WO2023273201A1 - 一种双模式移相装置及天线 - Google Patents

一种双模式移相装置及天线 Download PDF

Info

Publication number
WO2023273201A1
WO2023273201A1 PCT/CN2021/138202 CN2021138202W WO2023273201A1 WO 2023273201 A1 WO2023273201 A1 WO 2023273201A1 CN 2021138202 W CN2021138202 W CN 2021138202W WO 2023273201 A1 WO2023273201 A1 WO 2023273201A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
microstrip
bottom plate
dual
coupling
Prior art date
Application number
PCT/CN2021/138202
Other languages
English (en)
French (fr)
Inventor
姜盼
王凌峰
梁启迪
孙鹏
储心一
Original Assignee
江苏亨鑫科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨鑫科技有限公司 filed Critical 江苏亨鑫科技有限公司
Publication of WO2023273201A1 publication Critical patent/WO2023273201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the invention relates to phase shifter technology, in particular to a dual-mode phase shifter and an antenna.
  • phase shifter In order to be able to adjust the radiation state of the antenna according to the coverage area, interference phenomenon, traffic and other conditions of the mobile communication system network, the phase shifter is required to adjust the direction of the radiation pattern transmitted by the base station antenna, so as to meet the needs of flexibly adjusting the coverage of different user areas.
  • a phase shifter is a device that can adjust the phase of a wave, and it is the core component of an antenna. The phase shifter changes the pattern of the antenna by changing the phase of the signal reaching the antenna, thereby achieving the purpose of remote control of the network coverage area.
  • phase shifters can only realize the phase shift function by changing the physical length of the transmission line or changing the equivalent dielectric constant, and the number of output ports of the phase shifter cannot be adjusted.
  • the purpose of the present invention is to provide a dual-mode phase shifting device and antenna capable of adjusting the number of output ports.
  • a dual-mode phase shifting device comprising:
  • the coupling microstrip line is arranged on the coupling substrate
  • a microstrip bottom plate, the first microstrip line and the second microstrip line are arranged on the microstrip bottom plate;
  • the coupling substrate is arranged on the microstrip backplane, and an insulating medium is arranged between the coupling substrate and the microstrip backplane;
  • the first working mode and the second working mode can be switched;
  • the first working mode is: the first microstrip line is coupled and connected with the coupled microstrip line, and the second microstrip line is coupled and connected with the coupled microstrip line;
  • the second working mode is: the first microstrip line is coupled to the coupled microstrip line, and the second microstrip line is disconnected from the coupled microstrip line.
  • the physical phase from the first microstrip line to the second microstrip line can be adjusted through the relative sliding between the coupling substrate and the microstrip bottom plate. path length.
  • the first microstrip line of the dual-mode phase shifting device is parallel to the second microstrip line, one end of the first microstrip line and the second microstrip line are staggered, and the coupling
  • the microstrip line includes a first branch and a second branch arranged in parallel, the ends of the first branch and the second branch are flush, and the relative sliding direction between the coupling substrate and the microstrip bottom plate is parallel to the the first microstrip line and the second microstrip line.
  • the dual-mode phase shifting device further includes a third microstrip line, the third microstrip line is arranged parallel to the first microstrip line, and the coupling microstrip line includes a third branch, The third branch is always coupled with the third microstrip line.
  • the coupled microstrip line of the dual-mode phase shifting device further includes an impedance matching section, and an impedance matching slot is opened on the microstrip bottom plate.
  • the impedance matching section coincide with the impedance matching groove.
  • the dual-mode phase shifting device further includes a bottom plate, and the microstrip bottom plate is arranged on the bottom plate and closely contacts with the bottom plate.
  • the insulating medium of the dual-mode phase shifting device is liquid photo solder resist.
  • the coupling substrate of the dual-mode phase shifting device is a single-sided copper-clad laminate.
