WO2023273313A1 - 一种太阳能电池及其制造方法 - Google Patents

一种太阳能电池及其制造方法 Download PDF

Info

Publication number
WO2023273313A1
WO2023273313A1 PCT/CN2022/072560 CN2022072560W WO2023273313A1 WO 2023273313 A1 WO2023273313 A1 WO 2023273313A1 CN 2022072560 W CN2022072560 W CN 2022072560W WO 2023273313 A1 WO2023273313 A1 WO 2023273313A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
layer
silicon wafer
type silicon
glass layer
Prior art date
Application number
PCT/CN2022/072560
Other languages
English (en)
French (fr)
Inventor
马志杰
Original Assignee
西安隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安隆基乐叶光伏科技有限公司 filed Critical 西安隆基乐叶光伏科技有限公司
Priority to AU2022304152A priority Critical patent/AU2022304152A1/en
Priority to EP22831149.4A priority patent/EP4365961A1/en
Publication of WO2023273313A1 publication Critical patent/WO2023273313A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67751Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of solar cells, in particular to a solar cell and a manufacturing method thereof.
  • a phosphosilicate glass layer is formed on both the phosphorous-doped silicon layer and the wrap-around silicon layer. Based on this, it is necessary to remove the phosphosilicate glass layer, silicon coating layer and borosilicate glass layer on the front side of the N-type silicon wafer, and the phosphosilicate glass layer on the back side of the N-type silicon wafer to obtain a solar cell.
  • the purpose of the present disclosure is to provide a solar cell and its manufacturing method, which is used to remove the second phosphosilicate glass layer, the surrounding silicon layer, the borosilicate glass layer and the first phosphosilicate glass layer through the same chain cleaning equipment, reducing the The time spent on the second etching cleaning treatment and the third etching cleaning treatment improves the manufacturing efficiency of the solar cell.
  • the present disclosure provides a method for manufacturing a solar cell, the method for manufacturing a solar cell comprising:
  • Boron diffusion treatment is carried out on one side of the N-type silicon wafer in the first direction, and a diffusion layer and a borosilicate glass layer stacked in sequence are formed on the side of the N-type silicon wafer in the first direction, and on the side of the N-type silicon wafer and the second On one side of the two directions, a wrap-around diffusion layer and a wrap-around borosilicate glass layer are formed.
  • the first corrosion cleaning treatment is performed on the side surface and the second direction side of the N-type silicon wafer after the boron diffusion treatment, and the borosilicate glass layer and the diffusion layer are removed in sequence. And polishing the side of the N-type silicon wafer in the second direction.
  • the side of the second direction of the N-type silicon wafer is processed by a passivation contact process, and a sequentially stacked tunnel oxide layer, doped silicon layer and first phosphosilicate glass are formed on the side of the second direction of the N-type silicon wafer.
  • layer, and at least a portion of the borosilicate glass layer is formed with a silicon coating layer and a second phosphosilicate glass layer.
  • the second corrosion cleaning treatment is performed on the side of the N-type silicon wafer in the first direction after the passivation contact process, and the second phosphosilicate glass layer and the surrounding silicon layer are removed in sequence.
  • the invention can prevent short circuit formed between the upper and lower electrodes of the manufactured solar cell by wrapping the diffusion layer, and improve the working stability of the solar cell.
  • one side of the second direction of the N-type silicon wafer is polished, the roughness of the second direction of the N-type silicon wafer can be reduced, thereby the first side of the N-type silicon wafer can be improved.
  • the reflectivity of one side of the two directions to the light enables the reflected light to undergo a photoelectric effect in the N-type silicon wafer to generate more photogenerated electrons, thereby improving the utilization rate of light energy of the solar cell.
  • both the first corrosion cleaning treatment and the polishing treatment are carried out in the same chain cleaning equipment.
  • the removal of the second phosphosilicate glass layer, the silicon wrapping layer, the borosilicate glass layer and the first phosphosilicate glass layer formed by winding plating or diffusion is also performed in the same chain cleaning process. It is carried out in the equipment, that is, there is no need to transport the correspondingly processed N-type silicon wafers between different cleaning equipments, so that the time wasted in transportation can be reduced and the manufacturing efficiency of solar cells can be improved.
  • the above-mentioned chain cleaning equipment is used to perform the first corrosion cleaning treatment on the side surface of the N-type silicon wafer after the boron diffusion treatment and the side surface in the second direction, and remove the surrounding borosilicate glass layer sequentially. And around the diffusion layer plating. And polishing the side of the second direction of the N-type silicon wafer, including:
  • the side of the N-type silicon wafer in the second direction after the boron diffusion treatment is brought into contact with the conveying roller included in the chain cleaning equipment.
  • the N-type silicon wafer treated by boron diffusion is transported to the pickling tank included in the chain cleaning equipment by using the transport roller.
  • the liquid level of the acid cleaning solution in the pickling tank is higher than the side of the N-type silicon wafer in the second direction and lower than the side of the N-type silicon wafer in the first direction.
  • the N-type silicon wafers treated with the acidic cleaning solution are conveyed to the alkali cleaning tank included in the chain cleaning equipment by using the conveying rollers.
  • the liquid level of the alkaline cleaning solution in the alkaline cleaning tank is higher than the side of the N-type silicon wafer in the second direction and lower than the side of the N-type silicon wafer in the first direction.
  • the side in the second direction of the N-type silicon wafer after the boron diffusion treatment faces the conveying roller. Based on this, after the boron-diffused N-type silicon wafer is transported to the pickling tank by the conveying roller, the borosilicate glass layer formed by the winding plating can contact and react with the acidic cleaning solution in the pickling tank, thereby It is convenient to remove the borosilicate glass layer by acid cleaning solution and expose the diffusion layer of the wrapping.
  • the liquid level of the acidic cleaning solution is lower than the side of the first direction of the N-type silicon wafer, so the diffusion layer and the borosilicate glass layer on the side of the first direction of the N-type silicon wafer cannot be contacted with the acidic cleaning solution.
  • the diffusion layer and the borosilicate glass layer are retained, so that the borosilicate glass layer can be used as a mask for subsequent processing to prevent the diffusion layer and the side of the N-type silicon wafer in the first direction from being subjected to subsequent corrosion cleaning and other treatments. influence and improve the yield of solar cells.
  • the exposed surrounding plating diffusion layer can contact and react with the alkaline cleaning solution in the alkaline cleaning tank, so that it is convenient to pass through the alkaline cleaning solution.
  • the aggressive cleaning solution will remove the surrounding plating diffusion layer, and expose the side of the N-type silicon chip and the side of the second direction. Then, the exposed side of the N-type silicon wafer in the second direction can be polished with an alkaline cleaning solution.
  • the light reflectance of the side of the N-type silicon wafer in the second direction can be increased from 30% to more than 45%, making the N-type silicon wafer the first
  • the side of the two directions can reflect more light back into the N-type silicon chip, thereby further improving the utilization rate of light energy of the solar cell.
  • the manufacturing of the above solar cell Methods also include:
  • deionized water is sprayed on one side in the first direction and one side in the second direction of the polished N-type silicon wafer, and the polished N-type The silicon wafer is subjected to the first cleaning treatment.
  • the above-mentioned chain cleaning equipment is used to perform the second etching and cleaning treatment on the side of the N-type silicon wafer in the first direction after the passivation contact process, and the second phosphosilicate glass layer is removed in sequence. and around silicon plating, including:
  • the side of the N-type silicon wafer in the first direction after the passivation contact process is brought into contact with the conveying roller included in the chain cleaning equipment.
  • the N-type silicon wafer treated with the first cleaning solution is placed in the second cleaning solution by using a conveying roller.
  • the liquid level of the second cleaning solution is higher than the side of the N-type silicon wafer in the first direction. And using the second cleaning solution to remove the surrounding silicon layer.
  • the side of the N-type silicon wafer in the first direction after the passivation contact process faces the conveying roller.
  • the second phosphosilicate glass layer located on the outermost side of the first direction is in contact with the conveying roller. Based on this, during the rotation of the conveying roller, the first cleaning solution in contact with the conveying roller can be brought to the second phosphosilicate glass layer by centripetal force, and react with the second phosphosilicate glass layer to realize the use of the first cleaning solution. , removing the second phosphosilicate glass layer by cleaning the roller with liquid.
  • the effect of the second cleaning solution improves the yield of solar cells manufactured.
  • the silicon coating layer which was adjacent to the second phosphosilicate glass layer is exposed and comes into contact with the transport roller. Based on this, under the transmission of the conveying roller, after the N-type silicon wafer treated by the first cleaning solution is placed in the second cleaning solution, the liquid level of the second cleaning solution is higher than that of the N-type silicon wafer in the first direction. Therefore, the silicon-coated layer is immersed in the second cleaning solution, so that the silicon-coated layer can be removed by the second cleaning solution, and the manufacturing efficiency of the solar cell can be improved.
  • the above-mentioned second cleaning solution includes deionized water, potassium hydroxide solution and polishing additives.
  • the volume ratio of deionized water, potassium hydroxide solution and polishing additive is 30-40:3-4:1.
  • the concentration of potassium hydroxide solution is 40% ⁇ 50%.
  • the cleaning temperature is 69°C-70°C; the cleaning time is 135s-150s.
  • deionized water refers to pure water from which impurities in the form of ions have been removed.
  • the second cleaning solution includes deionized water, potassium hydroxide solution, and polishing additives, the ions in the potassium hydroxide solution will not combine with the ions in the deionized water, thereby not affecting the potassium hydroxide solution.
  • the corresponding ions in the solar cell react with the surrounding silicon layer to ensure the reaction effect, thereby improving the yield rate of the manufactured solar cell.
  • the polishing additive can increase the lateral etching rate of the potassium hydroxide solution and reduce the vertical etching rate of the potassium hydroxide solution, so as to prevent texturing on one side of the N-type silicon wafer in the first direction in the process of removing the silicon plating layer. , realize complete removal of the surrounding silicon layer, and improve the manufacturing yield of solar cells.
  • the removal of the silicon plating layer by using chain cleaning equipment above also includes:
  • the cleaning temperature is 69° C. to 70° C. when the silicon plating layer is removed by the second cleaning solution, the temperature is relatively high.
  • the traditional chain cleaning equipment is an open cleaning equipment or a cleaning equipment with a cover plate, so at a higher cleaning temperature, the deionized aqueous solution in the second cleaning solution evaporates into the environment or stays on the cover plate As a result, the volume ratio of deionized water, potassium hydroxide solution and polishing additive in the second cleaning solution changes.
  • supplementing the deionized water lost due to evaporation in the second cleaning solution can ensure that the volume ratio of deionized water, potassium hydroxide solution and polishing additive meets the requirements in the cleaning process, thereby ensuring the reaction
  • the effect is to improve the yield rate of the manufactured solar cells.
  • solar cells are manufactured in batches to improve manufacturing efficiency.
  • supplementing at least one of deionized water, potassium hydroxide solution and polishing additives in the second cleaning solution can ensure that the deionized water, potassium hydroxide solution in the second cleaning solution under batch production
  • the volume ratio of the polishing additive and the polishing additive satisfies the requirements, so that the cleaning effect can be guaranteed under the condition of improving the manufacturing efficiency.
  • the removal of the borosilicate glass layer using the same chain cleaning equipment includes:
  • the liquid level of the third cleaning solution is higher than the side of the N-type silicon wafer in the first direction.
  • the third cleaning solution is used to remove the borosilicate glass layer.
  • the above-mentioned removal of the first phosphosilicate glass layer using the same chain cleaning equipment includes:
  • the liquid level of the fourth cleaning solution is higher than the side of the N-type silicon wafer in the second direction. And use the fourth cleaning solution to remove the first phosphosilicate glass layer.
  • the N-type silicon wafer after the second etching and cleaning treatment is placed in the third cleaning solution with one side in the first direction or in the fourth cleaning solution with one side in the second direction, so as to Corresponding to the removal of the borosilicate glass layer and the first phosphosilicate glass layer, the removal of the corresponding film layer in different cleaning solutions in the same chain cleaning equipment by inverting the N-type silicon wafer is realized, without the correspondingly treated N Type silicon wafers are transferred to different cleaning equipment to improve manufacturing efficiency.
  • the borosilicate glass layer adjacent to the silicon coating is exposed and contacts the conveying roller.
  • the second cleaning solution will pass through the transfer roller directly after removing the silicon coating layer.
  • One side of the first direction of the treated N-type silicon wafer is placed in the third cleaning solution to first remove the borosilicate glass layer. In this case, it is only necessary to invert the N-type silicon wafer once after removing the borosilicate glass layer.
  • the removal of the borosilicate glass layer and the first phosphosilicate glass layer can be completed, thereby reducing the number of inversions of the N-type silicon wafer, reducing the risk of damage to the N-type silicon wafer by the equipment performing the inversion operation, and improving the solar cell manufacturing yield. At the same time, it can also improve its manufacturing efficiency.
  • the above-mentioned chain cleaning equipment includes a first cleaning tank, a second cleaning tank, a third cleaning tank and a fourth cleaning tank arranged in sequence, and a plurality of conveying rollers for conveying.
  • the first cleaning tank is used for containing the first cleaning liquid for removing the second phosphosilicate glass layer.
  • the diameter of the conveying roller provided above the first cleaning tank is H1.
  • the distance between the liquid surface of the first cleaning solution and the bottom of the conveying roller disposed above the first cleaning tank is H2. 1/3H1 ⁇ H2 ⁇ 1/2H1.
  • the second cleaning tank is used for containing the second cleaning solution for removing the surrounding silicon plating layer.
  • the transfer roller provided on the second cleaning tank is submerged in the second cleaning solution.
  • the third cleaning tank is used for containing the third cleaning solution for removing the borosilicate glass layer.
  • the transfer roller provided on the third cleaning tank is submerged in the third cleaning solution.
  • the fourth cleaning tank is used for containing the fourth cleaning solution for removing the first phosphosilicate glass layer.
  • the transfer roller provided on the fourth cleaning tank is submerged in the fourth cleaning solution.
  • the third cleaning tank is used for containing the fourth cleaning solution for removing the first phosphosilicate glass layer.
  • the transfer roller provided on the third cleaning tank is submerged in the fourth cleaning solution.
  • the fourth cleaning tank is used for holding the third cleaning solution for removing the borosilicate glass layer.
  • the transfer roller provided on the fourth cleaning tank is submerged in the third cleaning solution.
  • the chain cleaning equipment includes the first cleaning tank, the second cleaning tank, the third cleaning tank and the fourth cleaning tank arranged in sequence, and the corresponding cleaning tanks are equipped with equipment for removing the corresponding film layer.
  • the cleaning solution and the conveying rollers arranged on the corresponding cleaning tank are partly or completely located in the corresponding cleaning solution.
  • the chain cleaning equipment can sequentially perform the second corrosion cleaning treatment and the third corrosion cleaning treatment on the N-type silicon wafers treated by the passivation contact process.
  • the second corrosion cleaning treatment and the third corrosion cleaning treatment be completed in the same chain cleaning equipment, and there is no need to carry between different cleaning equipments, but also the corresponding cleaning can be set sequentially through the chain cleaning equipment.
  • the tank continuously removes the corresponding film layers, thereby reducing the time for circulation in the same chain cleaning equipment, and further improving the manufacturing efficiency of solar cells.
  • the above-mentioned chain cleaning equipment further includes a second water washing tank for performing the second cleaning treatment.
  • the second washing tank is arranged between the second washing tank and the third washing tank.
  • the manufacturing method of the above solar cell also includes:
  • deionized water is sprayed on one side in the first direction and one side in the second direction of the N-type silicon wafer after the second etching and cleaning treatment, and the N-type silicon wafer after the second etching and cleaning treatment is sprayed with deionized water.
  • the sheet undergoes a second cleaning treatment.
  • the second cleaning solution will remain on the surface of the N-type silicon wafer treated by the second cleaning solution.
  • the second washing tank pair arranged between the second cleaning tank and the third cleaning tank passes through the second cleaning tank.
  • the N-type silicon wafer is subjected to the second cleaning treatment to completely remove the remaining second cleaning solution with deionized water, which can prevent the second cleaning solution from affecting the cleaning effect of the corresponding cleaning solution and improve the yield of solar cells .
  • the same chain cleaning equipment is used to perform the third corrosion cleaning treatment on the side of the first direction and the side of the second direction of the N-type silicon wafer after the second corrosion cleaning treatment, to remove After the borosilicate glass layer and the first phosphosilicate glass layer, the manufacturing method of the above solar cell also includes:
  • a first passivation layer is formed on the diffusion layer.
  • Passivation treatment is performed on the first passivation layer and the doped silicon layer respectively, so as to form a second passivation layer on both the first passivation layer and the doped silicon layer.
  • the material of the second passivation layer is different from that of the first passivation layer.
  • Metallization is performed on each second passivation layer to form electrodes on the passivation layer.
  • a laminated first passivation layer and a second passivation layer are sequentially formed on the diffusion layer, so as to reduce the recombination rate of one side of the N-type silicon wafer in the first direction after passivation treatment, This enables more majority carriers to be collected by corresponding electrodes on one side of the metallized N-type silicon wafer in the first direction, thereby improving the photoelectric conversion efficiency of the solar cell.
  • the function of the second passivation layer formed on the doped silicon layer can refer to the functions of the first passivation layer and the second passivation layer formed on the diffusion layer, which will not be repeated here.
  • the present disclosure further provides a solar cell, which is manufactured by the solar cell manufacturing method described in the first aspect or any possible implementation manner of the first aspect.
  • FIG. 1 is a flowchart of a method for manufacturing a solar cell provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the first structure after boron diffusion treatment is performed on one side of the N-type silicon wafer in the first direction in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the second structure after boron diffusion treatment is performed on one side of the N-type silicon wafer in the first direction in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the positional relationship between the second direction side of the N-type silicon wafer after boron diffusion treatment and the conveying roller in an embodiment of the disclosure
  • FIG. 5 is a structural schematic diagram of transferring the boron-diffused N-type silicon wafer to the pickling tank by means of a transfer roller in an embodiment of the present disclosure
  • FIG. 6 is a structural schematic diagram of transferring N-type silicon wafers treated with an acidic cleaning solution to an alkaline cleaning tank by using a conveying roller in an embodiment of the present disclosure
  • FIG. 7 is a schematic structural view of the first corrosion and cleaning treatment of the N-type silicon wafer after the boron diffusion treatment by using the chain cleaning equipment in the embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of the first structure of an N-type silicon wafer on one side in the second direction using a passivation contact process in an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a second structure of an N-type silicon wafer in a second direction using a passivation contact process in an embodiment of the present disclosure
  • FIG. 10 is a structural schematic diagram of transferring the N-type silicon wafer treated by the passivation contact process to the first cleaning tank by using the transfer roller in the embodiment of the present disclosure
  • FIG. 11 is a structural schematic diagram of transferring an N-type silicon wafer treated with a first cleaning solution to a second cleaning tank by using a conveying roller in an embodiment of the present disclosure
  • Fig. 12 is a schematic diagram of the positional relationship between the N-type silicon wafer and the conveying roller after the second corrosion cleaning treatment in the embodiment of the present disclosure
