal is a matrix composed of N speckles evenly distributed.
  • the emitting device 300 may project a light matrix to the target object, the light matrix is composed of N uniformly distributed speckles, and the light matrix is projected to the target object to generate speckle light signals on the surface of the target object.
  • the speckle light signal is a pattern composed of uniformly distributed N speckles.
  • the speckle light signal is a pattern composed of randomly distributed N speckles.
  • the emitting device 300 can project structured light to the target object, the structured light is composed of uniform or randomly distributed speckles, and the pattern of the structured light can be realized by controlling the light emitting unit through software design.
  • the emission device of this embodiment can use structured light, and use the designable structured light as a detection light signal, so that the emission device can emit modulated structured light and flood light to the target object using only one set of optical path system, so that The emission device can emit structured light and flood light to the target object, which helps to improve the versatility of the emission device, expand the application scenarios of the depth detection device, and improve the efficiency of depth detection.
  • the emitting device 300 further includes: a carrier board 305 on which the light source 301 is disposed.
  • the emitting device may not include a carrier board, and may be directly integrated on the functional module of the depth detection camera, and the carrier board 305 may be a carrier board of the emitting device or a carrier board of the light source 301 .
  • the adjustment device 303 includes:
  • the stator 3031 is set on the carrier board 305; the mover 3032, the mover is connected on the carrier board 305, the collimator mirror 302 is arranged on the mover 3032, and the mover 3032 moves so that the collimator mirror 302 moves along the collimator mirror relative to the stator 3031 direction of the optical axis.
  • the adjusting device 303 adopts a simple combined structure of a stator and a mover, and fixes the collimating mirror on the mover. By adjusting the position of the mover, the position of the collimating mirror is adjusted, thereby changing the optical signal emitted by the depth detection and emitting device, and improving the While improving the performance of the depth detection device, the adjustment device has a simple structure, is convenient to operate, and is convenient for processing.
  • machining errors may cause a deviation of a certain angle between the moving direction of the collimating mirror and the direction of the optical axis of the collimating mirror.
  • the mover moves so that the collimator mirror moves relative to the stator along a direction having a first included angle with the direction of the optical axis of the collimator mirror.
  • the stator 3031 includes: the first bracket 10 and the first driving element 11 ; the mover 3032 includes: the second bracket 20 , the second driving element 22 and the lifting element 21 .
  • first bracket 10 is fixed on the carrier board 305
  • first driver 11 is connected on the first bracket 10
  • collimating mirror 302 is fixed on the second bracket 20
  • the second bracket 20 is connected to the carrier board 305 through the lifting element 21
  • the second driver 22 is installed in the second bracket 20 ; the first driver 11 and the second driver 22 cooperate with each other and drive the second bracket 20 to move away from the carrier board 305 relative to the first bracket 10 .
  • the first bracket 10 has a supporting function, and the first driving member 11 can drive the mover 3032 .
  • the second bracket 20 can support and drive the collimating mirror 302 to move, and the lifting element 21 can be driven by the first driving member 11 and the second driving member 22 to adjust the position of the second bracket 20 , thereby driving the collimating mirror 302 to move.
  • the first driving member and the second driving member are used to cooperate with each other to generate a driving force, and the mover moves along the direction of the optical axis away from the carrier plate with the help of the driving force, and adjusts the collimation according to the position information of the target object
  • the distance between the mirror and the light source can be changed by intelligently adjusting the position of the collimating mirror to change the size of the spot projected on the target object, so that the luminous effect of the spotlight light field and the floodlight square can be realized in one optical path system.
  • the first driving member 11 includes a coil
  • the driving device 304 can generate an electromagnetic field through the first driving member 11
  • the second driving member 22 includes a permanent magnet, which can push the second driving member 22 to move when the first driving member 11 is energized to generate a magnetic force along the optical axis.
  • the specific arrangement of the first driver and the second driver is not limited thereto.
  • the coil and the permanent magnet can be interchanged.
  • the second driver 22 includes a coil, and the coil is arranged on the first bracket 10 and the second Between the brackets 20, the drive circuit is electrically connected to the coil.
  • the first driver 11 includes a permanent magnet.
  • the permanent magnet is arranged on the surface of the first bracket 10 facing the coil. The coil is energized to generate a magnetic force along the optical axis to push the permanent magnet to move.
  • the driving device is used to control the first driving member and the second driving member to work with a first current according to the position information of the target object so as to adjust the collimating mirror to the first position; or control the first driving member and the second driving member to work with a second current to adjust the collimating mirror to the second position.
  • the structure of the coil and the permanent magnet is used to generate the magnetic force, and the mover moves along the direction of the optical axis away from the carrier with the help of the magnetic force, and the driving circuit can control the magnitude of the coil current, that is, the magnitude of the magnetic force can be controlled, that is, The displacement of the mover relative to the stator can be controlled, so that the precise control of the position of the collimating mirror can be realized.
  • the first bracket 10 has a support portion 30 and a suspension portion 31, the support portion 30 extends from the carrier plate 305 along the optical axis in a direction away from the carrier plate 305, and the suspension portion 31 faces from the support portion 30 to the side of the second bracket 20.
  • the inner wall extends toward the second bracket 20 , and the first driving member 11 is fixedly connected to the lower surface of the hanging portion 31 facing the carrier plate 305 .
  • the first driving member is placed around the optical axis of the light-emitting element, so that the first driving member and the second driving member are connected to each other.
  • the direction of the driving force generated during mating can be parallel to the optical axis, so that the displacement of the lens can basically move along the optical axis.
  • the lifting element 21 may be an elastic member such as a spring.
  • the elastic force produced by the elastic member in the opposite direction to the magnetic force can effectively play the role of damping, and the elastic force will increase with the displacement of the collimating mirror 302 And constantly increase, objectively cause the moving speed of collimating mirror 302 to be slower and slower, finally reach force equilibrium state when second position, and when collimating mirror 302 resets, elastic member can provide pulling collimating mirror 302 to move The pulling force can also be provided to protect the collimating mirror 302 at the same time.
  • the lifting element 21 can also adopt other structures, such as hydraulic lifts, pulley slide rail assemblies, etc., but relatively speaking, the spring has many advantages such as convenient assembly, light weight, small size, and easy maintenance.
  • the depth detection emission device 300 also includes: an optical diffraction element 306, which is used to copy the N beams of light passed through the collimator 302 to obtain N*M beams of light, and project the N*M beams of light to the target audience.
  • an optical diffraction element 306 which is used to copy the N beams of light passed through the collimator 302 to obtain N*M beams of light, and project the N*M beams of light to the target audience.
  • the N beams of light emitted by the collimator are diffracted by the optical diffraction element and then copied M times to obtain N*M beams of light and then projected to the target object, which can improve the detection range of the depth detection device, and M and N are both positive integers .
  • FIG. 6 shows another schematic structural diagram of the depth detection emitting device of the present application, the collimating mirror 302 is located at the second position, and the emitting device emits a flood light signal.