  • the microstrip bottom plate of the dual-mode phase shifting device is a double-sided copper clad plate.
  • an antenna including the dual-mode phase shifting device described in any one of the above embodiments and an antenna unit, and the dual-mode phase shifting device is connected to the antenna unit.
  • the beneficial effect of the embodiment of the present invention is: through the relative sliding between the coupling substrate and the microstrip bottom plate, the free switching of the two working modes can be realized, and the on-off between the first microstrip line and the second microstrip line can be controlled. Thereby adjusting the number of output ports.
  • the phase can be adjusted through relative sliding between the coupling substrate and the microstrip backplane.
  • Fig. 1 is the structural decomposition diagram of the embodiment of the present application.
  • Fig. 2 is the side structure schematic diagram of the embodiment of the present application.
  • Fig. 3 is a schematic diagram of working mode 1 of the embodiment of the present application.
  • Fig. 4 is a schematic diagram of working mode 2 of the embodiment of the present application.
  • 100-coupling substrate 110-coupling microstrip line; 111-first branch; 112-second branch; 113-third branch; 114-impedance matching section; 200-microstrip backplane; 210-first Microstrip line; 220-second microstrip line; 230-third microstrip line; 240-impedance matching slot; 300-bottom plate.
  • the present embodiment provides a dual-mode phase shifting device, including a coupling substrate 100 and a microstrip backplane 200, a coupling microstrip line 110 is arranged on the coupling substrate 100, and a coupling microstrip line 110 is arranged on the microstrip backplane 200.
  • the coupling substrate 100 is placed in parallel on the microstrip backplane 200 and the two are not in direct contact.
  • An insulating medium is arranged between the coupling substrate 100 and the microstrip backplane 200, so that the coupling microstrip line 110 is connected to the first microstrip line 210 and the second microstrip line.
  • the microstrip line 220 implements line connection through capacitive coupling.
  • the first working mode is: the first microstrip line 210 is coupled and connected with the coupled microstrip line 110, and the second microstrip line 220 is coupled and connected with the coupled microstrip line 110; the second working mode is: the first microstrip line 210 The second microstrip line 220 is disconnected from the coupled microstrip line 110 .
  • Figure 1 shows an implementation, wherein the first microstrip line 210 is parallel to the second microstrip line 220, one end of the first microstrip line 210 and the second microstrip line 220 are staggered, and the coupled microstrip line 110 includes parallel
  • the first branch 111 and the second branch 112 are arranged, the ends of the first branch 111 and the second branch 112 are flush, and the sliding direction of the coupling substrate 100 is parallel to the first microstrip line 210 and the second microstrip line 220 .
  • first microstrip line 210 , the second microstrip line 220 and the coupling microstrip line 110 may also be designed in other forms.
  • first microstrip line 210 and the second microstrip line 220 can be designed to be flush at both ends, and the ends of the first branch 111 and the second branch 112 of the coupling microstrip line 110 are staggered, which can also achieve the above-mentioned Function.
  • first microstrip line 210 and the second microstrip line 220 can be designed to be staggered at one end, and the ends of the first branch 111 and the second branch 112 of the coupling microstrip line 110 are also staggered, which can also realize the above functions.
  • the above-mentioned embodiment can realize on-off switching between the first microstrip line 210 and the second microstrip line 220 , in other words, can control the output port of the phase shifting device to be 0 or 1.
  • microstrip lines can be added, and more output ports can be set, so that the number of output ports can be adjusted through the above structure.
  • a third microstrip line 230 is further arranged on the microstrip backplane 200, and the third microstrip line 230 is arranged parallel to the first microstrip line 220.
  • the coupled microstrip line 110 includes a third branch 113 , and the third branch 113 is always coupled with the third microstrip line 230 .