  • FIG. 13 is a structural schematic diagram of transferring the N-type silicon wafer after the second etching and cleaning treatment to the third cleaning tank by using the conveying roller in the embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of the positional relationship between the N-type silicon wafer and the conveying roller after being treated by the third cleaning solution in an embodiment of the present disclosure
  • 15 is a structural schematic diagram of transferring the N-type silicon wafer treated by the third cleaning solution to the fourth cleaning tank by using a conveying roller in an embodiment of the present disclosure
  • FIG. 16 is a schematic structural view of the third etching and cleaning treatment on the N-type silicon wafer after the second etching and cleaning treatment using the same chain cleaning equipment in the embodiment of the present disclosure
  • FIG. 17 is a schematic structural view after forming a first passivation layer on the diffusion layer in an embodiment of the present disclosure
  • FIG. 18 is a schematic structural view of a second passivation layer formed on both the first passivation layer and the doped silicon layer in an embodiment of the present disclosure
  • FIG. 19 is a schematic structural view of electrodes formed in an embodiment of the present disclosure.
  • 1 is N-type silicon wafer
  • 2 is diffusion layer
  • 3 is borosilicate glass layer
  • 4 is the borosilicate glass layer around
  • 5 is the diffusion layer around the plating
  • 6 is the tunneling oxide layer
  • 7 is the doped silicon layer
  • 8 is the first phosphosilicate glass layer
  • 9 is the surrounding silicon layer
  • 10 is the second phosphosilicate glass layer
  • 11 is the first passivation layer
  • 12 is the second passivation layer
  • 13 is an electrode
  • 14 is a conveying roller
  • 15 is a pickling tank
  • 16 is an acidic cleaning solution
  • 17 is an alkaline cleaning tank
  • 18 is an alkaline cleaning solution
  • 19 is the first cleaning tank
  • 20 is the first cleaning solution
  • 21 is the second cleaning tank
  • 22 is the second cleaning solution
  • 23 is the third cleaning tank
  • 24 is the third cleaning solution
  • 25 is the fourth cleaning tank
  • 26 is the fourth cleaning solution
  • a layer/element when a layer/element is referred to as being "on" another layer/element, the layer/element may be directly on the other layer/element, or there may be intervening layers/elements in between. element. Additionally, if a layer/element is "on” another layer/element in one orientation, the layer/element can be located “below” the other layer/element when the orientation is reversed.
  • the present disclosure will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present disclosure, not to limit the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more, unless otherwise specifically defined. "Several” means one or more than one, unless otherwise clearly and specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection, or integral connection; it may be mechanical connection or electrical connection; it may be direct connection or indirect connection through an intermediary, and it may be the internal communication of two elements or the interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present disclosure according to specific situations.
  • the tunneling oxide layer passivation contact technology is taken as an example to briefly introduce the passivation contact structure, which is to form an ultra-thin silicon oxide layer on the back of the solar cell by chemical method, and deposit a layer on the ultra-thin silicon oxide layer.
  • a thin layer of doped silicon that together forms a passivation contact structure Due to the small thickness of the ultra-thin silicon oxide layer in the passivation contact structure.
  • the doped silicon thin layer provides field-induced passivation and is selectively permeable to carriers, so the majority carriers can penetrate the two passivation layers, while the minority carriers are blocked.
  • forming a metal electrode on the passivation contact structure can obtain a passivation contact without opening.
  • the metal electrode can collect the multi-carriers that penetrate the ultra-thin silicon oxide layer and the doped silicon thin layer, while the minority carriers that are blocked in the passivation contact structure cannot recombine with the multi-carriers in the metal contact area, thus The compounding rate can be reduced.
  • boron diffusion treatment is first performed on the front side of the N-type silicon wafer to form a P+ layer on the front side of the N-type silicon wafer.
  • a borosilicate glass layer is also formed on the P+ layer at the same time.
  • an oxide layer is grown on the back of the N-type silicon wafer, and a silicon layer (for example, an amorphous silicon layer or a polysilicon layer) is deposited on the oxide layer.
  • the silicon layer is very easy to wrap around the front side of the silicon chip, so that at least part of the borosilicate glass layer on the front side forms a wraparound silicon layer.
  • phosphorous diffusion treatment is performed on the back side of the N-type silicon wafer, so that the silicon layer on the back side forms a doped silicon layer, and a phosphosilicate glass layer is also formed on the doped silicon layer.
  • phosphorus diffusion treatment is performed on the back side of the N-type silicon wafer, so that the silicon layer on the back side forms a doped silicon layer, and a phosphosilicate glass layer is also formed on the doped silicon layer.
  • the silicon wrapping layer is formed on the front side of the N-type silicon wafer, phosphorus will also be diffused on the silicon wrapping layer during the phosphorus diffusion treatment, and a phosphosilicate glass layer will be formed thereon.
  • the existing method is to divide the film layer to be removed into three steps, which are respectively removing the phosphorosilicate glass layer on the front side, removing the silicon plating layer on the front side, and removing the phosphorosilicate glass layer on the back side and the boron borosilicate glass layer on the front side. Silicon glass layer. Moreover, it is necessary to clean and remove different film layers to be removed in different cleaning equipment.
  • N-type silicon wafers formed with corresponding film layers between different cleaning equipments is not only time-consuming and laborious, but also reduces manufacturing efficiency. Silicon wafer contamination, and N-type silicon wafer damage due to friction or collision between N-type silicon wafers and handling equipment, which in turn affects the yield of solar cells.
  • embodiments of the present disclosure provide a solar cell and a manufacturing method thereof.
  • the manufacturing method of the solar cell provided by the embodiment of the present disclosure will be described below according to the corresponding processed structural cross-sectional views shown in FIGS. 2 to 19 .
  • the manufacturing method of this solar cell comprises the following steps:
  • boron diffusion treatment is performed on one side of the N-type silicon wafer 1 in the first direction, and a sequentially stacked diffusion layer 2 and borosilicate glass are formed on the side of the N-type silicon wafer 1 in the first direction.
  • Layer 3 and a borosilicate glass layer 4 and a diffusion layer 5 formed on the side of the N-type silicon wafer 1 and one side in the second direction.
  • the side of the above-mentioned N-type silicon wafer in the first direction may be the front side of the N-type silicon wafer, which is consistent with the front side of the solar cell.
  • one side of the above-mentioned N-type silicon wafer in the second direction may be the back side of the N-type silicon wafer, which is consistent with the back side of the solar cell.
  • the N-type silicon wafer can be an N-type silicon wafer after texturing.
  • the above-mentioned N-type silicon wafer can be an N-type monocrystalline silicon wafer or an N-type polycrystalline silicon wafer.
  • the above-mentioned N-type silicon wafer may be an N-type single crystal silicon wafer, and one side in the first direction has a textured structure.
  • the side of the N-type silicon wafer in the first direction can be treated with an alkaline solution, so that the first side of the N-type silicon wafer One side in one direction forms a pyramid-shaped suede structure.
  • the alkaline solution can be any alkaline solution capable of realizing texturing.
  • the alkaline solution can be potassium hydroxide solution or sodium hydroxide solution, etc.
  • the above-mentioned suede structure can play the role of trapping light, so as to reduce the reflection of light by the solar cell, so that more light can be refracted into the solar cell, and improve the utilization rate of light energy of the solar cell.
  • boron diffusion treatment can be performed on one side of the N-type silicon wafer in the first direction by any one of the BBr 3 liquid source diffusion process, ion implantation process, and dopant source coating advancement process.
  • a diffusion layer 2 be formed on the side of the N-type silicon wafer 1 in the first direction
  • the surrounding plating diffusion layer 5 will also be formed on at least a partial area of one side of the N-type silicon wafer 1 in the second direction (the region is located at the edge of the second direction) and side surfaces due to the winding plating.
  • the surrounding plating diffusion layer 5 is formed on a partial area and side surfaces of one side in the second direction of the N-type silicon wafer 1 .
  • the surrounding plating diffusion layer 5 covers the entire area and side surfaces of one side of the N-type silicon wafer 1 in the second direction.
  • the range of the surrounding plating of the diffusion layer on one side of the N-type silicon wafer in the second direction is related to the process parameters set during the boron diffusion treatment. For example: when the boron diffusion treatment is carried out by the BBr 3 liquid source diffusion process, the gas flow rate and the diffusion temperature are high, which will lead to an increase in the area formed by the surrounding plating diffusion layer on the side of the second direction of the N-type silicon wafer.
  • the above-mentioned texturing process can also be omitted.
  • the doping type of the diffusion layer and the surrounding plating diffusion layer after the boron diffusion treatment is P+ type.
  • chain cleaning equipment is used to perform the first corrosion cleaning treatment on the side surface and the second direction side of the N-type silicon wafer 1 after the boron diffusion treatment, and remove the surrounding borosilicate glass layer sequentially. 4 and around the diffusion layer 5 plating. And polishing is performed on one side of the N-type silicon wafer 1 in the second direction.
  • the upper and lower electrodes of the solar cell are respectively located on one side of the N-type silicon wafer 1 in the first direction and one side in the second direction.
  • the diffusion layer 2 and the borosilicate glass layer 3 after boron diffusion treatment, not only will the diffusion layer 2 and the borosilicate glass layer 3 be formed on one side of the N-type silicon wafer 1 in the first direction, but also due to the winding plating at least in the N Partial region (this region is positioned at the edge of one side of the second direction) and the side of one side of the second direction of the type silicon wafer 1 form the surrounding plating diffusion layer 5 and the surrounding borosilicate glass layer 4 .
  • the presence of the winding diffusion layer 5 will cause a short circuit to be formed between the upper and lower electrodes of the solar cell, so the winding borosilicate glass layer 4 and the winding borosilicate glass layer 4 and the winding plating on the N-type silicon wafer 1 are removed successively before subsequent processing.
  • the diffusion layer 5 is plated around to improve the working stability of the solar cell.
  • one side of the second direction of the N-type silicon wafer 1 is the back side of the solar cell. After removing the surrounding plating diffusion layer 5, the side of the second direction of the N-type silicon wafer 1 is polished, so that the N-type silicon wafer 1 can be reduced.
  • the roughness of one side in the second direction of the N-type silicon wafer 1 can improve the reflectivity of the light on the second direction of the N-type silicon wafer 1, so that the reflected light can generate more photoelectric effect in the N-type silicon wafer 1.
  • Photogenerated electrons can improve the utilization rate of solar cells to light energy.
  • the above chain cleaning equipment is used to perform the first corrosion cleaning treatment on the side surface and the second direction side of the N-type silicon wafer after the boron diffusion treatment, and successively remove the surrounding borosilicate glass layer and the surrounding plating diffusion layer .
  • polishing one side of the second direction of the N-type silicon wafer may include the following steps:
  • the side of the N-type silicon wafer 1 in the second direction after the boron diffusion treatment is brought into contact with the conveying roller 14 included in the chain cleaning equipment.
  • the boron-diffused N-type silicon wafer 1 is transported to the pickling tank 15 included in the chain cleaning equipment by means of the transport roller 14 .
  • the liquid level of the acid cleaning solution 16 in the pickling tank 15 is higher than the side of the N-type silicon wafer 1 in the second direction and lower than the side of the N-type silicon wafer 1 in the first direction.
  • the acid cleaning solution 16 is used to remove the surrounding borosilicate glass layer 4 .
  • the above-mentioned acidic cleaning solution can be any acidic solution capable of removing the borosilicate glass layer.
  • the acidic cleaning solution can be hydrofluoric acid.
  • concentration and liquid level of the above-mentioned acidic cleaning solution, as well as the process conditions for removing the surrounding borosilicate glass layer through the acidic cleaning solution, can be set according to actual needs, as long as it can be applied to the solar energy manufacturing method provided by the embodiments of the present disclosure can be.
  • the side in the second direction of the N-type silicon wafer 1 after the boron diffusion treatment faces the conveying roller 14 .
  • the borosilicate glass layer 4 formed by winding plating can be contacted with the acidic cleaning solution 16 in the pickling tank 15 and reaction, so that the borosilicate glass layer 4 can be easily removed by the acidic cleaning solution 16, and the diffusion layer 5 can be exposed.
  • the liquid level of acid cleaning solution 16 is lower than the one side of the first direction of N-type silicon wafer 1, so the diffusion layer 2 and borosilicate glass layer 3 on the one side of N-type silicon wafer 1 first direction cannot be cleaned with acid.
  • solution 16 so that after being treated by the acidic cleaning solution 16, the diffusion layer 2 and the borosilicate glass layer 3 are retained, so that the borosilicate glass layer 3 can be used as a mask for subsequent processing to prevent the diffusion layer 2 and the N-type silicon wafer 1
  • the side in the first direction is affected by subsequent treatments such as corrosion cleaning, so as to improve the yield rate of the solar cell.
  • the N-type silicon wafer 1 treated with the acid cleaning solution is transported to the alkaline cleaning tank 17 included in the chain cleaning equipment by using the transport roller 14 .
  • the liquid level of the alkaline cleaning solution 18 in the alkaline cleaning tank 17 is higher than the side of the N-type silicon wafer 1 in the second direction and lower than the side of the N-type silicon wafer 1 in the first direction.
  • the alkaline cleaning solution 18 is used to remove the surrounding plating diffusion layer 5 and to perform polishing treatment on the side of the N-type silicon wafer 1 in the second direction.
  • the above-mentioned alkaline cleaning solution may be any alkaline solution capable of removing the surrounding plating diffusion layer.
  • the above-mentioned alkaline cleaning solution may be an alkaline cleaning solution formed of deionized water, potassium hydroxide solution and polishing additives.
  • the volume ratio of deionized water, potassium hydroxide solution and polishing additive may be 33.5:3.7:1.
  • the volume ratios of the above three can also be adjusted according to actual needs, and are not limited to the above ratios.
  • the concentration of the potassium hydroxide solution may be 44%-48% (for example: the concentration of the potassium hydroxide solution may be 44%, 45%, 46%, 47% or 48%, etc.).
  • the above-mentioned polishing additive can be any polishing additive capable of increasing the lateral etching rate of the potassium hydroxide solution and reducing the longitudinal etching rate of the potassium hydroxide solution, so as to prevent texturing on the side of the N-type silicon wafer in the second direction.
  • the polishing additive can be an alkali polishing additive with a model number of PS30 or PS31 provided by Changzhou Shichuang Energy Technology Co., Ltd.
  • the treatment conditions when using an alkaline cleaning solution to remove the diffusion layer around the plating can be set according to actual requirements.
  • the treatment temperature may be 69°C to 70°C.
  • the processing time can be 150s ⁇ 160s.
  • the treatment time in the alkaline washing tank can be adjusted by adjusting the transmission speed of the transmission roller.
  • the treatment temperature for removing the diffusion layer around the plating by the above-mentioned alkaline cleaning solution is generally high (for example: 69 ° C ⁇ 70 ° C), and the solute in the alkaline cleaning solution is easy to evaporate to the external environment or chain cleaning equipment.
  • the included cover plate makes the volume ratio of the components in the alkaline cleaning solution change, so the corresponding solute can be added to the alkaline cleaning tank to make the volume ratio of the components in the alkaline cleaning solution meet the working requirements.
  • the amount of solute added to the alkaline cleaning tank can be determined according to the size of the alkaline cleaning tank and the treatment temperature.
  • the volume flow rate of the solute replenished into the alkaline cleaning tank can be 1/6L/min.
  • corresponding solutes and/or solvents can be added to the alkaline cleaning solution, so that the solubility and corresponding liquid level of the alkaline cleaning solution can meet the working requirements, so that the alkaline cleaning solution can meet the working requirements. In the case of improving manufacturing efficiency, the reaction effect is ensured.
  • the alkaline cleaning solution is an alkaline cleaning solution formed by deionized water, potassium hydroxide solution and polishing additives
  • the amount of the above-mentioned solute and solute replenishment can be determined according to factors such as the rate of batch production, and is not specifically limited here.
  • the exposed surrounding plating diffusion layer 5 can be mixed with the alkali
  • the alkaline cleaning solution 18 in the washing tank 17 contacts and reacts, thereby facilitating the removal of the surrounding plating diffusion layer 5 through the alkaline cleaning solution 18, and exposing the side of the N-type silicon wafer 1 and the side in the second direction. Then, the exposed side of the N-type silicon wafer 1 in the second direction can be polished with the alkaline cleaning solution 18 .
  • the following table illustrates the impact of the two methods on the reflectivity of the side of the N-type silicon wafer in the second direction by using alkaline cleaning solution to perform different degrees of polishing treatment and acid solution polishing treatment in the prior art as examples.
  • Examples 1-3 are the corresponding data after polishing the side of the N-type silicon wafer in the second direction by using an alkaline cleaning solution in the embodiments of the present disclosure.
  • Comparative Examples 1-2 are the corresponding data after polishing the side of the N-type silicon wafer in the second direction by using an acidic solution in the prior art.
  • WCT120 is a minority carrier lifetime testing equipment. The smaller the result data value obtained under the WCT120 test, the flatter the side of the second direction of the N-type silicon wafer and the better the passivation effect.
  • the polishing treatment using an alkaline cleaning solution can increase the reflectivity of the side of the N-type silicon wafer in the second direction to light. It can be increased from about 30% to more than 45%, so that the side of the N-type silicon wafer in the second direction can reflect more light back into the N-type silicon wafer, thereby further improving the utilization rate of light energy of the solar cell.
  • the above solar cell manufacturing method may further include: In the tank, deionized water is sprayed on one side of the polished N-type silicon wafer in the first direction and one side in the second direction, and the first cleaning treatment is performed on the polished N-type silicon wafer. It can be understood that after polishing the side of the N-type silicon wafer in the second direction, at least the corresponding cleaning solution will remain on the side of the N-type silicon wafer in the second direction.
  • the cleaning temperature and cleaning time for the first cleaning treatment of the polished N-type silicon wafer with deionized water can be set according to actual requirements.
  • the cleaning temperature can be 70°C.
  • the cleaning time may be 150s-160s. It should be understood that this cleaning temperature is relatively close to the temperature when removing the surrounding plating diffusion layer, so the first cleaning treatment is performed on the polished N-type silicon wafer at this cleaning temperature, which can prevent damage to the N-type silicon wafer due to a large temperature difference. Silicon wafers, improving the yield of solar cells.
  • under the cleaning time it is possible to ensure that the deionized water can completely wash away the residual alkaline cleaning solution, and at the same time, it is possible to prevent the problem of lowering the manufacturing efficiency due to too long cleaning time.
  • the side of the N-type silicon wafer 1 in the second direction is processed by a passivation contact process, and sequentially stacked tunnel oxide layers are formed on the side of the N-type silicon wafer 1 in the second direction. 6. Doping the silicon layer 7 and the first phosphosilicate glass layer 8 , and forming a silicon coating layer 9 and a second phosphosilicate glass layer 10 on at least part of the borosilicate glass layer 3 .
  • a tunnel oxide layer and a silicon layer may be sequentially deposited on the polished side of the N-type silicon wafer in the second direction by low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, or atomic layer deposition.
  • the material and thickness of the tunneling oxide layer and the silicon layer can be set according to actual requirements.
  • the above-mentioned tunneling oxide layer may be a silicon oxide layer.
  • the aforementioned silicon layer may be an amorphous silicon layer or a polycrystalline silicon layer.
  • a silicon winding layer (the material of the silicon winding layer and the silicon layer is the same) will be formed on at least part of the borosilicate glass layer due to the winding plating.
  • the silicon-coated layer 9 may only be formed on the edge region on the borosilicate glass layer 3 .
  • the silicon plating layer 9 may cover the entire surface of the borosilicate glass layer 3 .
  • the formation range of the silicon plating layer on the borosilicate glass layer is related to the process parameters set when depositing the silicon layer.