  • the embodiment of the present application also relates to an electronic device 700, including:
  • a depth detection emitting device 300 configured to emit speckle light and flood light to the target object to form speckle light signals and flood light signals on the surface of the target object;
  • a depth detection receiving device 701 configured to receive the speckle light signal and the flood light signal, and convert the light signal into a corresponding electrical signal
  • a control unit 702 configured to acquire the position information of the target object and send the position information to the depth detection and transmitting device; and calculate the depth information according to the electrical signal, and send the electronic equipment according to the depth information to operate and/or control.
  • control unit 702 may be a processor, a controller, etc. in an electronic device.
  • the electronic device in the embodiment of the present application may be a portable or mobile computing device such as a terminal device, a mobile phone, a tablet computer, a notebook computer, a desktop computer, a game device, a vehicle electronic device, or a wearable smart device, and Electronic databases, automobiles, bank ATMs (Automated Teller Machines, ATMs) and other electronic equipment.
  • the wearable smart device includes full-featured, large-sized, complete or partial functions independent of smartphones, such as smart watches or smart glasses, etc., and only focuses on a certain type of application functions, and needs to cooperate with other devices such as smartphones Use, such as various smart bracelets, smart jewelry and other equipment for physical sign monitoring.
  • the disclosed systems and devices can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种深度检测发射装置(300)及电子设备(700),发射装置(300)包括:光源(301),包括N个发光单元,N个发光单元相互间隔设置并用于发射N束光;准直镜(302),用于准直N束光;调节装置(303),准直镜(302)设置于调节装置(303)上,光源(301)的光轴与准直镜(302)的光轴互相平行,调节装置(303)用于调节准直镜(302)在准直镜(302)的光轴上的位置;驱动装置(304),用于驱动调节装置(303)以将准直镜(302)的位置调节至第一位置以使N束光在目标对象的表面形成散斑光信号,以及驱动调节装置(303)以将准直镜(302)调节至第二位置以使N束光在目标对象的表面形成泛光光信号。该深度检测发射装置(300)能够通过一套光路系统发射两种不同的光,兼具Spot TOF和Flood TOF的优点,简化了深度检测装置的光路,提升了深度检测装置的工作效率。

Description

飞行时间深度测量发射装置及电子设备
本申请要求于2021年6月30日提交中国专利局、申请号为202110731874.4、发明名称为“飞行时间深度测量发射装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及深度测量技术领域,并且更具体地,涉及一种飞行时间深度测量发射装置及电子设备。
背景技术
3D TOF(Time of flight,TOF)作为目前主流的三维深度测量方法,通过测量信号光在空间中的飞行时间来获取目标对象的深度信息。TOF深度检测装置由发射装置和接收装置组成,发射装置调制光以在目标对象表面形成调制光信号,接收装置接收经目标对象返回的携带深度信息的深度光信号,并根据两个光信号的相位差或时间差等参数计算目标对象的深度信息。作为高端相机系统的关键组件,目前已广泛应用于智能手机、虚拟现实(Virtual reality,VR)设备等领域,实现获取被拍摄物体的景深、辅助快速对焦以及人像虚化算法等功能。
根据TOF发射装置发射的光形成的光场不同,可以将TOF深度检测装置分为泛光TOF(Flood TOF)和散斑光TOF(Spot TOF)。其中,Flood ToF因为在整个视场内都有较均匀的发射光能量分布,所以拍摄的深度图片分辨率高,但是也因为能量分布分散,所以测量距离有限,如果要兼顾3米以上的测量距离就需要非常大的发射功率,功耗较大。Spot ToF将发射能量分解成了若干个能量非常集中的光束上,测量距离可达5m以上,且可以在很低的功耗水平下实现较高的精度,但是因为光束较稀疏,所以深度图分辨率较低。
因此,如何在TOF深度检测装置中同时满足较远的测量距离、较低的功耗以及高分辨率,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种飞行时间深度测量发射装置及电子设备,能够 在功耗较低的情况下,还兼具高分辨率与较远的测量距离。