  • the number of output ports is 2; when in the second working mode, only a path is formed between the first microstrip line 210 and the third microstrip line 230, and the number of output ports is 1.
  • the coupling microstrip line 110 partially overlaps with the first microstrip line 210 and the second microstrip line 220 .
  • the coupling path between the first microstrip line 210, the second microstrip line 220 and the coupling microstrip line 110 changes , thereby realizing the change of the phase and realizing the phase shifting function.
  • the coupled microstrip line 110 slides from right to left, the total path from the first microstrip line 210 to the second microstrip line 220 increases, and the output phase lags.
  • the microstrip backplane 200 is fixed on the backplane 300 , so generally the coupling substrate 100 slides.
  • the coupled microstrip line 110 further includes an impedance matching section 114 , and an impedance matching slot 240 is opened on the microstrip backplane 200 .
  • the impedance matching section 114 coincides with the impedance matching groove 240.
  • the base material of the impedance matching section 114 is air, and its impedance is different from that of other positions, thereby ensuring that the second working mode is switched to the second working mode.
  • the signal phases from the first microstrip line 210 to the third microstrip line 230 do not change.
  • the insulating medium between the coupling substrate 100 and the microstrip backplane 200 can be liquid photo solder resist (commonly known as green oil), or a coating process can be used to realize the insulation between the two.
  • the coupling substrate 100 may be a single-sided copper-clad plate, and the microstrip backplane 200 may be a double-sided copper-clad plate.
  • the coupling microstrip line 110, the first microstrip line 210, and the second microstrip line 220 can all be made by etching, so as to realize production automation and improve production efficiency.
  • the dual-mode phase shifting device provided by the embodiment of the present application can realize free switching between two working modes, one mode realizes one port input and two port outputs, and the output phase is adjustable; the other mode realizes one port input output on the other port.
  • the first working mode is shown in FIG. 3 , the signal is input from the first microstrip line 210 , the signal is divided into two through the coupled microstrip line 110 , and output from the second microstrip line 220 and the third microstrip line 230 .
  • the coupled microstrip line 110 moves from right to left, the coupling path between the first microstrip line 210 and the second microstrip line 220 and the coupled microstrip line 110 decreases, while the third microstrip line 230 and the coupled microstrip line
  • the coupling path of the stripline 110 increases.
  • the total path from the first microstrip line 210 to the second microstrip line 220 increases, and the output phase lags; the total path from the first microstrip line 210 to the third microstrip line 230 remains unchanged, and the output phase also remains unchanged .
  • the second working mode is shown in FIG. 4 .
  • the coupling path between the second microstrip line 220 and the coupling microstrip line 110 disappears, the second microstrip line 220 is in an open state and no longer serves as an output port, and only the third microstrip line 230 still works as an output port, realizing "One in one out" working mode.
  • the impedance matching section 114 in the coupled microstrip line 110 in the same direction as the impedance matching groove 240 coincides with the impedance matching groove 240, and the total path from the first microstrip line 210 to the third microstrip line 220 is still consistent with the first working mode , the phase does not change.
  • another embodiment of the present application further provides an antenna, including the aforementioned dual-mode phase shifting device and an antenna unit, and the dual-mode phase shifting device is connected to the antenna unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种双模式移相装置及天线,该装置包括:耦合基板,耦合基板上设置有耦合微带线;微带底板,微带底板上设置有第一微带线和第二微带线;耦合基板设置于微带底板上,耦合基板和微带底板之间设置有绝缘介质;通过耦合基板与微带底板之间的相对滑动,可以切换第一工作模式和第二工作模式;其中,第一工作模式为:第一微带线与耦合微带线耦合连接,第二微带线与耦合微带线耦合连接;第二工作模式为:第一微带线与耦合微带线耦合连接,第二微带线与耦合微带线断开连接。本发明实施例通过耦合基板与微带底板之间的相对滑动,能够实现两种工作模式的自由切换,控制第一微带线与第二微带线之间的通断,从而调节输出口数量。