  • the silicon layer when depositing a silicon layer, when the gas flow rate of the silicon-based gas introduced into the deposition chamber is relatively high, the formation range around the silicon layer is relatively large. Then, the silicon layer may be subjected to phosphorus diffusion treatment through thermal diffusion process or ion implantation process, so that the silicon layer forms a doped silicon layer. Correspondingly, phosphorus impurities are also doped in the silicon plating layer. At the same time, as shown in Figures 8 and 9, during the phosphorus diffusion process, a first phosphorosilicate glass layer 8 will be formed on the doped silicon layer 7, and a second phosphorous silicon glass layer will be formed on the surrounding silicon layer 9. Silicon glass layer 10.
  • chain cleaning equipment is used to perform a second corrosion cleaning treatment on the side of the N-type silicon wafer 1 in the first direction after the passivation contact process, and the second phosphosilicate glass layer is removed in sequence 10 and around the silicon layer 9.
  • the above-mentioned chain cleaning equipment may include a first cleaning tank and a second cleaning tank arranged in sequence, and a conveying roller for conveying.
  • the first cleaning tank is used to accommodate the first cleaning solution for removing the second phosphosilicate glass layer.
  • the second cleaning tank is used for containing the second cleaning solution for removing the surrounding silicon plating layer.
  • the height relationship between the conveying rollers arranged on the first cleaning tank and the second cleaning tank and the liquid level of the first cleaning solution or the second cleaning solution can be determined according to when removing the second phosphosilicate glass layer and winding the silicon plating layer Depends on the cleaning method used. Exemplarily, as shown in FIG.
  • the diameter of the conveying roller 14 arranged above the first cleaning tank 19 is H1 .
  • the distance between the liquid level of the first cleaning solution 20 and the bottom of the conveying roller 14 disposed above the first cleaning tank 19 is H2.
  • the relationship between the two can be: 1/3H1 ⁇ H2 ⁇ 1/2H1.
  • the conveying roller 14 disposed on the second cleaning tank 21 can be immersed in the second cleaning solution 22 .
  • the above-mentioned first cleaning solution may be any cleaning solution capable of removing the second phosphosilicate glass layer.
  • the above-mentioned first cleaning solution may be a mixed solution of deionized water and hydrofluoric acid.
  • the volume ratio of deionized water to hydrogen fluoride is 10:1 ⁇ 12:1 (for example, the volume ratio can be 10:1, 10.5:1, 11:1 or 12:1, etc.).
  • the second cleaning solution may be any cleaning solution capable of removing the silicon plating layer.
  • the above-mentioned second cleaning solution includes deionized water, potassium hydroxide solution and polishing additives.
  • the volume ratio of deionized water, potassium hydroxide solution and polishing additive is 30-40:3-4:1 (for example: the volume ratio can be 30:3:1, 35:3:1, 40:3:1, 30:4:1, 35:4:1 or 40:4:1, etc.).
  • the concentration of the potassium hydroxide solution is 40%-50% (for example: the concentration can be 40%, 42%, 44%, 46%, 48% or 50%, etc.).
  • the polishing additive reference may be made to the polishing additive contained in the above-mentioned alkaline cleaning solution, which will not be repeated here.
  • the above chain cleaning equipment is used to perform the second etching and cleaning treatment on the side of the N-type silicon wafer treated by the passivation contact process in the first direction, and the second phosphosilicate glass layer and the surrounding silicon layer are removed in sequence. , can include the following steps:
  • the side of the N-type silicon wafer 1 in the first direction after the passivation contact process is brought into contact with the conveying roller 14 included in the chain cleaning equipment.
  • the side of the second direction of the N-type silicon wafer 1 processed by the passivation contact process is covered with a water film (not shown in the figure), and the first cleaning solution 20 is used to carry the liquid with a roller.
  • the second phosphosilicate glass layer 10 is removed by cleaning.
  • the side of the N-type silicon wafer 1 in the first direction after the passivation contact process faces the conveying roller 14 .
  • the second phosphosilicate glass layer 10 located on the outermost side of the first direction is in contact with the conveying roller 14, and the N-type silicon wafer 1 processed by the passivation contact process is conveyed to the first cleaning tank through the conveying roller 14 19.
  • the first cleaning solution 20 in contact with the conveying roller 14 can be brought to the second phosphosilicate glass layer 10 by the centripetal force during the rotation of the conveying roller 14.
  • the cleaning temperature when using the first cleaning solution 20 to remove the second phosphosilicate glass layer 10 can be set according to actual requirements.
  • the cleaning temperature may be 10°C to 25°C.
  • the side of the second direction of the N-type silicon wafer treated by the passivation contact process faces upwards and is covered with a water film.
  • the conveying roller can bring the first cleaning solution to the side of the N-type silicon wafer in the second direction, it will not react with the first phosphosilicate glass layer located on the outermost side of the second direction, so that the first phosphosilicate The glass layer is preserved, so that the first phosphosilicate glass layer can be used as a mask to protect the doped silicon layer during the subsequent removal of the silicon coating layer, preventing the doped silicon layer from being damaged during the subsequent removal of the silicon coating layer.
  • the effect of the second cleaning solution improves the yield of solar cells manufactured.
  • the N-type silicon wafer 1 treated with the first cleaning solution is placed in the second cleaning solution 22 by using the conveying roller 14 .
  • the liquid level of the second cleaning solution 22 is higher than the side of the N-type silicon wafer 1 in the first direction.
  • the second cleaning solution 22 is used to remove the surrounding silicon layer 9 .
  • the silicon plating layer 9 adjacent to the second phosphosilicate glass layer is exposed and contacts the conveying roller 14 .
  • the N-type silicon wafer 1 treated with the first cleaning solution is transported to the second cleaning tank 21 by the transport roller 14 . Since the conveying roller 14 disposed on the second cleaning tank 21 is submerged in the second cleaning solution 22 , the N-type silicon wafer 1 on the conveying roller 14 can be placed in the second cleaning solution 22 .
  • the liquid level of the second cleaning solution 22 can only be flush with the side around the silicon-coated layer 9 close to the borosilicate glass layer 3, or can be higher than the side around the silicon-coated layer 9 close to the borosilicate glass layer 3, as long as It only needs to be able to remove the silicon plating layer 9 through the second cleaning solution 22 .
  • the cleaning conditions when the second cleaning solution 22 is used to remove the silicon plating layer 9 can be set according to actual requirements.
  • the cleaning temperature may be 69°C to 70°C.
  • the cleaning time can be 135s ⁇ 150s.
  • the second cleaning solution includes deionized water, potassium hydroxide solution, and polishing additives
  • the cleaning temperature can be 69° C. to 70° C.
  • the above-mentioned chain cleaning equipment is used to remove the surrounding silicon layer, It may also include: in the process of using the second cleaning solution to remove the surrounding silicon layer, supplementing at least one of deionized water, potassium hydroxide solution and polishing additives in the second cleaning solution, so that the second cleaning solution The volume ratio of deionized water, potassium hydroxide solution and polishing additive satisfies 30-40:3-4:1.
  • the cleaning temperature of the second cleaning solution to remove the silicon plating layer is 69° C. to 70° C., the temperature is relatively high.
  • the traditional chain cleaning equipment is an open cleaning equipment or a cleaning equipment with a cover plate, so at a higher cleaning temperature, the deionized aqueous solution in the second cleaning solution evaporates into the environment or stays on the cover plate As a result, the volume ratio of deionized water, potassium hydroxide solution and polishing additive in the second cleaning solution changes.
  • the cleaning process supplementing the deionized water lost due to evaporation in the second cleaning solution can ensure that the volume ratio of deionized water, potassium hydroxide solution and polishing additive meets the requirements in the cleaning process, thereby ensuring the reaction
  • the effect is to improve the yield rate of the manufactured solar cells.
  • the amount of added deionized water added to the second cleaning tank can be determined according to how to determine the added amount of solute added to the alkali washing tank described above, and will not be repeated here.
  • solar cells are manufactured in batches to improve manufacturing efficiency.
  • supplementing at least one of deionized water, potassium hydroxide solution and polishing additives in the second cleaning solution can ensure that the deionized water, potassium hydroxide solution in the second cleaning solution under batch production
  • the volume ratio of the polishing additive and the polishing additive satisfies the requirements, so that the cleaning effect can be guaranteed under the condition of improving the manufacturing efficiency.
  • the amount of deionized water, potassium hydroxide solution and polishing additive added to the second cleaning tank can be determined according to the batch production rate.
  • the substances to be added to the second cleaning tank can be determined according to the components included in the second cleaning solution.
  • the same chain cleaning equipment is used to perform the third corrosion cleaning treatment on the side of the first direction and the side of the second direction of the N-type silicon wafer 1 after the second corrosion cleaning treatment, respectively,
  • the borosilicate glass layer 3 and the first phosphosilicate glass layer 8 are removed.
  • the chain cleaning equipment performing the third corrosion cleaning treatment is the same chain cleaning equipment as the aforementioned chain cleaning equipment performing the second corrosion cleaning treatment.
  • the chain cleaning equipment also includes a third cleaning tank and a fourth cleaning tank.
  • the first cleaning tank, the second cleaning tank, the third cleaning tank and the fourth cleaning tank included in the chain cleaning equipment are arranged in sequence.
  • the type of the cleaning solution contained in the third cleaning tank and the fourth cleaning tank, and the positional relationship between the conveying rollers arranged on the two and the corresponding cleaning solution liquid level can be determined according to the borosilicate glass layer and the first cleaning solution.
  • the removal sequence and removal method of the phosphosilicate glass layer are set.
  • the third cleaning tank 23 is used to hold the third cleaning solution 24 for removing the borosilicate glass layer 3 .
  • the transfer roller 14 provided on the third cleaning tank 23 is immersed in the third cleaning solution 24 .
  • the fourth cleaning tank 25 is used for receiving a fourth cleaning solution 26 for removing the first phosphosilicate glass layer 8 .
  • the transfer roller 14 provided on the fourth cleaning tank 25 is submerged in the fourth cleaning solution 26 .
  • the third cleaning tank is used to hold the fourth cleaning solution for removing the first phosphosilicate glass layer.
  • the transfer roller provided on the third cleaning tank is submerged in the fourth cleaning solution.
  • the fourth cleaning tank is used for holding the third cleaning solution for removing the borosilicate glass layer.
  • the transfer roller provided on the fourth cleaning tank is submerged in the third cleaning solution.
  • the above-mentioned third cleaning solution may be any cleaning solution capable of removing the borosilicate glass layer.
  • the third cleaning solution may be a mixed solution of deionized water, hydrogen fluoride, hydrogen peroxide and hydrogen chloride.
  • the volume ratio of deionized water, hydrogen fluoride, hydrogen peroxide and hydrogen chloride can be 9 ⁇ 10:4 ⁇ 4.5:1 ⁇ 1.2:1.2 (for example: the volume ratio can be 9:4:1:1.2, 9.5:4 :1:1.2 or 10:4.5:1.2:1.2 etc.).
  • the fourth cleaning solution may be any cleaning solution capable of removing the first phosphosilicate glass layer.
  • the fourth cleaning solution may be a mixed solution of deionized water and hydrogen fluoride.
  • the volume ratio of deionized water to hydrogen fluoride is 5.5 ⁇ 6:1 (eg, the volume ratio may be 5.5:1, 5.7:1 or 6:1, etc.).
  • the above-mentioned removal of the borosilicate glass layer 3 by using the same chain cleaning equipment may include: placing the side of the N-type silicon wafer 1 in the first direction after the second etching and cleaning treatment on the second Three cleaning solutions 24.
  • the liquid level of the third cleaning solution 24 is higher than the side of the N-type silicon wafer 1 in the first direction.
  • the third cleaning solution 24 is used to remove the borosilicate glass layer 3 .
  • the third cleaning tank 23 is used to accommodate the third cleaning solution 24 for removing the borosilicate glass layer 3, after the second etching and cleaning treatment, with The borosilicate glass layer 3 adjoining the silicon coating is exposed and is in contact with the transport roller 14 .
  • the N-type silicon wafer 1 after the second etching and cleaning process can be directly transported to the third cleaning tank 23 by the transport roller 14 . Since the conveying roller 14 disposed in the third cleaning tank 23 is immersed in the third cleaning solution 24 , the N-type silicon wafer 1 on the conveying roller 14 can be placed in the third cleaning solution 24 .
  • the liquid level of the third cleaning solution 24 can only be flush with the side of the borosilicate glass layer 3 close to the diffusion layer 2, or can be higher than the side of the borosilicate glass layer 3 close to the diffusion layer 2, as long as it can pass through the third cleaning solution.
  • the cleaning solution 24 only needs to remove the borosilicate glass layer 3 .
  • the fourth cleaning tank is used to accommodate the third cleaning solution for removing the borosilicate glass layer
  • the doped silicon adjacent to the first phosphosilicate glass layer The layers are exposed and in contact with the transfer rollers. Based on this, before the N-type silicon wafer treated with the fourth cleaning solution is transferred to the fourth cleaning tank by the transfer roller, it needs to be inverted so that the borosilicate glass layer contacts the transfer roller. Specifically, how to remove the borosilicate glass layer through the third cleaning solution in the fourth cleaning tank and the liquid level of the third cleaning solution can be referred to above, and will not be repeated here.
  • the above-mentioned removal of the first phosphosilicate glass layer 8 by using the same chain cleaning equipment may include: placing the side of the N-type silicon wafer 1 in the second direction after the second etching and cleaning treatment In the fourth cleaning solution 26.
  • the liquid level of the fourth cleaning solution 26 is higher than the side of the N-type silicon wafer 1 in the second direction. And use the fourth cleaning solution 26 to remove the first phosphosilicate glass layer 8 .
  • the liquid level of the fourth cleaning solution 26 may only be level with the side of the first phosphosilicate glass layer 8 close to the doped silicon layer 7, or may be higher than that of the first phosphosilicate glass layer 8 close to the doped silicon layer 7. On the one hand, as long as the first phosphosilicate glass layer 8 can be removed by the fourth cleaning solution 26 .
  • the third cleaning tank is used to accommodate the fourth cleaning solution for removing the first phosphosilicate glass layer
  • the borosilicate glass layer adjacent to the surrounding silicon plating layer is exposed, and contact with the transfer roller.
  • the transfer roller Based on this, before the N-type silicon wafer after the second etching and cleaning treatment is transferred to the third cleaning tank by the transfer roller, it needs to be inverted so that the first phosphosilicate glass layer is in contact with the transfer roller.
  • how to remove the first phosphosilicate glass layer through the fourth cleaning solution in the third cleaning tank and the liquid level of the fourth cleaning solution can be referred to above, and will not be repeated here.
  • the borosilicate glass layer 3 adjacent to the silicon-coated layer is exposed and is in contact with the conveying roller. 14 contacts. Based on this, compared with removing the first phospho-silicate glass layer 8 after removing the silicon plating layer, the N-type silicon wafer 1 needs to be inverted twice. One side of the first direction of the N-type silicon wafer 1 treated by the second cleaning solution is placed in the third cleaning solution 24 to remove the borosilicate glass layer 3 first.
  • the removal of the borosilicate glass layer 3 and the first phosphosilicate glass layer 8 can be completed by one inversion operation of the silicon wafer 1, thereby reducing the number of inversions of the N-type silicon wafer 1 and reducing the equipment used for the inversion operation of the N-type silicon wafer 1
  • the risk of damage can improve the manufacturing efficiency of solar cells while improving the yield of solar cells.
  • the above-mentioned chain cleaning equipment may further include a second water washing tank for performing the second cleaning treatment.
  • the second washing tank is arranged between the second washing tank and the third washing tank.
  • the above solar cell manufacturing method may further include: Spray deionized water on one side in the first direction and one side in the second direction of the N-type silicon wafer, and perform a second cleaning treatment on the N-type silicon wafer after the second etching and cleaning treatment.
  • the second cleaning solution will remain on the surface of the N-type silicon wafer treated with the second cleaning solution.
  • the second washing tank pair arranged between the second cleaning tank and the third cleaning tank passes through the second cleaning tank.
  • the N-type silicon wafer is subjected to the second cleaning treatment to completely remove the remaining second cleaning solution with deionized water, which can prevent the second cleaning solution from affecting the cleaning effect of the corresponding cleaning solution and improve the yield of solar cells .
  • the cleaning temperature and cleaning time for the second cleaning treatment of the N-type silicon wafer after the second cleaning solution with deionized water can be set according to actual needs.
  • the cleaning temperature can be 70°C.
  • the cleaning time can be 135s ⁇ 150s. It should be understood that the cleaning temperature is relatively close to the temperature at which the silicon plating layer is removed. Therefore, at this cleaning temperature, the second cleaning treatment is performed on the N-type silicon wafer after the second cleaning solution treatment, which can prevent damage to the silicon wafer due to a large temperature difference. Damage the N-type silicon wafer and improve the yield of solar cells.
  • the cleaning time it can be ensured that the deionized water can completely wash away the remaining second cleaning solution, and at the same time, the problem of lowering the manufacturing efficiency caused by the cleaning time being too long can be prevented.
  • the first corrosion cleaning treatment and the polishing treatment are both carried out in the same chain cleaning equipment. Moreover, after the passivation contact process is adopted, the removal of the second phosphosilicate glass layer, the silicon wrapping layer, the borosilicate glass layer and the first phosphosilicate glass layer formed by winding plating or diffusion is also performed in the same chain cleaning process.
  • the cleaning time of the silicon plating layer, the borosilicate glass layer and the first phosphosilicate glass layer of about 90 minutes can be reduced to 15 minutes to 20 minutes, which greatly improves the manufacturing efficiency of the solar cell.
  • it can also prevent the handling equipment installed between different cleaning equipment from causing damage to the N-type silicon wafer due to factors such as bumping or friction, and prevent the N-type silicon wafer from staying in the external environment for a long time during the handling process.
  • the N-type silicon wafers are polluted due to the reaction with air, and finally the yield rate of the manufactured solar cells can be increased from about 59.1% to more than 98%.
  • the same chain cleaning equipment is used to perform the third corrosion cleaning treatment on the side of the first direction and the side of the second direction of the N-type silicon wafer after the second corrosion cleaning treatment to remove the borosilicate glass.
  • the manufacturing method of the above solar cell may also include:
  • a first passivation layer 11 is formed on the diffusion layer 2 .
  • the above-mentioned first passivation layer may be formed by processes such as chemical vapor deposition or atomic layer deposition.
  • the material and thickness of the first passivation layer can be set according to actual requirements.
  • the material of the first passivation layer may be aluminum oxide.
  • the doping type of the diffusion layer is P+ type, and the negative fixed charge carried by aluminum oxide has a shielding effect on the electron carriers (minority carriers) on the silicon surface, which can reduce the surface electron carrier.
  • the concentration of electrons can reduce the surface recombination rate, so that the electrodes located on one side of the N-type silicon wafer in the first direction can collect more hole carriers and improve the photoelectric conversion efficiency of the solar cell.
  • passivation treatment is carried out on the first passivation layer 11 and the doped silicon layer 7 respectively, so as to form a second passivation layer 12 on the first passivation layer 11 and on the doped silicon layer 7 .
  • the material of the second passivation layer 12 is different from that of the first passivation layer 11 .
  • the second passivation layer can be formed on the first passivation layer and the doped silicon layer respectively by chemical vapor deposition or atomic layer deposition.
  • the material and thickness of the second passivation layer can be set according to actual requirements.
  • the material of the second passivation layer may be silicon nitride.
  • the silicon nitride layer has anti-reflection effect, forming the second passivation layer on the first passivation layer and the doped silicon layer can increase the absorption of light by the solar cell and improve the light energy of the solar cell. utilization rate.
  • metallization treatment is performed on each second passivation layer 12 to form electrodes 13 on the second passivation layer 12 .
  • the above-mentioned electrodes can be formed by processes such as printing and sintering.
  • the specific position of the electrode on the second passivation layer and the material of the electrode can be set according to actual needs.
  • the material of the electrode can be metal materials such as silver, copper or nickel.
  • An embodiment of the present disclosure also provides a solar cell, which is manufactured by the solar cell manufacturing method provided in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开公开了一种太阳能电池及其制造方法,涉及太阳能电池技术领域,用于提高太阳能电池的制造效率。太阳能电池的制造方法包括:对N型硅片的第一方向的一面进行硼扩散处理。在N型硅片的第一方向的一面上形成依次层叠的扩散层和硼硅玻璃层。利用链式清洗设备依次去除绕镀至N型硅片上的绕镀硼硅玻璃层和绕镀扩散层。并对N型硅片的第二方向的一面进行抛光处理。采用钝化接触工艺对N型硅片的第二方向的一面进行处理,在N型硅片的第二方向的一面上形成层叠的遂穿氧化层、掺杂硅层和第一磷硅玻璃层。利用链式清洗设备去除至少绕镀在部分硼硅玻璃层上的第二磷硅玻璃层和绕镀硅层。利用同一链式清洗设备去除硼硅玻璃层和第一磷硅玻璃层。