第一方面,提供一种飞行时间深度检测发射装置,所述发射装置包括:光源,所述光源包括N个发光单元,所述N个发光单元相互间隔设置,并用于发射N束光;准直镜,所述准直镜用于准直所述N束光;调节装置,所述准直镜设置于所述调节装置上,所述光源的光轴与所述准直镜的光轴互相平行,所述调节装置用于调节所述准直镜在所述准直镜光轴上的位置;驱动装置,所述驱动装置用于驱动所述调节装置以将所述准直镜的位置调节至第一位置以使所述N束光在目标对象的表面形成所述散斑光信号,以及驱动所述调节装置以将所述准直镜调节至第二位置以使所述N束光在所述目标对象的表面形成所述泛光光信号,其中,所述第一位置与所述第二位置在所述准直镜的光轴上具有相对位移。
本申请实施例中,驱动调节装置将准直镜的位置调节至不同的位置,使得发射装置在准直镜位于第一位置时,能够发射散斑光信号,在第二位置时,能够发射泛光光信号,实现一个深度检测发射装置仅通过一套光路系统,不需要切换光路就能发射两种不同的光信号,兼具Spot TOF和Flood TOF的优点,简化了深度检测装置的光路,提升了深度检测装置的工作效率。
在一种可能的实现方式中,所述驱动装置根据所述目标对象的位置信息驱动所述调节装置以将所述准直镜的位置调节至所述第一位置以使所述N束光在所述目标对象的表面形成所述散斑光信号;所述驱动装置根据所述目标对象的位置信息驱动所述调节装置以将所述准直镜的位置调节至所述第二位置以使所述N束光在所述目标对象的表面形成所述散斑光信号。
本申请实施例中,发射装置可根据目标对象的位置信息调节准直镜的位置从而向目标对象发射出适合当前位置的光信号。当目标对象距离发射装置较远时,例如,距离达到5米以上,驱动装置将准直镜调节至第一位置向目标对象发射散斑光信号;当目标对象距离发射装置距离较近时,例如,距离在5米以内,驱动装置将准直镜调节至第二位置向目标对象发射泛光光信号。根据目标对象的位置信息发射装置发射不同的光信号,帮助提升了深度检测装置的性能。
在一种可能的实现方式中,所述准直镜包括光入射面和相对于所述光入射面的光出射面,所述准直镜用于准直经所述光入射面穿过并经所述光出射面出射的所述N束光。
在一种可能的实现方式中,当所述调节装置调节所述准直镜至所述第一位置时,经所述光出射面出射的所述N束光为第一散斑光,所述第一散斑光被投射至所述目标对象以形成所述散斑光信号,当所述调节装置调节所述准直镜至所述第二位置时,经所述光出射面出射的所述N束光为泛光,所述泛光被投射至所述目标对象以形成所述泛光光信号。
在一种可能的实现方式中,当所述调节装置调节所述准直镜至所述第一位置时,经所述光出射面出射的所述N束光为第一散斑光,所述第一散斑光被投射至所述目标对象以形成所述散斑光信号,当所述调节装置调节所述准直镜至所述第二位置时,经所述光出射面出射的所述N束光为第二散斑光,所述第二散斑光被投射至所述目标对象以形成所述泛光光信号。
应理解,在准直镜位于第二位置时,从准直镜光出射面出射的光可以是泛光,泛光被投射至目标对象形成泛光光信号;从准直镜光出射面出射的光也可以是散斑光,散斑光被投射至目标对象,由于该散斑光是准直镜位于第二位置时的散斑光,且发射装置与目标对象之间具有一定距离,该散斑光经过该距离后具有弥散效果,能够在目标对象表面连成一片,形成泛光光信号,该散斑光也可以经过发射装置中的其他光学元件后,达到连成一片的弥散效果,被投射至目标对象形成泛光光信号。
在一种可能的实现方式中,所述第一位置为使得所述N束光通过所述准直镜后经过第一距离到达所述目标对象的所述散斑光信号的光斑直径为5-7mm的位置,其中,所述第一距离小于等于1m。
在一种可能的实现方式中,当所述调节装置调节所述准直镜至所述第一位置时,通过所述准直镜后所述N束光的光束发散角小于等于0.3度;当所述调节装置调节所述准直镜至所述第二位置时,通过所述准直镜后所述N束光的光束发散角大于所述0.3度。
在一种可能的实现方式中,所述第一位置为使得所述准直镜的焦点与所述N束光的束腰重合的位置。
本申请实施例中,当准直镜位于第一位置时,准直镜的焦点位于发射装置光路中的最佳对焦位置,使得光源发出的N束光经过准直镜后的发散角小于等于0.3度,因而投射至目标对象的N束光能够在目标对象上形成N个光斑,形成散斑光场的效果,此时准直镜的焦点与N束光的束腰位置重合,发射装置向目标对象发射散斑光。
应理解,从准直镜出射的N束光的具有N个束腰位置,N个束腰位置重合。
在一种可能的实现方式中,所述第二位置为使得所述N束光通过所述准直镜后的对焦位置离所述准直镜的焦点的偏离量大于等于150μm的位置。
本申请实施例中,当准直镜被调节至第二位置时,准直镜的焦距偏离发射装置光路中的最佳对焦位置,该偏离量大于等于150μm,使得光源发出的N束光经准直镜后发散角大于0.3度,光束弥散后产生“虚焦”效果,投射至目标对象的光斑尺寸较大,N个较大的光斑连成一片,形成类似泛光的效果,此时发射装置向目标对象发射泛光。
在一种可能的实现方式中,所述第二位置为使得所述N束光通过所述准直镜后的对焦位置离所述准直镜的焦点的偏离量小于等于400μm的位置。
本申请实施例中,N束光通过准直镜后的对焦位置为发射装置光路中的最佳对焦位置,通过设置上限,限制准直镜焦距与发射装置光路的最佳对焦位置的偏移量,能够控制投射至目标对象的光斑尺寸的最大值,避免偏离量过大光斑尺寸过大,使得光斑之间重叠部分较多,重叠部分的亮度高于未重叠部分的亮度,从而导致的泛光光信号亮度不均匀现象,提高深度检测发射装置发射的泛光的均匀性。
在一种可能的实现方式中,所述散斑光信号为均匀分布的N个散斑组成的矩阵。
在一种可能的实现方式中,所述散斑光信号为均匀分布的N个散斑组成的图案。
在一种可能的实现方式中,所述散斑光信号为随机分布的N个散斑组成的图案。
本申请实施例中,使用可设计的结构光作为一种检测光信号,使得发射装置仅使用一套光路系统,即可向目标对象发射调制后的结构光以及泛光,有助于提高发射装置的多功能性,提高深度检测的效率。
在一种可能的实现方式中,所述调节装置包括:定子,所述定子设置于所述光源的载板上;动子,所述动子连接在所述载板上,所述准直镜设置于所述动子上,所述动子移动使得所述准直镜相对于所述定子沿所述准直镜的光轴方向移动。
本申请实施例中,调节装置采用定子和动子组合而成的结构,将准直镜 固定在动子上,通过调节动子的位置实现准直镜的位置调节,从而改变深度检测发射装置发射的光信号,调节装置的结构简单,调节操作方便。
在一种可能的实现方式中,所述动子移动使得所述准直镜相对于所述定子沿与所述准直镜的光轴方向具有第一夹角的方向移动。
在一种可能的实现方式中,所述定子包括第一支架和第一驱动件;所述动子包括第二支架、第二驱动件和升降元件;所述第一支架固定于所述载板上,所述第一驱动件连接在所述第一支架上;所述准直镜固定在所述第二支架上,所述第二支架通过所述升降元件连接在所述载板上,所述第二驱动件安装于所述第二支架中;所述第一驱动件和所述第二驱动件互相配合并驱动所述第二支架相对于所述第一支架朝远离所述载板的方向运动。
本申实施例中,用第一驱动件和第二驱动件互相配合产生推动力,动子借助推动力沿光轴方向朝远离载板的方向运动,并根据目标对象的位置信息来调节准直镜与光源之间的距离,通过智能化调节准直镜的位置来改变投射至目标对象上光斑的大小,从而能在一个光路系统中实现散斑光场和泛光广场的发光效果。
在一种可能的实现方式中,所述驱动装置用于根据所述目标对象的位置信息控制所述第一驱动件和所述第二驱动件以第一电流工作以将所述准直镜调节至所述第一位置;或控制所述第一驱动件和所述第二驱动件以第二电流工作以将所述准直镜调节至所述第二位置。
在一种可能的实现方式中,所述第一驱动件包括线圈,所述线圈设置于所述第一支架与所述第二支架之间,所述驱动装置与所述线圈电连接,所述第二驱动件包括永磁体,所述永磁体设置于所述第二支架面朝所述线圈的表面,所述线圈通电产生沿所述光轴方向的磁力推动所述永磁体运动;或者