Description

一种双模式移相装置及天线 技术领域
本发明涉及移相器技术,尤其涉及一种双模式移相装置及天线。
背景技术
随着当今社会的不断发展,移动通信系统中的终端用户数量急速增长,尤其是在城市地区,用户分布随时间变化大,使得大部分工业区和商业区的基站都负荷会随着每天上下班时间点或者节假日的因素而有着显著落差变化。这样使得基站系统的负荷时常出现利用率低的情况,进而造成通信资源的浪费。
为了能够根据移动通信系统网络的覆盖区域、干扰现象、话务量等状况调整天线的辐射状态,需要移相器对基站天线发射的方向图指向起调节作用,以满足灵活调节覆盖不同用户区域的要求。移相器是能够对波的相位进行调整的一种装置,它是天线的核心组成部分。移相器通过改变到达天线的信号的相位来改变天线的方向图,进而实现对网络覆盖区域进行远程控制的目的。
目前的移相器大都只能通过改变传输线经过的物理长度或改变等效介电常数方式来实现移相功能,无法进行移相器输出口数量的调节。
发明内容
本发明的目的在于提供一种能够调节输出口数量的双模式移相装置及天线。
以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关 键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。
根据本发明的一方面,提供了一种双模式移相装置,包括:
耦合基板,所述耦合基板上设置有耦合微带线;
微带底板,所述微带底板上设置有第一微带线和第二微带线;
所述耦合基板设置于所述微带底板上,所述耦合基板和微带底板之间设置有绝缘介质;
通过所述耦合基板与微带底板之间的相对滑动,可以切换第一工作模式和第二工作模式;
其中,第一工作模式为:所述第一微带线与所述耦合微带线耦合连接,所述第二微带线与所述耦合微带线耦合连接;
第二工作模式为:所述第一微带线与所述耦合微带线耦合连接,所述第二微带线与所述耦合微带线断开连接。
在一实施例中,该双模式移相装置处于第一工作模式时,通过所述耦合基板与微带底板之间的相对滑动,能够调节从第一微带线到第二微带线的物理路径长度。
在一实施例中,该双模式移相装置的所述第一微带线与所述第二微带线平行,所述第一微带线和第二微带线的一端错开,所述耦合微带线包括平行设置的第一枝节和第二枝节,所述第一枝节和第二枝节的端头平齐,所述耦合基板与微带底板之间的相对滑动方向平行于所述第一微带线和所述第二微带线。
在一实施例中,该双模式移相装置还包括第三微带线,所述第三微带线平行于所述第一微带线设置,所述耦合微带线包括第三枝节,所述第三枝节与所述第三微带线始终保持耦合连接。
在一实施例中,该双模式移相装置的所述耦合微带线还包括阻抗匹配段,所述微带底板上开设有阻抗匹配槽,当处于第二工作模式时,所述阻抗匹配段与所述阻抗匹配槽重合。
在一实施例中,该双模式移相装置还包括底板,所述微带底板设置于所述底板上并与所述底板紧密接触。
在一实施例中,该双模式移相装置的所述绝缘介质为液态光致阻焊剂。
在一实施例中,该双模式移相装置的所述耦合基板为单面覆铜板材。
在一实施例中,该双模式移相装置的所述微带底板为双面覆铜板材。
根据本发明的另一方面,还提供了一种天线,包括上述任一实施例所述的双模式移相装置和天线单元,所述双模式移相装置与所述天线单元连接。
本发明实施例的有益效果是:通过耦合基板与微带底板之间的相对滑动,能够实现两种工作模式的自由切换,控制第一微带线与第二微带线之间的通断,从而调节输出口数量。优选地,在第一工作模式中,可通过耦合基板与微带底板之间的相对滑动进行相位调节。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的上述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1是本申请实施例的结构分解示意图;
图2是本申请实施例的侧面结构示意图;
图3是本申请实施例的工作模式一示意图;
图4是本申请实施例的工作模式二示意图;
其中:100-耦合基板;110-耦合微带线;111-第一枝节;112-第二枝节;113-第三枝节;114-阻抗匹配段;200-微带底板;210-第一微带线;220-第二微带线;230-第三微带线;240-阻抗匹配槽;300-底板。
具体实施方式
以下结合附图和具体实施例对本发明作详细描述。注意,以下结合附图和具体实施例描述的诸方面仅是示例性的,而不应被理解为对本发明的保护范围进行任何限制。