Description

一种太阳能电池及其制造方法
相关申请的交叉引用
本公开要求在2021年06月28日提交中国专利局、申请号为202110718685.3、名称为“一种太阳能电池及其制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及太阳能电池技术领域,尤其涉及一种太阳能电池及其制造方法。
背景技术
在采用钝化接触技术制造太阳能电池的过程中,对N型硅片的正面进行硼扩散处理后,在N型硅片的背面依次形成氧化层和硅层(例如:非晶硅层或多晶硅层)。此时,容易因绕镀在位于N型硅片正面的硼硅玻璃层上形成绕镀硅层。接着在对N型硅片的背面进行磷扩散处理后,会使得位于N型硅片背面的硅层、以及位于N型硅片正面的绕镀硅层内均掺杂有磷。并且,在掺杂有磷的硅层和绕镀硅层上均形成了磷硅玻璃层。基于此,需要去除位于N型硅片正面的磷硅玻璃层、绕镀硅层和硼硅玻璃层、以及位于N型硅片背面的磷硅玻璃层,以获得太阳能电池。
但是,采用现有方法去除位于N型硅片正面的磷硅玻璃层、绕镀硅层和硼硅玻璃层、以及位于N型硅片背面的磷硅玻璃层需要花费较长的时间,降低了太阳能电池的制造效率。
概述
本公开的目的在于提供一种太阳能电池及其制造方法,用于通过同一链式清洗设备去除第二磷硅玻璃层、绕镀硅层、硼硅玻璃层和第一磷硅玻璃层,降低第二腐蚀清洗处理和第三腐蚀清洗处理所花费的时间,提高太阳能电池的制造效率。
第一方面,本公开提供了一种太阳能电池的制造方法,该太阳能电池的 制造方法包括:
对N型硅片的第一方向的一面进行硼扩散处理,在N型硅片的第一方向的一面上形成依次层叠的扩散层和硼硅玻璃层、以及在N型硅片的侧面和第二方向的一面上形成绕镀扩散层和绕镀硼硅玻璃层。
利用链式清洗设备,对经硼扩散处理后的N型硅片的侧面和第二方向的一面进行第一腐蚀清洗处理,依次去除绕镀硼硅玻璃层和绕镀扩散层。并对N型硅片的第二方向的一面进行抛光处理。
采用钝化接触工艺对N型硅片的第二方向的一面进行处理,在N型硅片的第二方向的一面上形成依次层叠的遂穿氧化层、掺杂硅层和第一磷硅玻璃层、以及至少在部分硼硅玻璃层上形成绕镀硅层和第二磷硅玻璃层。
利用链式清洗设备,对经钝化接触工艺处理后的N型硅片的第一方向的一面进行第二腐蚀清洗处理,依次去除第二磷硅玻璃层和绕镀硅层。
利用同一链式清洗设备,分别对经第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面进行第三腐蚀清洗处理,去除硼硅玻璃层和第一磷硅玻璃层。
采用上述技术方案的情况下,在对N型硅片的第一方向的一面进行硼扩散处理后,不仅会在N型硅片的第一方向的一面上形成依次层叠的扩散层和硼硅玻璃层,还会在N型硅片第二方向的一面的至少部分区域、以及N型硅片的侧面上绕镀形成绕镀扩散层和绕镀硼硅玻璃层。而对经硼扩散处理后的N型硅片的侧面和第二方向的一面进行第一腐蚀清洗处理,依次去除绕镀至N型硅片上的绕镀硼硅玻璃层和绕镀扩散层,可以防止制造的太阳能电池具有的上、下电极之间通过绕镀扩散层而形成短路,提高太阳能电池的工作稳定性。并且,在进行第一腐蚀清洗后,对N型硅片的第二方向的一面进行抛光处理,可以降低N型硅片的第二方向的一面的粗糙度,从而可以提高N型硅片的第二方向的一面对光线的反射率,使得反射的光线可以在N型硅片内发生光电效应产生更多的光生电子,进而能够提高太阳能电池对光能的利用率。
同时,第一腐蚀清洗处理和抛光处理均在同一链式清洗设备内进行。并且,后续在采用钝化接触工艺处理后,去除因绕镀或扩散而形成的第二磷硅玻璃层、绕镀硅层、硼硅玻璃层和第一磷硅玻璃层也是在同一链式清洗设备中内进行,即无需将进行相应处理后的N型硅片在不同的清洗设备之间进行 搬运,从而可以缩减搬运所浪费的时间,提高太阳能电池的制造效率。另一方面,也可以防止设置在不同清洗设备之间的搬运设备因磕碰或摩擦等因素对N型硅片造成损伤、以及防止在搬运过程中因N型硅片在外界环境中滞留时间较长而与空气发生反应造成N型硅片受到污染,最终可以提高所制造的太阳能电池的良率。
在一种可能的实现方式中,上述利用链式清洗设备,对经硼扩散处理后的N型硅片的侧面和第二方向的一面进行第一腐蚀清洗处理,依次去除绕镀硼硅玻璃层和绕镀扩散层。并对N型硅片的第二方向的一面进行抛光处理,包括:
将经硼扩散处理后的N型硅片的第二方向的一面与链式清洗设备所包括的传送辊接触。
利用传送辊将经硼扩散处理后的N型硅片传送至链式清洗设备所包括的酸洗槽。位于酸洗槽内的酸性清洗溶液的液面高于N型硅片的第二方向的一面、且低于N型硅片的第一方向的一面。并采用酸性清洗溶液去除绕镀硼硅玻璃层。
利用传送辊将经酸性清洗溶液处理后的N型硅片传送至链式清洗设备所包括的碱洗槽。位于碱洗槽内的碱性清洗溶液的液面高于N型硅片的第二方向的一面、且低于N型硅片的第一方向的一面。并采用碱性清洗溶液去除绕镀扩散层、以及对N型硅片的第二方向的一面进行抛光处理。
采用上述技术方案的情况下,经硼扩散处理后的N型硅片的第二方向的一面朝向传送辊。基于此,通过传送辊将经硼扩散处理后的N型硅片传送至酸洗槽后,因绕镀形成的绕镀硼硅玻璃层可以与酸洗槽内的酸性清洗溶液接触并反应,从而便于通过酸性清洗溶液将绕镀硼硅玻璃层去除,并使得绕镀扩散层暴露在外。并且,酸性清洗溶液的液面低于N型硅片的第一方向的一面,故位于N型硅片第一方向的一面上的扩散层和硼硅玻璃层无法与酸性清洗溶液接触,从而在经酸性清洗溶液处理后,扩散层和硼硅玻璃层得以保留,使得硼硅玻璃层可以作为后续处理的掩膜,防止扩散层和N型硅片第一方向的一面受到后续腐蚀清洗等处理的影响,提高太阳能电池的良率。此外,通过传送辊将经酸性清洗溶液处理后的N型硅片传送至碱洗槽后,暴露在外的绕镀扩散层可以与碱洗槽内的碱性清洗溶液接触并反应,从而便于通过碱性 清洗溶液将绕镀扩散层去除,并使得N型硅片的侧面和第二方向的一面暴露在外。接着通过碱性清洗溶液可以对暴露在外的N型硅片第二方向的一面进行抛光处理。与采用酸性清洗溶液进行抛光处理相比,采用碱性清洗溶液抛光后,N型硅片第二方向的一面对光线的反射率可以由30%提升至45%以上,使得N型硅片第二方向的一面可以将更多的光线反射回N型硅片内,进而能够进一步提高太阳能电池对光能的利用率。
在一种可能的实现方式中,对N型硅片的第二方向的一面进行抛光处理后,采用钝化接触工艺对N型硅片的第二方向的一面进行处理前,上述太阳能电池的制造方法还包括:
在链式清洗设备所包括的第一水洗槽中,向经抛光处理后的N型硅片的第一方向的一面和第二方向的一面喷淋去离子水,对经抛光处理后的N型硅片进行第一清洗处理。
采用上述技术方案的情况下,对N型硅片的第二方向的一面进行抛光处理后会至少在N型硅片第二方向的一面残留有相应的清洗溶液。基于此,在采用钝化接触工艺对N型硅片第二方向的一面进行处理前,在第一水洗槽中向N型硅片第一方向和第二方向的一面喷淋去离子水,以全部将N型硅片上残留的清洗溶液清洗掉,防止清洗溶液对N型硅片或遂穿氧化层等膜层的形成产生影响,提高制造的太阳能电池的良率。
在一种可能的实现方式中,上述利用链式清洗设备,对经钝化接触工艺处理后的N型硅片的第一方向的一面进行第二腐蚀清洗处理,依次去除第二磷硅玻璃层和绕镀硅层,包括:
将经钝化接触工艺处理后的N型硅片的第一方向的一面与链式清洗设备所包括的传送辊接触。
将经钝化接触工艺处理后的N型硅片的第二方向的一面铺满水膜,并采用第一清洗溶液,以滚轮带液清洗方式去除第二磷硅玻璃层。
利用传送辊将经第一清洗溶液处理后的N型硅片置于第二清洗溶液中。第二清洗溶液的液面高于N型硅片的第一方向的一面。并采用第二清洗溶液去除绕镀硅层。
采用上述技术方案的情况下,经钝化接触工艺处理后的N型硅片第一方向的一面朝向传送辊。此时,位于第一方向的一面最外侧的第二磷硅玻璃层 与传送辊接触。基于此,在传送辊转动的过程中,可以通过向心力将与传送辊接触的第一清洗溶液带至第二磷硅玻璃层处,并与第二磷硅玻璃层反应,实现采用第一清洗溶液,以滚轮带液清洗方式去除第二磷硅玻璃层。同时,在去除第二磷硅玻璃层的过程中,因在经钝化接触工艺处理后的N型硅片第二方向的一面向上,并在其上铺满水膜。此时,即使传送辊可以将第一清洗溶液带至N型硅片第二方向的一面上也不会与位于第二方向的一面最外侧的第一磷硅玻璃层反应,使得第一磷硅玻璃层得以保留,进而能够在后续去除绕镀硅层的过程中以第一磷硅玻璃层作为保护掺杂硅层的掩膜,防止掺杂硅层在后续去除绕镀硅层的过程中受到第二清洗溶液的影响,提高制造太阳能电池的良率。此外,在去除第二磷硅玻璃层后使得原与第二磷硅玻璃层邻接的绕镀硅层暴露在外、并与传送辊接触。基于此,在传送辊的传送下,将经第一清洗溶液处理后的N型硅片置于第二清洗溶液中后,因第二清洗溶液的液面高于N型硅片的第一方向的一面,故绕镀硅层浸没在第二清洗溶液内,便于采用第二清洗溶液去除绕镀硅层,提高太阳能电池的制造效率。
在一种可能的实现方式中,上述第二清洗溶液包括去离子水、氢氧化钾溶液和抛光添加剂。去离子水、氢氧化钾溶液和抛光添加剂的体积比为30~40:3~4:1。氢氧化钾溶液的浓度为40%~50%。清洗温度为69℃~70℃;清洗时间为135s~150s。
采用上述技术方案的情况下,去离子水是指除去了呈离子形式杂质后的纯水。基于此,在第二清洗溶液包括去离子水、氢氧化钾溶液和抛光添加剂的情况下,氢氧化钾溶液中的离子不会与去离子水中的离子相结合,从而不会影响氢氧化钾溶液中相应离子与绕镀硅层发生反应,确保反应效果,从而能够提高制造的太阳能电池的良率。此外,抛光添加剂能够增大氢氧化钾溶液横向刻蚀速率、且降低氢氧化钾溶液纵向刻蚀速率,以防止在去除绕镀硅层的过程中在N型硅片第一方向的一面制绒,实现完全去除绕镀硅层,提高太阳能电池的制造良率。
在一种可能的实现方式中,上述利用链式清洗设备去除绕镀硅层,还包括:
采用第二清洗溶液去除绕镀硅层的过程中,向第二清洗溶液中补充去离子水、氢氧化钾溶液和抛光添加剂中的至少一种,以使第二清洗溶液中的去 离子水、氢氧化钾溶液和抛光添加剂的体积比满足30~40:3~4:1。
采用上述技术方案的情况下,因在通过第二清洗溶液去除绕镀硅层时的清洗温度为69℃~70℃,其温度较高。并且,传统的链式清洗设备为开放式的清洗设备或者为设置有盖板的清洗设备,故在较高的清洗温度下第二清洗溶液中的去离子水溶液蒸发到环境中或滞留在盖板上,从而导致第二清洗溶液中去离子水、氢氧化钾溶液和抛光添加剂的体积比发生变化。而在清洗过程中,向第二清洗溶液中补充因蒸发而流失掉的去离子水,可以确保在清洗过程中去离子水、氢氧化钾溶液和抛光添加剂的体积比满足要求,从而能够确保反应效果,提高制造的太阳能电池的良率。此外,在实际的应用过程中,太阳能电池为批量制造,以提高制造效率。基于此,在清洗过程中,向第二清洗溶液中补充去离子水、氢氧化钾溶液和抛光添加剂中的至少一种,可以确保批量制造下第二清洗溶液中去离子水、氢氧化钾溶液和抛光添加剂的体积比满足要求,从而能够在提高制造效率的情况下保证清洗效果。
在一种可能的实现方式中,上述利用同一链式清洗设备去除硼硅玻璃层,包括:
将经第二腐蚀清洗处理后的N型硅片的第一方向的一面置于第三清洗溶液中。第三清洗溶液的液面高于N型硅片的第一方向的一面。并采用第三清洗溶液去除硼硅玻璃层。
上述利用同一链式清洗设备去除第一磷硅玻璃层,包括:
将经第二腐蚀清洗处理后的N型硅片的第二方向的一面置于第四清洗溶液中。第四清洗溶液的液面高于N型硅片的第二方向的一面。并采用第四清洗溶液去除第一磷硅玻璃层。
采用上述技术方案的情况下,将经第二腐蚀清洗处理后的N型硅片分别以第一方向的一面置于第三清洗溶液或以第二方向的一面置于第四清洗溶液中,以对应去除硼硅玻璃层和第一磷硅玻璃层,实现通过倒置N型硅片的方式在同一链式清洗设备内的不同清洗溶液中对相应膜层的去除,无需将进行相应处理后的N型硅片转移至不同的清洗设备内,提高制造效率。同时,因在去除了位于第一方向的一面的绕镀硅层后,与绕镀硅层邻接的硼硅玻璃层暴露在外、并与传送辊接触。基于此,与在去除绕镀硅层后先去除第一磷硅玻璃层需要将N型硅片进行两次倒置操作相比,在去除绕镀硅层后直接通过 传送辊将经第二清洗溶液处理后的N型硅片的第一方向的一面置于第三清洗溶液中先去除硼硅玻璃层,在此情况下只需在去除硼硅玻璃层后将N型硅片进行一次倒置操作就可以完成硼硅玻璃层和第一磷硅玻璃层的去除,从而可以减少N型硅片的倒置次数,降低N型硅片被执行倒置操作的设备损伤的风险,在提高太阳能电池制造良率的同时也能够提升其制造效率。
在一种可能的实现方式中,上述链式清洗设备包括依次设置的第一清洗槽、第二清洗槽、第三清洗槽和第四清洗槽,以及用于传送的多个传送辊。其中,
第一清洗槽用于承装去除第二磷硅玻璃层的第一清洗液。设置在第一清洗槽的上方的传送辊的直径为H1。第一清洗溶液的液面与设置在第一清洗槽的上方的传送辊的底部之间的距离为H2。1/3H1≤H2≤1/2H1。
第二清洗槽用于承装去除绕镀硅层的第二清洗溶液。设置在第二清洗槽上的传送辊浸没在第二清洗溶液内。
第三清洗槽用于承装去除硼硅玻璃层的第三清洗溶液。设置在第三清洗槽上的传送辊浸没在第三清洗溶液内。第四清洗槽用于承装去除第一磷硅玻璃层的第四清洗溶液。设置在第四清洗槽上的传送辊浸没在第四清洗溶液内。或,第三清洗槽用于承装去除第一磷硅玻璃层的第四清洗溶液。设置在第三清洗槽上的传送辊浸没在第四清洗溶液内。第四清洗槽用于承装去除硼硅玻璃层的第三清洗溶液。设置在第四清洗槽上的传送辊浸没在第三清洗溶液内。
采用上述技术方案的情况下,在链式清洗设备包括依次设置的第一清洗槽、第二清洗槽、第三清洗槽和第四清洗槽,并且相应清洗槽内承装有去除相应膜层的清洗液、以及设置在相应清洗槽上的传送辊部分或全部位于相应清洗溶液内。基于此,通过该链式清洗设备可以依次对经钝化接触工艺处理后的N型硅片进行第二腐蚀清洗处理和第三腐蚀清洗处理。换句话说,不仅能够在同一链式清洗设备内完成第二腐蚀清洗处理和第三腐蚀清洗处理,无需在不同的清洗设备之间进行搬运,还能够通过该链式清洗设备依次设置的相应清洗槽连续对相应膜层进行去除,从而能够缩减在同一链式清洗设备内进行流转的时间,进一步提高太阳能电池的制造效率。
在一种可能的实现方式中,上述链式清洗设备还包括用于进行第二清洗处理的第二水洗槽。第二水洗槽设置在第二清洗槽和第三清洗槽之间。
采用链式清洗设备去除绕镀硅层后,利用同一链式清洗设备去除硼硅玻璃层前,上述太阳能电池的制造方法还包括:
在第二水洗槽中,向经第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面喷淋去离子水,对经第二腐蚀清洗处理后的N型硅片进行第二清洗处理。
采用上述技术方案的情况下,在第二清洗槽内通过第二清洗溶液去除绕镀硅层后,经第二清洗溶液处理后的N型硅片的表面会残留有第二清洗溶液。基于此,在第三清洗槽内通过相应清洗溶液去除硼硅玻璃层或第一磷硅玻璃层前,通过设置在第二清洗槽和第三清洗槽之间的第二水洗槽对经第二清洗溶液处理后的N型硅片进行第二清洗处理,以采用去离子水全部去除掉残留的第二清洗溶液,可以防止第二清洗溶液影响相应清洗溶液的清洗效果,提高太阳能电池的良率。
在一种可能的实现方式中,利用同一链式清洗设备,分别对经第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面进行第三腐蚀清洗处理,去除硼硅玻璃层和第一磷硅玻璃层后,上述太阳能电池的制造方法还包括:
在扩散层上形成第一钝化层。
在第一钝化层和掺杂硅层上分别进行钝化处理,以在第一钝化层上和掺杂硅层上均形成第二钝化层。第二钝化层的材质与第一钝化层的材质不同。
在每层第二钝化层上进行金属化处理,以在钝化层上形成电极。
采用上述技术方案的情况下,在扩散层上依次形成有层叠的第一钝化层和第二钝化层,以降低经钝化处理后的N型硅片第一方向的一面的复合速率,使得更多的多数载流子能够在经金属化处理后的N型硅片第一方向的一面被相应电极所收集,提高太阳能电池的光电转换效率。同理,在掺杂硅层上形成的第二钝化层的作用可参考扩散层上形成的第一钝化层和第二钝化层的作用,此处不再赘述。
第二方面,本公开还提供了一种太阳能电池,该太阳能电池由第一方面或第一方面中任一种可能实现方式所描述的太阳能电池的制造方法制造形成。
本公开中第二方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的太阳能电池的制造方法流程图;
图2为本公开实施例中对N型硅片的第一方向的一面进行硼扩散处理后的第一种结构示意图;
图3为本公开实施例中对N型硅片的第一方向的一面进行硼扩散处理后的第二种结构示意图;
图4为本公开实施例中将经硼扩散处理后的N型硅片的第二方向的一面与传送辊接触后的位置关系示意图;
图5为本公开实施例中利用传送辊将经硼扩散处理后的N型硅片传送至酸洗槽的结构示意图;
图6为本公开实施例中利用传送辊将经酸性清洗溶液处理后的N型硅片传送至碱洗槽的结构示意图;
图7为本公开实施例中利用链式清洗设备对经硼扩散处理后的N型硅片进行第一腐蚀清洗处理后的结构示意图;