所述第二驱动件包括线圈,所述线圈设置于所述第一支架与所述第二支架之间,所述驱动装置与所述线圈电连接,所述第一驱动件包括永磁体,所述永磁体设置于所述第一支架面朝所述线圈的表面,所述线圈通电产生沿所述准直镜的光轴方向的磁力推动所述永磁体运动。
本申请实施例中,采用线圈和永磁体的结构产生磁力,动子借助磁力沿光轴方向朝远离载板的方向运动,且驱动电路可控制线圈电流大小,即能够控制磁力的大小,也就能够控制动子相对于定子的位移量,从而能够实现准直镜镜位置的精确控制。
在一种可能的实现方式中,所述第一支架具有支撑部和悬挂部,所述支撑部自所述载板朝远离所述载板的方向沿所述光轴延伸,所述悬挂部自所述支撑部面朝所述第二支架的内壁向所述第二支架延伸,所述第一驱动件固定连接在所述悬挂部面朝所述载板的下表面。
本申请实施例中,借助设计成横截面为两个倒“L”型结构的第一支架,使得第一驱动件呈现出围绕发光元件的光轴设置的状态,这样第一驱动件和第二驱动件互相配合时所产生的推动力方向就能够和光轴平行,从而使得透镜的位移能够基本沿着光轴运动。
在一种可能的实现方式中,所述准直镜为塑胶材质。
本申请实施例中,采用塑胶材质的准直镜,能够在减轻装置的重量的同时降低装置成本。
在一种可能的实现方式中,所述准直镜包括沿光轴方向前后排列的多个透镜,所述多个透镜用于准直所述N束光。
在一种可能的实现方式中,所述装置还包括:光学衍射元件,用于复制经所述准直镜的所述N束光得到N*M束光,并将所述N*M束光投射至所述目标对象。
本申请实施例中,发射装置可以不包括光学衍射元件,由准直镜出射的N束光直接投射至目标对象,能够很大程度上降低深度检测装置的成本;发射装置也可以包括光学衍射元件,由准直镜出射的N束光经光学衍射元件衍射后被复制M倍得到N*M束光后被投射至目标对象,能够提高深度检测装置检测范围。
在一种可能的实现方式中,所述相对位移使得所述准直镜在所述第一位置时比在所述第二位置时更靠近所述光源。
第二方面,提供一种电子设备,包括:如第一方面任一种可能的实现方式所述的深度检测发射装置,所述发射装置用于向目标对象发射散斑光以及泛光以在所述目标对象的表面形成散斑光信号以及泛光光信号;深度检测接收装置,用于接收所述散斑光信号以及所述泛光光信号,并将所述光信号转化为对应的电信号;控制单元,用于获取所述目标对象的位置信息并将所述位置信息发送给所述深度检测发射装置;以及根据所述电信号计算深度信息,并根据所述深度信息对所述电子设备进行操作和/或控制。
附图说明
图1是本申请一种Spot TOF深度检测发射装置的示意性结构图。
图2是本申请一种Flood TOF深度检测发射装置的示意性结构图。
图3是本申请一种深度检测发射装置的示意性结构图。
图4是本申请一种深度检测发射装置的光信号效果示意图。
图5是本申请的深度检测发射装置的另一示意性结构图。
图6是本申请的深度检测发射装置的又一示意性结构图。
图7是本申请一种电子设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
三维深度检测按照测量原理的不同一般分为:飞行时间法(Time of flight,TOF)、结构光法(Structure light,SL)和双目立体视觉法。其中飞行时间法采用主动光探测方式,通过探测光信号的飞行(往返)时间来获取目标物的距离,飞行时间深度检测装置一般由光源、光学部件、传感器、控制电路以及处理电路等单元组成。根据信号光在物平面的连续状态,飞行时间深度检测发射装置可分为Flood TOF和Spot TOF。
如图1和图2所示,分别为本申请实施例一种Spot TOF深检测发射装置和一种Flood TOF深度检测发射装置。Spot TOF深检测发射装置100中光源101发射的N束光经过准直镜或投射镜头102后被投射至目标对象形成散斑光信号,投射至目标对象上的光为N个散斑组成的点光。Flood TOF深度检测发射装置200中光源201发射的光经光扩散元件202后被投射至目标对象形成泛光光信号,投射至目标对象上的光为均匀分布的面光。其中Flood TOF中的光源经光学元件后投射到达检测目标表面的信号光为较为均匀的泛光,而Spot TOF中的光源经光学元件后到达检测目标表面的信号光为散斑光,即一系列光斑组成的阵列,或称为斑点光。Flood TOF具有均匀分布的发射光,能够得到较高的深度图片分辨率,但其测量距离有限,若要兼顾远距离测量距离需要提高装置的发射功率,能耗较高开销较大。Spot TOF支持较远的测量距离,但由于光束较稀疏,相比于FloodTOF分辨率较低。
本申请提供了一种深度检测发射装置,基于Spot TOF已有的光路,在光源发射功率一定的情况下,能够兼顾Spot ToF和Flood TOF的远距离测量 和高分辨率。利用一个光路系统,仅需一个驱动芯片驱动,实现一种装置既能发射散斑光,又能发射泛光。
本申请实施例所述的深度检测发射装置,如图3所示,一种深度检测发射装置300包括:
光源301,包括N个发光单元,N个发光单元相互间隔设置,用于发射N束光;
准直镜302,用于准直所述N束光;
调节装置303,准直镜302设置于调节装置303上,光源301的光轴与准直镜302的光轴互相平行,用于调节准直镜302在准直镜302的光轴上的位置,;
驱动装置304,用于驱动调节装置303将准直镜302的位置调节至第一位置以使N束光在目标对象的表面形成散斑光信号,以及驱动调节装置303以将准直镜302调节至第二位置以使N束光在目标对象的表面形成泛光光信号,其中,第一位置和第二位置在准直镜的光轴上具有相对位移。在一个实施例中,第一位置的准直镜比第二位置的准直镜更靠近光源301。
可选地,光源301是垂直腔面发射激光器(Vertical cavity surface emitting laser,VCSEL)。VCSEL是一种半导体二极管激光器,发射的激光束一般从顶表面并且以基本垂直的方式离开该器件,VCSEL光源具有体积小、功率大、光束发散角小、运行稳定等诸多优势,成深度检测系统光源的首选,本申请实施例以VCSEL为示例进行说明。具体的,光源可以是单芯片多点发光的VCSEL芯片,多个发光点呈二维矩阵排列,对应的发射出多束激光信号,形成矩阵式激光信号阵列。
可选地,光源301为边发射激光器(Edge emitting laser,EEL)或发光二极管(Light emitting diodes,LED)。
应理解,光源301可以是一种光源,也可以是上述多种光源的组合。光信号可以是经光学调制、处理或控制的携带空间光学图案的光信号,可以是经光学调制、处理或控制的分区域照明的光信号,也可以是经光学制、处理或控制的周期性照明的光信号,或上述光信号的组合。光源301的光轴位于发光平面几何中心并垂直于发光平面。
可选地,准直镜302采用玻璃或塑胶镜片或者玻璃/塑胶的组合。准直镜能够改变光源301发射的光信号的光束直径和发散角,使光束变为能量更为 集中的准直平行光束,获得细小的高密度光斑。应理解,本申请实施例所述的准直镜302也可以是其他能达到光束准直效果的单个光学元件或多个光学元件的组合。
可选地,准直镜302包括沿光轴方向前后排列的多个透镜,多个透镜用于准直N束光,多个透镜中最靠近光源301的那个透镜的入光面为准直镜302的入光面,多个透镜中离光源301最远的那个透镜的出光面作为准直镜302的出光面。