如图1和图2所示,本实施例提供了一种双模式移相装置,包括耦合基板100和微带底板200,耦合基板100上设置有耦合微带线110,微带底板200上设置有第一微带线210和第二微带线220。耦合基板100平行放置于微带底板200上并且二者并不直接接触,耦合基板100和微带底板200之间设置有绝缘介质,使耦合微带线110与第一微带线210和第二微带线220通过电容耦合的方式实现线路连接。
通过耦合基板100与微带底板200之间的相对滑动,可以切换第一工作模式(参见图3)和第二工作模式(参见图4)。其中,第一工作模式为:第 一微带线210与耦合微带线110耦合连接,第二微带线220与耦合微带线110耦合连接;第二工作模式为:第一微带线210与耦合微带线110耦合连接,第二微带线220与耦合微带线110断开连接。
要实现上述功能,需要设计第一微带线210、第二微带线220和耦合微带线110的形状和位置。图1展示了一种实现方式,其中,第一微带线210与第二微带线220平行,第一微带线210和第二微带线220的一端错开,耦合微带线110包括平行设置的第一枝节111和第二枝节112,第一枝节111和第二枝节112的端头平齐,耦合基板100的滑动方向平行于第一微带线210和第二微带线220。
如图4所示,当耦合微带线110从右向左滑动时,存在一个位置,此时第二微带线220会与耦合微带线110断开连接,而第一微带线210仍保持和耦合微带线110的连接,此时就进入了第二工作模式。
需要说明的是,第一微带线210、第二微带线220和耦合微带线110也可以设计为其他形式。例如,第一微带线210和第二微带线220可以设计为两端都平齐,而耦合微带线110的第一枝节111和第二枝节112的端头错开,同样能够实现上述功能。再如,第一微带线210和第二微带线220可以设计为一端错开,耦合微带线110的第一枝节111和第二枝节112的端头也错开,也能够实现上述功能。
上述实施例能够实现第一微带线210与第二微带线220之间通断的切换,换言之,可以控制移相装置的输出口为0或1个。在此基础上,可以增加微带线,设置更多的输出口,从而通过上述结构,可以调节输出口的数量。
例如,在本实施例中,微带底板200上还设置有第三微带线230,第三 微带线230平行于第一微带线220设置。耦合微带线110包括第三枝节113,第三枝节113与第三微带线230始终保持耦合连接。相应地,当处于第一工作模式时,输出口数量为2,当处于第二工作模式时,只有第一微带线210和第三微带线230之间形成通路,输出口数量为1。
此外,本实施例中,耦合微带线110与第一微带线210、第二微带线220部分重叠。当处于第一工作模式时,随着耦合基板100与微带底板200之间的相对滑动,第一微带线210、第二微带线220与耦合微带线110之间的耦合路径发生变化,由此实现相位的改变,实现移相功能。如图3所示,当耦合微带线110从右向左滑动时,从第一微带线210到第二微带线220的总路径增加,输出相位发生滞后。
耦合基板与微带底板之间相对滑动实现移相为移相器中的常见功能,因此相关结构不再赘述。通常微带底板200固定设置于底板300上,所以一般是耦合基板100滑动。
从图3和图4中可以看出,由于第三微带线230与第一微带线210设置于耦合微带线110的两侧,当耦合微带线110滑动时,从第一微带线210到第三微带线230的总物理路径不会发生变化。因此在第一工作模式中,从第一微带线210到第三微带线230的高频信号输出相位保持不变。
在可能的实施例中,耦合微带线110还包括阻抗匹配段114,微带底板200上开设有阻抗匹配槽240。当处于第二工作模式时,阻抗匹配段114与阻抗匹配槽240重合,此时,阻抗匹配段114的基材为空气,其阻抗不同于其他位置,从而确保了切换到第二工作模式时第一微带线210到第三微带线230的信号相位不发生变化。
耦合基板100与微带底板200之间的绝缘介质可以为液态光致阻焊剂(俗称绿油),也可以采用覆膜工艺实现二者之间的绝缘。耦合基板100可以为单面覆铜板材,微带底板200可以为双面覆铜板材。耦合微带线110、第一微带线210、第二微带线220均可以采用蚀刻方式制成,以利于实现生产自动化,提高生产效率。
综上,本申请实施例所提供的双模式移相装置,可以实现两种工作模式自由切换,一种模式实现一端口输入两端口输出,并且输出相位可调;另一种模式实现一端口输入另一端口输出。