图8为本公开实施例中采用钝化接触工艺对N型硅片的第二方向的一面进行后的第一种结构示意图;
图9为本公开实施例中采用钝化接触工艺对N型硅片的第二方向的一面进行后的第二种结构示意图;
图10为本公开实施例中利用传送辊将经钝化接触工艺处理后的N型硅片传送至第一清洗槽的结构示意图;
图11为本公开实施例中利用传送辊将经第一清洗溶液处理后的N型硅片传送至第二清洗槽的结构示意图;
图12为本公开实施例中经第二腐蚀清洗处理后的N型硅片与传送辊之间 的位置关系示意图;
图13为本公开实施例中利用传送辊将经第二腐蚀清洗处理后的N型硅片传送至第三清洗槽的结构示意图;
图14为本公开实施例中经第三清洗溶液处理后的N型硅片与传送辊之间的位置关系示意图;
图15为本公开实施例中利用传送辊将经第三清洗溶液处理后的N型硅片传送至第四清洗槽的结构示意图;
图16为本公开实施例中利用同一链式清洗设备对经第二腐蚀清洗处理处理后的N型硅片进行第三腐蚀清洗处理后的结构示意图;
图17为本公开实施例中在扩散层上形成第一钝化层后的结构示意图;
图18为本公开实施例中在第一钝化层和掺杂硅层上均形成第二钝化层后的结构示意图;
图19为本公开实施例中形成电极后的结构示意图。
附图标记:
1为N型硅片,          2为扩散层,            3为硼硅玻璃层,
4为绕镀硼硅玻璃层,   5为绕镀扩散层,        6为遂穿氧化层,
7为掺杂硅层,         8为第一磷硅玻璃层,    9为绕镀硅层,
10为第二磷硅玻璃层,  11为第一钝化层,       12为第二钝化层,
13为电极,            14为传送辊,           15为酸洗槽,
16为酸性清洗溶液,    17为碱洗槽,           18为碱性清洗溶液,
19为第一清洗槽,      20为第一清洗溶液,     21为第二清洗槽,
22为第二清洗溶液,    23为第三清洗槽,       24为第三清洗溶液,
25为第四清洗槽,      26为第四清洗溶液。
具体实施例
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了 某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
太阳能电池的表面钝化一直是太阳能电池设计和优化的重中之重。从早期的背电场钝化,到现阶段背面引入氧化硅、氧化铝、氮化硅等介质层的钝化局部开孔接触的钝化发射极背场点接触(PERC)/钝化发射极背部局域扩散(PERL)设计。虽然上述PERC和PERL结构能够在一定程度上降低背表面电学复合速率,但是其将背面的接触范围限制在开孔区域,在增加了工艺复杂度的同时,在开孔过程中还会对硅基体造成刻蚀损伤,从而增加了金属接触区域的复合速率,使得太阳能电池的光电转换效率较低。
针对于上述技术问题,本领域技术人员研发出了钝化接触技术,该技术 无需在背面开孔,可以实现整面钝化,从而能够有效降低复合损失。其中,以遂穿氧化层钝化接触技术为例简单介绍钝化接触结构,其是在太阳能电池背面用化学方法形成一层超薄氧化硅层,以及在超薄氧化硅层上淀积一层掺杂硅薄层,二者共同形成钝化接触结构。因钝化接触结构中的超薄氧化硅层的厚度较小。并且,掺杂硅薄层提供了场致钝化并对载流子有选择透过性,故多子可以穿透这两层钝化层,而少子则被阻挡。基于此,在钝化接触结构上形成金属电极,就可以得到无需开孔的钝化接触。此时,该金属电极可以对穿透超薄氧化硅层和掺杂硅薄层的多子进行收集,而被阻挡在钝化接触结构内的少子无法在金属接触区域与多子发生复合,从而可以降低复合速率。
在采用钝化接触技术制造太阳能电池的过程中,以硅片是N型硅片为例,首先对N型硅片的正面进行硼扩散处理,以在N型硅片的正面形成P+层。同时也会在P+层上形成硼硅玻璃层。在去除背结后,在N型硅片的背面生长一层氧化层、以及在氧化层上淀积一层硅层(例如:非晶硅层或多晶硅层)。该硅层极易绕镀在硅片的正面,从而至少在正面的部分硼硅玻璃层上形成绕镀硅层。接着对N型硅片的背面进行磷扩散处理,以使得背面的硅层形成掺杂硅层,并且也会在掺杂硅层上形成磷硅玻璃层。同时,因N型硅片的正面形成有绕镀硅层,故在进行磷扩散处理的过程中,也会对绕镀硅层进行磷扩散,并在其上形成磷硅玻璃层。在上述情况下,为获得太阳能电池,需要去除位于N型硅片正面的磷硅玻璃层、绕镀硅层和硼硅玻璃层、以及去除位于N型硅片背面的磷硅玻璃层。具体的,现有方法是将上述待去除的膜层分为三个步骤,分别为去除正面的磷硅玻璃层、去除正面的绕镀硅层、以及去除背面的磷硅玻璃层和正面的硼硅玻璃层。并且,需要分别在不同的清洗设备中对不同的待去除的膜层进行清洗去除。
但是,将形成有相应膜层的N型硅片在不同的清洗设备之间进行搬运不仅费时费力,降低制造效率的同时,还会因N型硅片在空气中滞留时间过长而造成N型硅片污染,以及因N型硅片与搬运设备之间发生摩擦或磕碰等问题而造成N型硅片损伤,进而影响太阳能电池的良率。
如图1所示,为了解决上述技术问题,本公开实施例提供了一种太阳能电池及其制造方法。下文将根据图2至图19示出的相应处理后的结构剖视图,对本公开实施例提供的太阳能电池的制造方法进行描述。具体的,该太阳能 电池的制造方法包括以下步骤:
如图2和图3所示,对N型硅片1的第一方向的一面进行硼扩散处理,在N型硅片1的第一方向的一面上形成依次层叠的扩散层2和硼硅玻璃层3、以及在N型硅片1的侧面和第二方向的一面上形成绕镀硼硅玻璃层4和绕镀扩散层5。
其中,上述N型硅片的第一方向的一面可以为N型硅片的正面,其与太阳能电池的正面相一致。相应的,上述N型硅片的第二方向的一面可以为N型硅片的背面,其与太阳能电池的背面相一致。此外,从结构方面来讲,该N型硅片可以为经制绒处理后的N型硅片。从材质方面来讲,上述N型硅片可以N型单晶硅片或N型多晶硅片。例如:上述N型硅片可以为N型单晶硅片,且其第一方向的一面具有绒面结构。
示例性的,在N型硅片为经制绒处理的N型硅片的情况下,可以利用碱性溶液对N型硅片的第一方向的一面进行处理,以在N型硅片的第一方向的一面形成金字塔形貌的绒面结构。该碱性溶液可以为任一能够实现制绒处理的碱性溶液。例如:该碱性溶液可以为氢氧化钾溶液或氢氧化钠溶液等。上述绒面结构可以起到陷光的作用,以减少太阳能电池对光线的反射,使得更多的光线可以折射到太阳能电池内,提高太阳能电池对光能的利用率。接着可以通过BBr 3液态源扩散工艺、离子注入工艺、掺杂源涂布推进工艺中的任一种对N型硅片的第一方向的一面进行硼扩散处理。具体的,如图2和图3所示,在对N型硅片1的第一方向的一面进行硼扩散处理后,不仅会在N型硅片1的第一方向的一面形成扩散层2,还会因绕镀至少在N型硅片1的第二方向的一面的部分区域(该区域位于第二方向的一面的边缘)和侧面形成绕镀扩散层5。例如:如图2所示,绕镀扩散层5形成在了N型硅片1的第二方向的一面的部分区域和侧面上。又例如:如图3所示,绕镀扩散层5覆盖在了N型硅片1第二方向的一面的全部区域和侧面上。其中,绕镀扩散层在N型硅片的第二方向的一面绕镀的范围与进行硼扩散处理时设置的工艺参数相关。例如:当通过BBr 3液态源扩散工艺进行硼扩散处理时,气体流量和扩散温度较高会导致绕镀扩散层在N型硅片第二方向的一面上形成的范围增大。此外,在对N型硅片第一方向的一面进行硼扩散处理过程中,不仅会在N型硅片的表面形成上述扩散层和上述绕镀扩散层,还会在扩散层上形成硼 硅玻璃层、以及在绕镀扩散层上形成绕镀硼硅玻璃层。
需要说明的是,在一些太阳能电池的制造方法中,上述制绒工序也可以省略。此外,在进行硼扩散处理后的扩散层和绕镀扩散层的掺杂类型为P+型。
如图4至图7所示,利用链式清洗设备,对经硼扩散处理后的N型硅片1的侧面和第二方向的一面进行第一腐蚀清洗处理,依次去除绕镀硼硅玻璃层4和绕镀扩散层5。并对N型硅片1的第二方向的一面进行抛光处理。
可以理解的是,如图19所示,太阳能电池的上、下电极分别位于N型硅片1的第一方向的一面和第二方向的一面。并且,如图2和图3所示,在经硼扩散处理后不仅会在N型硅片1的第一方向的一面形成扩散层2和硼硅玻璃层3,还会因绕镀至少在N型硅片1的第二方向的一面的部分区域(该区域位于第二方向的一面的边缘)和侧面形成绕镀扩散层5和绕镀硼硅玻璃层4。基于此,绕镀扩散层5的存在会使得太阳能电池的上、下电极之间形成短路,因此在进行后续处理前依次去除绕镀至N型硅片1上的绕镀硼硅玻璃层4和绕镀扩散层5,以提高太阳能电池的工作稳定性。此外,N型硅片1的第二方向的一面为太阳能电池的背面,在去除绕镀扩散层5后对N型硅片1的第二方向的一面进行抛光处理,可以降低N型硅片1的第二方向的一面的粗糙度,从而可以提高N型硅片1的第二方向的一面对光线的反射率,使得反射的光线可以在N型硅片1内发生光电效应产生更多的光生电子,进而能够提高太阳能电池对光能的利用率。
示例性的,上述利用链式清洗设备,对经硼扩散处理后的N型硅片的侧面和第二方向的一面进行第一腐蚀清洗处理,依次去除绕镀硼硅玻璃层和绕镀扩散层。并对N型硅片的第二方向的一面进行抛光处理,可以包括以下步骤:
如图4所示,将经硼扩散处理后的N型硅片1的第二方向的一面与链式清洗设备所包括的传送辊14接触。
如图5所示,利用传送辊14将经硼扩散处理后的N型硅片1传送至链式清洗设备所包括的酸洗槽15。位于酸洗槽15内的酸性清洗溶液16的液面高于N型硅片1的第二方向的一面、且低于N型硅片1的第一方向的一面。并采用酸性清洗溶液16去除绕镀硼硅玻璃层4。
示例性的,上述酸性清洗溶液可以为任一能够去除绕镀硼硅玻璃层的酸 性溶液。例如:酸性清洗溶液可以为氢氟酸。上述酸性清洗溶液的浓度和液面高度、以及通过酸性清洗溶液去除绕镀硼硅玻璃层时的工艺条件,可以根据实际需求进行设置,只要能够应用到本公开实施例提供的太阳能的制造方法中均可。
可以理解的是,如图5所示,因经硼扩散处理后的N型硅片1的第二方向的一面朝向传送辊14。通过传送辊14将经硼扩散处理后的N型硅片1传送至酸洗槽15后,因绕镀形成的绕镀硼硅玻璃层4可以与酸洗槽15内的酸性清洗溶液16接触并反应,从而便于通过酸性清洗溶液16将绕镀硼硅玻璃层4去除,并使得将绕镀扩散层5暴露在外。并且,酸性清洗溶液16的液面低于N型硅片1的第一方向的一面,故位于N型硅片1第一方向的一面上的扩散层2和硼硅玻璃层3无法与酸性清洗溶液16接触,从而在经酸性清洗溶液16处理后,扩散层2和硼硅玻璃层3得以保留,使得硼硅玻璃层3可以作为后续处理的掩膜,防止扩散层2和N型硅片1第一方向的一面受到后续腐蚀清洗等处理的影响,提高太阳能电池的良率。
如图6和图7所示,利用传送辊14将经酸性清洗溶液处理后的N型硅片1传送至链式清洗设备所包括的碱洗槽17。位于碱洗槽17内的碱性清洗溶液18的液面高于N型硅片1的第二方向的一面、且低于N型硅片1的第一方向的一面。并采用碱性清洗溶液18去除绕镀扩散层5、以及对N型硅片1的第二方向的一面进行抛光处理。
示例性的,上述碱性清洗溶液可以为任一能够去除绕镀扩散层的碱性溶液。例如:上述碱性清洗溶液可以是由去离子水、氢氧化钾溶液和抛光添加剂形成的碱性清洗溶液。其中,去离子水、氢氧化钾溶液和抛光添加剂的体积比可以为33.5:3.7:1。当然,上述三者的体积比还可以根据实际需求进行调整,并不仅限于上述比值。此外,上述氢氧化钾溶液的浓度可以为44%~48%(例如:氢氧化钾溶液的浓度可以为44%、45%、46%、47%或48%等)。上述抛光添加剂可以为任一能够增大氢氧化钾溶液横向刻蚀速率、且降低氢氧化钾溶液纵向刻蚀速率的抛光添加剂,以防止在N型硅片第二方向的一面制绒。例如:抛光添加剂可以是由常州时创能源科技公司提供的型号为PS30或PS31的碱抛光添加剂。此外,采用碱性清洗溶液去除绕镀扩散层时的处理条件可以根据实际需求设置。例如:处理温度可以为69℃~70℃。处理时间可以 为150s~160s。其中,在碱洗槽内的处理时间可以通过调节传送辊传送速率的方式来进行调整。
需要说明的是,通过上述碱性清洗溶液去除绕镀扩散层的处理温度一般较高(例如:69℃~70℃),碱性清洗溶液中的溶质易蒸发至外界环境或链式清洗设备所包括的盖板上,而使得碱性清洗溶液内各成分的体积比发生变化,因此可以通过向碱洗槽内补充相应的溶质,以使得碱性清洗溶液内各成分的体积比满足工作要求。具体的,可以依据碱洗槽的大小和处理温度来确定向碱洗槽内补充多少溶质。例如:在碱洗槽的容积为350L、且处理温度在70℃的情况下,向碱洗槽内补充的溶质的体积流量可以为1/6L/min。此外,还可以在批量生产太阳能电池的情况下,向碱性清洗溶液中补充相应的溶质和/或溶剂,以使得碱性清洗溶液的溶度和相应的液面高度满足工作要求,从而可以在提高制造效率的情况下,确保反应效果。例如:碱性清洗溶液是由去离子水、氢氧化钾溶液和抛光添加剂形成的碱性清洗溶液的情况下,可以向碱性清洗溶液中补充去离子水、氢氧化钾溶液和抛光添加剂中的任一种。其中,上述溶质和溶质补充的量可以根据批量制造的速率等因素来确定,此处不做具体限定。
可以理解的是,如图6和图7所示,通过传送辊14将经酸性清洗溶液处理后的N型硅片1传送至碱洗槽17后,暴露在外的绕镀扩散层5可以与碱洗槽17内的碱性清洗溶液18接触并反应,从而便于通过碱性清洗溶液18将绕镀扩散层5去除,并使得N型硅片1的侧面和第二方向的一面暴露在外。接着通过碱性清洗溶液18可以对暴露在外的N型硅片1第二方向的一面进行抛光处理。
下表以采用碱性清洗溶液进行不同程度的抛光处理、以及现有技术中经酸性溶液抛光处理为例,说明两种方式下对N型硅片第二方向的一面的反射率的影响。
项目 方块大小 反射率 WCT120(J0) 电压 电流(A)
实施例1 15um 45% 3fA/cm 2 700mV 9.9702
实施例2 17um 47% 3fA/cm 2 701mV 9.9681
实施例3 17um 47% 3fA/cm 2 700mV 9.9766
对比例1 无(酸绒面) 31% 9fA/cm 2 697mV 9.9122
对比例2 无(酸绒面) 32% 8fA/cm 2 697mV 9.9125
其中,实施例1~3为本公开实施例中采用碱性清洗溶液对N型硅片第二方向的一面进行抛光处理后的相应数据。对比例1~2为现有技术中采用酸性溶液对N型硅片第二方向的一面进行抛光处理后的相应数据。WCT120为少子寿命测试设备。在WCT120测试下其获得的结果数据值越小,说明N型硅片第二方向的一面越平坦、钝化效果越好。在此情况下,由上表中的数据可以看出,与采用酸性溶液进行抛光处理相比,采用碱性清洗溶液进行抛光处理可以使得N型硅片第二方向的一面对光线的反射率可以由30%左右提升至45%以上,使得N型硅片第二方向的一面可以将更多的光线反射回N型硅片内,进而能够进一步提高太阳能电池对光能的利用率。
在一种示例中,在对N型硅片的第二方向的一面进行抛光处理后,在进行后续处理前,上述太阳能电池的制造方法还可以包括:在链式清洗设备所包括的第一水洗槽中,向经抛光处理后的N型硅片的第一方向的一面和第二方向的一面喷淋去离子水,对经抛光处理后的N型硅片进行第一清洗处理。可以理解的是,对N型硅片的第二方向的一面进行抛光处理后会至少在N型硅片第二方向的一面残留有相应的清洗溶液。基于此,在采用钝化接触工艺对N型硅片第二方向的一面进行处理前,在第一水洗槽中向N型硅片第一方向和第二方向的一面喷淋去离子水,以全部将N型硅片上残留的清洗溶液清洗掉,防止清洗溶液对N型硅片或遂穿氧化层等膜层的形成产生影响,提高制造的太阳能电池的良率。
其中,在第一水洗槽中,采用去离子水对经抛光处理后的N型硅片进行第一清洗处理的清洗温度和清洗时间可以根据实际需求进行设置。例如:清洗温度可以为70℃。清洗时间可以为150s~160s。应理解,该清洗温度与去除 绕镀扩散层时的温度比较接近,因此在该清洗温度下对经抛光处理后的N型硅片进行第一清洗处理,可以防止因温差较大而损伤N型硅片,提高太阳能电池的良率。并且,在该清洗时间下,可以确保去离子水能够完全冲洗掉残留的碱性清洗溶液的同时,可以防止因清洗时间过长而导致制造效率降低的问题。
如图8和图9所示,采用钝化接触工艺对N型硅片1的第二方向的一面进行处理,在N型硅片1的第二方向的一面上形成依次层叠的遂穿氧化层6、掺杂硅层7和第一磷硅玻璃层8、以及至少在部分硼硅玻璃层3上形成绕镀硅层9和第二磷硅玻璃层10。
示例性的,可以通过低压化学气相沉积工艺、等离子体增强化学气相沉积或原子层沉积等工艺在经抛光处理后的N型硅片的第二方向的一面依次沉积遂穿氧化层和硅层。其中,遂穿氧化层和硅层的材质和厚度可以根据实际需求进行设置。例如:上述遂穿氧化层可以为氧化硅层。上述硅层可以为非晶硅层或多晶硅层。此外,在遂穿氧化层上沉积硅层的同时还会因绕镀而至少在部分硼硅玻璃层上形成绕镀硅层(该绕镀硅层与硅层的材质相同)。例如:如图8所示,该绕镀硅层9可以仅形成在硼硅玻璃层3上的边缘区域上。又例如:如图9所示,该绕镀硅层9可以覆盖在硼硅玻璃层3的全部表面上。具体的,绕镀硅层在硼硅玻璃层上的形成范围与沉积硅层时所设置的工艺参数相关。例如:在沉积硅层时,向沉积腔室内通入的硅基气体的气体流通速率较大时,绕镀硅层形成范围较大。接着可以通过热扩散工艺或离子注入等工艺对硅层进行磷扩散处理,使得硅层形成掺杂硅层。相应的,绕镀硅层内也掺杂有磷杂质。同时,如图8和图9所示,在进行磷扩散处理的过程中,还会在掺杂硅层7上形成第一磷硅玻璃层8、以及在绕镀硅层9上形成第二磷硅玻璃层10。