可选地,驱动装置304根据目标对象的位置信息驱动调节装置303以将准直镜302的位置调节至第一位置以使N束光在目标对象的表面形成散斑光信号;驱动装置304根据目标对象的位置信息驱动调节装置303以将准直镜302的位置调节至第二位置以使N束光在目标对象的表面形成散斑光信号。
具体地,驱动装置304可根据目标对象的位置信息对调节装置303进行驱动,示例性地,当目标对象距离发射装置300较远时,例如,距离达到5米以上,当前场景适合适用点光光场,驱动装置304可根据此目标对象的位置信息驱动调节装置303将准直镜302调节至第一位置,发射装置300发射散斑光,散斑光被投射至距离较远的目标对象在目标对象的表面形成散斑光信号;当目标对象距离发射装置300距离较近时,例如,距离在5米以内,当前场景适合适用泛光光场,驱动装置304可根据此目标对象的位置信息驱动调节装置303将准直镜302调节至第二位置,发射装置300此时发射泛光,泛光被投射至距离较近的目标对象在目标对象的表面形成泛光光信号。
本实施例根据目标对象位置信息的不同调节深度检测发射装置发射适用于当前场景的检测光,能够提高深度检测装置的性能,增加深度检测的灵活性。
可选地,驱动装置304根据预先设定的时间周期在不同的时间周期内驱动调节装置303将准直镜302调节至第一位置或第二位置。
示例性地,驱动装置304根据预先设定在第一周期内驱动调节装置303将准直镜302调节至第一位置,使发射装置300在第一周期内发射散斑光;根据预先设定在第二周期内驱动调节装置303将准直镜302调节至第二位置,使得发射装置300在第二周期内发射泛光。
可选地,准直镜302包括光入射面和相对于所述光入射面的光出射面,准直镜用于准直经光入射面穿过并经光出射面出射的N束光。
可选地,当调节装置303调节准直镜302至第一位置时,经光出射面出射的N束光为第一散斑光,第一散斑光被投射至目标对象以形成散斑光信号,当调节装置303调节准直镜302至第二位置时,经光出射面出射的N束光为泛光,泛光被投射至目标对象以形成泛光光信号。
可选地,当调节装置303调节准直镜302至第一位置时,经光出射面出射的N束光为第一散斑光,第一散斑光被投射至目标对象以形成散斑光信号,当调节装置调节准直镜302至第二位置时,经光出射面出射的N束光为第二散斑光,第二散斑光被投射至目标对象以形成泛光光信号。
具体地,当准直镜位于第二位置时,由于此时准直镜302的焦距偏离整个发射装置的最佳对焦位置,N束光通过准直镜302后由于发散角较大,准直镜302的焦距若偏离最佳对焦位置较远,从准直镜302光出射面出射的光可以是泛光,泛光被投射至目标对象形成泛光光信号;准直镜302的焦距若偏离最佳位置较近,从准直镜302光出射面出射的光也可以是散斑光,散斑光被投射至目标对象,由于该散斑光是准直镜302位于第二位置时的散斑光,且发射装置与目标对象之间具有一定距离,该散斑光经过该距离后具有弥散效果,能够在目标对象表面连成一片,形成泛光光信号,该散斑光也可以经过发射装置300中的其他光学元件后,达到连成一片的弥散效果,被投射至目标对象形成泛光光信号。
应理解,本申请实施例中,当准直镜302位于第二位置时,从准直镜302光出射面出射的泛光或散斑光到达目标对象的表面后均形成泛光光信号,换言之,准直镜302位于第二位置时,发射装置300发射泛光。
可选地,第一位置为使得N束光通过准直镜302后经过第一距离到达目标对象的散斑光信号的光斑直径为5-7mm的位置,其中,第一距离小于等于1m。
具体地,当驱动装置304驱动调节装置303将准直镜302调节至第一位置时,经过准直镜302出射的N束光经过1m后投射至目标对象上形成的光斑直径被控制在5-7mm,使得到达目标对象的散斑光能够达到点光光场的效果。
可选地,当调节装置303调节准直镜302至第一位置时,通过准直镜302后N束光的光束发散角小于等于0.3度;当调节装置303调节准直镜302至第二位置时,通过准直镜302后N束光的光束发散角大于0.3度。
具体地,通过透镜的光束均具有一定的发散角,发散角越小,光束的发散程度越低,投射至目标对象形成的光斑尺寸越小。反之,发散角越大,光束的发散程度越大,投射至目标对象形成的光斑直径越大,能够连城一片达到泛光光场的效果。准直镜302位于第一位置时,光束的发散角小于等于0.3度,光束发散程度低,被投射至目标对象能够在目标对象的表面形成散斑光信号,准直镜302位于第二位置时,光束的发散角大于0.3度,光束发散程度高,被投射至目标对象能够在目标对象表面形成泛光光信号。
可选地,第一位置为使得准直镜302的焦点与N束光的束腰重合的位置。
应理解,从准直镜302出射的N束光的具有N个束腰位置,N个束腰位置重合。
本申请实施例中,当准直镜302位于第一位置时,准直镜302的焦点位于发射装置光路中的最佳对焦位置,使得光源301发出的N束光经过准直镜302后的发散角小于等于0.3度,因而投射至目标对象的N束光能够在目标对象上形成点光光场的效果,此时准直镜302的焦点与N束光的束腰位置重合,发射装置300向目标对象发射散斑光。
可选地,第二位置为使得N束光通过准直镜302后的对焦位置离准直镜302的焦点的偏离量大于等于150μm的位置。
本申请实施例中,当准直镜302被调节至第二位置时,准直镜302的焦距将偏离发射装置光路中的最佳对焦位置,该偏离量大于等于150μm,使得光源301发出的N束光经准直镜302后发散角大于0.3度,光束发散后产生“虚焦”效果,投射至目标对象的光斑直径较大,N个较大的光斑连成一片,形成类似泛光的效果,此时发射装置300向目标对象发射泛光。
具体地,如图4所示,为本申请一种深度检测发射装置300的光信号效果示意图。
准直镜302位于第一位置时,若发射装置300距离目标对象1m,发射装置300能够发射如401所示的光斑直径为5-7mm的散斑光;准直镜302位于第二位置时,发射装置300能够发射如402所示的光斑直径较大从而互相连成一片的泛光光信号。
可选地,第二位置为使得N束光通过准直镜302后的对焦位置离准直镜的焦点的偏离量小于等于400μm的位置。
本实施例的发射装置通过设置上限,限制准直镜焦距与发射装置光路的 最佳对焦位置的偏移量,能够控制投射至目标对象的光斑尺寸的最大值,避免偏离量过大,避免光斑尺寸过大使得光斑之间重叠部分较多,重叠部分的亮度高于未重叠部分的亮度,导致泛光光信号的亮度不均匀,能够帮助提高泛光光信号的均匀性。
可选地,散斑光信号为均匀分布的N个散斑组成的矩阵。
具体地,发射装置300可以向目标对象投射光矩阵,该光矩阵由N个均匀分布散斑组成,该光矩阵被投射至目标对象在目标对象的表面产生散斑光信号。
可选地,散斑光信号为均匀分布的N个散斑组成的图案。
可选地,散斑光信号为随机分布的N个散斑组成的图案。
具体地,发射装置300可以向目标对象投射结构光,该结构光由均匀或随机分布的散斑组成,结构光的图案可通过软件设计控制发光单元来实现。
本实施例的发射装置能够使用结构光,将可设计的结构光作为一种检测光信号,使得发射装置仅使用一套光路系统,即可向目标对象发射调制后的结构光以及泛光,使得发射装置能够向目标对象发射结构光以及泛光,有助于提高发射装置的多功能性,拓展深度检测装置的应用场景,提高深度检测的效率。
可选地,发射装置300还包括:载板305,光源301设置于载板305上。
应理解,发射装置可以不包括载板,直接集成于深度检测相机的功能模块上,载板305可以是发射装置的载板,也可以是光源301的载板。