第一工作模式如图3所示,信号从第一微带线210输入,通过耦合微带线110进行一分二信号分配,从第二微带线220和第三微带线230输出。在耦合微带线110由右向左移动的过程中,第一微带线210和第二微带线220与耦合微带线110的耦合路径减小,而第三微带线230与耦合微带线110的耦合路径增加。此时,第一微带线210到第二微带线220的总路径增加,输出相位滞后;第一微带线210到第三微带线230的总路径不变,输出相位同样保持不变。
第二工作模式如图4所示。此时,第二微带线220与耦合微带线110耦合路径消失,第二微带线220呈开路状态且不再作为输出口,仅有第三微带线230仍作为输出口工作,实现“一进一出”工作模式。同时,耦合微带线110中与阻抗匹配槽240同向的阻抗匹配段114与阻抗匹配槽240重合,第一微带线210到第三微带线220的总路径仍与第一工作模式一致,相位不发生变化。
本领域技术人员容易理解地,本申请的另一实施例还提供了一种天线, 包括上述双模式移相装置和天线单元,双模式移相装置与天线单元连接。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例和设计,而是应被授予与本文中所公开的原理和新颖性特征相一致的最广范围。
以上所述仅为本申请的较佳实例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. 一种双模式移相装置,其特征在于,包括:
    耦合基板,所述耦合基板上设置有耦合微带线;
    微带底板,所述微带底板上设置有第一微带线和第二微带线;
    所述耦合基板设置于所述微带底板上,所述耦合基板和微带底板之间设置有绝缘介质;
    通过所述耦合基板与微带底板之间的相对滑动,可以切换第一工作模式和第二工作模式;
    其中,第一工作模式为:所述第一微带线与所述耦合微带线耦合连接,所述第二微带线与所述耦合微带线耦合连接;
    第二工作模式为:所述第一微带线与所述耦合微带线耦合连接,所述第二微带线与所述耦合微带线断开连接。
  2. 根据权利要求1所述的双模式移相装置,其特征在于:当处于第一工作模式时,通过所述耦合基板与微带底板之间的相对滑动,能够调节从第一微带线到第二微带线的物理路径长度。
  3. 根据权利要求2所述的双模式移相装置,其特征在于:所述第一微带线与所述第二微带线平行,所述第一微带线和第二微带线的一端错开,所述耦合微带线包括平行设置的第一枝节和第二枝节,所述第一枝节和第二枝节的端头平齐,所述耦合基板与微带底板之间的相对滑动方向平行于所述第一微带线和所述第二微带线。
  4. 根据权利要求3所述的双模式移相装置,其特征在于,所述微带底板上还设置有第三微带线,所述第三微带线平行于所述第一微带线设置,所述耦合微带线包括第三枝节,所述第三枝节与所述第三微带线始终保持耦合连接。
  5. 根据权利要求4所述的双模式移相装置,其特征在于,所述耦合微带线还包括阻抗匹配段,所述微带底板上开设有阻抗匹配槽,当处于第二工作模式时,所述阻抗匹配段与所述阻抗匹配槽重合。
  6. 根据权利要求1所述的双模式移相装置,其特征在于,还包括底板,所述微带底板设置于所述底板上并与所述底板紧密接触。
  7. 根据权利要求1所述的双模式移相装置,其特征在于,所述绝缘介质为液态光致阻焊剂。
  8. 根据权利要求1所述的双模式移相装置,其特征在于,所述耦合基板为单面覆铜板材。
  9. 根据权利要求1所述的双模式移相装置,其特征在于,所述微带底板为双面覆铜板材。
  10. 一种天线,其特征在于:包括如权利要求1~9任一所述的双模式移相装置和天线单元,所述双模式移相装置与所述天线单元连接。
PCT/CN2021/138202 2021-07-01 2021-12-15 一种双模式移相装置及天线 WO2023273201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110749048.2A CN113300060B (zh) 2021-07-01 2021-07-01 一种双模式移相装置及天线
CN202110749048.2 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023273201A1 true WO2023273201A1 (zh) 2023-01-05