如图10至图12所示,利用链式清洗设备,对经钝化接触工艺处理后的N型硅片1的第一方向的一面进行第二腐蚀清洗处理,依次去除第二磷硅玻璃层10和绕镀硅层9。
其中,上述链式清洗设备可以包括依次设置的第一清洗槽和第二清洗槽、以及用于传送的传送辊。具体的,第一清洗槽用于承装去除第二磷硅玻璃层的第一清洗液。第二清洗槽用于承装去除绕镀硅层的第二清洗溶液。此外, 设置在第一清洗槽和第二清洗槽上的传送辊分别与第一清洗溶液或第二清洗溶液液面之间的高度关系可以根据去除第二磷硅玻璃层和绕镀硅层时所采用的清洗方式来确定。示例性的,如图10所示,通过滚轮带液清洗方式去除第二磷硅玻璃层10时,设置在第一清洗槽19的上方的传送辊14的直径为H1。第一清洗溶液20的液面与设置在第一清洗槽19的上方的传送辊14的底部之间的距离为H2。二者之间的关系可以为:1/3H1≤H2≤1/2H1。如图11所示,而在通过浸入在清洗液中的方式去除绕镀硅层9时,设置在第二清洗槽21上的传送辊14可以浸没在第二清洗溶液22内。
此外,上述第一清洗溶液可以为任一能够去除第二磷硅玻璃层的清洗溶液。例如:上述第一清洗溶液可以为去离子水和氢氟酸的混合溶液。去离子水和氟化氢的体积比为10:1~12:1(例如:该体积比可以为10:1、10.5:1、11:1或12:1等)。
对于上述第二清洗溶液来说,第二清洗溶液可以为任一能够去除绕镀硅层的清洗溶液。例如:上述第二清洗溶液包括去离子水、氢氧化钾溶液和抛光添加剂。去离子水、氢氧化钾溶液和抛光添加剂的体积比为30~40:3~4:1(例如:该体积比可以为30:3:1、35:3:1、40:3:1、30:4:1、35:4:1或40:4:1等)。氢氧化钾溶液的浓度为40%~50%(例如:该浓度可以为40%、42%、44%、46%、48%或50%等)。此外,该抛光添加剂的具体情况可以参考前文所述的碱性清洗溶液中所包括的抛光添加剂,此处不再赘述。
示例性的,上述利用链式清洗设备,对经钝化接触工艺处理后的N型硅片的第一方向的一面进行第二腐蚀清洗处理,依次去除第二磷硅玻璃层和绕镀硅层,可以包括以下步骤:
如图10所示,将经钝化接触工艺处理后的N型硅片1的第一方向的一面与链式清洗设备所包括的传送辊14接触。
如图10所示,将经钝化接触工艺处理后的N型硅片1的第二方向的一面铺满水膜(图中未示出),并采用第一清洗溶液20,以滚轮带液清洗方式去除第二磷硅玻璃层10。
在实际的应用中,如图10所示,经钝化接触工艺处理后的N型硅片1第一方向的一面朝向传送辊14。此时,位于第一方向的一面最外侧的第二磷硅玻璃层10与传送辊14接触,并通过传送辊14将经钝化接触工艺处理后的N 型硅片1传送至第一清洗槽19。在承装有第一清洗溶液20的第一清洗槽19内,在传送辊14转动的过程中,可以通过向心力将与传送辊14接触的第一清洗溶液20带至第二磷硅玻璃层10处,并与第二磷硅玻璃层10反应,实现采用第一清洗溶液20,以滚轮带液清洗方式去除第二磷硅玻璃层10。具体的,采用第一清洗溶液20去除第二磷硅玻璃层10时的清洗温度可以根据实际需求进行设置。例如:清洗温度可以为10℃~25℃。
值得注意的是,在去除第二磷硅玻璃层的过程中,因在经钝化接触工艺处理后的N型硅片第二方向的一面向上,并在其上铺满水膜。此时,即使传送辊可以将第一清洗溶液带至N型硅片第二方向的一面上也不会与位于第二方向的一面最外侧的第一磷硅玻璃层反应,使得第一磷硅玻璃层得以保留,进而能够在后续去除绕镀硅层的过程中以第一磷硅玻璃层作为保护掺杂硅层的掩膜,防止掺杂硅层在后续去除绕镀硅层的过程中受到第二清洗溶液的影响,提高制造太阳能电池的良率。
如图11所示,利用传送辊14将经第一清洗溶液处理后的N型硅片1置于第二清洗溶液22中。第二清洗溶液22的液面高于N型硅片1的第一方向的一面。并采用第二清洗溶液22去除绕镀硅层9。
在实际的应用中,如图11所示,在去除第二磷硅玻璃层后使得原与第二磷硅玻璃层邻接的绕镀硅层9暴露在外、并与传送辊14接触。基于此,通过传送辊14将经第一清洗溶液处理后的N型硅片1传送至第二清洗槽21。因设置在第二清洗槽21上的传送辊14浸没在第二清洗溶液22内,故位于传送辊14上的N型硅片1可以置于第二清洗溶液22中。具体的,第二清洗溶液22的液面可以仅与绕镀硅层9靠近硼硅玻璃层3的一面平齐,或者也可以高于绕镀硅层9靠近硼硅玻璃层3的一面,只要能够通过第二清洗溶液22将绕镀硅层9去除即可。其中,采用第二清洗溶液22去除绕镀硅层9时的清洗条件可以根据实际需求进行设置。例如:清洗温度可以为69℃~70℃。清洗时间可以为135s~150s。
在一种示例中,在第二清洗溶液包括去离子水、氢氧化钾溶液和抛光添加剂,并且清洗温度可以为69℃~70℃的情况下,上述利用链式清洗设备去除绕镀硅层,还可以包括:采用第二清洗溶液去除绕镀硅层的过程中,向第二清洗溶液中补充去离子水、氢氧化钾溶液和抛光添加剂中的至少一种,以使 第二清洗溶液中的去离子水、氢氧化钾溶液和抛光添加剂的体积比满足30~40:3~4:1。
可以理解的是,因在通过第二清洗溶液去除绕镀硅层时的清洗温度为69℃~70℃,其温度较高。并且,传统的链式清洗设备为开放式的清洗设备或者为设置有盖板的清洗设备,故在较高的清洗温度下第二清洗溶液中的去离子水溶液蒸发到环境中或滞留在盖板上,从而导致第二清洗溶液中去离子水、氢氧化钾溶液和抛光添加剂的体积比发生变化。而在清洗过程中,向第二清洗溶液中补充因蒸发而流失掉的去离子水,可以确保在清洗过程中去离子水、氢氧化钾溶液和抛光添加剂的体积比满足要求,从而能够确保反应效果,提高制造的太阳能电池的良率。具体的,向第二清洗槽内补充去离子水的添加量可以根据前文所述的如何确定向碱洗槽内补充溶质的添加量的方式来确定,此处不再赘述。此外,在实际的应用过程中,太阳能电池为批量制造,以提高制造效率。基于此,在清洗过程中,向第二清洗溶液中补充去离子水、氢氧化钾溶液和抛光添加剂中的至少一种,可以确保批量制造下第二清洗溶液中去离子水、氢氧化钾溶液和抛光添加剂的体积比满足要求,从而能够在提高制造效率的情况下保证清洗效果。具体的,可以根据批量制造速率来确定向第二清洗槽内补充去离子水、氢氧化钾溶液和抛光添加剂的添加量。
需要说明的是,在第二清洗溶液为其他可以去除绕镀硅层的清洗溶液的情况下,向第二清洗槽内补充的物质可以根据第二清洗溶液所包括的成分来确定。
如图13至图16所示,利用同一链式清洗设备,分别对经第二腐蚀清洗处理后的N型硅片1的第一方向的一面和第二方向的一面进行第三腐蚀清洗处理,去除硼硅玻璃层3和第一磷硅玻璃层8。
其中,进行第三腐蚀清洗处理的链式清洗设备与前文所述的进行第二腐蚀清洗处理的链式清洗设备为同一链式清洗设备。该链式清洗设备还包括第三清洗槽和第四清洗槽。该链式清洗设备所包括的第一清洗槽、第二清洗槽、第三清洗槽和第四清洗槽依次设置。具体的,第三清洗槽和第四清洗槽内承装的清洗溶液的类型、以及设置在二者上的传送辊与相应清洗溶液液面之间的位置关系可以根据硼硅玻璃层和第一磷硅玻璃层的去除顺序和去除方式进行设置。例如:如图13和图15所示,当在第三清洗槽23内去除硼硅玻璃层 3、在第四清洗槽25内去除第一磷硅玻璃层8、以及通过浸入在清洗液中的方式去除硼硅玻璃层3和第一磷硅玻璃层8的情况下,第三清洗槽23用于承装去除硼硅玻璃层3的第三清洗溶液24。设置在第三清洗槽23上的传送辊14浸没在第三清洗溶液24内。第四清洗槽25用于承装去除第一磷硅玻璃层8的第四清洗溶液26。设置在第四清洗槽25上的传送辊14浸没在第四清洗溶液26内。又例如:当在第三清洗槽内去除第一磷硅玻璃层、在第四清洗槽内去除硼硅玻璃层、以及通过浸入在清洗液中的方式去除第一磷硅玻璃层和硼硅玻璃层的情况下,第三清洗槽用于承装去除第一磷硅玻璃层的第四清洗溶液。设置在第三清洗槽上的传送辊浸没在第四清洗溶液内。第四清洗槽用于承装去除硼硅玻璃层的第三清洗溶液。设置在第四清洗槽上的传送辊浸没在第三清洗溶液内。
此外,上述第三清洗溶液可以为任一能够去除硼硅玻璃层的清洗溶液。例如:第三清洗溶液可以为去离子水、氟化氢、过氧化氢和氯化氢的混合溶液。其中,去离子水、氟化氢、过氧化氢和氯化氢的体积比可以为9~10:4~4.5:1~1.2:1.2(例如:该体积比可以为9:4:1:1.2、9.5:4:1:1.2或10:4.5:1.2:1.2等)。
对于上述第四清洗溶液来说,第四清洗溶液可以为任一能够去除第一磷硅玻璃层的清洗溶液。例如:第四清洗溶液可以为去离子水和氟化氢的混合溶液。其中,去离子水和氟化氢的体积比为5.5~6:1(例如:该体积比可以为5.5:1、5.7:1或6:1等)。
示例性的,如图13所示,上述利用同一链式清洗设备去除硼硅玻璃层3,可以包括:将经第二腐蚀清洗处理后的N型硅片1的第一方向的一面置于第三清洗溶液24中。第三清洗溶液24的液面高于N型硅片1的第一方向的一面。并采用第三清洗溶液24去除硼硅玻璃层3。
在实际的应用中,如图12和图13所示,在第三清洗槽23用于承装去除硼硅玻璃层3的第三清洗溶液24的情况下,在第二腐蚀清洗处理后,与绕镀硅层邻接的硼硅玻璃层3暴露在外,并与传送辊14接触。基于此,可以直接通过传送辊14将经第二腐蚀清洗处理后的N型硅片1传送至第三清洗槽23。因设置在第三清洗槽23内的传送辊14浸没在第三清洗溶液24内,故位于传送辊14上的N型硅片1可以置于第三清洗溶液24中。具体的,第三清洗溶 液24的液面可以仅与硼硅玻璃层3靠近扩散层2的一面平齐,或者也可以高于硼硅玻璃层3靠近扩散层2的一面,只要能够通过第三清洗溶液24去除硼硅玻璃层3即可。
而在第四清洗槽用于承装去除硼硅玻璃层的第三清洗溶液的情况下,在经第三清洗槽内第四清洗溶液处理后,与第一磷硅玻璃层邻接的掺杂硅层暴露在外,并与传送辊接触。基于此,在通过传送辊将经第四清洗溶液处理后的N型硅片传送至第四清洗槽前,还需要将其倒置,以使得硼硅玻璃层与传送辊接触。具体的,如何通过第四清洗槽内的第三清洗溶液去除硼硅玻璃层,以及第三清洗溶液的液面高度可以参考前文,此处不再赘述。
示例性的,如图15所示,上述利用同一链式清洗设备去除第一磷硅玻璃层8,可以包括:将经第二腐蚀清洗处理后的N型硅片1的第二方向的一面置于第四清洗溶液26中。第四清洗溶液26的液面高于N型硅片1的第二方向的一面。并采用第四清洗溶液26去除第一磷硅玻璃层8。
在实际的应用中,如图14和图15所示,在第四清洗槽25用于承装去除第一磷硅玻璃层8的第四清洗溶液26的情况下,在经第三清洗槽23内第三清洗溶液处理后,与硼硅玻璃层邻接的扩散层2暴露在外,并与传送辊14接触。基于此,在通过传送辊14将经第三清洗溶液处理后的N型硅片1传送至第四清洗槽25前,还需要将其倒置,以使第一磷硅玻璃层8与传送辊14接触。具体的,第四清洗溶液26的液面可以仅与第一磷硅玻璃层8靠近掺杂硅层7的一面平齐,或者也可以高于第一磷硅玻璃层8靠近掺杂硅层7的一面,只要能够通过第四清洗溶液26去除第一磷硅玻璃层8即可。
而在第三清洗槽用于承装去除第一磷硅玻璃层的第四清洗溶液的情况下,在经第二腐蚀清洗处理后,与绕镀硅层邻接的硼硅玻璃层暴露在外,并与传送辊接触。基于此,在通过传送辊将经第二腐蚀清洗处理后的N型硅片传送至第三清洗槽前,还需要将其倒置,以使得第一磷硅玻璃层与传送辊接触。具体的,如何通过第三清洗槽内的第四清洗溶液去除第一磷硅玻璃层,以及第四清洗溶液的液面高度可以参考前文,此处不再赘述。
值得注意的是,如图12至图15所示,因在去除了位于第一方向的一面的绕镀硅层后,与绕镀硅层邻接的硼硅玻璃层3暴露在外、并与传送辊14接触。基于此,与在去除绕镀硅层后先去除第一磷硅玻璃层8需要将N型硅片 1进行两次倒置操作相比,在去除绕镀硅层后直接通过传送辊14将经第二清洗溶液处理后的N型硅片1的第一方向的一面置于第三清洗溶液24中先去除硼硅玻璃层3,在此情况下只需在去除硼硅玻璃层3后将N型硅片1进行一次倒置操作就可以完成硼硅玻璃层3和第一磷硅玻璃层8的去除,从而可以减少N型硅片1的倒置次数,降低N型硅片1被执行倒置操作的设备损伤的风险,在提高太阳能电池制造良率的同时也能够提升其制造效率。
在一种示例中,上述链式清洗设备还可以包括用于进行第二清洗处理的第二水洗槽。该第二水洗槽设置在第二清洗槽和第三清洗槽之间。
采用链式清洗设备去除绕镀硅层后,利用同一链式清洗设备去除硼硅玻璃层前,上述太阳能电池的制造方法还可以包括:在第二水洗槽中,向经第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面喷淋去离子水,对经第二腐蚀清洗处理后的N型硅片进行第二清洗处理。
可以理解的是,在第二清洗槽内通过第二清洗溶液去除绕镀硅层后,经第二清洗溶液处理后的N型硅片的表面会残留有第二清洗溶液。基于此,在第三清洗槽内通过相应清洗溶液去除硼硅玻璃层或第一磷硅玻璃层前,通过设置在第二清洗槽和第三清洗槽之间的第二水洗槽对经第二清洗溶液处理后的N型硅片进行第二清洗处理,以采用去离子水全部去除掉残留的第二清洗溶液,可以防止第二清洗溶液影响相应清洗溶液的清洗效果,提高太阳能电池的良率。
其中,在第二水洗槽中,采用去离子水对经第二清洗溶液后的N型硅片进行第二清洗处理的清洗温度和清洗时间可以根据实际需求进行设置。例如:清洗温度可以为70℃。清洗时间可以为135s~150s。应理解,该清洗温度与去除绕镀硅层时的温度比较接近,因此在该清洗温度下对经第二清洗溶液处理后的N型硅片进行第二清洗处理,可以防止因温差较大而损伤N型硅片,提高太阳能电池的良率。并且,在该清洗时间下,可以确保去离子水能够完全冲洗掉残留的第二清洗溶液的同时,可以防止因清洗时间过长而导致制造效率降低的问题。
由上述内容可知,第一腐蚀清洗处理和抛光处理均在同一链式清洗设备内进行。并且,后续在采用钝化接触工艺处理后,去除因绕镀或扩散而形成的第二磷硅玻璃层、绕镀硅层、硼硅玻璃层和第一磷硅玻璃层也是在同一链 式清洗设备中内进行,即无需将进行相应处理后的N型硅片在不同的清洗设备之间进行搬运,从而可以缩减搬运所浪费的时间,使得现有技术中去除第二磷硅玻璃层、绕镀硅层、硼硅玻璃层和第一磷硅玻璃层所需要花费90分钟左右的清洗时间可以降低至15分钟至20分钟,极大地提高了太阳能电池的制造效率。另一方面,也可以防止设置在不同清洗设备之间的搬运设备因磕碰或摩擦等因素对N型硅片造成损伤、以及防止在搬运过程中因N型硅片在外界环境中滞留时间较长而与空气发生反应造成N型硅片受到污染,最终可以使得所制造的太阳能电池的良率可以由59.1%左右提升至大于98%。
在一种示例中,利用同一链式清洗设备,分别对经第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面进行第三腐蚀清洗处理,去除硼硅玻璃层和第一磷硅玻璃层后,上述太阳能电池的制造方法还可以包括:
如图17所示,在扩散层2上形成第一钝化层11。
示例性的,可以通过化学气相沉积或原子层沉积等工艺形成上述第一钝化层。该第一钝化层的材质和厚度可以根据实际需求进行设置。例如:第一钝化层的材质可以为氧化铝。在此情况下,因扩散层的掺杂类型为P+型,并且氧化铝所带的负的固定电荷对硅表面的电子载流子(少数载流子)具有屏蔽作用,能够降低表面电子载流子的浓度,从而能够降低表面复合速率,使得位于N型硅片第一方向的一面的电极可以收集到更多的空穴载流子,提高太阳能电池的光电转换效率。
如图18所示,在第一钝化层11和掺杂硅层7上分别进行钝化处理,以在第一钝化层11上和掺杂硅层7上均形成第二钝化层12。第二钝化层12的材质与第一钝化层11的材质不同。
示例性的,可以通过化学气相沉积或原子层沉积等工艺分别在第一钝化层和掺杂硅层上形成第二钝化层。该第二钝化层的材质和厚度可以根据实际需求进行设置。例如:第二钝化层的材质可以为氮化硅。在此情况下,因氮化硅层具有减反射的作用,在第一钝化层和掺杂硅层上形成第二钝化层可以增加太阳能电池对光线的吸收,提高太阳能电池对光能的利用率。
如图19所示,在每层第二钝化层12上进行金属化处理,以在第二钝化层12上形成电极13。
示例性的,可以通过印刷烧结等工艺形成上述电极。该电极在第二钝化 层上的具体位置、以及该电极的材质可以根据实际需求进行设置。例如:电极的材质可以为银、铜或镍等金属材料。
本公开实施例还提供了一种太阳能电池,该太阳能电池由上述实施例所提供的太阳能电池的制造方法制造形成。
与现有技术相比,本公开实施例提供的太阳能电池的有益效果,可以参考上述实施例所提供的太阳能电池的制造方法的有益效果分析,此处不再赘述。
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (12)