优选地,如图3所示,调节装置303包括:
定子3031,设置载板305上;动子3032,动子连接在载板305上,准直镜302设置于动子3032上,动子3032移动使得准直镜302相对于定子3031沿准直镜的光轴方向移动。
调节装置303采用简单的定子和动子组合结构,将准直镜固定在动子上,通过调节动子的位置实现准直镜的位置调节,从而改变深度检测发射装置发射的光信号,在提高深度检测装置的性能的同时,调节装置的结构简单,操作方便,便于加工。
应理解,加工误差可能导致准直镜的移动方向与准直镜的光轴方向具有一定角度的偏差。
可选地,动子移动使得准直镜相对于定子沿与准直镜的光轴方向具有第 一夹角的方向移动。
可选地,定子3031包括:第一支架10和第一驱动件11;动子3032包括:第二支架20、第二驱动件22和升降元件21。
其中第一支架10固定于载板305上,第一驱动件11连接在第一支架10上;准直镜302固定在第二支架20上,第二支架20通过升降元件21连接在载板305上,第二驱动件22安装于第二支架20中;第一驱动件11和第二驱动件22互相配合并驱动第二支架20相对于第一支架10朝远离载板305的方向运动。
具体地,第一支架10具有支撑作用,第一驱动件11能够驱动动子3032。第二支架20能够支撑并带动准直镜302移动,升降元件21能够被第一驱动件11和第二驱动件22驱动以调节第二支架20的位置,从而带动准直镜302移动。
本申实施例中,用第一驱动件和第二驱动件互相配合产生推动力,动子借助推动力沿光轴方向朝远离载板的方向运动,并根据目标对象的位置信息来调节准直镜与光源之间的距离,通过智能化调节准直镜的位置来改变投射至目标对象上光斑的大小,从而能在一个光路系统中实现点光光场和泛光广场的发光效果。
可选地,第一驱动件11包括线圈,驱动装置304能够通过第一驱动件11产生电磁场。第二驱动件22包括永磁体,当第一驱动件11通电产生沿光轴方向的磁力后能够推动第二驱动件22运动。
应理解,第一驱动件和第二驱动件的具体设置不限于此,比如可以将线圈与永磁体互换,具体的,第二驱动件22包括线圈,线圈设置于第一支架10与第二支架20之间,驱动电路与线圈电连接,第一驱动件11包括永磁体,永磁体设置于第一支架10面朝线圈的表面,线圈通电产生沿光轴方向的磁力推动永磁体运动。
可选地,所述驱动装置用于根据所述目标对象的位置信息控制所述第一驱动件和所述第二驱动件以第一电流工作以将所述准直镜调节至所述第一位置;或控制所述第一驱动件和所述第二驱动件以第二电流工作以将所述准直镜调节至所述第二位置。
本申请实施例中,采用线圈和永磁体的结构产生磁力,动子借助磁力沿光轴方向朝远离载板的方向运动,且驱动电路可控制线圈电流大小,即能够 控制磁力的大小,也就能够控制动子相对于定子的位移量,从而能够实现准直镜镜位置的精确控制。
可选地,第一支架10具有支撑部30和悬挂部31,支撑部30自载板305朝远离载板305的方向沿光轴延伸,悬挂部31自支撑部30面朝第二支架20的内壁向第二支架20延伸,第一驱动件11固定连接在悬挂部31面朝载板305的下表面。
具体地,借助设计成横截面为两个倒“L”型结构的第一支架,使得第一驱动件呈现出围绕发光元件的光轴设置的状态,这样第一驱动件和第二驱动件互相配合时所产生的推动力方向就能够和光轴平行,从而使得透镜的位移能够基本沿着光轴运动。
可选地,升降元件21可以是弹性件比如弹簧。在将准直镜302从第一位置调节至第二位置的过程中,弹性件所产生的与磁力的方向相反的弹力能够有效地起到阻尼的作用,且弹力随着准直镜302的位移而不断增大,客观上造成准直镜302的移动速度越来越慢,最终在第二位置时达到力平衡状态,而在准直镜302复位时,弹性件可以提供拉动准直镜302移动的拉力,同时还能提供缓冲以保护准直镜302。在其他优选实施方式中,升降元件21也可以采用其他结构,比如液压升降机、滑轮滑轨组件等,但是相对来说,弹簧具有组装方便、重量轻、体积小、易维护等诸多优点。
可选地,如图5所示,深度检测发射装置300还包括:光学衍射元件306,用于复制经准直镜302的N束光得到N*M束光,并将N*M束光投射至目标对象。
具体地,由准直镜出射的N束光经光学衍射元件衍射后被复制M倍得到N*M束光后被投射至目标对象,能够提高深度检测装置检测范围,M和N均为正整数。
图6示出了本申请的深度检测发射装置的又一示意性结构图,准直镜302位于第二位置,发射装置发射泛光光信号。
本申请实施例还涉及一种电子设备700,包括:
深度检测发射装置300,用于向目标对象发射散斑光以及泛光以在目标对象的表面形成散斑光信号以及泛光光信号;
深度检测接收装置701,用于接收所述散斑光信号以及所述泛光光信号,并将所述光信号转化为对应的电信号;
控制单元702,用于获取所述目标对象的位置信息并将所述位置信息发送给所述深度检测发射装置;以及根据所述电信号计算深度信息,并根据所述深度信息对所述电子设备进行操作和/或控制。
应理解,控制单元702可以是电子设备中的处理器、控制器等。
作为示例而非限定,本申请实施例中的电子设备可以为终端设备、手机、平板电脑、笔记本电脑、台式机电脑、游戏设备、车载电子设备或穿戴式智能设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易 想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种深度检测发射装置,其特征在于,所述发射装置包括:
    光源,所述光源包括N个发光单元,所述N个发光单元相互间隔设置,并用于发射N束光;
    准直镜,所述准直镜用于准直所述N束光;
    调节装置,所述准直镜设置于所述调节装置上,所述光源的光轴与所述准直镜的光轴互相平行,所述调节装置用于调节所述准直镜在所述准直镜的光轴上的位置;
    驱动装置,所述驱动装置用于驱动所述调节装置以将所述准直镜的位置调节至第一位置以使所述N束光在目标对象的表面形成散斑光信号,以及驱动所述调节装置以将所述准直镜调节至第二位置以使所述N束光在所述目标对象的表面形成泛光光信号,其中,所述第一位置与所述第二位置在所述准直镜的光轴方向上具有相对位移。
  2. 根据权利要求1所述的发射装置,其特征在于,所述驱动装置根据所述目标对象的位置信息驱动所述调节装置以将所述准直镜的位置调节至所述第一位置以使所述N束光在所述目标对象的表面形成所述散斑光信号;所述驱动装置根据所述目标对象的位置信息驱动所述调节装置以将所述准直镜的位置调节至所述第二位置以使所述N束光在所述目标对象的表面形成所述散斑光信号。
  3. 根据权利要求1所述的发射装置,其特征在于,所述准直镜包括光入射面和相对于所述光入射面的光出射面,所述准直镜用于准直经所述光入射面穿过并经所述光出射面出射的所述N束光。
  4. 根据权利要求3所述的发射装置,其特征在于,当所述调节装置调节所述准直镜至所述第一位置时,经所述光出射面出射的所述N束光为第一散斑光,所述第一散斑光被投射至所述目标对象以形成所述散斑光信号,当所述调节装置调节所述准直镜至所述第二位置时,经所述光出射面出射的所述N束光为泛光,所述泛光被投射至所述目标对象以形成所述泛光光信号。
  5. 根据权利要求3所述的发射装置,其特征在于,当所述调节装置调节所述准直镜至所述第一位置时,经所述光出射面出射的所述N束光为第一散斑光,所述第一散斑光被投射至所述目标对象以形成所述散斑光信号,当所述调节装置调节所述准直镜至所述第二位置时,经所述光出射面出射的所 述N束光为第二散斑光,所述第二散斑光被投射至所述目标对象以形成所述泛光光信号。