Family

ID=77330422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138202 WO2023273201A1 (zh) 2021-07-01 2021-12-15 一种双模式移相装置及天线

Country Status (2)

Country Link
CN (1) CN113300060B (zh)
WO (1) WO2023273201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995427A (zh) * 2023-09-28 2023-11-03 中信科移动通信技术股份有限公司 辐射单元及基站天线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300060B (zh) * 2021-07-01 2022-07-12 江苏亨鑫科技有限公司 一种双模式移相装置及天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208222B1 (en) * 1999-05-13 2001-03-27 Lucent Technologies Inc. Electromechanical phase shifter for a microstrip microwave transmission line
JP2002164706A (ja) * 2000-11-29 2002-06-07 Mitsubishi Electric Corp 移相器
CN102255118A (zh) * 2010-05-17 2011-11-23 摩比天线技术(深圳)有限公司 一种移相器、移相网络及电调天线
CN203277596U (zh) * 2013-05-24 2013-11-06 华为技术有限公司 移相器
CN111129666A (zh) * 2019-12-31 2020-05-08 华南理工大学 天线及其移相器、移相器单元
CN113300060A (zh) * 2021-07-01 2021-08-24 江苏亨鑫科技有限公司 一种双模式移相装置及天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208222B1 (en) * 1999-05-13 2001-03-27 Lucent Technologies Inc. Electromechanical phase shifter for a microstrip microwave transmission line
JP2002164706A (ja) * 2000-11-29 2002-06-07 Mitsubishi Electric Corp 移相器
CN102255118A (zh) * 2010-05-17 2011-11-23 摩比天线技术(深圳)有限公司 一种移相器、移相网络及电调天线
CN203277596U (zh) * 2013-05-24 2013-11-06 华为技术有限公司 移相器
CN111129666A (zh) * 2019-12-31 2020-05-08 华南理工大学 天线及其移相器、移相器单元
CN113300060A (zh) * 2021-07-01 2021-08-24 江苏亨鑫科技有限公司 一种双模式移相装置及天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995427A (zh) * 2023-09-28 2023-11-03 中信科移动通信技术股份有限公司 辐射单元及基站天线
CN116995427B (zh) * 2023-09-28 2024-01-26 中信科移动通信技术股份有限公司 辐射单元及基站天线

Also Published As

Publication number Publication date
CN113300060B (zh) 2022-07-12
CN113300060A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2023273201A1 (zh) 一种双模式移相装置及天线
Aikawa et al. Double-sided MICs and their applications
Chen et al. Design of a compact wideband Butler matrix using vertically installed planar structure
CN101728620B (zh) 一种非对称共面波导定向耦合器
CN205029630U (zh) 一种带通滤波Doherty放大器
WO2022033254A1 (zh) 一种应用于5g系统的高性能腔体移相器
Liu et al. Design of a wideband filtering power divider with good in‐band and out‐of‐band isolations
JP4681056B2 (ja) 高周波スイッチ
CN112768864B (zh) 微带-槽线耦合双频带90度定向耦合器
CN103311630B (zh) C波段超宽带多倍频程微型定向耦合器
Pan et al. Highly reconfigurable dual-band coupler with independently tunable frequency and coupling coefficient at the lower band
CN201638921U (zh) 一种非对称共面波导定向耦合器
US8570115B2 (en) Power division network device
Ohta et al. Design of quadrature hybrids and directional couplers based on the equivalent admittance approach
CN205406692U (zh) 一种功率分配比例连续可重构的功率分配器
CN113224494B (zh) 基于微带-槽线耦合线的双频带功率不等分定向耦合器
CN114204241B (zh) 微带-开路槽线耦合双频带90度定向耦合器
CN107732396B (zh) 一种基于基片集成波导的功分器
CN105356853A (zh) 一种带通滤波Doherty放大器及仿真设计方法
WO2020014891A1 (en) Balun and method for manufacturing the same
CN211556091U (zh) 一种基于双面阶梯矩形波导的全波段魔t
CN109346842B (zh) 波宽可调的天线
CN209786154U (zh) 一种等离子体波导移相器
Zhou et al. A wideband balanced filtering coupled‐line coupler with improved directivity based on coupled microstrip–slotline
WO2021168735A1 (zh) 耦合部件、微波器件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948126

Country of ref document: EP

Kind code of ref document: A1