  1. 一种太阳能电池的制造方法,其特征在于,所述制造方法包括:
    对N型硅片的第一方向的一面进行硼扩散处理,在所述N型硅片的第一方向的一面上形成依次层叠的扩散层和硼硅玻璃层、以及在所述N型硅片的侧面和第二方向的一面上形成绕镀扩散层和绕镀硼硅玻璃层;
    利用链式清洗设备,对经所述硼扩散处理后的N型硅片的侧面和第二方向的一面进行第一腐蚀清洗处理,依次去除所述绕镀硼硅玻璃层和所述绕镀扩散层;并对所述N型硅片的第二方向的一面进行抛光处理;
    采用钝化接触工艺对所述N型硅片的第二方向的一面进行处理,在所述N型硅片的第二方向的一面上形成依次层叠的遂穿氧化层、掺杂硅层和第一磷硅玻璃层、以及至少在部分所述硼硅玻璃层上形成绕镀硅层和第二磷硅玻璃层;
    利用所述链式清洗设备,对经所述钝化接触工艺处理后的N型硅片的第一方向的一面进行第二腐蚀清洗处理,依次去除所述第二磷硅玻璃层和所述绕镀硅层;
    利用同一所述链式清洗设备,分别对经所述第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面进行第三腐蚀清洗处理,去除所述硼硅玻璃层和所述第一磷硅玻璃层。
  2. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,所述利用链式清洗设备,对经所述硼扩散处理后的N型硅片的侧面和第二方向的一面进行第一腐蚀清洗处理,依次去除所述绕镀硼硅玻璃层和所述绕镀扩散层;并对所述N型硅片的第二方向的一面进行抛光处理,包括:
    将经所述硼扩散处理后的N型硅片的第二方向的一面与所述链式清洗设备所包括的传送辊接触;
    利用所述传送辊将经所述硼扩散处理后的N型硅片传送至所述链式清洗设备所包括的酸洗槽;位于所述酸洗槽内的酸性清洗溶液的液面高于所述N型硅片的第二方向的一面、且低于所述N型硅片的第一方向的一面;并采用所述酸性清洗溶液去除所述绕镀硼硅玻璃层;
    利用所述传送辊将经所述酸性清洗溶液处理后的N型硅片传送至所述链式清洗设备所包括的碱洗槽;位于所述碱洗槽内的碱性清洗溶液的液面高于 所述N型硅片的第二方向的一面、且低于所述N型硅片的第一方向的一面;并采用所述碱性清洗溶液去除所述绕镀扩散层、以及对所述N型硅片的第二方向的一面进行所述抛光处理。
  3. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,对所述N型硅片的第二方向的一面进行所述抛光处理后,采用所述钝化接触工艺对所述N型硅片的第二方向的一面进行处理前,所述太阳能电池的制造方法还包括:
    在所述链式清洗设备所包括的第一水洗槽中,向经所述抛光处理后的N型硅片的第一方向的一面和第二方向的一面喷淋去离子水,对经所述抛光处理后的N型硅片进行第一清洗处理。
  4. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,所述利用所述链式清洗设备,对经所述钝化接触工艺处理后的N型硅片的第一方向的一面进行第二腐蚀清洗处理,依次去除所述第二磷硅玻璃层和所述绕镀硅层,包括:
    将经所述钝化接触工艺处理后的N型硅片的第一方向的一面与所述链式清洗设备所包括的传送辊接触;
    将经所述钝化接触工艺处理后的N型硅片的第二方向的一面铺满水膜,并采用第一清洗溶液,以滚轮带液清洗方式去除所述第二磷硅玻璃层;
    利用所述传送辊将经第一清洗溶液处理后的所述N型硅片置于第二清洗溶液中;所述第二清洗溶液的液面高于所述N型硅片的第一方向的一面;并采用所述第二清洗溶液去除所述绕镀硅层。
  5. 根据权利要求4所述的太阳能电池的制造方法,其特征在于,所述第二清洗溶液包括去离子水、氢氧化钾溶液和抛光添加剂;所述去离子水、所述氢氧化钾溶液和所述抛光添加剂的体积比为30~40:3~4:1;所述氢氧化钾溶液的浓度为40%~50%;清洗温度为69℃~70℃;清洗时间为135s~150s。
  6. 根据权利要求5所述的太阳能电池的制造方法,其特征在于,利用链式清洗设备去除所述绕镀硅层,还包括:
    采用所述第二清洗溶液去除所述绕镀硅层的过程中,向所述第二清洗溶液中补充所述去离子水、所述氢氧化钾溶液和所述抛光添加剂中的至少一种,以使所述第二清洗溶液中的所述去离子水、所述氢氧化钾溶液和所述抛光添 加剂的体积比满足30~40:3~4:1。
  7. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,利用同一所述链式清洗设备去除所述硼硅玻璃层,包括:
    将经所述第二腐蚀清洗处理后的N型硅片的第一方向的一面置于第三清洗溶液中;所述第三清洗溶液的液面高于所述N型硅片的第一方向的一面;并采用所述第三清洗溶液去除所述硼硅玻璃层。
  8. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,利用同一所述链式清洗设备去除所述第一磷硅玻璃层,包括:
    将经所述第二腐蚀清洗处理后的N型硅片的第二方向的一面置于第四清洗溶液中;所述第四清洗溶液的液面高于所述N型硅片的第二方向的一面;并采用第四清洗溶液去除所述第一磷硅玻璃层。
  9. 根据权利要求1所述的太阳能电池的制造方法,其特征在于,所述链式清洗设备包括依次设置的第一清洗槽、第二清洗槽、第三清洗槽和第四清洗槽,以及用于传送的多个传送辊;其中,
    所述第一清洗槽用于承装去除所述第二磷硅玻璃层的第一清洗液;设置在所述第一清洗槽的上方的所述传送辊的直径为H1,所述第一清洗溶液的液面与设置在所述第一清洗槽的上方的所述传送辊的底部之间的距离为H2,1/3H1≤H2≤1/2 H1;
    所述第二清洗槽用于承装去除所述绕镀硅层的第二清洗溶液;设置在所述第二清洗槽上的所述传送辊浸没在所述第二清洗溶液内;
    所述第三清洗槽用于承装去除所述硼硅玻璃层的第三清洗溶液,设置在所述第三清洗槽上的所述传送辊浸没在所述第三清洗溶液内;所述第四清洗槽用于承装去除所述第一磷硅玻璃层的第四清洗溶液,设置在所述第四清洗槽上的所述传送辊浸没在所述第四清洗溶液内;或,所述第三清洗槽用于承装去除所述第一磷硅玻璃层的第四清洗溶液,设置在所述第三清洗槽上的所述传送辊浸没在所述第四清洗溶液内;所述第四清洗槽用于承装去除所述硼硅玻璃层的第三清洗溶液,设置在所述第四清洗槽上的所述传送辊浸没在所述第三清洗溶液内。
  10. 根据权利要求9所述的太阳能电池的制造方法,其特征在于,所述链式清洗设备还包括用于进行第二清洗处理的第二水洗槽;所述第二水洗槽 设置在所述第二清洗槽和所述第三清洗槽之间;
    采用所述链式清洗设备去除所述绕镀硅层后,利用同一所述链式清洗设备去除所述硼硅玻璃层前,所述太阳能电池的制造方法还包括:
    在所述第二水洗槽中,向经所述第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面喷淋去离子水,对经所述第二腐蚀清洗处理后的N型硅片进行第二清洗处理。
  11. 根据权利要求1~10任一项所述的太阳能电池的制造方法,其特征在于,所述利用同一所述链式清洗设备,分别对经所述第二腐蚀清洗处理后的N型硅片的第一方向的一面和第二方向的一面进行第三腐蚀清洗处理,去除所述硼硅玻璃层和所述第一磷硅玻璃层后,所述太阳能电池的制造方法还包括:
    在所述扩散层上形成第一钝化层;
    在所述第一钝化层和所述掺杂硅层上分别进行钝化处理,以在所述第一钝化层上和所述掺杂硅层上均形成第二钝化层;所述第二钝化层的材质与所述第一钝化层的材质不同;
    在每层所述第二钝化层上进行金属化处理,以在所述第二钝化层上形成电极。
  12. 一种太阳能电池,其特征在于,所述太阳能电池由权利要求1~11任一项所述的太阳能电池的制造方法制造形成。
PCT/CN2022/072560 2021-06-28 2022-01-18 一种太阳能电池及其制造方法 WO2023273313A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022304152A AU2022304152A1 (en) 2021-06-28 2022-01-18 Solar cell and manufacturing method therefor
EP22831149.4A EP4365961A1 (en) 2021-06-28 2022-01-18 Solar cell and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110718685.3 2021-06-28
CN202110718685.3A CN113488384B (zh) 2021-06-28 2021-06-28 一种太阳能电池及其制造方法

Publications (1)

Publication Number Publication Date
WO2023273313A1 true WO2023273313A1 (zh) 2023-01-05

Family

ID=77936161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072560 WO2023273313A1 (zh) 2021-06-28 2022-01-18 一种太阳能电池及其制造方法

Country Status (4)

Country Link
EP (1) EP4365961A1 (zh)
CN (1) CN113488384B (zh)
AU (1) AU2022304152A1 (zh)
WO (1) WO2023273313A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116013802A (zh) * 2023-03-24 2023-04-25 英利能源发展(保定)有限公司 电池氧化铝钝化性能的确定方法、电子设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488384B (zh) * 2021-06-28 2022-09-02 西安隆基乐叶光伏科技有限公司 一种太阳能电池及其制造方法
CN114724942A (zh) * 2022-04-11 2022-07-08 西安隆基乐叶光伏科技有限公司 一种硅片刻蚀方法及硅片刻蚀系统
CN116364794A (zh) 2022-04-11 2023-06-30 浙江晶科能源有限公司 太阳能电池、光伏组件及太阳能电池的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022563A (ja) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp 太陽電池製造装置およびこれを用いた太陽電池の製造方法
CN104733555A (zh) * 2014-12-31 2015-06-24 江苏顺风光电科技有限公司 一种高效n型双面太阳电池及其制备方法
CN109935659A (zh) * 2019-03-21 2019-06-25 河海大学常州校区 一种p型太阳能电池的制备方法
CN109962126A (zh) * 2019-04-29 2019-07-02 浙江晶科能源有限公司 N型钝化接触电池的制作系统及方法
CN110571309A (zh) * 2019-03-20 2019-12-13 常州大学 一种新型的去除Poly绕镀清洗方法
CN111509089A (zh) * 2020-04-29 2020-08-07 浙江正泰太阳能科技有限公司 一种双面太阳能电池及其制作方法
CN111653650A (zh) * 2020-06-15 2020-09-11 英利能源(中国)有限公司 一种TOPCon电池生产片清洗参数优化及制备方法
CN112599618A (zh) * 2020-12-15 2021-04-02 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制作方法
CN113488384A (zh) * 2021-06-28 2021-10-08 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538501A (zh) * 2015-01-15 2015-04-22 中利腾晖光伏科技有限公司 N型双面电池及其制作方法
CN111341881B (zh) * 2020-03-10 2021-08-20 泰州中来光电科技有限公司 一种去除正面多晶硅绕镀的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022563A (ja) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp 太陽電池製造装置およびこれを用いた太陽電池の製造方法
CN104733555A (zh) * 2014-12-31 2015-06-24 江苏顺风光电科技有限公司 一种高效n型双面太阳电池及其制备方法
CN110571309A (zh) * 2019-03-20 2019-12-13 常州大学 一种新型的去除Poly绕镀清洗方法
CN109935659A (zh) * 2019-03-21 2019-06-25 河海大学常州校区 一种p型太阳能电池的制备方法
CN109962126A (zh) * 2019-04-29 2019-07-02 浙江晶科能源有限公司 N型钝化接触电池的制作系统及方法
CN111509089A (zh) * 2020-04-29 2020-08-07 浙江正泰太阳能科技有限公司 一种双面太阳能电池及其制作方法
CN111653650A (zh) * 2020-06-15 2020-09-11 英利能源(中国)有限公司 一种TOPCon电池生产片清洗参数优化及制备方法
CN112599618A (zh) * 2020-12-15 2021-04-02 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制作方法
CN113488384A (zh) * 2021-06-28 2021-10-08 泰州隆基乐叶光伏科技有限公司 一种太阳能电池及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116013802A (zh) * 2023-03-24 2023-04-25 英利能源发展(保定)有限公司 电池氧化铝钝化性能的确定方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN113488384A (zh) 2021-10-08
EP4365961A1 (en) 2024-05-08
CN113488384B (zh) 2022-09-02
AU2022304152A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2023273313A1 (zh) 一种太阳能电池及其制造方法
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
CN111668345A (zh) 一种太阳能电池及其制备方法
KR20090011519A (ko) 결정질 실리콘 태양전지와 그 제조방법 및 제조시스템
CN104037257B (zh) 太阳能电池及其制造方法、单面抛光设备
CN111564503A (zh) 一种背结背接触太阳能电池结构及其制备方法
WO2017049801A1 (zh) 硅片表面钝化方法及n型双面电池的制作方法
CN111933752A (zh) 一种太阳能电池及其制备方法
CN113416547B (zh) 一种清洗绕镀多晶硅的碱腐蚀辅助剂及其应用
CN113594296A (zh) 一种太阳能电池及其制造方法
US9224906B2 (en) Method for manufacturing a solar cell
CN111653650B (zh) 一种TOPCon电池生产片清洗参数优化及制备方法
Jiang et al. Optimization of a silicon wafer texturing process by modifying the texturing temperature for heterojunction solar cell applications
US20200220039A1 (en) Method of manufacturing solar cell
CN115101627A (zh) 双面钝化接触太阳电池及其制备方法
WO2024045945A1 (zh) 太阳电池及其制造方法
JP5153750B2 (ja) 基板表面処理装置、太陽電池セルの製造装置
CN110165016A (zh) 一种用于改善perc电池的制作方法
CN114628547A (zh) 一种背表面局域形貌的太阳电池及其制备方法
CN112599618A (zh) 一种太阳能电池及其制作方法
CN113584561A (zh) 用于太阳能电池电极的电镀设备和太阳能电池制作方法
CN112582484A (zh) 一种太阳能电池及其制作方法
US11038078B2 (en) Method for manufacturing high efficiency solar cell
WO2024051033A1 (zh) 电荷存储结构及制造电荷存储结构的方法
CN115621355A (zh) 一种硅基底的处理方法、太阳能电池及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18574245

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022304152

Country of ref document: AU

Ref document number: AU2022304152

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022831149

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022304152

Country of ref document: AU

Date of ref document: 20220118

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022831149

Country of ref document: EP

Effective date: 20240129