  6. 根据权利要求1-5中任一项所述的发射装置,其特征在于,所述第一位置为使得所述N束光通过所述准直镜后经过第一距离到达所述目标对象的所述散斑光信号的光斑直径为5-7mm的位置,其中,所述第一距离小于等于1m。
  7. 根据权利要求1-6中任一项所述的发射装置,其特征在于,当所述调节装置调节所述准直镜至所述第一位置时,通过所述准直镜后所述N束光的光束发散角小于等于0.3度;当所述调节装置调节所述准直镜至所述第二位置时,通过所述准直镜后所述N束光的光束发散角大于0.3度。
  8. 根据权利要求1-7中任一项所述的发射装置,其特征在于,所述第一位置为使得所述准直镜的焦点与所述N束光的束腰重合的位置。
  9. 根据权利要求1-8中任一项所述的发射装置,其特征在于,所述第二位置为使得所述N束光通过所述准直镜后的对焦位置离所述准直镜的焦点的偏离量大于等于150μm的位置。
  10. 根据权利要求1-9中任一项所述的发射装置,其特征在于,所述第二位置为使得所述N束光通过所述准直镜后的对焦位置离所述准直镜的焦点的偏离量小于等于400μm的位置。
  11. 根据权利要求1-10中任一项所述的发射装置,其特征在于,所述散斑光信号为均匀分布的N个散斑组成的矩阵。
  12. 根据权利要求1-11中任一项所述的发射装置,其特征在于,所述散斑光信号为均匀分布的N个散斑组成的图案。
  13. 根据权利要求1-12中任一项所述的发射装置,其特征在于,所述散斑光信号为随机分布的N个散斑组成的图案。
  14. 根据权利要求1-13中任一项所述的发射装置,其特征在于,所述调节装置包括:
    定子,所述定子设置于所述光源的载板上;
    动子,所述动子连接在所述载板上,所述准直镜设置于所述动子上,所述动子移动使得所述准直镜相对于所述定子沿所述准直镜的光轴方向移动。
  15. 根据权利要求1-14中任一项所述的发射装置,其特征在于,
    所述定子包括第一支架和第一驱动件;
    所述动子包括第二支架、第二驱动件和升降元件;
    所述第一支架固定于所述载板上,所述第一驱动件连接在所述第一支架上;
    所述准直镜固定在所述第二支架上,所述第二支架通过所述升降元件连接在所述载板上,所述第二驱动件安装于所述第二支架中;
    所述第一驱动件和所述第二驱动件互相配合并驱动所述第二支架相对于所述第一支架朝远离所述载板的方向运动。
  16. 根据权利要求1-15中任一项所述的发射装置,其特征在于,所述驱动装置用于根据所述目标对象的位置信息控制所述第一驱动件和所述第二驱动件以第一电流工作以将所述准直镜调节至所述第一位置;或控制所述第一驱动件和所述第二驱动件以第二电流工作以将所述准直镜调节至所述第二位置。
  17. 根据权利要求1-16中任一项所述的发射装置,其特征在于,
    所述第一驱动件包括线圈,所述线圈设置于所述第一支架与所述第二支架之间,所述驱动装置与所述线圈电连接,所述第二驱动件包括永磁体,所述永磁体设置于所述第二支架面朝所述线圈的表面,所述线圈通电产生沿所述光轴方向的磁力推动所述永磁体运动;或者
    所述第二驱动件包括线圈,所述线圈设置于所述第一支架与所述第二支架之间,所述驱动装置与所述线圈电连接,所述第一驱动件包括永磁体,所述永磁体设置于所述第一支架面朝所述线圈的表面,所述线圈通电产生沿所述准直镜的光轴方向的磁力推动所述永磁体运动。
  18. 根据权利要求1-17中任一项所述的发射装置,其特征在于,所述第一支架具有支撑部和悬挂部,所述支撑部自所述载板朝远离所述载板的方向沿所述光轴延伸,所述悬挂部自所述支撑部面朝所述第二支架的内壁向所述第二支架延伸,所述第一驱动件固定连接在所述悬挂部面朝所述载板的下表面。
  19. 根据权利要求1-18中任一项所述的发射装置,其特征在于,所述准直镜为塑胶材质。
  20. 根据权利要求1-19中任一项所述的发射装置,其特征在于,所述准直镜包括沿光轴方向前后排列的多个透镜,所述多个透镜用于准直所述N束光。
  21. 根据权利要求1-20中任一项所述的发射装置,其特征在于,所述装置还包括:光学衍射元件,用于复制经所述准直镜的所述N束光得到N*M束光,并将所述N*M束光投射至所述目标对象。
  22. 根据权利要求1所述的发射装置,其特征在于,所述相对位移使得所述准直镜在所述第一位置时比在所述第二位置时更靠近所述光源。
  23. 一种电子设备,其特征在于,包括:
    如权利要求1-22所述的深度检测发射装置,所述发射装置用于向目标对象发射散斑光以及泛光以在所述目标对象的表面形成散斑光信号以及泛光光信号;
    深度检测接收装置,用于接收所述散斑光信号以及所述泛光光信号,并将所述光信号转化为对应的电信号;
    控制单元,用于获取所述目标对象的位置信息并将所述位置信息发送给所述深度检测发射装置;以及根据所述电信号计算深度信息,并根据所述深度信息对所述电子设备进行操作和/或控制。
PCT/CN2022/074030 2021-06-30 2022-01-26 飞行时间深度测量发射装置及电子设备 WO2023273332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110731874.4 2021-06-30
CN202110731874.4A CN113466884B (zh) 2021-06-30 2021-06-30 飞行时间深度测量发射装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023273332A1 true WO2023273332A1 (zh) 2023-01-05

Family

ID=77874013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074030 WO2023273332A1 (zh) 2021-06-30 2022-01-26 飞行时间深度测量发射装置及电子设备

Country Status (2)

Country Link
CN (1) CN113466884B (zh)
WO (1) WO2023273332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466884B (zh) * 2021-06-30 2022-11-01 深圳市汇顶科技股份有限公司 飞行时间深度测量发射装置及电子设备
CN114063041A (zh) * 2021-11-29 2022-02-18 深圳市汇顶科技股份有限公司 激光雷达发射装置、激光雷达装置及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180149753A1 (en) * 2016-11-30 2018-05-31 Yujin Robot Co., Ltd. Ridar apparatus based on time of flight and moving object
CN110954916A (zh) * 2019-12-18 2020-04-03 深圳奥比中光科技有限公司 一种深度测量装置和深度测量方法
CN111025321A (zh) * 2019-12-28 2020-04-17 深圳奥比中光科技有限公司 一种可变焦的深度测量装置及测量方法
CN211826515U (zh) * 2019-12-18 2020-10-30 深圳奥比中光科技有限公司 一种深度测量装置
US20210063575A1 (en) * 2019-08-29 2021-03-04 Kabushiki Kaisha Toshiba Distance measuring device, distance measuring method, and speed measuring device
CN212694038U (zh) * 2020-04-20 2021-03-12 奥比中光科技集团股份有限公司 一种tof深度测量装置及电子设备
CN213091888U (zh) * 2020-07-30 2021-04-30 奥比中光科技集团股份有限公司 深度测量系统及电子设备
CN113466884A (zh) * 2021-06-30 2021-10-01 深圳市汇顶科技股份有限公司 飞行时间深度测量发射装置及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10866321B2 (en) * 2016-09-01 2020-12-15 Sony Semiconductor Solutions Corporation Imaging device
CN110501714A (zh) * 2019-08-16 2019-11-26 深圳奥锐达科技有限公司 一种距离探测器及距离探测方法
CN111045029B (zh) * 2019-12-18 2022-06-28 奥比中光科技集团股份有限公司 一种融合的深度测量装置及测量方法
CN111142088B (zh) * 2019-12-26 2022-09-13 奥比中光科技集团股份有限公司 一种光发射单元、深度测量装置和方法
CN111025317B (zh) * 2019-12-28 2022-04-26 奥比中光科技集团股份有限公司 一种可调的深度测量装置及测量方法
CN111399245A (zh) * 2020-05-13 2020-07-10 浙江水晶光电科技股份有限公司 一种激光发射模组和3d成像装置
CN111736173B (zh) * 2020-05-24 2023-04-11 奥比中光科技集团股份有限公司 一种基于tof的深度测量装置、方法及电子设备
CN113038041B (zh) * 2020-06-12 2022-09-13 深圳市汇顶科技股份有限公司 成像系统以及相关电子装置及成像系统的操作方法
CN113009494A (zh) * 2021-02-22 2021-06-22 曜芯科技有限公司 深度检测装置和电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180149753A1 (en) * 2016-11-30 2018-05-31 Yujin Robot Co., Ltd. Ridar apparatus based on time of flight and moving object
US20210063575A1 (en) * 2019-08-29 2021-03-04 Kabushiki Kaisha Toshiba Distance measuring device, distance measuring method, and speed measuring device
CN110954916A (zh) * 2019-12-18 2020-04-03 深圳奥比中光科技有限公司 一种深度测量装置和深度测量方法
CN211826515U (zh) * 2019-12-18 2020-10-30 深圳奥比中光科技有限公司 一种深度测量装置
CN111025321A (zh) * 2019-12-28 2020-04-17 深圳奥比中光科技有限公司 一种可变焦的深度测量装置及测量方法
CN212694038U (zh) * 2020-04-20 2021-03-12 奥比中光科技集团股份有限公司 一种tof深度测量装置及电子设备
CN213091888U (zh) * 2020-07-30 2021-04-30 奥比中光科技集团股份有限公司 深度测量系统及电子设备
CN113466884A (zh) * 2021-06-30 2021-10-01 深圳市汇顶科技股份有限公司 飞行时间深度测量发射装置及电子设备

Also Published As

Publication number Publication date
CN113466884A (zh) 2021-10-01
CN113466884B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2023273332A1 (zh) 飞行时间深度测量发射装置及电子设备
EP3786707B1 (en) Projection module and terminal
CN110346944B (zh) 一种激光散斑投射装置
CN108332082A (zh) 照明模组
CN111580282B (zh) 光发射模组、深度相机、电子设备及控制方法
CN108337492A (zh) 动态投影成像装置
WO2023092859A1 (zh) 激光雷达发射装置、激光雷达装置及电子设备
KR20230146492A (ko) 기판의 하측으로 제어장치가 배치되는 광원 모듈
WO2022241778A1 (zh) 飞行时间深度检测的发射装置及电子设备
CN112945144B (zh) 一种多mems振镜结构光三维扫描系统
CN111610534B (zh) 成像装置及成像方法
US8529071B2 (en) Illuminating spatial light modulators using an anamorphic prism assembly
CN109884849B (zh) 结构光投影装置及其制造方法
CN215526244U (zh) 一种可变角度点阵投射模组
KR20220015133A (ko) 거리 측정 카메라
US9158417B2 (en) Position detection system and display system with input function
US20230273427A1 (en) Configurable light emission by selective beam-sweeping
WO2022241781A1 (zh) 飞行时间深度检测的发射装置及电子设备
JP2013003076A (ja) 光源装置、光学式位置検出装置、および入力機能付き表示システム
CN211346717U (zh) 一种光栅投影装置
KR20220152679A (ko) 거리 측정 카메라 모듈
KR20220014717A (ko) 거리 측정 카메라
KR102440167B1 (ko) 거리측정장치 및 거리측정장치의 구동 방법
US20240210795A1 (en) Camera module
KR20210144107A (ko) 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE